

• Table of Contents

• Index

Core PHP Programming, Third Edition

By Leon Atkinson

Publisher : Prentice Hall PTR

Pub Date : August 05, 2003

ISBN : 0-13-046346-9

Pages : 1104

Core PHP Programming, Third Edition is the

authoritative guide to the new PHP 5 for

experienced developers. Top PHP developer Leon

Atkinson and PHP 5 contributor/Zend Engine 2

co-creator Zeev Suraski cover every facet of real-

world PHP 5 development, from basic syntax to

advanced object—oriented development-even

design patterns!

It’s all here: networking, data structures, regular

expressions, math, configuration, graphics,

MySQL/PostgreSQL support, XML, algorithms,

debugging, optimization…and 650 downloadable

code examples, with a Foreword by PHP 5

contributor and Zend Engine 2 co-creator Andi

Gutmans!

http://www.informit.com/safari/author_bio.asp@ISBN=0130463469

• Table of Contents

• Index

Core PHP Programming, Third Edition

By Leon Atkinson

Publisher : Prentice Hall PTR

Pub Date : August 05, 2003

ISBN : 0-13-046346-9

Pages : 1104

 Copyright

 Praise for Core PHP Programming

 Prentice Hall PTR Core Series

 About Prentice Hall Professional Technical Reference

 Foreword

 Preface

 Acknowledgments

 Part I. Programming with PHP

 Chapter 1. An Introduction to PHP

 Section 1.1. The Origins of PHP

 Section 1.2. PHP Is Better Than Its Alternatives

 Section 1.3. Interfaces to External Systems

 Section 1.4. How PHP Works with the Web Server

 Section 1.5. Hardware and Software Requirements

 Section 1.6. What a PHP Script Looks Like

 Section 1.7. Saving Data for Later

 Section 1.8. Receiving User Input

 Section 1.9. Choosing Between Alternatives

 Section 1.10. Repeating Code

 Chapter 2. Variables, Operators, and Expressions

 Section 2.1. A Top-Down View

 Section 2.2. Data Types

 Section 2.3. Variables

 Section 2.4. Constants

http://www.informit.com/safari/author_bio.asp@ISBN=0130463469

 Section 2.5. Operators

 Section 2.6. Building Expressions

 Chapter 3. Control Statements

 Section 3.1. The if Statement

 Section 3.2. The ? Operator

 Section 3.3. The switch Statement

 Section 3.4. Loops

 Section 3.5. exit, die, and return

 Section 3.6. Exceptions

 Section 3.7. Declare

 Chapter 4. Functions

 Section 4.1. Declaring a Function

 Section 4.2. The return Statement

 Section 4.3. Scope

 Section 4.4. Static Variables

 Section 4.5. Arguments

 Section 4.6. Recursion

 Section 4.7. Dynamic Function Calls

 Chapter 5. Arrays

 Section 5.1. Single-Dimensional Arrays

 Section 5.2. Indexing Arrays

 Section 5.3. Initializing Arrays

 Section 5.4. Multidimensional Arrays

 Section 5.5. Casting Arrays

 Section 5.6. The + Operator

 Section 5.7. Referencing Arrays Inside Strings

 Chapter 6. Classes and Objects

 Section 6.1. Object-Oriented Programming

 Section 6.2. The PHP 5 Object Model

 Section 6.3. Defining a Class

 Section 6.4. Constructors and Destructors

 Section 6.5. Cloning

 Section 6.6. Accessing Properties and Methods

 Section 6.7. Static Class Members

 Section 6.8. Access Types

 Section 6.9. Binding

 Section 6.10. Abstract Methods and Abstract Classes

 Section 6.11. User-Level Overloading

 Section 6.12. Class Autoloading

 Section 6.13. Object Serialization

 Section 6.14. Namespaces

 Section 6.15. The Evolution of the Zend Engine

 Chapter 7. I/O and Disk Access

 Section 7.1. HTTP Connections

 Section 7.2. Writing to the Browser

 Section 7.3. Output Buffering

 Section 7.4. Environment Variables

 Section 7.5. Getting Input from Forms

 Section 7.6. Passing Arrays in Forms

 Section 7.7. Cookies

 Section 7.8. File Uploads

 Section 7.9. Reading and Writing to Files

 Section 7.10. Sessions

 Section 7.11. The include and require Functions

 Section 7.12. Don’t Trust User Input

 Part II. Functional Reference

 Chapter 8. Browser I/O

 Section 8.1. Pregenerated Variables

 Section 8.2. Pregenerated Constants

 Section 8.3. Sending Text to the Browser

 Section 8.4. Output Buffering

 Section 8.5. Session Handling

 Section 8.6. HTTP Headers

 Chapter 9. Operating System

 Section 9.1. Files

 Section 9.2. Compressed File Functions

 Section 9.3. Direct I/O

 Section 9.4. Debugging

 Section 9.5. POSIX

 Section 9.6. Shell Commands

 Section 9.7. Process Control

 Chapter 10. Network I/O

 Section 10.1. General Network I/O

 Section 10.2. Sockets

 Section 10.3. FTP

 Section 10.4. Curl

 Section 10.5. SNMP

 Chapter 11. Data

 Section 11.1. Data Types, Constants, and Variables

 Section 11.2. Arrays

 Section 11.3. Objects and Classes

 Section 11.4. User Defined Functions

 Chapter 12. Encoding and Decoding

 Section 12.1. Strings

 Section 12.2. String Comparison

 Section 12.3. Encoding and Decoding

 Section 12.4. Compression

 Section 12.5. Encryption

 Section 12.6. Hashing

 Section 12.7. Spell Checking

 Section 12.8. Regular Expressions

 Section 12.9. Character Set Encoding

 Chapter 13. Math

 Section 13.1. Common Math

 Section 13.2. Random Numbers

 Section 13.3. Arbitrary-Precision Numbers

 Chapter 14. Time and Date

 Section 14.1. Time and Date

 Section 14.2. Alternative Calendars

 Chapter 15. Configuration

 Section 15.1. Configuration Directives

 Section 15.2. Configuration

 Chapter 16. Images and Graphics

 Section 16.1. Analyzing Images

 Section 16.2. Creating Images

 Chapter 17. Database

 Section 17.1. DBM-Style Database Abstraction

 Section 17.2. DBX

 Section 17.3. LDAP

 Section 17.4. MySQL

 Section 17.5. ODBC

 Section 17.6. Oracle

 Section 17.7. Postgres

 Section 17.8. Sybase and Microsoft SQL Server

 Chapter 18. Object Layers

 Section 18.1. COM

 Section 18.2. CORBA

 Section 18.3. Java

 Chapter 19. Miscellaneous

 Section 19.1. Apache

 Section 19.2. IMAP

 Section 19.3. MnoGoSearch

 Section 19.4. OpenSSL

 Section 19.5. System V Messages

 Section 19.6. System V Semaphores

 Section 19.7. System V Shared Memory

 Chapter 20. XML

 Section 20.1. DOM XML

 Section 20.2. Expat XML

 Section 20.3. WDDX

 Part III. Algorithms

 Chapter 21. Sorting, Searching, and Random Numbers

 Section 21.1. Sorting

 Section 21.2. Built-In Sorting Functions

 Section 21.3. Sorting with a Comparison Function

 Section 21.4. Searching

 Section 21.5. Indexing

 Section 21.6. Random Numbers

 Section 21.7. Random Identifiers

 Section 21.8. Choosing Banner Ads

 Chapter 22. Parsing and String Evaluation

 Section 22.1. Tokenizing

 Section 22.2. Regular Expressions

 Section 22.3. Defining Regular Expressions

 Section 22.4. Using Regular Expressions in PHP Scripts

 Chapter 23. Database Integration

 Section 23.1. Building HTML Tables from SQL Queries

 Section 23.2. Tracking Visitors with Session Identifiers

 Section 23.3. Storing Content in a Database

 Section 23.4. Database Abstraction Layers

 Chapter 24. Networks

 Section 24.1. HTTP Authentication

 Section 24.2. Controlling the Browser’s Cache

 Section 24.3. Setting Document Type

 Section 24.4. Email with Attachments

 Section 24.5. HTML Email

 Section 24.6. Verifying an Email Address

 Chapter 25. Generating Graphics

 Section 25.1. Dynamic Buttons

 Section 25.2. Generating Graphs on the Fly

 Section 25.3. Bar Graphs

 Section 25.4. Pie Charts

 Section 25.5. Stretching Single-Pixel Images

 Part IV. Software Engineering

 Chapter 26. Integration with HTML

 Section 26.1. Sprinkling PHP within an HTML Document

 Section 26.2. Using PHP to Output All HTML

 Section 26.3. Separating HTML from PHP

 Section 26.4. Generating HTML with PHP

 Chapter 27. Design

 Section 27.1. Writing Requirements Specifications

 Section 27.2. Writing Design Documents

 Section 27.3. Change Management

 Section 27.4. Modularization Using include

 Section 27.5. FreeEnergy

 Section 27.6. Templates

 Section 27.7. Application Frameworks

 Section 27.8. PEAR

 Section 27.9. URLs Friendly to Search Engines

 Chapter 28. Efficiency and Debugging

 Section 28.1. Optimization

 Section 28.2. Measuring Performance

 Section 28.3. Optimize the Slowest Parts

 Section 28.4. When to Store Content in a Database

 Section 28.5. Debugging Strategies

 Section 28.6. Simulating HTTP Connections

 Section 28.7. Output Buffering

 Section 28.8. Output Compression

 Section 28.9. Avoiding eval

 Section 28.10. Don’t Load Extensions Dynamically

 Section 28.11. Improving Performance of MySQL Queries

 Section 28.12. Optimizing Disk-Based Sessions

 Section 28.13. Don’t Pass by Reference (or, Don’t Trust Your Instincts)

 Section 28.14. Avoid Concatenation of Large Strings

 Section 28.15. Avoid Serving Large Files with PHP-Enabled Apache

 Section 28.16. Understanding Persistent Database Connections

 Section 28.17. Avoid Using exec, Backticks, and system If Possible

 Section 28.18. Use php.ini-recommended

 Section 28.19. Don’t Use Regular Expressions Unless You Must

 Section 28.20. Optimizing Loops

 Section 28.21. IIS Configuration

 Chapter 29. Design Patterns

 Section 29.1. Patterns Defined

 Section 29.2. Singleton

 Section 29.3. Factory

 Section 29.4. Observer

 Section 29.5. Strategy

 Appendix A. Escape Sequences

 Appendix B. ASCII Codes

 Appendix C. Operators

 Appendix D. PHP Tags

 Appendix E. PHP Compile-Time Configuration

 Appendix F. Internet Resources

 Section F.1. Portals

 Section F.2. Software

 Appendix G. PHP Style Guide

 Section G.1. Comments

 Section G.2. Function Declarations

 Section G.3. Compound Statements

 Section G.4. Naming

 Section G.5. Expressions

 Index

Copyright
Library of Congress Cataloging-in-Publication Data

A CIP catalog record for this book can be obtained from the Library of

Congress.

Editorial/Production Supervision: Faye Gemmellaro

Composition: Vanessa Moore

Cover Design Director: Jerry Votta

Art Director: Gail Cocker-Bogusz

Interior Design: Meg Van Arsdale

Manufacturing Manager: Alexis R. Heydt-Long

Manufacturing Buyer: Maura Zaldivar

Editor-in-Chief: Mark Taub

Editorial Assistant: Noreen Regina

Developmental Editor: Russ Hall

Marketing Manager: Curt Johnson

© 2004 Pearson Education, Inc.

Publishing as Prentice Hall Professional Technical Reference

Upper Saddle River, New Jersey 07458

Prentice Hall PTR offers excellent discounts on this book when

ordered in quantity for bulk purchases or special sales. For

more information, please contact: U.S. Corporate and

Government Sales, 1-800-382-3419,

corpsales@pearsontechgroup.com. For sales outside of the

U.S., please contact: International Sales, 1-317-581-3793,

international@pearsontechgroup.com.

Company and product names mentioned herein are the trademarks

or registered trademarks of their respective owners.

All rights reserved. No part of this book may be reproduced, in any

form or by any means, without permission in writing from the

publisher.

Printed in the United States of America

First Printing

Text printed on recycled paper

Pearson Education Ltd.

Pearson Education Australia Pty., Limited

Pearson Education Singapore, Pte. Ltd.

Pearson Education North Asia Ltd.

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsontechgroup.com

Pearson Education Canada, Ltd.

Pearson Educación de Mexico, S.A. de C.V.

Pearson Education�Japan

Pearson Education Malaysia, Pte. Ltd.

Praise for Core PHP Programming
“Bought your book Core PHP Programming at a Barnes and

Noble here in Tucson. Normally I absolutely hate books in terms

of learning, preferring instead to sort of just mess around with

something with online docs until I know it, but your book is

exceptional. I was telling my girlfriend about it; it’s concise and

thorough without being annoyingly wordy, and it is a spiffing

reference for PHP, which I’m sort of teaching myself from the

ground up.

The simple act of buying your book affirms all of the essential

aspects of capitalism�I got more out of it than what I paid for

it, and I assume you are reaping windfalls that made all the

work worth it. You should be proud. I have a whole stack of

books that I abandoned because they were organized badly.

I have recommended it unhesitatingly to hacker-minded (in the

good sense) friends. I have MySQL running here now, and I

shall actively seek out your book on that subject in coming

months when I have time.

Best wishes to you, and hope for your continued success.”

�Chris Hizny

“I am a Web designer/developer in NYC. I just want to let you

know that I just purchased your book, Core PHP Programming,

2nd Edition, and I think it is wonderful!!! Very easy to

read�and retain�so far … I just want to thank you ahead of

time because all the other PHP books I’ve purchased and read

got me nowhere!”

�Neal Levine

 http://www.ilaonline.com

“I recently purchased your Core PHP Programming book, and I

just wanted to let you know that it is one of the best

programming books I’ve ever read. Thank you for taking the

time to do the book right.”

�Jordan

“I gotta tell you, I enjoyed the book, Core PHP Programming. It

has helped me a lot. I even went so far as to sell my first

edition and bought the second.”

�Kreg Steppe

“I’m enjoying Core PHP Programming, 2nd Edition, enormously.

I’m about 50 pages in and it is a real page-turner; unlike many

technical books, this one can actually be read word for word

due to your fine writing style.”

�Stuart

http://www.ilaonline.com/default.htm

“Just wanted to say how much I have enjoyed your book, very

well done, I am learning a lot from it, Congratulations on an

excellent book! It has opened a whole new world to me, I have

written Perl, ASP, Delphi, VB apps before�but it is PHP that I

am most excited about. It must have been a huge project to

complete.”

�R.A. McCormack, P.Eng.

 Professor of Multimedia, Confederation College

 CASE.org’s “Outstanding Canadian College Professor of the

Year”

“I corresponded with you about 6 to 9 months ago regarding

your Core PHP Programming book (first version) and recently

purchased your second version. I enjoyed the update for PHP

4.0. Your first version book was falling apart on me!”

�TDavid

 http://www.tdscripts.com/contact.html

“I’m a French PHP programmer, and I would like to thank you

for the book Core PHP Programming. I’m 17 years old and with

your book (I read completely the book ;�)), I programmed a

Web site http://www.tutorials-fr.com/, a tutorials directory and

the internal Web site of my secondary school. Thanks very

much for all :�)) “

�GML

“I was first introduced to your expertise through the FreeTrade

project, which we actively use for one of our sites. I also

reference your Core PHP Programming almost daily, which has

brought me a long way.”

�Bob Bennett

“First of all, I want to say that your book Core PHP

Programming is a Great book with clear examples. This is the

book that learned me PHP a couple of years ago. Now I’m much

more experienced and created a PHP 4 template class recently,

called TemplatePower. You’re probably very busy, but if you find

a little time, could you take a look at it? I would be very

pleased. You can read more about it at

http://templatepower.codocad.com/.”

�Ron

 The Netherlands

“I’m a French PHP Webmaster, and I’ve began in PHP with your

book. I’m not a developer but a graphist, and I wanted to learn

a programmation language … . It’s done with your help!!!

Thanks a lot for all, and excuse my English that is toooooooooo

bad!!!! I’ve made a link from my site to yours, and I would like

to know if you are agree. Please send me a mail if you don’t

want to be in my site, or if you have any question, suggestion,

or else … .

http://www.tdscripts.com/contact.html
http://www.tutorials-fr.com/default.htm
http://templatepower.codocad.com/default.htm

Thanks for all, I really don’t know how to say in English that I’m

very happy to have learn PHP with your help!! :)) “

�Vincent Pontier

“You write very clearly and succinctly, which is a rare gift among

programmers. My copy is looking fairly tired now�time for a

second edition? A bit more on the built-in session manager

would be good, also some examples of using the PHP

extensions, e.g., ming, would be useful. I have adopted your

dynamic selection boxes to use as a function, and wondered

whether you would be interested in putting it on your code

exchange site?”

�Dr. Tom Hughes

 MD, MSc, MBA, MRCP, FRCS

“My name is Marcus Andersson, and I’m a 22-year-old student

from Sweden. I bought your book Core PHP Programming, 2nd

Edition, and I find it really good. It didn’t take me long to notice

that PHP is really great for building dynamic Web sites. Thank

you for a great book!”

�Marcus

“I bought your Core PHP Programming, 2nd Edition, a couple of

weeks ago, and I must say it’s a great book. Well done! It’s nice

to see you’ve set up an errata section on your site, wish more

authors would be more forthcoming.”

�Murray

 “A Web 4 U Designs”

 www.aweb4u.co.nz

“Your book has, in large part, helped me to implement a

complex (at least by typical non-corporate standards),

databased Web site in PHP … something I would never have

accomplished without it. Thanks and take care.”

�Eric Geddes

 Fringe Group Inc.

“Nice book, easy read (I’m reading it front to back). Based on

the usability of this book, I am looking forward to picking up a

copy of your MySQL book for my library.”

�Nolan

http://www.aweb4u.co.nz/default.htm

Prentice Hall PTR Core Series
Core MySQL, Atkinson

Core PHP Programming, 3/e, Atkinson

Core Python Programming, Chun

Core Java Media Framework, Decarmo

Core Jini, 2/e,[*] Edwards

[*]
 Sun Microsystems Press titles

Core Servlets and JavaServer Pages,[*] Hall

Core Web Programming, 2/e,[*] Hall/Brown

Core ColdFusion 5, Hewitt

Core Java 2, Vol I�Fundamentals,[*] Horstmann/Cornell

Core Java 2, Vol II�Advanced Features,[*] Horstmann/Cornell

Core JSP, Hougland & Tavistock

Core Perl, Lerner

Core CSS, Schengili-Roberts

Core C++: A Software Engineering Approach, Shtern

Core Java Web Server, Taylor & Kimmet

Core JFC, 2/e, Topley

Core Swing: Advanced Programming, Topley

Core Web3D, Walsh & Bourges-Sévenier

About Prentice Hall Professional Technical
Reference
With origins reaching back to the industry’s first computer science

publishing program in the 1960s, and formally launched as its own

imprint in 1986, Prentice Hall Professional Technical Reference (PH

PTR) has developed into the leading provider of technical books in the

world today. Our editors now publish over 200 books annually,

authored by leaders in the fields of computing, engineering, and

business.

Our roots are firmly planted in the soil that gave rise to the technical

revolution. Our bookshelf contains many of the industry’s computing

and engineering classics: Kernighan and Ritchie’s C Programming

Language, Nemeth’s UNIX System Adminstration Handbook,

Horstmann’s Core Java, and Johnson’s High-Speed Digital Design.

PH PTR acknowledges its auspicious beginnings while it looks to the

future for inspiration. We continue to evolve and break new ground in

publishing by providing today’s professionals with tomorrow’s

solutions.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

Foreword
When I wrote the Foreword for Leon’s second edition, PHP 4 had just

started making it big, taking over the market share from PHP 3. The

new version made great promises, and looking back it met all of its

promises and more. We can see that at present PHP 4 has no doubt

not only replaced almost all PHP 3 installations, but has conquered

the Web application development market with its millions of

installations and use in enterprise companies.

Today, we are again facing exciting times. PHP 5 is about to be

released, promising major improvements to the growing PHP

community. As with previous versions, the major improvements are

at the language level. Zeev and I redesigned the object model�at

last dumping the problematic model, which originated from our work

in PHP 3. Some of the other changes we made include:

Treating objects as handles and not native types, allowing for

other new features and fixing some odd behavior.

Allowing for private, public, and protected access restrictions on

members and methods.

Introducing exception handling a la C++‘s try/catch.

Providing interfaces similar to the ones found in Java giving.

And lots more…

PHP 5 is also expected to feature improvements and additions in

other areas, including better all-around XML support, improved

streams support, and more.

In the 3rd edition of Core PHP Programming, Leon has invited my

partner Zeev Suraski to cover the PHP 5 language changes. No doubt

that Leon’s experience in writing PHP books and Zeev’s superior

knowledge of PHP 5 and its internals have led to a must-buy book for

PHP developers.

I hope you enjoy this book and that it accompanies you during the

adoption phase of PHP 5.

Andi Gutmans

 Herzelyia, Israel

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

Preface
My first inkling that I might like to write a book about PHP was borne

out of the frustration I felt with the original PHP manual. It was a

single, large HTML file with all the functions in alphabetical order. It

was also on a Web server thousands of miles away from me in

Canada, so it was slow to show up in my browser, even across a T1

connection. It wasn’t long before it was saved on my desktop. After

struggling for several months, it started to dawn on me that I could

probably organize the information into a more usable format. Around

that time the next version of PHP began to take shape, and with it a

new manual was developed. It was organized around PHP’s source

code, but was less complete than the old PHP manual. I contributed

descriptions for some of the missing functions, but I still had the idea

to write my own manual. In the spring of 1998 Prentice Hall gave me

the opportunity to do so. It is an honor for my book to be among

Prentice Hall classics such as The C Programming Language by Brian

Kernighan and Dennis Ritchie.

This book assumes a certain familiarity with the Internet, the Web,

and HTML programming, but it starts with the most basic ideas of

programming. It will introduce you to concepts common to all

programming languages and how they work in PHP. You can expect

this book to teach you how to create rich, dynamic Web sites. You

can also expect it to remain on your desk as a reference for how PHP

works, or even as a recipe book for solving common design problems.

This book is not for dummies, nor is it for complete idiots. That you

are considering PHP is a great indication of your intelligence, and I’d

hate to insult it. Some of the ideas in this book are hard to

understand. If you don’t quite get them the first time, I encourage

you to reread and experiment with the examples.

If you are uncomfortable writing HTML files, you may wish to develop

this skill first. Marty Hall’s Core Web Programming provides an

excellent introduction. Beyond HTML, numerous other topics I touch

on fall out of scope. Whenever I can, I suggest books and Web sites

that provide more information. There are even some aspects of PHP

that range too far from the focus on writing PHP scripts. An example

is writing extensions for PHP in C. This involves a healthy knowledge

of C programming that I cannot provide here. Related to this is

compiling and installing PHP. I attempt to describe the process of

installing PHP, which can involve compiling the source code, but I

can’t attempt to pursue all the different combinations of operating

system, Web server, and extensions. If you are comfortable running

make files, you will find the information that comes with the PHP

source code more than adequate.

Along with the explanation text I’ve provided real-world examples.

Nothing is more frustrating than trying to adapt some contrived

academic problem to the Web site you must have working by the end

of the week. Some of the examples are based on code from live Web

sites I have worked on since discovering PHP in 1997. Others are

distilled from the continual discussion being conducted on the PHP

mailing lists.

This book is organized into four main sections: an introduction to

programming; a reference for all the functions in PHP; a survey of

common programming problems; and finally a guide for applying this

knowledge to Web site development. The first section deals with the

issues involved with any programming language: what a PHP script

looks like; how to control execution; how to deal with data. The

second section organizes the functions by what they do and gives

examples of their use. PHP offers many functions, so this section is

larger than the rest. The third section deals with solving common

programming problems such as sorting and generating graphics. The

last section offers advice about how to create a whole Web site with

PHP.

I’ve chosen a few conventions for highlighting certain information,

and I’m sure you will find them obvious, but for the sake of clarity I’ll

spell them out. Whenever I use a keyword such as the name of a

script or a function, I place it in a monospace font. For example, I

may speak about the print function. Another convention I’ve used is

to place email addresses and Web addresses inside angle brackets.

Examples are the email address by which you can contact me,

<corephp@leonatkinson.com>, and my Web site,

<http://www.leonatkinson.com/>.

It can be difficult to describe a subject that changes rapidly. PHP 5

underwent a methodical design process and implementation, which

made it easier to write about ahead of finalization. Yet, there are

bound to be changes between the time of writing and when you’re

reading the text. Most changes PHP acquires take the form of new

functions or slight changes to existing functions. Sometimes, though,

entirely new features appear or provisional features disappear. Just

before going to press, the namespace keyword described in Chapter

6 was removed. A spirited debate on the PHP mailing lists included

passionate supporters of keeping and removing namespaces. In the

end, the arguments for removal won, with the decision to continue to

seek a feasible solution to the problem of namespaces.

Please visit my Web site, <http://www.leonatkinson.com/>, for

updates about the book. Aside from news, you’ll find the inevitable

list of errata and a link for downloading all the listings.

mailto:corephp@leonatkinson.com
http://www.leonatkinson.com/default.htm
http://www.leonatkinson.com/default.htm

Acknowledgments
Thank you for picking up this book. I love sharing PHP. It’s offered

the platform for many interesting projects over that past six years.

I’m delighted to have introduced PHP to so many people. If you’re

one of the many people who took the time to write with questions,

comments, and corrections, know that I really appreciate it. The

feedback from the very beginning has always been overwhelmingly

positive.

Without my family, I would never have finished the first edition of this

book. They put up with long hours I spent writing instead of being

with them. I’m grateful for their patience over the years. Your

dedication and pride in me inspires me.

My wife, Vicky, deserves particular thanks for reading through the

entire text from start to finish. I also benefited from unique

perspective of Bob Dibetta, my long-time friend.

I’m happy to have Zeev helping out with the book this time around.

His understanding of the new object model was invaluable. The PHP

community is fortunate to have such a passionate and wise advocate.

Thanks also to Andi for writing another great Foreword.

No PHP book is complete without thanks going out to the PHP

developers. It all started with Rasmus Lerdorf, but the project

continues to benefit from contributions from many people. I

encourage you to visit the PHP mailing lists and contribute to the PHP

project. It’s refreshing to find the important members of the

development team are genuine individuals, willing to interact on a

personal level.

Working with Prentice Hall has been a pleasure. I’ve enjoyed the

wisdom and guidance of Mark Taub. Faye Gemmellaro kept the

production process going under a tight deadline.

Leon Atkinson

 August 2003

I would like to thank Andi Gutmans, without whom the PHP project

wouldn’t have materialized, and there would be no topic to write this

book about; Ophir Prusak, for getting me acquainted with php/fi 2

and making the birth of PHP possible; and my colleagues at Zend

Technologies, for giving me a lot of ideas and insights.

I’d like to express my gratitude to Leon Atkinson and Mark Taub for

giving me the opportunity to get involved in writing this book. I would

like to thank my family that encouraged me to continue with the PHP

project throughout the years. And finally, I would like to thank my

girlfriend for putting up with the weekends I had to spend writing.

Zeev Suraski

 August 2003

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

Part I: Programming with PHP
The first part of this book is a thorough discussion of PHP as a

programming language. You will be introduced to common

concepts of computer science and how they are implemented in

PHP. No prior programming experience beyond the use of simple

mark-up languages is necessary. That is, you must be familiar

with HTML. These chapters focus on building a foundation of

understanding rather than on how to solve specific problems. If

you have experience programming in a similar language, such

as C or Perl, you may choose to read Chapter 1 and skim the

rest, saving it as a reference. In most situations, PHP treats

syntax much as these two languages do.

Chapter 1 is an introduction to PHP�how it began and what it

looks like. It may be sufficient for experienced programmers,

since it moves quickly through PHP’s key features. If you are

less experienced, I encourage you to treat this chapter as a first

look. Don’t worry too much about exactly how the examples

work. I explain the concepts in depth in later chapters.

Chapter 2 introduces the concepts of variables, operators, and

expressions. These are the building blocks of a PHP script.

Essentially, a computer stores and manipulates data. Variables

let you name values; operators and expressions let you

manipulate them.

Chapter 3 examines the ways PHP allows you to control

program execution. This includes conditional branches and

loops.

Chapter 4 deals with functions, how they are called and how to

define them. Functions are packages of code that you can call

upon repeatedly.

Chapter 5 is about arrays�collections of values that are

identified by either numbers or names. Arrays are a very

powerful way to store information and retrieve it efficiently.

Chapter 6 is about classes, presenting an object-oriented

approach to grouping functions and data. Although not strictly

an object-oriented language, PHP supports many features found

in OO languages such as Java.

Chapter 7 deals with how PHP sends and receives data. Files,

network connections, and other means of communication are

covered.

 • Chapter 1 An Introduction to PHP

 • Chapter 2 Variables, Operators, and Expressions

 • Chapter 3 Control Statements

 • Chapter 4 Functions

 • Chapter 5 Arrays

 • Chapter 6 Classes and Objects

 • Chapter 7 I/O and Disk Access

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

Chapter 1. An Introduction to PHP
Topics in This Chapter

The Origins of PHP

PHP Is Better Than Its Alternatives

Interfaces to External Systems

How PHP Works with the Web Server

Hardware and Software Requirements

What a PHP Script Looks Like

Saving Data for Later

Receiving User Input

Choosing Between Alternatives

Repeating Code

This chapter introduces you to PHP. You learn how it came about,

what it looks like, and why it is the best server-side technology. It

also exposes the most important features of the language.

PHP began as a simple macro replacement tool. Like a nice pair of

shoes, it got you where you needed to go, but you could go only so

far. On the hyperspeed development track of the Internet, PHP has

become the equivalent of a 1960s muscle car. It’s cheap, it’s fast, and

there’s plenty of room under the hood for you and your virtual

wrench.

This chapter lets you poke around the PHP engine, get your hands a

little dirty, and take it for a spin. There are lots of small examples you

can try immediately. Like all the examples in this book, you can easily

adapt them to provide real solutions. Don’t be intimidated if you don’t

fully understand the PHP code at first. Later chapters deal with all the

issues in detail.

This chapter talks about some things that you already know, such as

what a computer is, just to make sure we’re all on the same page.

You may be a wizard with HTML but not fully appreciate the alien way

computers are put together. Or you may find you learned all these

things in a high school computer class. If you get bored with the

basics, skip to Chapter 2.

1.1 The Origins of PHP

Wonderful things come from singular inspiration. PHP began life as a

simple way to track visitors to Rasmus Lerdorf’s resume. It also could

embed SQL queries in Web pages. But as often happens on the Web,

admirers quickly asked for their own copies. As a proponent of the

Internet’s ethic of sharing, and as a generally agreeable person,

Rasmus unleashed upon an unsuspecting Web his Personal Home

Page Tools version 1.0.

“Unleashed upon himself” may be more accurate. PHP became very

popular. A consequence was a flood of suggestions. PHP 1.0 filtered

input, replacing simple commands for HTML. As its popularity grew,

people wondered if it couldn’t do more. Loops, conditionals, rich data

structures�all the conveniences of modern structured programming

seemed like a next logical step. Rasmus studied language parsers,

read about YACC and GNU Bison, and created PHP 2, otherwise

known as PHP/FI.

PHP/FI allowed developers to embed structured code inside HTML

tags. PHP scripts could parse data submitted by HTML forms,

communicate with databases, and make complex calculations on the

fly. And it was very fast because the freely available source code

compiled into the Apache Web server. A PHP script executed as part

of the Web server process and required no forking, often a criticism

of Common Gateway Interface (CGI) scripts.

PHP was a legitimate development solution and began to be used for

commercial Web sites. In 1996, Clear Ink created the SuperCuts site

(www.supercuts.com) and used PHP to create a custom experience

for the Web surfer. The PHP Web site tracks the popularity of PHP by

measuring how many different Web sites use the PHP module. When

writing the second edition of this text, it seemed really exciting that

PHP had grown from 100,000 sites to 350,000 sites during 1999. The

most recent data show more than 10 million domains using PHP!

In 1997, a pair of Israeli students named Andi Gutmans and Zeev

Suraski attempted to use it for building an online shopping cart,

considered cutting-edge enough to be a university project. Shortly

after they started, they stumbled upon various bugs in PHP that

made them look under the hood at the source code. To their surprise,

they noticed that PHP’s implementation broke most of the principles

of language design, which made it prone to unexpected behavior and

bugs. Always looking for good excuses not to study for exams, they

started creating a new implementation. In part, the task was a test of

their programming abilities, in part a recreation. A few months later,

they had rewritten PHP from scratch, making it a real, consistent, and

robust language for the first time. Having spent so much time on the

project, they asked the course teacher, Dr. Michael Rodeh, for

academic credit in an attempt to avoid unnecessary exams. Being the

manager of the IBM Research Lab in Haifa and well aware of the

overwhelming number of different languages to choose from, he

agreed�with the stipulation that they cooperate with the existing

developers of PHP/FI instead of starting their own language.

http://www.supercuts.com/default.htm

When Andi and Zeev emailed Rasmus with the news about their

rewrite, they wondered if he would accept this new work, as it

essentially meant discarding his implementation. Rasmus did accept

it, and a new body was formed�the PHP Core Team, known today as

the PHP Group. Along with Andi, Rasmus, and Zeev, three other

developers�Stig Bakken, Shane Caraveo, and Jim Winstead�were

accepted to the Core Team. A community of developers started

growing around PHP.

After seven months of development, alpha and beta testing, PHP

version 3.0 was officially released on June 6, 1998, and started

bending the curve of PHP’s growth to unprecedented angles. PHP’s

functionality was growing on a daily basis, and PHP applications were

popping up everywhere. Following the release, Open Source projects

written in PHP flourished. Projects like Phorum tackled long-time

Internet tasks such as hosting online discussion. The PHPLib project

provided a framework for handling user sessions that inspired new

code in PHP. FreeTrade, a project I led, offered a toolkit for building e-

commerce sites.

Writing about PHP increased as well. More than 20 articles appeared

on high-traffic sites such as webmonkey.com and techweb.com. Sites

dedicated to supporting PHP developers were launched. The first two

books about PHP were published in May 1999. Egon Schmid,

Christian Cartus, and Richard Blume wrote a book in German called

PHP: Dynamische Webauftritte professionell realisieren. Prentice Hall

published the first edition of my book, Core PHP Programming. Since

then, countless books about PHP fill bookstore shelves.

Given this background, there were no reasons not to be happy with

the way PHP was back then. Perhaps the internal knowledge of what

was going on under the hood and the feeling familiar to every

developer�“I could have done it much better”�were the reasons

that Andi and Zeev were some of the very few people who felt

unhappy with PHP 3. As if out of habit, they withdrew from the PHP

community and attempted to design a new approach towards

executing PHP scripts.

A few months later, on January 4, 1999, Zeev and Andi announced a

new framework that promised to increase dramatically the

performance of PHP scripts. They dubbed the new framework the

Zend Engine. Early tests showed script execution times dropping by a

factor of 100. In addition, new features for compiling scripts into

binary, debugging, optimization, and profiling were planned. This

announcement officially ended the PHP 3.1 project, which was

supposed to bring better Windows support to PHP 3 but failed to gain

momentum, and officially started the planning of PHP 4.

Work on the Zend Engine and PHP 4 continued in parallel with bug

fixes and enhancements to PHP 3. During 1999, eight incremental

versions were released, and on December 29, 1999, PHP version

3.0.13 was announced. A PHP beta based on the Zend Engine

became publicly available in July 19, 1999, and was followed by an

intense development period of various components, some of which

were brand new, such as built-in session handling, output buffering,

and a Web server abstraction layer. The release of PHP 4 on May 22,

2000, marked another important milestone on PHP’s journey to

http://www.webmonkey.com/default.htm
http://www.techweb.com/default.htm

becoming the most popular Web development platform on earth. The

number of people working on various levels of PHP has grown

immensely, and new projects, most notably PEAR, gained momentum

and started pushing PHP to new heights of popularity.

The PHP community drives the development of new features. Many

programmers find inspiration in object-oriented programming. PHP 3

introduced objects as syntactic sugar. That is, while the syntax used

for objects was different, the underlying implementation varied little

from arrays. It attracted many object-oriented advocates, but the

limited implementation left them desiring more. PHP 5 addresses

these needs with a strong, rebuilt object system.

PHP is not a shrink-wrapped product made by faceless drones or

wizards in an ivory tower. PHP started as a simple tool brought into

the bazaar described by Eric Raymond in his essay The Cathedral and

the Bazaar. Once it appeared, anyone could make improvements, and

many did. Their aim seems to be to achieve solutions of direct,

personal interest. If a client comes along who requires a project to

use a database not supported by PHP, you simply write an extension.

Then you give it to the PHP project. Soon, other people are fixing

your bugs.

Yet, the vast majority of PHP users never write an extension. They

happily find everything they need in the contributed works of others.

Those who’ve contributed thousands of lines of code to PHP perhaps

never consider themselves heroes. They don’t trumpet their

accomplishments. But because each part of PHP came from a real

person, I would like to point them out. When appropriate, I’ll note

who added a particular extension.

You can find an up-to-date list of credits on the PHP site

<http://www.php.net/credits.php>.

http://www.php.net/credits.php
file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

1.2 PHP Is Better Than Its Alternatives

In previous years, skeptics may have asked, Why should I learn PHP?

Today, PHP’s popularity is enough to generate interest in learning it.

PHP is a standard feature offered by most Web hosting companies.

However, it is interesting to understand why so many people choose

PHP over alternatives.

Perl adapted well to being a CGI solution. Microsoft provides its Active

Server Pages with Internet Information Server. Middleware, like

Macromedia’s Cold Fusion, is yet another solution. ServerWatch.com

lists hundreds of Web technologies, some costing tens of thousands

of dollars. Why should you choose PHP over any of these

alternatives?

The short answer is that PHP is better. It is faster to code and faster

to execute. The same PHP code runs unaltered on different Web

servers and different operating systems. Additionally, functionality

that is standard with PHP is an add-on in other environments. A more

detailed argument follows.

PHP is free. Anyone may visit the PHP Web site

<http://www.php.net/> and download the complete source code,

licensed under a BSD-style license <http://www.php.net/license/>.

Binaries are also available for Windows. The result is easy entry into

the experience. There is very little risk in trying PHP, and its license

allows the code to be used to develop works with no royalties. This is

unlike products such as Allaire’s Cold Fusion, which costs thousands

of dollars for the software to interpret and serve scripts. Even

commercial giants like Netscape and IBM now recognize the

advantages of making source code available.

PHP runs on UNIX, Windows, and Macintosh OS X. PHP is designed to

integrate with the Apache Web server. Apache, another free

technology, is the most popular Web server on the Internet and

comes with source code for UNIX and Windows. PHP works with other

Web servers, including Microsoft’s Internet Information Server.

Scripts may be moved between server platforms without alteration.

PHP supports ISAPI to allow for the performance benefits of tight

coupling with Microsoft Web servers.

PHP is modifiable. PHP is designed to allow for future extension of

functionality. PHP is coded in C and provides a well-defined

application programming interface (API). Capable programmers may

add new functionality easily. The rich set of functions available in PHP

is evidence that they often do. Even if you aren’t interested in

changing the source code, it’s comforting to know you can inspect it.

Doing so may give you greater confidence in PHP’s robustness.

PHP was written for Web page creation. Perl, C, and Java are very

good general languages and are certainly capable of driving Web

applications. The unfortunate sacrifice these alternatives make is the

ease of communication with the Web experience. PHP applications

may be rapidly and easily developed because the code is

encapsulated in the Web pages themselves.

http://serverwatch.com/default.htm
http://www.php.net/default.htm
http://www.php.net/license/default.htm

Support for PHP is free and readily available. Queries to the PHP

mailing lists are often answered within minutes. A custom bug-

tracking system on the PHP site shows each problem along with its

resolution. Numerous sites, such as phpbuilder.com and zend.com,

offer original content to PHP developers.

PHP is popular. Internet service providers find PHP to be an attractive

way to allow their customers to code Web applications without the

risks exposed by CGIs. Developers worldwide offer PHP

programming. Sites coded in PHP will have the option of moving from

one host to another as well as a choice of developers to add

functionality.

Programming skills developed in other structured languages can be

applied to PHP. PHP takes inspiration from both Perl and C.

Experienced Perl and C programmers learn PHP very quickly.

Likewise, programmers who learn PHP as a first language may apply

their knowledge toward not only Perl and C, but other C-like

languages such as Java.

http://www.phpbuilder.com/default.htm
http://www.zend.com/default.htm
file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

1.3 Interfaces to External Systems

Originally, PHP was famous for interfacing with many different

database systems, but it also has support for other external systems.

Support comes in the form of modules called extensions. They either

compile directly into PHP or are loaded dynamically. New extensions

are added to the PHP project regularly. The extensions expose groups

of functions for using these external systems. As mentioned, some of

these are databases. PHP offers functions for talking natively with

most popular database systems, and it provides access to ODBC

drivers. Other extensions give you the ability to send messages using

a particular network protocol, such as LDAP or IMAP. These functions

are described in detail in Part II. Because PHP developers are

enthusiastic and industrious, you will undoubtedly find more

extensions have been added since I wrote this.

Pspell is a system for checking spelling. An extension provides

support for numbers of arbitrary precision. There is an extension for

dealing with various calendar systems. An extension provides support

for DBM-style databases. You can use the SNMP, IMAP, and LDAP

protocols. The Interbase and Informix databases are supported

natively, as are mSQL, MySQL, MS SQL, Sybase, Oracle, and

PostgreSQL. You can also parse XML or create WDDX packets. You

can even extract meta information about your digital pictures using

the EXIF extension. At the time of writing, automated coffee making

is not yet supported.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

1.4 How PHP Works with the Web Server

The normal process a Web server goes through to deliver a page to a

browser is as follows. It all begins when a browser makes a request

for a Web page. Based on the URL, the browser resolves the address

of the Web server, identifies the page it would like, and gives any

other information the Web server may need. Some of this information

is about the browser itself, like its name (Mozilla), its version (4.08),

or the operating system (Linux). Other information given the Web

server could include text the user typed into form fields.

If the request is for an HTML file, the Web server will simply find the

file, tell the browser to expect some HTML text, and then send the

contents of the file. The browser gets the contents and begins

rendering the page based on the HTML code. If you have been

programming HTML for any length of time, this will be clear to you.

Hopefully, you have also had some experience with CGI scripts. When

a Web server gets a request for a CGI, it can’t just send the contents

of the file. It must execute the script first. The script will generate

some HTML code, which then gets sent to the browser. As far as the

browser is concerned, it’s just getting HTML.

When a PHP page is requested, it is processed exactly like a CGI, at

least to the extent that the script is not simply sent to the browser. It

is first passed through the PHP engine, which gives the Web server

HTML text.

1.5 Hardware and Software Requirements

One great advantage of Open Source software is that it provides the

opportunity for adaptation to new environments. This is true of PHP.

Although originally intended as a module for the Apache Web server,

PHP has since abstracted its Web server interface. The new

abstraction layer allowed an ISAPI module to be written, which allows

it to work equally well with Microsoft’s Internet Information Server.

With regard to hardware requirements, I have personally witnessed

PHP running on 100-MHz Pentium machines running Slackware Linux

and Windows NT respectively. Performance was fine for use as a

personal development environment. That the engines for PHP 3 and 4

were developed on Intel 486 CPUs must have helped. A site expected

to receive thousands of requests a day would need faster hardware,

of course. Although more resources are needed when comparing a

PHP-powered site to a flat HTML site, the requirements are not

dramatically different. Despite my example, you are not limited to

Intel hardware. PHP works equally well on PowerPC, Sparc, and other

32-bit or better CPUs.

When choosing an operating system, you have the general choice

between Windows and a UNIX-like OS. PHP will run on older Windows

operating systems, although these operating systems aren’t suited

for high-traffic Web servers. It will also run on Windows 2000 and

Windows XP. For UNIX operating systems, PHP works well with Linux

and Solaris as well as others. If you have chosen a PPC-based

system, such as a Macintosh, you may choose LinuxPPC, a version of

Linux. Chad Cunningham contributed patches for compiling PHP in

Apple’s OS X. There’s even support of IBM’s OS/2 and Novell

Netware.

PHP still works best with the Apache Web server. But it now works

very well with IIS. It also compiles as a module for the fhttpd Web

server. You can make PHP work with almost any Web server using the

CGI version, but I don’t recommend this setup for production Web

sites.

Installation on Apache for UNIX

If you are using Linux, you can easily find an RPM for Apache and

PHP, but this installation may not include every PHP feature you want.

I recommend this route as a very quick start. You can always pursue

compiling Apache and PHP from scratch later. PHP will compile on

most versions of UNIX-like operating systems, including Solaris and

Linux. If you have ever compiled software you’ve found on the Net,

you will have little trouble with this installation. If you don’t have

experience extracting files from a tar archive and executing make

files, you may wish to rely on your system administrator or someone

else more experienced. You will need to have root privileges to

completely install PHP.

The first step is to download the tar files and unpack them. Download

the newest versions from the PHP site

<http://www.php.net/downloads.php> and the Apache site

<http://httpd.apache.org/>. At the time of writing, Apache 2 is

considered stable. Support for mod_php in Apache is not complete.

The following instructions assume Apache 1.3 and Apache 2 may

require a few changes.

After unpacking the tar file, the first step is to configure Apache. This

is done by running the configure script inside the Apache directory.

Listing 1.1 shows a minimal configuration.

Listing 1.1 Configuring Apache

./configure \

--server-uid=nobody \

--enable-module=so

The script will examine your system and prepare a make file for

Apache. This builds Apache for using shared libraries, one of which

will be PHP. You should follow the configuration step with make

install, which will compile Apache and install the binaries in the

default location. You may wish to test Apache by starting it with the

/usr/local/apache/bin/apachectl script.

Next, configure and compile PHP. Listing 1.2 shows a command for

configuring PHP with a few extensions, executed within the PHP

source code directory. Follow this with a make install. In most

cases, PHP can find the libraries it needs for extensions. In Listing

1.2, I’m specifically using the MySQL libraries I have in /usr/libs

rather than the MySQL libraries included in the PHP distribution.

Appendix E lists the compile-time configuration directives. You can

also get information by running ./configure —help. Running make

will create the PHP library, and make install places the PHP module

in Apache’s directory of modules. It also installs the latest PEAR

classes, a collection of standard PHP code.

Listing 1.2 Configuring PHP

./configure \

--with-apxs=/usr/local/apache/bin/apxs \

--with-zlib \

--with-bz2 \

--with-openssl \

--with-gd \

--enable-exif \

--with-jpeg-dir=/usr \

--with-freetype-dir \

--with-t1lib \

--enable-gd-native-ttf \

--with-mysql=/usr

To supply additional configuration options, PHP uses a file called

php.ini. This file should reside in /usr/local/lib, so copy it from

http://www.php.net/downloads.php
http://httpd.apache.org/default.htm

the PHP source directory (Listing 1.3):

Listing 1.3 Copying php.ini

cp php.ini-dist /usr/local/lib/php.ini

You may not need to edit this file. It controls certain aspects of PHP,

including support for historic behavior. Chapter 15 discusses

configuration directives you may use in php.ini. Many of them are in

the default file. Some you must add.

The last step is to make sure Apache recognizes PHP scripts.

Somewhere in Apache’s configuration file, httpd.conf, you need an

AddType directive that matches scripts ending in .php with

application/x-httpd-php. You also need to load the PHP module. If

the lines in Listing 1.4 do not appear in httpd.conf, add them.

Listing 1.4 Activating PHP for Apache

LoadModule php5_module libexec/libphp5.so

AddType application/x-httpd-php .php

AddModule mod_php5.c

This causes all files with the extension .php to be executed as PHP

scripts. You may also wish to insert index.php as a default

document. When the Apache server is started, it will process PHP

scripts. The documentation for Apache has hints for starting Apache

automatically. If you have been running Apache previously, you will

need to restart it, not just use a kill �HUP command.

Installation on Apache for Windows

Compiling PHP for Windows is not an ordinary task. Windows users

typically use binaries available on the PHP Web site. The same is true

for Apache. Both packages include automated installers, which makes

installation easy. Installing Apache this way is fine. I prefer to install

PHP manually, using the archive, because it allows for better

flexibility.

Unzip the PHP archive into a directory. I use C:\PHP, but you can

really put it anywhere. Next, copy the file php.ini-dist into your

system root directory, which is probably C:\Windows. Rename it

php.ini. When PHP is invoked, it looks first for php.ini in this

directory. Although you don’t need to, you may wish to edit it to

change configuration parameters, including automatically loading

extensions. Comments in the file explain the purpose of each

configuration directive. Chapter 15 discusses them in detail.

The next step is to make sure the required DLL files are in your path.

One way is to copy required files to your system directory, such as

C:\Windows\system32. Alternatively, you can click on the system

icon in the control panel and add your PHP directory to the system

path. Your Web server must be able to find php4ts.dll, which is in

the root of the PHP installation directory.

Next, configure Apache to load the PHP module. Edit httpd.conf and

add the lines in Listing 1.5. These lines load the module and associate

the .php extension with PHP script. The final step is restarting

Apache.

Listing 1.5 Activating PHP for Apache on Windows

LoadModule php5_module c:/php/sapi/php5apache.dll

AddType application/x-httpd-php .php

AddModule mod_php5.c

Editing Scripts

PHP scripts are just text files, and you can edit and create them just

as you would HTML files. Certainly, you can telnet into your Web

server and start creating files with vi. Or you can create files with

Notepad and use FTP to upload them one by one. But these aren’t

ideal experiences. One handy feature of newer editors is built-in FTP.

These editors can open files on a remote Web server as if they were

on a local drive. A single click saves them back to the remote Web

server. Another feature you may enjoy is syntax highlighting. This

causes PHP keywords to be colored in order to help you read the code

faster.

Everyone has a favorite editor for PHP scripts. I use UltraEdit

<http://www.ultraedit.com/>. I know many Windows users prefer

Macromedia’s Dreamweaver

<http://www.macromedia.com/software/dreamweaver/> or HomeSite

<http://www.macromedia.com/software/homesite/> to edit PHP

scripts. The Macintosh users I know prefer BBedit

<http://www.barebones.com/products/bbedit/bbedit.html>.

On a UNIX operating system, you may prefer emacs or vi, of course.

You might also consider nEdit <http://nedit.org/>. A module for PHP

is available in the contrib directory. The topic of which editor is best

appears frequently on the PHP mailing list. Reading the archives can

be amusing and informative <http://www.progressive-

comp.com/Lists/?l=php3-general>.

Although I continue to use a text editor for building PHP applications,

many people prefer an integrated development environment,

otherwise known as an IDE. There are several IDEs designed

specifically for PHP. PHPEdit <http://www.phpedit.net/> is one

example. The Zend Studio

<http://www.zend.com/store/products/zend-studio.php> is another

very popular choice.

Algorithms

http://www.ultraedit.com/default.htm
http://www.macromedia.com/software/dreamweaver/default.htm
http://www.macromedia.com/software/homesite/default.htm
http://www.barebones.com/products/bbedit/bbedit.html
http://nedit.org/default.htm
http://www.progressive-comp.com/Lists/@l=php3-general
http://www.phpedit.net/default.htm
http://www.zend.com/store/products/zend-studio.php

Whenever we interact with a computer, we are instructing it to

perform some action. When you drag an icon into the wastebasket on

your desktop, you are asking the computer to remove the file from

your hard disk. When you write an HTML file, you are instructing the

computer in the proper way to display some information. There are

usually many incremental steps to any process the computer

performs. It may first clear the screen with the color you specified in

the body tag. Then it may begin writing some text in a particular

color and typeface. As you use a computer, you may not be entirely

aware of each tiny step it takes, but you are giving it a list of ordered

instructions that you expect it to follow.

Instructions for baking a cake are called a recipe. Instructions for

making a movie are called a screenplay. Instructions for a computer

are called a program. Each of these is written in its own language, a

concrete realization of an abstract set of instructions. Borrowing from

mathematics, computer science calls the abstract instructions an

algorithm.

You may at this moment have in mind an algorithm that you’d like to

implement. Perhaps you wish to display information in a Web browser

that changes frequently. Imagine something simple, such as

displaying today’s date. You could edit a plain HTML file once a day.

You could even write out a set of instructions to help remind you of

each step. But you cannot perform the task with HTML alone. There’s

no tag that stands for the current date.

PHP is a language that allows you to express algorithms for creating

HTML files. With PHP, you can write instructions for displaying the

current date inside an HTML document. You write your instructions in

a file called a script. The language of the script is PHP, a language

that both you and the computer can understand.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

1.6 What a PHP Script Looks Like

PHP exists as a tag inside an HTML file. Like all HTML tags, it begins

with a less than symbol, or opening angle bracket (<), and ends with

a greater than symbol, or closing angle bracket (>). To distinguish it

from other tags, the PHP tag has a question mark (?) following the

opening angle bracket and preceding the closing angle bracket. All

text outside the PHP tag is simply passed through to the browser.

Text inside the tag is expected to be PHP code and is parsed.

To accommodate XML and some picky editors such as Microsoft’s

Front Page, PHP offers three other ways to mark code. Putting php

after the opening question mark makes PHP code friendly to XML

parsers. Alternatively, you may use a script tag as if you were writing

JavaScript. Finally, you can use tags that appear like ASP, using <% to

start blocks of code. Appendix D explains how these alternatives

work. In my own coding, I frequently use the simple <? and ?>

method because I can be sure I can configure PHP to accept them.

For code you share with others, it’s best to use <?php for the opening

tag, as I have in the examples.

Listing 1.6 shows an ordinary HTML page with one remarkable

difference: the PHP code between the <?php and the ?>. When this

page is passed through the PHP module, it will replace the PHP code

with today’s date. It might read something like Friday May 1, 1999

(see Figure 1.1).

Listing 1.6 Printing today’s date

<html>

<head>

<title>Listing 1-6</title>

</head>

<body>

Today's date: <?php print(Date("l F d, Y")); ?>

</body>

</html>

Figure 1.1. Output from Listing 1.6.

Whitespace�that is, spaces, tabs, and carriage returns�is ignored

by PHP. Used judiciously, it can enhance the readability of your code.

Listing 1.7 is functionally the same as the previous example, though

you may notice more easily that it contains PHP code.

Listing 1.7 Reformatting for readability

<html>

<head>

<title>Listing 1-7</title>

</head>

<body>

Today's date:

<?php

 /*

 ** print today's date

 */

 print(Date("l f d, y"));

?>

</body>

</html>

You may also notice the line of code in Listing 1.7 that begins with a

slash followed by an asterisk. This is a comment. Everything between

/* and */ is equivalent to whitespace. It is ignored. Comments can

be used to document how your code works. Even if you maintain your

own code, you will find comments necessary for all but simple scripts.

In addition to the opening and closing comment statements, PHP

provides two ways to build a single-line comment. Double slashes or

a pound sign will cause everything after them to the end of the line to

be ignored by the parser.

After skipping over the whitespace and the comment in Listing 1.7,

the PHP parser encounters the first word: print. This is one of PHP’s

functions. A function collects code into a unit you may invoke with its

name. The print function sends text to the browser. The contents of

the parentheses will be evaluated, and if it produces output, print

will pass it along to the browser.

Where does the line end? Unlike BASIC and JavaScript, which use a

line break to denote the end of a line, PHP uses a semicolon. On this

issue PHP takes inspiration from C.

The contents of the line between print and ; is a call to a function

named date. The text between the opening and closing parentheses

is the parameter passed to date. The parameter tells date in what

form you want the date to appear. In this case we’ve used the codes

for the weekday name, the full month name, the day of the month,

and the four-digit year. The current date is formatted and passed

back to the print function.

The string of characters beginning and ending with double quotes is

called a string constant or string literal. PHP knows that when quotes

surround characters, you intend them to be treated as text. Without

the quotes, PHP will assume you are naming a function or some other

part of the language itself. In other words, the first quote is telling

PHP to keep hands off until it finds another quote.

Notice that print is typed completely in lowercase letters, yet date

has a leading uppercase letter. I did this to illustrate that PHP takes a

lenient attitude toward the names of its built-in functions. Print,

PRINT, and PrInT are all valid calls to the same function. However,

for the sake of readability, it is customary to write PHP’s built-in

functions using lowercase letters only.

1.7 Saving Data for Later

Often it is necessary to save information for later use. PHP, like most

programming languages, offers the concept of variables. Variables

give a name to the information you want to save and manipulate.

Listing 1.8 expands on our example by using variables (see Figure

1.2).

Figure 1.2. Output from Listing 1.8.

The first block of PHP code puts values into some variables. The four

variables are YourName, Today, CostOfLunch, and DaysBuyingLunch.

PHP knows they are variables because they are preceded by a dollar

sign ($). The first time you use a variable in a PHP script, some

memory is set aside to store the information you wish to save. You

don’t need to tell PHP what kind of information you expect to be

saved in the variable; PHP can figure this out on its own.

The script first puts a character string into the variable YourName. As

I noted earlier, PHP knows it’s textual data because I put quotes

around it. Likewise, I put today’s date into a variable named Today.

In this case PHP knows to put text into the variable because the date

function returns text. This type of data is referred to as a string,

which is shorthand for character string. A character is a single letter,

number, or any other mark you make by typing a single key on your

keyboard.

Notice that there is an equal sign (=) separating the variable and the

value you put into it. This is the assignment operator. Everything to

its right is put into a variable named to its left.

Listing 1.8 Assigning values to variables

<?php

 $YourName = "Leon";

 $Today = date("l F d, Y");

 $CostOfLunch = 3.50;

 $DaysBuyingLunch = 4;

?>

<html>

<head>

<title>Listing 1-8</title>

</head>

<body>

Today's Date:

<?php

 /*

 ** print today's date

 */

 print("<h3>$Today</h3>\n");

 /*

 ** print message about lunch cost

 */

 print("$YourName, you will be out ");

 print($CostOfLunch * $DaysBuyingLunch);

 print(" dollars this week.
\n");

?>

</body>

</html>

The third and fourth assignments are putting numerical data into

variables. The value 3.5 is a floating-point, or fractional, number. PHP

calls this type a double, showing some of its C heritage. The value 4

in the next assignment is an integer, or whole number.

After printing some HTML code, another PHP code block is opened.

First the script prints today’s date as a level-three header. Notice that

the script passes some new types of information to the print

function. You can give string literals or string variables to print, and

they will be sent to the browser.

When it comes to variables, PHP is not so lenient with case. Today

and today are two different variables. Since PHP doesn’t require you

to declare variables before you use them, you can accidentally type

today when you mean Today and no error will be generated by

default. If variables are unexpectedly empty, check your case. You

can also catch these sorts of errors by configuring PHP to warn you of

uninitialized variables. See Chapter 15‘s description of error

reporting.

The script next prints Leon, you will be out 14 dollars this

week. The line that prints the total has to calculate it with

multiplication, using the * operator.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

1.8 Receiving User Input

Manipulating variables that you set within your script is somewhat

interesting, but hardly anything to rave about. Scripts become much

more useful when they use input from the user. When you call PHP

from an HTML form, the form fields are turned into variables. Listing

1.9 is a form that calls Listing 1.10, a further modification of our

example script.

Listing 1.9 HTML form for lunch information

<html>

<head>

<title>Listing 1-9</title>

</head>

<body>

<form action="1-10.php" method="post">

Your name:

<input type="text" name="YourName">

Cost of a lunch:

<input type="text" name="CostOfLunch">

Days buying lunch:

<input type="text" name="DaysBuyingLunch">

<input type="submit" value="Compute">

</form>

</body>

</html>

Listing 1.9 is a standard HTML form. If you have dealt at all with

CGIs, it will look familiar. There are three form fields that match up

with the variables from our previous example. Instead of simply

putting data into the variables, we will provide a form and use the

information the user types. When the user presses the submit button,

the script named in the ACTION attribute will receive the three form

fields, and PHP will convert them into variables (see Figure 1.3).

Listing 1.10 Computing the cost of lunch from a form

<?php

 $Today = date("l F d, Y");

?>

<html>

<head>

<title>Listing 1-10</title>

</head>

<body>

Today's date:

<?php

 /*

 ** print today's date

 */

 print("<h3>$Today</h3>\n");

 /*

 ** print message about lunch cost

 */

 print($_REQUEST['YourName'] . ", you will be out ");

 print($_REQUEST['CostOfLunch'] *

 $_REQUEST['DaysBuyingLunch']);

 print(" dollars this week.
\n");

?>

</body>

</html>

Figure 1.3. Output from Listing 1.10.

Notice that in the first segment of the PHP script, I have eliminated

the lines setting the variables, except for today’s date. See how

instead of using $CostOfLunch, I used $_REQUEST[‘CostOfLunch’]?

PHP collects all the variables sent by forms and cookies into a

collection called _REQUEST. The technical name for this type of data is

array, the subject of Chapter 5.

Try experimenting with the scripts by entering nonsense in the form

fields. One thing you should notice is that if you put words where the

script expects numbers, PHP seems to just assign them values of

zero. The variables are set with a text string, and when the script

tries to treat it as a number, PHP does its best to convert the

information. Entering 10 Little Indians for the cost of lunch will be

interpreted as 10.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

1.9 Choosing Between Alternatives

PHP allows you to test conditions and execute certain code based on

the result of the test. The simplest form of this is the if statement.

Listing 1.11 shows how you can customize the content of a page

based on the value of a variable (see Figure 1.4).

Figure 1.4. Output from Listing 1.11.

The Today variable is set with the name of today’s weekday. The if

statement evaluates the expression inside the parentheses as either

true or false. The == operator compares the left side to the right side.

If Today contains the word Friday, the block of code surrounded by

curly braces ({ and }) is executed. In all other cases the block of

code associated with the else statement is executed.

Listing 1.11 Conditional daily message

<html>

<head>

<title>Listing 1-11</title>

</head>

<body>

<h1>

<?php

 /*

 ** Get today's day of the week

 */

 $Today = date("l");

 if($Today == "Friday")

 {

 print("Thank goodness it's Friday!");

 }

 else

 {

 print("Today is $Today.");

 }

?>

</h1>

</body>

</html>

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

1.10 Repeating Code

The last type of functionality in this brief introduction is looping.

Looping allows you to repeat the execution of code. Listing 1.12 is an

example of a for loop. The for statement expects three parameters

separated by semicolons. The first parameter is executed once before

the loop begins. It usually initializes a variable. The second parameter

makes a test. This is usually a test against the variable named in the

first parameter. The third parameter is executed every time the end

of the loop is reached (see Figure 1.5).

Listing 1.12 Today’s daily affirmation

<html>

<head>

<title>Listing 1-12</title>

</head>

<body>

<h1>Today's Daily Affirmation</h1>

Repeat three times:

<?php

 for($count = 1; $count <= 3; $count++)

 {

 print("$count I'm good enough, ");

 print("I'm smart enough, ");

 print("and, doggone it, people like me!
\n");

 }

?>

</h1>

</body>

</html>

Figure 1.5. Output from Listing 1.12.

The for loop in Listing 1.12 will execute three times. The initialization

code sets the variable count to be one. Then the testing code

compares the value of count to three. Since one is less than or equal

to three, the code inside the loop executes. Notice that the script

prints the value of count. When you run this script, you will find that

count will progress from one to three. The reason is that the third

part of the for statement is adding one to count each time through

the loop. The ++ operator increments the variable immediately to its

left.

The first time through the loop, count is one, not two. This is

because the increment of count doesn’t occur until we reach the

closing curly brace. After the third time through the loop, count will

be incremented to four, but at that point four will not be less than or

equal to three, so the loop will end. Execution continues at the

command following the loop code block.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

Chapter 2. Variables, Operators, and
Expressions
Topics in This Chapter

A Top-Down View

Data Types

Variables

Constants

Operators

Building Expressions

This chapter discusses fundamental building blocks of PHP scripts:

variables, operators, expressions, and statements. A statement is a

piece of code that instructs PHP to do something. For instance, a

statement may compute a value and store it in memory, it may print

something, or it may save something to the disk. There are many

different types of statements in PHP. Function calls, variable

assignments, loops, and if conditions are all statements.

Although the description of identifiers, expressions, and statements

may seem simplistic, they are important building blocks that allow

you to understand how scripts execute. The technique of breaking a

sentence into its parts helps the student of a human language gain

an appreciation for the important rules of communication. The same

idea applies to programming languages.

2.1 A Top-Down View

Every PHP script is a collection of one or more statements. Each

statement instructs PHP to perform a subtask, which is part of the

greater algorithm. The statement appears as a collection of names,

numbers, and special symbols. At the end is either a semicolon or a

block of statements inside curly braces. For clarity, you may add any

number of line breaks and spaces within the statement. Any block of

PHP code that does work and ends in a semicolon is a statement.

Listing 2.1 shows several simple statements.

Listing 2.1 Simple statements

<?php

 //an expression statement

 2 + 3;

 //another expression statement

 print("PHP!");

 //a control statement

 if(3 > 2)

 {

 //an assignment statement

 $a = 3;

 }

?>

The first statement is the addition of two numbers. It produces no

output. The second prints a string to the browser. The third decides

whether to execute a block of code based on an expression. Consider

the 2 + 3 expression in the first line of the script. PHP understands

that the + operator uses the 2 and the 3, and the entire expression

evaluates to the quantity 5.

PHP includes many types of statements. Some are simple, stand by

themselves, and compare well with functions. The print statement is

a good example. Other statements fall naturally into groups, such as

the if statement, which changes the flow of execution. The simplest

statements contain only an expression.

An expression is any piece of code that represents a value. For

example, 2 + 3 is an expression representing 5, “Zeev” is an

expression representing four letters, and strlen(“Leon”) is an

expression that represents 4 by way of a function call. The semicolon

that ends a statement is not part of the expression.

Generally, PHP evaluates expressions from left to right and from

inside parentheses outward. With each pass, PHP replaces the

expression with its value until the entire expression becomes a single

value. The latter part of this chapter discusses the complex rules PHP

uses for evaluating expressions.

PHP can use literal values, such as numbers or blocks of text in

expressions. It can also use identifiers that give names to the

abstract parts of PHP: variables, functions, and classes. Some of

them are created by PHP in the form of built-in functions or

environment variables.

Operators join values. Most operators look for a value on their left

and a value on their right. The operator defines a specific method for

combining the values. For example, the + operator performs addition.

The simplest expression statements do nothing. The first statement

in Listing 2.1 performs arithmetic but does not communicate the

value of the expression. That is, the value isn’t saved and it isn’t

displayed. It disappears as soon as the script creates it.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

2.2 Data Types

PHP has eight different types of values, or data types. The first five

are basic: integers, floating-point numbers, strings, booleans, and

null. Two others are composed of the basic types, otherwise known as

composite types. These include arrays, discussed in Chapter 5, and

objects, discussed in Chapter 6. Additionally, the resource type

denotes a non-native type, such as an open file or a database

connection.

Integers

Integers are whole numbers. The range of integers in PHP is

equivalent to the range of the so-called long data type of the C

language. Typically, this means they range from �2,147,483,648 to

+2,147,483,647 on a 32-bit architecture, but may vary depending on

your platform.

PHP allows you to write integers in three ways: decimal, octal, and

hexadecimal. Decimal digits are the ordinary, base-10 numbers we

use in day-to-day life. You write decimal values as a sequence of

digits, without leading zeros. The sequence may begin with a plus (+)

or minus (-) sign to show whether the number is negative or

positive. You may not include commas in integers.

Octal, or base-8 numbers, consist of a sequence of digits from 0 to 7,

prefixed by a leading zero. Octal numbers are useful in some

contexts, such as file permissions. You may have experienced setting

the permissions on a UNIX file with an octal number like 0744.

Hexadecimal, or base-16 values, begin with 0x, followed by a

sequence of digits (0 to 9) or letters ranging from A to F. The case of

the letters does not matter.

Floating-Point Numbers

Floating-point numbers represent numeric values with decimal digits,

which are equivalent to the range of the double data type of the C

language. Floating-point numbers are also called real numbers or

doubles. The range and accuracy of real numbers varies from one

platform to another. Usually, this range is significantly greater than

the range of integers. You can write a floating-point number in the

ordinary way: a sequence of digits, a decimal point, and a sequence

of digits. You may also write floating-point numbers in scientific

notation, otherwise known as exponential notation. This form allows

for the letter E followed by a power of 10. For example, you can write

3.2 billion as 3.2E9. The E may be uppercase or lowercase. The

power of 10 must be an integer, of course.

Unlike integers, floating-point values have limited accuracy. Each

floating-point number uses a block of memory, part of which holds

the values of the digits and part of which holds the power of 10

applied to those digits. At times, a floating-point value may appear to

gain or lose a very small amount of value due to the quirks of the

floating-point number format. A detailed discussion is beyond the

scope of this text. However, knowing they perform this way, you

should take care not to use them in situations where you need exact

precision.

You can perform arithmetic of arbitrarily large precision with PHP’s BC

library, discussed in Chapter 13.

Strings

Web applications usually move text around more often than they

make complex mathematical calculations. Strings represent a

sequence of characters of limited length and can contain any kind of

data, including binary data. You can write a string value by

surrounding it by single-quotes (’) or double-quotes (”). Whichever

you choose, the opening quote character must match the closing

quote character.

PHP interprets characters inside single quotes as-is: Each character

between quotes becomes one character in the string. If you need to

include a single quote in the string, you may place a backslash (\)

immediately before it. PHP understands the ' sequence stands for a

single character and does not treat the single quote as the end of the

string literal. Likewise, you may use two backslashes to represent a

single backslash in the string value. Generally, these are called

escape sequences.

Strings in double quotes may contain variables and additional escape

sequences. PHP replaces references to variables with their values.

Table 2.1 contains escape sequences recognized by PHP.

Table 2.1. Escape Sequences

Code Description

" Double quotes

\ Backslash character

\n New line

\r Carriage return

\t Horizontal tab

\x00 - \xFF Hex characters

Borrowing from UNIX shells, PHP also allows what are sometimes

called HERE docs. A special operator allows you to specify your own

string of characters that stands for the end of the string. This is

helpful when you have large blocks of text that span multiple lines

and contain quotes. Backslash codes and variables are recognized

inside the text block, just as they are with strings surrounded by

double quotes. To mark an area of text, begin by using the <<<

operator. Follow it by the identifier you’ll use to end the string. When

that identifier is found alone on a line, PHP will consider it equivalent

to a closing quote character. You can use numbers, letters, and

underscores for the identifier, but it must begin with a letter or an

underscore. It’s customary to use HERE or EOD (end of data). See

Listing 2.2 for an example.

Listing 2.2 HERE docs

<?php

 print <<< HERE

This text can contain both double quotes

and single quotes. It's "simple."

Note that the line break following the

first HERE and the one before the last

HERE are not included in the string. And

PHP is smart enough to recognize that the

line above was not the real end of the string.

You can also embed variables and backslash

codes in this string.

 The only downside is that any tabs or

 spaces you use to index the text will

 pass through, too.

HERE;

?>

Booleans

The boolean type, named after mathematician George Boole, contains

only two values�true and false. The control statements discussed in

Chapter 3 use boolean values to decide whether to execute blocks of

code, and the comparison operators discussed later in this chapter

resolve to boolean values.

You can write boolean values with the TRUE and FALSE constants. You

can also allow PHP to convert a string, integer, or floating-point value

to boolean. Table 2.2 describes how PHP converts values of other

types to booleans.

Table 2.2. Converting Other Types to Booleans

Data Type Value
Boolean

Value

Data Type Value
Boolean

Value

Integer or Floating-

Point

0 FALSE

 Any other value TRUE

String ”” (empty string)

“0”

FALSE

 Any other value TRUE

Array Array with no elements FALSE

 Array with one or more

elements

TRUE

Object Any instantiated object TRUE

Null NULL FALSE

Null

Null is a special type that stands for the lack of value. It is typically

used to initialize and reset variables or to check whether or not a

variable is initialized. You can use the NULL constant to unset a

variable.

Resources

Resources are a data type that allows PHP scripts to hold handles to

external data structures. Resources are different from the elementary

types, since they don’t contain native PHP values but rather point to

non-native elements such as open files or database connections. If

you attempt to use a resource like a string, it returns something

sensible, such as Resource id #1.

2.3 Variables

Although you’ve seen variables in the previous pages, you may

wonder what they are exactly. Variables in PHP give you access to

memory storage in a part of a computer called RAM, or random

access memory. RAM is a volatile medium for storing information.

That is, it all disappears when you shut off the machine. The

computer sees this memory as a long array of memory cells that

reside in sequential addresses. In PHP, however, you cannot actually

get to memory at this level. You must use a variable. When you

assign a value to a variable with $result = 2 + 5, or retrieve the

value of a variable with print($result), PHP takes care of matching

the variable name you specified with the right piece of memory in

RAM.

Every use of a variable in PHP begins with $, followed by letters,

numbers, or underscores. After the $, the first character must be

either a letter or an underscore. Table 2.3 shows examples of some

valid and invalid variable names.

Using dollar signs in variable names has a long tradition in

programming languages. BASIC, a popular language created in the

1960s, uses them, and so does PERL. Other languages, such as C and

Java, do not. The dollar sign helps you distinguish a variable from a

function, a keyword, or any other part of PHP. You may wish to

consider $ part of the variable name, or you may choose to think of it

as an operator that references memory with a given name. When

speaking about variables, it’s more common to say “user equals

three” rather than “dollar-sign-user equals three.” In written

language, which lacks nuance, it’s common to see $ included, but it’s

not necessary. In both cases, you will be understood, and it’s mostly

a matter of personal and community preference.

Table 2.3. Examples of Variable Names

Name Validity Comment

i Valid Single-letter variables are good for temporary

purposes, such as loop counters.

1 Invalid The first character following the dollar sign may

not be a number.

_1 Valid Traditionally, variables that begin with an

underscore have special meaning to the local

namespace.

firstName Valid Variables that look like words help make your

scripts easier to understand.

Name Validity Comment

7Lucky Invalid The first character following the dollar sign may

not be a number. Use Lucky7 instead.

~password Invalid ~ is not an alpha character and may not be used

in variable names.

Last!Visit Invalid ! is not an alpha character and may not be used

in variable names. Use LastVisit or

last_visit instead.

Compute-

Mean

Invalid - is not an alpha character and may not be used

in variable names. Use Compute_Mean instead.

The equal sign (=) is used to set the value of a variable. This is called

the assignment operator. On the left side of the assignment operator

is a variable that will receive a value. On the right side is an

expression, which could be a simple string constant or a complex

combination of operators, variables, and constants. The simplest form

of assignment is from a constant expression. This could be a number

or a string surrounded by quotes. Table 2.4 lists some examples.

Table 2.4. Examples of Variables Assignments

String Constants Integer Constants Double Constants

$myString = "leon";

$myString = "\n";

$myInteger = 1;

$myInteger = -256;

$myDouble = 123.456;

$myDouble = -98.76e5;

Most compiled languages, such as C or C++, require you to declare

every variable along with the type of value that it will contain, and

they require every code piece to state in advance what kind of values

it is designed to work with. Most interpreted languages, such as PHP,

allow variables to store any type of value and allow code units to

work with any type of value. PHP doesn’t even require you to

explicitly declare a variable before you use it. Instead, the first time

you assign a variable with some value, it is created. This simplifies

development and helps you produce and maintain working programs

more quickly. It also can lead to bugs when you use a variable before

initializing it.

Variables in PHP don’t have designated types. Instead, the type of the

variable is considered to be the type of the value that it contains. The

type of value that variables contain may be changed at any time. For

example, assigning an integer to a variable that previously held a

string converts the variable to an integer. This is in contrast to C,

where each variable has a designated type. Assigning a value to a

variable of a different type will make C attempt to convert the value

so that it fits the variable.

You may use a variable in any context that expects an expression.

You can use variables to create complex expressions and assign their

results to other variables. Listing 2.3 uses a variable in an expression

to set the value of a second variable.

Listing 2.3 Using a variable in a computation

<?php

 //create variable

 $result = 2 + 5;

 //create another variable

 $doubleResult = $result * 2.001;

 //print the second variable

 print($doubleResult);

?>

As mentioned earlier, double-quoted strings and HERE docs may

contain embedded variables. You may write a variable inside a string

surrounded by double quotes, and its value appears in its place. This

even works with arrays and objects. Listing 2.4 is an example of this

technique. Notice that the name variable appears within a print

statement between double quotes.

Listing 2.4 Embedded variables

<?php

 $name = "Zeev";

 //Greet Zeev

 print("Hello, $name!\n");

 //Greet Zeev again

 print <<< EOD

Hello again, $name!

How is it going?

EOD;

?>

Freeing Memory

PHP applications, like any kind of computer applications, consume

memory. PHP uses some memory for internal purposes. Some

memory stores the data that you work with in your application,

mostly in variables. Typically, PHP applications consume small

amounts of memory, so you don’t have to worry about conserving

memory. During the course of execution, PHP does its best to

determine which memory pieces are no longer in use and frees them

automatically for reuse by other parts of the script. At the end of

each request, PHP frees any memory used by this specific request.

Larger applications that make use of many variables may consume

larger chunks of memory, and conserving memory may become an

issue. In this context, PHP needs help identifying variables you no

longer need. To accomplish this, you have two methods: set the

variable to NULL or use the unset function.

If you set a variable to NULL, the variable itself remains, but it does

not point to any memory. PHP uses a small amount of memory itself

to maintain the variable, but the memory consumed isn’t enough to

be a concern. This approach carries the side effect that if your script

reads from the variable later, PHP cannot warn you about using an

undefined variable.

The unset function completely removes a variable from memory. This

saves the overhead PHP needs for any variable, and any read of the

variable generates a notice.

After using either method, you can test whether a variable contains a

value with the isset and empty functions. If you need to know if a

variable points to NULL, you can use is_null. Chapter 11 discusses

these functions.

References

By default, assigning the value of a variable to another variable

creates a copy of the data. Listing 2.5 illustrates this behavior. The

value of b remains intact even after a is modified. In most cases, this

would be the desired behavior. If you wish two variables to share

storage, use the reference operator (&).

Listing 2.5 Assigning variables with variables

<?php

 //create variable

 $a = "Apple";

 //assign $a to $b

 $b = $a;

 //change $a

 $a = "Ball";

 //prints Apple

 print($b);

?>

Listing 2.6 demonstrates the & operator. In this example, a and b

share the same block of memory. Assigning a value with either

variable changes the value they share. You can think of b as an alias

to a, except that existence of b does not depend on a. Internally, PHP

understands there are two references to that block of memory. Of

course, you can create many references to a single value if you wish.

There are two ways to break a reference: unset the variable or set it

to reference another value.

Listing 2.6 Assigning by reference

<?php

 //create variable

 $a = "Apple";

 //create references

 $b = &$a;

 //change value of both $a and $b

 $a = "Ball";

 //remove $a

 unset($a);

 //prints Ball

 print($b);

?>

String Offsets

If a variable contains a string, you may refer to each character using

curly braces. PHP numbers each character starting with zero. To refer

to the seventh character in the s variable, type $s{6}. You may also

set a single character with this notation with an expression like $s{6}

= ‘x’. PHP uses only the first character of the value on the right-

hand side to replace the specified character. If the variable on the

left-hand side is not a string, it remains unchanged. Listing 2.7

demonstrates the use of curly brackets to reference single characters.

Listing 2.7 Referencing a single character

<?php

 //replace space with underscore

 $s = "a string";

 $s{1} = "_";

 print($s);

?>

Historically, PHP used square brackets to refer to string offsets.

However, due to an ambiguity with the access notation for arrays,

this syntax is now deprecated.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

2.4 Constants

Constants are similar to variables, but they may be set only once.

Some of them are created automatically by PHP; others you will

create with the define function discussed in Chapter 11. You do not

use the dollar-sign operator to get the value of a constant, and you

may never use a constant on the left side of an assignment operator.

Although it is not necessary, it is customary to name constants

exclusively with capital letters. This helps make them stand out in

your script, as in Listing 2.8. PHP creates many constants upon

startup, as described in Chapter 8.

Listing 2.8 Using a constant

<?php

 define("STANDARD_GREETING", "Hello, World!");

 print(STANDARD_GREETING);

?>

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

2.5 Operators

As stated earlier, an operator is a symbol that tells PHP to perform a

mathematical or logical operation on one or more operands. An

expression such as $result = 2 + 5 contains three operators. The $

operator lets PHP know you’re using a variable named result. The =

operator assigns the value on the right to the variable on the left. The

+ operator adds the values on each side of it.

Most operators work on two operands and are called binary

operators. Others operate on only one operand and are referred to as

unary operators. PHP also has one operator that works with three

operands, known as the ternary operator. With some exceptions,

most operators fall into five categories: arithmetic, logical, bitwise,

assignment, and control.

Most operators expect their operands to be of a certain type. For

example, the arithmetic operators generally expect their arguments

to be numeric. What happens if you feed them a string? Fortunately,

PHP in general and its operators in particular were designed not to

make a big fuss about mismatched data types.

If you give an operator a type that differs from the one it expects,

PHP does its best to convert the type meaningfully. When converting

from strings to numbers, PHP ignores leading spaces and trailing

characters. For example, PHP converts both “4.5test” and “4.5” to

4.5. If PHP is unable to find any numeric meaning to the string, it

evaluates to zero. If PHP expects an integer, it drops any digits after

the decimal point.

Using floating-point numbers where PHP expects an integer results in

truncation of the fraction. You can use the round function discussed

in Chapter 13 to round a floating-point number to the nearest integer.

Empty strings and zero become FALSE where PHP expects a boolean.

A string containing a single zero character becomes FALSE. All other

strings and all other numeric values become TRUE. Arrays, discussed

in Chapter 4, become TRUE unless they contain no elements. Allowing

PHP to convert an array to a boolean is unusual. NULL values are

always FALSE. Resources and objects are always TRUE.

Because PHP converts all other types to booleans with no complaints,

you must be careful. Some functions return FALSE on failure and

return a number or string when successful. If you simply test the

return value and the function returns an empty string or zero, it is

indistinguishable from failure. The === and !=== operators discussed

later in this chapter allow you to avoid this ambiguity.

When converting other types to strings, PHP returns a sensible

representation. Integers become strings of digits. Floating-point

numbers become strings of digits with a decimal point. PHP returns

extremely large and extremely small numbers in exponential

notation. Composite types become strings naming the type. Treating

composite types as strings is useful only for debugging purposes.

Table 2.5 summarizes conversion between types.

Table 2.5. Type Conversion Rules

Given

Type

Expected

Type
Conversion Performed

String Integer

or

Floating-

Point

Ignore leading spaces and use digits. Truncate

digits after the decimal point if expecting an

integer.

String Boolean The empty string and the string containing a

single zero character are FALSE. Any other strings

are TRUE.

Integer

or

Floating-

Point

Boolean Zero values are FALSE. All other values are TRUE.

Integer

or

Floating-

Point

String PHP creates a string representation of the

number.

Floating-

Point

Integer Any digits after the decimal sign are truncated.

Boolean String TRUE becomes “1”. FALSE becomes an empty

string.

Boolean Integer

or

Floating-

Point

TRUE becomes 1. FALSE becomes 0.

Given

Type

Expected

Type

Conversion Performed

Array Integer

or

Floating-

Point

An integer stating the number of elements in the

array�most of the time. Do not rely on this

functionality.

Array Boolean Arrays with one or more elements are converted

to TRUE. Empty arrays are converted to FALSE.

This conversion is rarely used.

Array String The string literal “Array”.

Arithmetic Operators

Addition, subtraction, multiplication, and division are familiar

concepts. They may be applied to any numeric value, including

integers and floating-point numbers. When used with other types of

values, such as a string, PHP first converts them to numeric value

and then performs the operation. The result type of an arithmetic

expression can be either an integer or a floating-point number. PHP

determines the result type based on whether a decimal point is

necessary to describe the result or not. This is unlike strict-typed

languages such as C that determine the result based only on the

operand types. Table 2.6 displays the arithmetic operators. Listing 2.9

demonstrates their use.

Table 2.6. Arithmetic Operators

Operator Operation It Performs Example

+ Addition

Explicit positive sign

12 + 43

+13

- Subtraction

Negation

100 - 50

-3

* Multiplication 3 * 4

/ Division 5 / 2

% Modulo division 5 % 2

++ Post-increment

Pre-increment

$a++

++$a

— Post-decrement

Pre-decrement

$a--

--$a

Modulo division returns the integer remainder of a division and is

therefore defined only for integers. When used with other types of

values, it first converts them to integer values and then performs the

operation. The result of modulo division is always an integer.

The + operator has a different meaning when applied to arrays. See

Chapter 5 for a discussion of using + with arrays.

Listing 2.9 Using arithmetic operators

<?php

 //prints 6 (not 8!)

 print(2 + 2 * 2);

 print("
\n");

 //prints 2.5

 print(5 / 2);

 print("
\n");

 //prints 1

 print(5 % 2);

 print("
\n");

 //prints 35

 print(" 7 little Indians" * 5);

 print("
\n");

?>

The increment and decrement operators are shorthand for adding or

subtracting 1 from a variable. They cannot be used with anything

other than a variable, so something like 5++ is illegal. These

operators work for integers and floating-point numbers. The

increment operators also work with strings: PHP increments the last

character in the string to the next character in the character set.

Decrement operators do not work with strings, but they do not

produce an error.

As you can see in Table 2.6, there are two different notations for each

operator. In many situations, where these operators are used simply

to increment or decrement a variable, the two different notations

result in much the same behavior. However, if you use the increment

expression as an argument for a function or for another operator, the

difference in notation affects the value of the expression.

The value of an increment expression is always the value of the

variable. The location of the increment operator only determines

whether the expression evaluates to the value of the variable before

or after the increment. When placing the operator to the right, PHP

uses the value of the variable and then increments it. This is called

post-increment. When placing the operator to the left, PHP

increments the variable and then uses the new value. This is called

pre-increment. Listing 2.10 demonstrates this concept.

Listing 2.10 Comparing pre-increment to post-

increment

<?php

 $VisitorsToday = 1;

 //prints 1

 print($VisitorsToday++);

 //VisitorsToday is now 2

 print("
\n");

 //prints 3

 print(++$VisitorsToday);

 print("
\n");

 //prints 4.14

 $pi = 3.14;

 $pi++;

 print($pi);

 print("
\n");

 //prints PHQ

 $php = "PHP";

 $php++;

 print($php);

 print("
\n");

 //prints PHP

 $php = "PHP";

 $php--;

 print($php);

 print("
\n");

?>

Assignment Operators

There really is only one assignment operator, but PHP offers a handful

of shortcut operators for combining assignment with another

operator, often referenced as assign-op. Table 2.7 lists all the

assignment operators.

Table 2.7. Assignment Operators

Operator Operation Performed Example

= Assign right side to left side $a = 13

+= Add right side to left side $a += 2

-= Subtract right side from left side $a -= 3

*= Multiply left side by right side $a *= 5

/= Divide left side by right side $a /= 4

%= Set left side to left side modulo right side $a %= 2

&= Set left side to bitwise-AND of left side and

right side

$a &= $b

|= Set left side to bitwise-OR of left side and

right side

$a |= $b

^= Set left side to bitwise-XOR of left side and

right side

$a ^= $b

.= Set left side to concatenation of left side

and right side

$a .= “more

text”

All the assignment operators put a value into a variable. Specifically,

they put a value on the right side into a variable on the left side. You

may not reverse the order. The operators that combine another

operator with an assignment operator operate on both the right and

left sides and then put the result in the variable on the left. Listing

2.11 demonstrates equivalent statements.

Listing 2.11 Using assignment operators

<?php

 //Add 5 to Count

 $Count = 0;

 $Count = $Count + 5;

 //Add 5 to Count

 $Count = 0;

 $Count += 5;

 //prints 13

 print($a = $b = 13);

 print("
\n");

 //prints 7

 $Count = 2;

 print($Count += 5);

 print("
\n");

?>

Assignment expressions resolve to the value being assigned. This

allows you to use an assignment expression where you would

otherwise place a variable alone. It also allows you to chain

assignments. For example, print($a = $b = 13) prints 13 and

assigns 13 to both a and b. The operators that combine another

operator with an assignment operator resolve to the final value

assigned, not to the right-hand value.

Logical and Relational Operators

Relational operators compare values and return either TRUE or FALSE.

Logical operators perform logical operations on TRUE and FALSE.

Values used with a logical operator are converted into booleans prior

to being evaluated. For numerical values, zero will be interpreted as

FALSE, and other values will be TRUE. Empty strings are considered to

be FALSE, and any nonempty string is TRUE. Table 2.8 lists the logical

and relational operators.

Table 2.8. Logical and Relational Operators

Operator Operation Performed Example

< Is less than $a < 14

Operator Operation Performed Example

> Is greater than $a > $b

<= Is less than or equal to $a <= 3

>= Is greater than or equal to 6 >= $a

== Is equal to (equality) $a == 13

=== Is identical $a === NULL

!= Is not equal to $a != 7

!== Is not identical $a !== FALSE

AND Logical and $a AND $b

&& Logical and $a && $b

OR Or $a OR $b

|| Or $a || $b

XOR Exclusive or $a XOR $b

! Not ! $a

These operators allow you to determine the relationship between two

operands. When both operands are strings, the comparison is done

lexicographically. If at least one of the operands is not a string, then

the comparison is done arithmetically. Non-numeric values are

converted to numbers on the fly according to the conversion rules

before the comparison takes place.

Notice that the equality operator is very similar to the assignment

operator. That’s reasonable. One performs the action of making both

sides equal; the right-side value is copied to the variable on the left

side. The other asks the question, Are both sides equal? The danger

is that it’s difficult to notice when the two are confused. PHP will allow

you to put an assignment inside the parentheses of an if statement.

If you have an if statement that always seems to evaluate one way,

check to make sure you haven’t typed = when you meant ==. If

you’re testing the value of a variable and a constant, put the constant

on the left. If you accidentally use an assignment operator, PHP

generates an error.

If you are unfamiliar with logical operations, refer to Table 2.9. The

first two columns enumerate all the possible combined values of p

and q, which stand for relational expressions. The other four columns

show the results of performing a logical operation on p and q.

Table 2.9. Truth Table for Logical Operators

p q p AND q p OR q p XOR q !pp q p AND q p OR q p XOR q !p

FALSE FALSE FALSE FALSE FALSE TRUE

FALSE TRUE FALSE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE TRUE FALSE

TRUE TRUE TRUE TRUE FALSE FALSE

You might have noticed two versions of the logical operators in Table

2.8. For instance, there is both && and AND. Operationally, they are

the same, but they differ in precedence�a topic discussed at the end

of this chapter. Aside from precedence, you are free to use them

interchangeably.

PHP evaluates an expression only to the point of determining its

ultimate value. With most binary operators, this requires taking both

of the operands into account. For instance, you can’t really tell what

the sum of 4 + 6 is without taking both 4 and 6 into account. There

are two operators that are an exception to this rule�the logical-AND

and logical-OR operators.

Listing 2.12 demonstrates short-circuit logical expressions.

Listing 2.12 Short-circuit logical expressions

<?php

 $numerator = 5;

 $divisor = 0;

 if(($divisor == 0) OR (($num / $divisor) > 1))

 {

 print("The result is greater than 1");

 }

?>

The if statement first checks whether the divisor is zero. Dividing a

number by 0 generates a warning. Mathematically, it evaluates to

infinity. If PHP determines the divisor is zero, it doesn’t evaluate the

rest of the logical-OR expression. It already knows the entire

expression is TRUE. This avoids the generation of an error message.

Likewise, a logical-AND expression is FALSE if the expression on the

left is FALSE.

The === and !== operators compare both value and type. For

example, the integer 0 and the floating-point number 0.00 are equal,

and the expression 0 == 0.00 evaluates to TRUE. They are of two

different types, so 0 === 0.00 evaluates to FALSE. This can be most

useful when a function returns an integer or string when successful

and FALSE or NULL on error. If the function returns zero or an empty

string, it appears to return FALSE. The === operator allows you to

distinguish between other types that become FALSE when converted

to booleans and values defined explicitly as booleans.

Bitwise Operators

If you’re not familiar with the notion of bits, this paragraph provides

some background information. If you are, you can safely skip to the

next paragraph. Bits are the smallest memory unit in computers.

They are able to contain a single binary digit, or in other words,

either 1 or 0. Internally, computers work on binary representations of

data. A binary representation of a number is the value of the number

in base-2. For example, when you ask the computer to add 3 and 5,

it actually converts these numbers to binary, 0011 and 0101

respectively. It then performs the requested operation, in this case

addition, and arrives at the result, 1000. Only then, the binary result

is converted back to the decimal base, and we get the result�15.

Bitwise operators are similar to logical operators, except they perform

on the binary representation of their arguments. In case both

arguments are strings, the operation is performed between parallel

character offsets, and the result is stored in the same offset in the

result string. In all other cases, the arguments are converted to

integer representation, and the operation is then performed.

When using logical operators, 1 and 10 are both considered TRUE. A

logical-AND of 1 and 10 results in TRUE. However, if we look at these

numbers from a binary perspective, a decimal 1 is 0001 in binary and

a decimal 10 is 1010 in binary. A bitwise-AND of 1 and 10 results in 0.

This is because each bit of the two numbers is compared by a

bitwise-AND. Table 2.10 lists PHP’s bitwise operators.

Table 2.10. Bitwise Operators

Operator Operation Performed Example

& And $a & $b

| Or $a | 1001

^ Exclusive or $a ^ $b

~ One’s complement or NOT ~$a

>> Shift all bits to the right $a >> 3

<< Shift all bits to the left $a << 2

See Figure 2.1 for an example of a bitwise operation, which shows

that (12 & 10) == 8. Matching bits are operated on. In the

rightmost position 0 and 0 are operated on with a bitwise-AND. The

result is 0, so a 0 is put in this position of the result.

Figure 2.1. Bitwise-AND of 12 and 10.

Bitwise operators are very useful in C, from which PHP takes

inspiration, but you rarely will need to use them in a PHP script. You

will find some functions in the reference chapters (8 through 20) that

use bitfields.

Casting Operators

The automatic conversion of values depending on the context allows

you to ignore exact types most of the time. However, in certain

situations you may wish to explicitly state what kind of value you

need. The operation of changing a value of a certain type to an

equivalent value of a different type is called casting. Table 2.11

contains PHP’s casting operators.

PHP provides several casting operators. The notation for casting

operators is simply the type to which you wish to cast enclosed in

parentheses. The expression that you wish to cast appears to the

right of the casting operator.

Table 2.11. Casting Operators

Operator Operation Performe Example

(int)

(integer)

Integer cast (integer)$i

(float)

(double)

(real)

Floating-point cast (float)$f

(string) String cast (string)$s

(bool)

(boolean)

Boolean cast (boolean)($a - 3)

(array) Array cast (array)$c

(object) Object cast (object)$a

Note that casting a variable does not change the variable itself.

Instead, it creates an expression whose value is of the required type.

If you wish to change the type of a value that is stored inside a

variable, you can use the settype function, described in Chapter 11.

Explicitly converting the type of an expression may be necessary in

situations where PHP interfaces with less forgiving environments. For

example, PHP can cope with extra characters following a number in a

string converted to an integer. SQL, the language used by most

relational databases, cannot.

Miscellaneous Operators

There are operators that don’t fit into any of the previous categories:

the concatenation operator, the variable marker, the reference

operator, and others. Table 2.12 lists them.

Table 2.12. Miscellaneous Operators

Operator Operation Performed Example

. Concatenate $a . $b

$ Indirect reference $$a

@ Silence (suppress error messages) @($a/$b)

? : Ternary conditional expression ($a == 3) ? “yes” :

“no”

{} Variable embedded in a string {$a}

“ Execute a string in the command

shell

`ls -l`

=> Assign array element index array(1=>‘January’)

-> Reference an object $c->method()

:: Reference a class myClass::method()

InstanceofTests if an object is an instance of

a certain class

$c instanceof

myClass

The concatenation operator is similar to the addition operator except

that it joins two strings. Nonstring operands are converted

automatically according to the conversion rules. I find this operator

indispensable. When issuing a print, it is convenient to concatenate

several strings. I also use the concatenation operator to build

database queries. Listing 2.13 is an example of doing this.

Listing 2.13 The concatenation operator

<?php

 $Query = "SELECT LastName, FirstName " .

 "FROM Clients " .

 "WHERE Disposition = 'Pleasant' " .

 "ORDER BY LastName ";

 print($Query);

?>

When variables were discussed earlier, it was shown that a dollar sign

always precedes the name of a variable. This is true whether the

variable is global, local, or a function argument. The operator can be

taken to mean “use the value stored in the named variable.” This can

be useful if you want to create a piece of code where you don’t know

the name of the variable you would like to reference at the time of

development. The dollar-sign operator may also operate on the result

of another dollar-sign operator or the result of a complex expression

inside curly braces. Note that indirect reference is not supported

inside quoted strings or HERE docs unless you use curly braces.

Curly braces ({ and }) group variables as parentheses do for

arithmetic. This eliminates the ambiguity that can arise when

referencing variables. They allow you to specify elements of

multidimensional arrays inside strings. But even when not strictly

necessary, it’s a good idea to use curly braces. Listing 2.14

demonstrates indirect reference and the use of curly braces. It’s clear

that the script uses a variable to name another variable here.

Listing 2.14 Using indirect reference

<?php

 //set variables

 $var_name = "myValue";

 $myValue = 123.456;

 $array_name = "myArray";

 $myArray = array(1, 2, 3);

 //prints "123.456"

 print($$var_name . "
\n");

 //prints "$myValue", perhaps not what you expect

 //$var_name expands to "myValue", but indirect

 //reference doesn't work inside quoted strings,

 //and the extra dollar sign is printed as-is

 print("$$var_name
\n");

 //prints "123.456"

 //Uses special notation to embed complex variables

 //inside strings

 print("{$$var_name}
\n");

 //prints "3"

 print(${$array_name}[2] . "
\n");

?>

The @ operator suppresses any error messages when it precedes an

expression. Normally, when a built-in function encounters an error,

PHP sends text directly to the browser. Sometimes this is just

warning text. If you want to suppress any error or warning messages,

place @ directly before the name of the function. You may also place @

before an expression if you anticipate an error condition, such as

division by zero. Error messages may also be suppressed for all

functions in a script with the error_reporting directive. See Listing

2.15.

Listing 2.15 The silence operator

<?php

 $a = 7;

 $b = 0;

 //suppress division-by-zero warning

 @ $c = $a / $b;

?>

The ? operator is equivalent to an if statement. It is called a ternary

operator because it takes three parameters: an expression that is

evaluated to be TRUE or FALSE, an expression that is evaluated if the

first is TRUE, and an expression that is evaluated if the first is FALSE.

A complete discussion of the ? operator appears in Chapter 3.

The -> operator is used strictly to reference either methods or

properties of objects, which are discussed in Chapter 6. The left-hand

side of the operator is the name of an instantiated class; the right-

hand side is the name of a function or variable inside the class. The

:: operator allows you to refer to a member of a class. This allows

you to call methods in classes without instantiating objects. The right

side of the :: operator should be the name of a class known to the

current scope. The left side may be the name of a method or

constant. The instanceof operator tests whether an object on the

left is a member of the class on the right.

The -> and :: operators may be chained. Both $a->$b->c() and

ClassA::ClassB::methodC() are valid expressions.

PHP supplies three special names for use on the left side of the ::

operator: self, parent, and main. The self namespace refers to the

local namespace. You may not use it outside of a class definition. The

parent namespace refers to the class the current class extends. The

main namespace refers to the global scope.

The => operator is used in declaring arrays, discussed in Chapter 5.

When creating an array with the array statement, you may specify

the index for an element with the => operator. The left-hand side of

the operator is the index, and the right-hand side is the value. This

operator is also used by the foreach statement in much the same

way.

You may use backticks (`) to execute a command in the shell. The

backtick character is on the extreme left of most keyboards. The

expression evaluates to the output of the command. This is the same

functionality implemented by the shell_exec function described in

Chapter 9. Listing 2.16 shows a simple example of the backtick

operator.

Listing 2.16 The backtick operator

<?

 //print directory contents

 print(nl2br(`ls -la`));

?>

2.6 Building Expressions

When computing the value of an expression made out of several

operators, PHP evaluates operators according to their precedence

value, as shown in Table 2.13. Operators with lower precedence

values evaluate first. Consider the evaluation of 2 + 2 * 2. Since the

multiplication operator * has precedence over the addition operator +,

evaluation begins with the computation of 2 * 2. PHP then adds 2 to

4 and returns the result of 6.

Precedence alone, however, is not enough. Consider the expression

12 / 2 * 3. Both operators appearing in this expression, division

and multiplication, have the same precedence. However, the result of

this expression will vary depending on which operation we perform

first. That is, (12 / 2) * 3 is not equal to 12 / (2 * 3).

Since we expect PHP to adhere to the rules of arithmetic we’re all

used to from grade school, it is crucial that ambiguities between

operators in the same precedence level are properly resolved. We

expect the expression to be 18 because we learned to execute

operators of equal precedence from left to right. In computer science,

we call this associativity. Operators may be right associative, left

associative, or nonassociative.

Ordinary multiplication is left-associative. PHP evaluates the

expression from left to right. Assignments are right-associative. PHP

computes the value on the right of the operator before assigning it to

the variable on the left. An expression with a nonassociative operator

cannot be used as an operand for another expression that uses a

nonassociative operator. Composing such an expression will result in

a parse error unless you use parentheses to isolate the

nonassociative expression.

Because precedence and associativity are difficult to remember, use

the following two rules when building expressions. Multiplication and

division come before addition and subtraction. Put parentheses

around everything else. It may seem humorous, but these rules will

save you hours of debugging.

Table 2.13 describes the precedence and associativity of PHP’s

operators.

Table 2.13. PHP’s Operators

Precedence Operator Operation It Performs Associativity

1 ! logical not Right

~ bitwise not

++ Increment

— decrement

Precedence Operator Operation It Performs Associativity

@ silence operator

(int) integer cast

(float) floating-point cast

(string) string cast

(bool) boolean cast

(array) array cast

(object) object cast

2 * multiply Left

/ divide

% modulo

3 + add Left

� subtract

. concatenate

4 << bitwise shift left Left

>> bitwise shift right

5 < Is smaller Nonassociative

<= Is smaller or equal

> Is greater

>= Is greater or equal

6 == Is equal Nonassociative

!= Is not equal

=== Is identical

!== Is not identical

7 && logical and Left

8 || logical or Left

9 ? : question mark operator Left

10 = assign Right

=& assign by reference

Precedence Operator Operation It Performs Associativity

+= assign add

-= assign subtract

*= assign multiply

/= assign divide

%= assign modulo

^= assign bitwise xor

&= assign bitwise and

|= assign bitwise or

.= assign concatenate

11 AND logical and Left

12 XOR logical xor Left

13 OR logical or Left

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

Chapter 3. Control Statements
Topics in This Chapter

The if Statement

The ? Operator

The switch Statement

Loops

exit, die, and return

Exceptions

Declare

Control statements allow you to execute blocks of code depending on

conditions. They allow you to repeat a block of code, which leads to

simpler, more efficient scripts. This chapter introduces the decision-

making statements if and switch. It also discusses loops using for

and while.

3.1 The if Statement

Figure 3.1 lays out the form of an if statement.

Figure 3.1 The form of an if statement.

if(expression1)

{

 This block gets executed if expression1 is true.

}

elseif(expression2)

{

 This block gets executed if expression1

 is false and expression 2 is true.

}

else

{

 This block gets executed if both expression1

 and expression2 are false.

}

The if statement executes a statement if the expression inside the

parentheses evaluates to true; otherwise, the code is skipped. It may

be a single statement followed by a semicolon. Usually it’s a

compound statement surrounded by curly braces. An else statement

may appear immediately after the statement and have a statement of

its own. It too may be either single or compound. It is executed only

when the previous expression is false. In between an if statement

and an else statement you may put as many elseif statements as

you like. Each elseif expression is evaluated in turn, and control

skips past those that are false. If an elseif statement evaluates to

true, then the rest of the code in the greater if statement is skipped.

That is, PHP accepts only one match. Listing 3.1 demonstrates an if-

elseif-else statement.

Listing 3.1 An if-elseif-else statement

<?php

 $name = "Leon";

 if($name == "")

 {

 print("You have no name.");

 }

 elseif(($name == "leon") OR ($name == "Leon"))

 {

 print("Hello, Leon!");

 }

 else

 {

 print("Your name is '$name'.");

 }

?>

Of course, you are not obligated to have an elseif or an else.

Sometimes you might want to build a very simple if statement, as in

Listing 3.2.

Listing 3.2 A simple if statement

<?php

 if(date("D") == "Mon")

 {

 print("Remember to put the trash out.");

 }

?>

You can use if to build a series of checks that covers all possible

cases. Just start by checking for the first condition with an if; then

check for each following condition with an elseif. If you put an else

at the end, you will have accounted for all possible cases. Listing 3.3

uses this method to print the day of the week in German. The script

gets today’s name and then compares it to the days Monday through

Saturday. If none match, it is assumed to be Sunday.

Listing 3.3 Covering all cases with if-elseif-else

<?php

 /*

 ** Get today's weekday name

 */

 $englishDay = date("l");

 /*

 ** Find the today's German name

 */

 if($englishDay == "Monday")

 {

 $deutschDay = "Montag";

 }

 elseif($englishDay == "Tuesday")

 {

 $deutschDay = "Dienstag";

 }

 elseif($englishDay == "Wednesday")

 {

 $deutschDay = "Mittwoch";

 }

 elseif($englishDay == "Thursday")

 {

 $deutschDay = "Donnerstag";

 }

 elseif($englishDay == "Friday")

 {

 $deutschDay = "Freitag";

 }

 elseif($englishDay == "Saturday")

 {

 $deutschDay = "Samstag";

 }

 else

 {

 // It must be Sunday

 $deutschDay = "Sonntag";

 }

 /*

 ** Print today's English and German names

 */

 print("<h2>German Lesson: Day of the Week</h2>\n" .

 "<p>\n" .

 "In English: $englishDay.
\n" .

 "In German: $deutschDay\n" .

 "</p>\n");

?>

3.2 The ? Operator

PHP offers an abbreviated version of the if statement, which borrows

syntax from C. It uses the question mark as a ternary operator. Figure

3.2 outlines the format.

Figure 3.2 The ? operator.

conditional expression ? true expression : false expression;

The conditional expression is evaluated to be either true or false. If

true, the expression between the question mark and the colon is

executed. Otherwise, the expression after the colon is executed. The

following code fragment

($clientQueue > 0) ? serveClients() : cleanUp();

does the same thing as

if($clientQueue > 0)

 serveClients();

else

 cleanUp();

The similarity is deceiving. Although the abbreviated form seems to be

equivalent to using if-else, at a deeper level it is not. As I said, ? is

an operator, not a statement. This means that the expression as a

whole is evaluated. The value of the matched expression takes the

place of the ? expression. In other words, something like

print(true ? "it's true" : "it's false");

is a valid statement. Since the conditional expression is true, the line is

equivalent to

print("it's true");

which is something you can’t do with an if statement.

The ? operator can be confusing to read and is never necessary. It

wouldn’t be bad if you never used it. However, it allows you to write

very compact code.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

3.3 The switch Statement

An alternative to if-elseif-else structures is the switch

statement, which works on the assumption that you compare a single

expression to a set of possible values. Figure 3.3 demonstrates the

structure of a switch statement.

Figure 3.3 The switch statement.

switch(root-expression)

{

 case case-expression:

 default:

}

The root expression inside a switch statement is evaluated and then

compared to each expression following a case statement. At the end

of the list of cases you can put a default statement that works

exactly like an else statement; it matches if no other case matches.

Notice that cases don’t have curly braces after them. This reveals an

important difference between if and switch. When an if block

matches and is executed, control skips to the end of the entire if

statement. In Listing 3.3, if today is Tuesday, deutsch_Day is set to

Deinstag, and control jumps down to after the curly brace closing

the else block.

A case statement serves as a starting point for execution. The root

expression is compared to each case expression until one matches.

Each line of code after that is executed. If another case statement is

reached, it is ignored. Sometimes this is useful, but most often a

break statement is used to escape from the switch statement.

Take a look at Listing 3.4. I’ve recoded Listing 3.3 using a switch

statement. The best argument for using switch is that it can be

much easier to understand. Since PHP allows you to compare strings,

the switch statement is much more useful than in other languages.

If you have experience with BASIC, you might wonder if PHP’s switch

statement allows cases to contain ranges. It doesn’t. It’s probably

best to code this situation with an if-elseif-else statement.

Listing 3.4 Covering all cases with switch

<?php

 /*

 ** Get today's weekday name

 */

 $englishDay = date("l");

 /*

 ** Find the today's German name

 */

 switch($englishDay)

 {

 case "Monday":

 $deutschDay = "Montag";

 break;

 case "Tuesday":

 $deutschDay = "Dienstag";

 break;

 case "Wednesday":

 $deutschDay = "Mittwoch";

 break;

 case "Thursday":

 $deutschDay = "Donnerstag";

 break;

 case "Friday":

 $deutschDay = "Freitag";

 break;

 case "Saturday":

 $deutschDay = "Samstag";

 break;

 default:

 // It must be Sunday

 $deutschDay = "Sonntag";

 }

 /*

 ** Print today's English and German names

 */

 print("<h2>German Lesson: Day of the Week</h2>\n" .

 "<p>\n" .

 "In English: $englishDay.
\n" .

 "In German: $deutschDay\n" .

 "</p>\n");

?>

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

3.4 Loops

Loops allow you to repeat lines of code based on some condition. You

might want to read lines from a file until the end is reached. You might

want to print a section of HTML code exactly ten times. You may even

wish to attempt to connect to a database three times before giving up.

You may want to read data from a file until there’s no more data to

read. You can do all of these things with loops.

Each execution of the code inside a loop is an iteration. Loops iterate

on the code until a stop condition is met. PHP supports four types of

loops that vary from each other in what they iterate on, the actions

taken before the loop begins, and whether the stop condition is

checked at the beginning of each iteration or at its end.

The while Statement

The simplest of loops is the while statement. When first reached, the

expression is evaluated. If false, the code block is skipped. If true, the

block is executed and then control returns to the top where, again, the

expression is evaluated. Figure 3.4 shows the structure of a while

statement.

Figure 3.4 The while statement.

while(expression)

{

 Zero or more statements

}

A while loop is useful when you aren’t sure exactly how many times

you will need to iterate through the code�for example, when reading

lines from a file or fetching rows from a database query. For the sake

of a simple demonstration, let’s examine some code that prints the

days of the week between now and Friday.

The while loop in Listing 3.5 tests that the date stored in currentDate

is not a Friday. If it is, then the loop will be finished, and execution will

continue after the closing curly brace. But if the current date is not a

Friday, then a list item with the name of the day is printed, and

currentDate is advanced 24 hours. At that point, the end of the code

block is reached, so control jumps back to the beginning of the loop.

Again the current date is tested for being a Friday. Eventually,

currentDate will be a Friday and the loop will end. But what if I had

done something silly, such as comparing the current date to

“Workday”? There is no weekday with that name, so the expression

will always be true. That is, date(“l”, $currentDate) != “Workday”

must always be true. The result is a loop that goes on forever. I might

as well write it as while(TRUE) and make it very clear.

Listing 3.5 Using while to print day names

<?php

 //get the current date in number of seconds

 $currentDate = time();

 //print some text explaining the output

 print("Days left before Friday:\n");

 print("\n");

 while(date("l", $currentDate) != "Friday")

 {

 //print day name

 print("" . date("l", $currentDate) . "\n");

 //add 24 hours to currentDate

 $currentDate += (60 * 60 * 24);

 }

 print("\n");

?>

When a loop continues with no end, it’s called an infinite loop. If you

find your page loading forever and ever, you may have accidentally

written an infinite loop. Fortunately, PHP stops all scripts by default

after they use 30 seconds of CPU time. You can change the timeout

with the set_time_limit function. At times, you may intentionally

create an infinite loop but stop execution somewhere in the middle of

the code block. This is accomplished with the break statement.

The break Statement

When a break statement is encountered, execution jumps outside the

innermost loop or switch statement. You’ve seen that this is essential

to the usefulness of switch statements. It also has some application

for loops. There are cases when you need to leave a loop block

somewhere in the middle. Listing 3.6 shows this in action.

Listing 3.6 Leaving a loop using break

<?php

 while(TRUE)

 {

 print("This line is printed.");

 break;

 print("This line will never be printed.");

 }

?>

The break statement may also break out of multiple levels if you place

an integer after it. Listing 3.7 demonstrates breaking out two levels.

Listing 3.7 Breaking multiple levels

<?php

 while(TRUE)

 {

 while(TRUE)

 {

 print("This line is printed.");

 break 2;

 }

 print("This line will never be printed.");

 }

?>

The continue Statement

The continue statement is similar to the break statement except that

instead of stopping the loop entirely, only the current execution of the

loop is stopped. Control is returned to the closing curly brace and the

loop continues. Inside for loops, described below, increments will

occur just as if control had reached the end of the loop otherwise.

As you might imagine, this statement is used to skip parts of a loop

when a condition is met. Listing 3.8 demonstrates this idea. Random

numbers are generated inside a loop until ten numbers, each greater

than the previous, are produced. Most of the time the body of the loop

is skipped due to the if statement that triggers a continue statement.

As with the break statement, you may follow the continue statement

with an integer. Control passes up the levels to the top of the specified

loop.

Listing 3.8 The continue statement

<?php

 /*

 ** get ten random numbers,

 ** each greater than the next

 */

 //init variables

 $count = 0;

 $max = 0;

 //get ten random numbers

 while($count < 10)

 {

 $value = rand(1,100);

 //try again if $value is too small

 if($value < $max)

 {

 continue;

 }

 $count++;

 $max = $value;

 print("$value
\n");

 }

?>

The do…while Statement

You can delay the decision to continue executing a loop until the end

by using a do…while statement. Listing 3.9 retools Listing 3.5. You

won’t notice a difference unless you run the script on a Friday. On

Fridays the original will print nothing in its list of days. The new version

will put Friday in the list because the body of the loop is executed

before currentDate is tested. By switching to a do…while loop, the

loop now lists the days until next Friday.

Listing 3.9 Using do…while to print day names

<?php

 /*

 ** get the current date in number of seconds

 */

 $currentDate = time();

 //print some text explaining the output

 print("Days left before next Friday:\n");

 print("\n");

 do

 {

 /*

 ** print day name

 */

 print("" . date("l", $currentDate) . "\n");

 /*

 ** add 24 hours to currentDate

 */

 $currentDate += (60 * 60 * 24);

 }

 while(date("l", $currentDate) != "Friday");

 print("\n");

?>

The for Statement

Strictly speaking, the for loop is unnecessary. Any for loop can be

implemented as easily as a while loop. What for offers is not new

functionality, but a better structure for building the most common

loops. Many loops involve incrementing a counter variable every time

through the loop, iterating until some maximum is reached.

Imagine that you wanted to step through the numbers 1 through 10.

Using while, you would first set a variable to be 1. Then you would

make a while loop that tests if your counter is less than or equal to

10. Inside the code block you would increment your counter, making

sure you do this as the last statement in the block.

The problem is that it is very easy to forget to put the increment in.

The result is an infinite loop. The for loop puts all this functionality in

one place. Inside the for statement you give it three things: an

initialization expression, a boolean continue expression, and an

increment expression. Figure 3.5 defines a for loop.

Figure 3.5 The for statement.

for(initialization; continue; increment)

{

 Zero or more statements

}

When first encountered, the initialization expression is executed. This

traditionally takes the form of assigning a variable to be 0 or 1. Then,

as with a while statement, the boolean expression is evaluated. If

FALSE, control jumps to just after the code block. Otherwise, the code

block is executed. Before the expression is evaluated again, the

increment expression is executed. This puts all the information needed

for running the loop in one place and forces you to think about all the

steps. Listing 3.10 is a very simple for loop but is typical in form.

Listing 3.10 A typical for loop

<?php

 for($counter = 1; $counter <= 10; $counter++)

 {

 print("counter is $counter
\n");

 }

?>

Most for loops look like Listing 3.10. They use a counter that

increments by one each time through the loop. However, the for

statement is not particular about what you put in the three slots. You

can use more complex expressions if you wish. The initialization slot

allows a comma-separated list of assignments. This can be used to

assign values to two or more variables. You may also leave a slot

blank. Listing 3.11 converts the code in Listing 3.5 into a for loop. I’ve

added line breaks to the for statement to keep the code from

wrapping. It also makes it easier to see the three parts. Although the

for statement is longer and looks more complicated, it really is no

different from the simple example in Listing 3.9. A variable, in this

case currentDate, is set to some initial value. That value is used to

test for an end condition, and the value is incremented by the number

of seconds in a day instead of by just one.

Listing 3.11 Using for to print day names

<?php

 /*

 ** print some text explaining the output

 */

 print("Days left before Friday:\n");

 print("\n");

 for($currentDate = date("U");

 date("l", $currentDate) != "Friday";

 $currentDate += (60 * 60 * 24))

 {

 /*

 ** print day name

 */

 print("" . date("l", $currentDate) . "\n");

 }

 print("\n");

?>

The foreach Statement

PHP’s foreach statement provides a formalized method for iterating

over arrays, discussed in Chapter 5. An array is a collection of values

referenced by keys. The foreach statement retrieves values from an

array, one at a time. Like other looping structures, the foreach

statement may have a simple or compound statement that’s executed

each time through the loop. Figure 3.6 shows the structure of a

foreach statement.

Figure 3.6 The foreach statement.

foreach(array as key=>value)

{

 Zero or more statements

}

The foreach statement expects an array, the keyword as, and a

definition of the variables to receive each element. If a single value

follows as, such as foreach($array as $value), then with each turn

of the loop, the variable named value will be set with the value of the

next array element. You may capture the index of the array element if

you form the foreach statement like foreach($array as

$key=>$value). Keep this statement in mind, and we will revisit it in

Chapter 5.

3.5 exit, die, and return

Like break, the exit statement offers a way to escape from execution, but

the exit statement stops all execution. Not even text outside of PHP tags

is sent to the browser. This is useful when an error occurs and it would be

more harmful to continue executing code than to just abort. This is often

the case when preparing database queries. If the SQL statement cannot

be parsed, it makes no sense to try to execute it.

The die statement is similar to exit except that it may be followed by an

expression that will be sent to the browser just before aborting the script.

Using the fact that subexpressions are evaluated according to precedence

and associativity, and given the short-circuit nature of the logical

operators, the idiom in Listing 3.12 is allowed. Notice the parentheses

around the string to be printed when the open fails. They are required.

Listing 3.12 Idiom for using the die statement

$fp = fopen("somefile.txt", "r") OR die("Unable to open file");

The precedence of the OR operator in Listing 3.12 has particular

importance. That is, it has lower precedence than the assignment operator

does. This allows PHP to assign the return value of fopen to fp and then

evaluate the OR expression. The || operator, functionally identical to OR,

has higher precedence than the assignment operator does. Using it in this

situation would cause PHP to resolve the || expression first, ending the

script.

Chapter 4 discusses the traditional use of the return statement, but there

is an unusual use of return offered by PHP when a script uses the

include statement, described in Chapter 7. If called outside of a function,

the return statement stops execution of the current script and returns

control to the script that made a call to include. That is, when a script

uses the include function, the included script may return prematurely. If

you use return in a script that was not invoked by include, the script will

simply terminate as if exit were used.

I admit this is a strange concept, and it probably deserves to have its own

name instead of sharing one with the statement for returning from

functions. On the other hand, in certain special cases, it allows for tidy

code.

3.6 Exceptions

When errors occur, PHP sends text to the browser. Some errors halt

execution. For the error conditions that don’t halt execution, you may

trap them with a function you register with set_error_handler. See

Chapter 15 for a discussion of this function. You can even generate

your own errors with trigger_error, discussed in Chapter 9.

Alternatively, you may use exceptions. Figure 3.7 shows the form.

Exceptions are object-oriented error conditions. They occur within the

context of a try statement. To initiate an exception, you make a

throw statement. Control then passes to a catch block, which

receives a copy of the thrown exception. Add a catch block for each

type of exception you wish to catch, or simply use PHP’s built-in

Exception class. The built-in Exception class includes two methods:

getFile, which returns the path to file that generated the exception,

and getLine, which returns the line number in that file.

If you’ve worked with an object-oriented programming language,

such as Java, the concept of exceptions is familiar. If you prefer a

procedural style of programming, they may not appeal to you. Listing

3.13 demonstrates the use of exceptions. Chapter 6 discusses objects

in depth. If you don’t feel comfortable with objects yet, make a note

to return to this chapter after you’ve read Chapter 6.

Figure 3.7 The try statement.

try

{

 Zero or more statements

 throw Exception

 Zero or more statements

}

catch(class $variable)

{

 Zero or more statements

{

Listing 3.13 Using a try statement

<?php

 //derive math exception from base class

 class mathException extends Exception

 {

 public $type;

 public function __construct($type)

 {

 //get filename and line number

 parent::Exception();

 $this->type = $type;

 }

 }

 //try a division

 $numerator = 1;

 $denominator = 0;

 try

 {

 //throw exception on divide by zero

 if($denominator == 0)

 {

 throw new mathException("Division by zero");

 }

 print($numerator/$denominator);

 }

 catch(mathException $e)

 {

 //we caught a math exception

 print("Caught Math Exception ($e->type) in " .

 "$e->file on line $e->line
\n");

 }

 catch(Exception $e)

 {

 //we caught some other type of exception

 print("Caught Exception in " .

 $e->file() . " on line " .

 $e->line() . "
\n");

 }

?>

3.7 Declare

The declare statement marks a block of code for execution under a

set of conditions. Figure 3.8 shows the form of a declare statement.

Figure 3.8 The declare statement.

declare(directive)

{

 Zero or more statements

}

At the time of writing, PHP accepts only one directive: ticks. The

ticks directive paired with the register_tick_function cause PHP to

pause execution of a script periodically to execute a function. Each tick

represents a lowest-level event determined by the parser. This

functionality is not meant for general programming, and PHP does not

guarantee any matching between the number of ticks and the number

of statements inside the declare block. Listing 3.14 shows an example

of a registered tick function.

Listing 3.14 Using a declare Statement

<?php

 //define a tick function

 function logTick($part)

 {

 static $n = 0;

 print("Tick $n $part " . microtime() . "
\n");

 $n++;

 }

 print("Start " . microtime() . "
\n");

 //register the tick function

 register_tick_function("logTick", "doing square roots");

 //run code inside declare block

 declare(ticks=1)

 {

 1;1;1;

 }

 //unregister the tick function

 unregister_tick_function("logTick");

 print("Done " . microtime() . "
\n");

?>

It’s possible the declare statement may receive additional directives

in the future. As the ticks directive has little use beyond curiosity, you

may feel comfortable ignoring declare statements.

Chapter 4. Functions
Topics in This Chapter

Declaring a Function

The return Statement

Scope

Static Variables

Arguments

Recursion

Dynamic Function Calls

You probably have noticed the use of several functions in the

preceding chapters. Date and print are built-in functions that are

always available for you. PHP also allows you to declare your own

functions.

Functions expand the idea of repeating a block of code. They allow

you to execute a block of code arbitrarily throughout your script. You

declare a block of code as a function, and then you are able to call

the function anywhere. When calling a function, you pass any number

of arguments, and the function returns a value.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

4.1 Declaring a Function

When you declare a function, you start with the function statement.

Next comes a name for your function. Inside the parentheses is a list

of arguments separated by commas. You may choose to have no

arguments. Figure 4.1 shows you the form of a function declaration.

In other languages, including older versions of PHP, you must declare

a function above any call to it. This is not true of PHP 4. You may put

a function declaration after calls made to it. When you call a function,

you write its name followed by parentheses, even if there are no

arguments to pass.

Figure 4.1 Declaring a function.

function function_name(arguments)

{

 code block

}

Functions allow you to put together a block of code that you will

repeat several times throughout your script. Your motivation may be

to avoid typing identical code in two or more places, or it could be to

make your code easier to understand. Consider Listing 4.1. It

declares a function called printBold that prints any text with bold

tags around it.

Listing 4.1 A simple function

<?php

 function printBold($text)

 {

 print("$text");

 }

 print("This Line is not Bold
\n");

 printBold("This Line is Bold");

 print("
\n");

 print("This Line is not Bold
\n");

?>

4.2 The return Statement

At some point a function will be finished, ready to return control to its

caller. This happens, for example, when execution reaches the end of

the function’s block of code. Execution then picks up directly after the

point where the function was called. Another way to stop execution of

the function is to use the return statement.

You may have multiple return statements in your function, though

you have to consider how this reduces the readability of your code.

Multiple return statements can be a barrier to understanding the

flow of execution. Ideally, functions should have one way in and one

way out. In practice there are cases when multiple return

statements are acceptable.

If you follow return with an expression, the value of the expression

will be passed back. Listing 4.2 demonstrates this idea by taking a

string and returning it wrapped in bold tags.

Listing 4.2 A simple function using return

<?php

 function makeBold($text)

 {

 $text = "$text";

 return($text);

 }

 print("This Line is not Bold
\n");

 print(makeBold("This Line is Bold") . "
\n");

 print("This Line is not Bold
\n");

?>

For most data types, return values are passed by value. Objects,

discussed in Chapter 6, pass by reference. You can force a function to

return a reference by placing a & immediately before the name. In

PHP 4, objects were passed by value, which hindered some

techniques involving functions returning objects. Listing 4.3

demonstrates a function returning a reference to an array. Each call

to the function creates a new array, fills it with 10 numbers, and

returns its reference.

The getRandArray function creates a new array with each call.

Ordinarily, PHP discards variables inside functions when the function

returns control to the calling process. In this case, the function

returns a reference to the array. The function scope dissolves, and

PHP decrements the count of references to the array. However,

myNewArray now references the array and the array persists.

Listing 4.3 Function returning a reference

<?php

 function &getRandArray()

 {

 $a = array();

 for($i=0; $i<10; $i++)

 {

 $a[] = rand(1,100);

 }

 return($a);

 }

 $myNewArray = &getRandArray();

?>

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

4.3 Scope

In order to avoid clashes between variables in different functions,

PHP includes the notion of scope. Each line of code belongs to a

certain scope. Code that appears inside a function is considered to

belong to the function’s scope. Code that appears outside of any

function is considered to belong to the global scope. The scope is the

property that determines which memory table is used for storing

variables and in turn which variables are accessible.

Variables declared inside a function scope are local variables. Local

variables are the private property of a function and may never be

seen or manipulated outside the scope of the function. Variables used

outside the scope of any function are global variables. Unlike some

other languages, global variables in PHP are not immediately

available outside the global scope.

The code in Listing 4.4 assigns local variable name to Zeev inside

assignName, but this does not change the contents of name in the

global scope. The local name variable does not persist in any way

once the function returns. There are two ways a function may access

variables in the global scope: the global statement and the GLOBALS

array.

Listing 4.4 Experimenting with scope

<?php

 function assignName()

 {

 $name = "Zeev";

 }

 $name = "Leon";

 assignName();

 //prints Leon

 print($name);

?>

The global statement brings a variable into a function’s namespace.

Thereafter the variable may be used as if it were outside the function.

Any changes to the variable will persist after execution of the function

ceases. In the same way, it is possible to refer to global variables

through the array GLOBALS. The array is indexed by variable names,

so if you create a variable named userName, you can manipulate it

inside a function by writing $GLOBALS[“userName”].

Listing 4.5 sets up a function, printCity, that prints out the name of

a city. It will be used to show the contents of the variables named

capital. Variables is plural because there are actually three variables

in the script named capital. One is global and the other two are

local to the California and Utah functions.

Listing 4.5 Using the global scope

<?

 $capital = "Washington DC";

 function Nation()

 {

 global $capital;

 printCity($capital);

 }

 function printCity($NameOfCity)

 {

 print("The city is $NameOfCity.
\n");

 }

 function California()

 {

 $capital = "Sacramento";

 printCity($capital);

 }

 function Utah()

 {

 $capital = "Salt Lake City";

 printCity($capital);

 }

 Nation();

 California();

 Utah();

 Nation();

?>

When you run this script, you will find that the cities are printed in

the order Washington DC, Sacramento, Salt Lake City, and

Washington DC. Notice that even though we have given capital a

new value inside California and Utah, it is not the same variable we

set to Washington DC. The variables inside California and Utah are

local, and the one containing Washington DC is global.

4.4 Static Variables

It is important to remember that when you create a variable inside a

function, it exists only while that function is executing. Once

execution finishes and control is passed back to the calling process,

all the variable space for that function is cleaned up. Sometimes this

is not desirable; sometimes you want the function to remember the

values of the variables between calls. You could implement this by

using global variables, but a more elegant solution is to use the

static statement.

At the beginning of a function, before any other commands, you may

declare a static variable. The variable will then retain any value it

holds even after leaving the function. You might wonder why you

would ever need to do this. Suppose you’d like to build a table where

the rows alternate in background color. Listing 4.6 does just this.

Listing 4.6 Demonstration of static variables

<?

 function useColor()

 {

 //remember the last color we used

 static $ColorValue = "#00FF00";

 //choose the next color

 if($ColorValue == "#00FF00")

 {

 $ColorValue = "#CCFFCC";

 }

 else

 {

 $ColorValue = "#00FF00";

 }

 return($ColorValue);

 }

 print("<table width=\"300\">\n");

 for($count=0; $count < 10; $count++)

 {

 //get color for this row

 $RowColor = useColor();

 /*

 ** print out HTML for row

 ** set background color

 */

 print("<tr>" .

 "<td style=\"background: $RowColor\">" .

 "Row number $count" .

 "</td>" .

 "</tr>\n");

 }

 print("</table>\n");

?>

Chapter 6 discusses static class members, which are different from

static variables in functions.

4.5 Arguments

When declaring a function, you may declare arguments inside the

parentheses, each separated by a comma. The arguments must be

preceded by a dollar sign. They become variables inside the function.

When the function is called, it expects values to be passed that will

fill the arguments in the order declared.

Arguments, by default, copy the passed value into the local variable,

otherwise known as pass-by-value. If the function argument is

preceded by the & operator, the variable instead becomes an alias for

the passed variable. This is commonly referred to as a variable

reference. Changes made to referenced variables change the original.

Chapter 2 contains a discussion of variable references.

To demonstrate this idea, imagine we wanted a function that stripped

commas from numbers. That way, if we got something like 10,000

from an input field, we would know it was ten thousand, not ten. We

could build the function by passing a string and returning it with the

commas removed. But in this case we want to just pass the variable

and have it be changed. Listing 4.7 demonstrates this functionality.

It is also possible to make an argument optional. Many built-in

functions provide this functionality. The date function is one you

should be familiar with by now. You can pass one or two arguments

to date. The first argument is the format of the return value. The

second argument is the timestamp, a date expressed in seconds

since January 1, 1970. If the second argument is omitted, the current

time is used.

Listing 4.7 Passing arguments by reference

<?php

 function stripCommas(&$text)

 {

 $text = str_replace(",", "", $text);

 }

 $myNumber = "10,000";

 stripCommas($myNumber);

 print($myNumber);

?>

You do this in your own functions by providing a default value using

the = operator immediately after the argument. The right side of = is

a literal value that the variable will be assigned. See Listing 4.8.

Since arguments are matched up left to right, you must provide a

default value for every argument after the first with a default value.

Listing 4.8 Arguments with default values

<?php

 function printColor($text,

 $color="black", &$count=NULL)

 {

 //print the text with style

 print("" .

 "$text");

 //if given a count, increment it

 if(isset($count))

 {

 $count++;

 }

 }

 //call with one argument

 printColor("This is black text");

 print("
\n");

 //override default color

 printColor("This is blue text", "blue");

 print("
\n");

 //pass in count reference

 $c = 0;

 printColor("This is red text", "red", $c);

 print("
\n");

 printColor("This is green text", "green", $c);

 print("
\n");

 print("Count: $c
");

?>

You can give a default value to an optional argument. Use the same

syntax for any other optional argument. If you call the function

without this argument, changing its value will have no effect outside

the function. However, if you set the default to NULL, you can test if it

appears in the call and use it only if it does appear. You may set any

argument to be unset by default by making it equal to NULL.

Other than named arguments, you may also access arguments by

their position using three functions: func_get_arg, func_get_args,

func_num_args. These functions are described in Chapter 8. You may

either fetch one argument at a time using func_get_arg or fetch

them all as an array using func_get_args. To find out how many

arguments were passed, use func_num_args. There is an implication

lurking here. Calling a function with a number of arguments different

from the prototype is not an error unless you write your function that

way.

You might wonder why you’d ever want to pull arguments out using

the functions mentioned above instead of naming them in the

declaration. It’s possible that you do not know how many arguments

you will be given. Consider a function that creates a list, given any

number of items. You could first place those items in an array, then

pass the array to the function, which in turn would pull the items out

of the array. Alternatively, you could write a function that accepted a

variable number of arguments, as in Listing 4.9.

Listing 4.9 Function with variable number of arguments

<?php

 function makeList()

 {

 print("\n");

 for($i=0; $i < func_num_args(); $i++)

 {

 print("" . func_get_arg($i) . "\n");

 }

 print("\n");

 }

 makeList("Linux", "Apache", "MySQL", "PHP");

?>

4.6 Recursion

Your functions may make calls to other functions, and they may also

make calls to themselves. The process of a function calling itself is

recursion. This circular definition usually leads to elegant algorithms.

The problem is broken down into a small task that’s repeated many

times.

Recursive definitions are common in mathematics. Consider this

definition of an integer: the sum or difference between one and any

other integer, with one being an integer. Is three an integer? Yes,

because one plus one must be an integer, which is two, and the sum

of one and two must also be an integer.

Recursion is a difficult concept to understand. Some people use it

because you can express an algorithm in fewer lines. Equivalent

iterative algorithms usually must maintain this state on their own

rather than relying on PHP to keep track of variables in the function

for each call. Consider that 10 calls to a function requires PHP to keep

10 copies of all the variables the function uses. In many cases it’s

more efficient to manage the values yourself.

Take a look at Listing 4.10. The function checkInteger takes a

number as input. We know that the difference between an integer

and one is an integer. So, if the function gets a number bigger than

one, it simply checks the number minus one. If we start out with a

number less than zero, we multiply it by negative one and check it.

Eventually, unless we are passed zero, we will reach one or a number

between zero and one, which is an integer.

Listing 4.10 Using recursion

<?php

 function checkInteger($Number)

 {

 if($Number > 1)

 {

 // integer minus one is still an integer

 return(checkInteger($Number-1));

 }

 elseif($Number < 0)

 {

 //numbers are symmetrical, so

 //check positive version

 return(checkInteger((-1)*$Number-1));

 }

 else

 {

 if(($Number > 0) AND ($Number < 1))

 {

 return("no");

 }

 else

 {

 //zero and one are

 //integers by definition

 return("yes");

 }

 }

 }

 print("Is 0 an integer? " .

 checkInteger(0) . "
\n");

 print("Is 7 an integer? " .

 checkInteger(7) . "
\n");

 print("And 3.5? " . checkInteger(3.5) . "
\n");

 print("What about -5? " . checkInteger(-5) . "
\n");

 print("And -9.2? " . checkInteger(-9.2) . "
\n");

?>

4.7 Dynamic Function Calls

You might find yourself in the position of not knowing which function

should be called when you are writing a script. You want to decide

based on data you have during execution. One way to accomplish this

is to set a variable with the name of a function and then use the

variable as if it were a function.

If you follow a variable with parentheses, the value of the variable

will be treated as the name of a function. Listing 4.11 demonstrates

this. Keep in mind that you can’t refer to built-in functions in this

way. Setting myFunction to be print will cause an error.

Listing 4.11 Calling a function dynamically

<?php

 function write($text)

 {

 print($text);

 }

 function writeBold($text)

 {

 print("$text");

 }

 $myFunction = "write";

 $myFunction("Hello!");

 print("
\n");

 $myFunction = "writeBold";

 $myFunction("Goodbye!");

 print("
\n");

?>

If you do not know exactly how a function should operate until

runtime, you may create an anonymous function with the

create_function function. See Chapter 11 for a description of this

function.

Chapter 5. Arrays
Topics in This Chapter

Single-Dimensional Arrays

Indexing Arrays

Initializing Arrays

Multidimensional Arrays

Casting Arrays

The + Operator

Referencing Arrays Inside Strings

Arrays collect values into lists. You refer to an element in an array

using an index, which is often an integer but can also be a string. The

value of the element can be text, a number, or even another array.

When you build arrays of arrays, you get multidimensional arrays.

Arrays are used extensively by PHP’s built-in functions, and coding

would be nearly impossible without them. There are many functions

designed simply for manipulating arrays. They are discussed in detail

in Chapter 11.

5.1 Single-Dimensional Arrays

To refer to an element of an array, you use square brackets. Inside

the brackets you put the index of the element, as in Listing 5.1. This

construct may be treated exactly like a variable. You may assign a

value or pass its value to a function. You do not have to declare

anything about the array before you use it. Like variables, any

element of an array will be created on the fly. If you refer to an array

element that does not exist, it will evaluate to be zero or an empty

string depending on the context.

Listing 5.1 Referencing array elements

<?php

 $Cities[0] = "San Francisco";

 $Cities[1] = "Los Angeles";

 $Cities[2] = "New York";

 $Cities[3] = "Martinez";

 print("I live in $Cities[3].
\n");

?>

Single-dimensional arrays are lists of values under a common name.

But you might wonder, Why bother? You could just as easily create

variables like $Cities1, $Cities2, $Cities3 and not worry about

square brackets. One reason is that it’s easy to loop through all

values of an array. If you know that all the elements of an array have

been added using consecutive numbers, you can use a for loop to

get each element. PHP makes it easy to create arrays that work this

way; if you leave out an index when assigning an array element, PHP

will start at zero and use consecutive integers thereafter. If you run

the code in Listing 5.2, you will discover that the four cities have

indexes of 0, 1, 2, and 3.

Listing 5.2 Adding to an array

<?php

 $Cities[] = "San Francisco";

 $Cities[] = "Los Angeles";

 $Cities[] = "New York";

 $Cities[] = "Martinez";

 // count number of elements

 $indexLimit = count($Cities);

 // print out every element

 for($index=0; $index < $indexLimit; $index++)

 {

 print("City $index is $Cities[$index].
\n");

 }

?>

5.2 Indexing Arrays

So far we’ve only seen arrays indexed by integers, but it is also

permissible to use strings. Sometimes these are called associative

arrays, or hashes. They are helpful in situations where you are

collecting different types of information into one array. You could

build into your code a system where element zero is a name, element

one is a location, and element two is an occupation. Listing 5.3 is a

more elegant way to accomplish this.

Listing 5.3 Indexing arrays with strings

<?php

 // fill in some information

 $UserInfo["Name"] = "Leon Atkinson";

 $UserInfo["Location"] = "Martinez, California";

 $UserInfo["Occupation"] = "Programmer";

 //loop over values

 foreach($UserInfo as $key=>$value)

 {

 print("$key is $value.
\n");

 }

?>

Since we aren’t indexing the array with integers, we can’t just pull

out each value starting at zero. If you’ve turned ahead briefly to skim

the array functions in Chapter 11, you may have noticed functions

like reset, next, and current. These functions offer one way to step

through an array, and they are the best way if you need to do more

than simply step through the array in order. You can also use the

each function. However, PHP 4 added a new statement called

foreach specifically for stepping through an array. The foreach

statement is discussed in Chapter 3. It is like a for loop but designed

to pull elements from an array. You may wish to turn back and review

it.

5.3 Initializing Arrays

In the situations where you want to fill an array with several values

before you use it, it can become cumbersome to write an assignment

for each element. PHP offers the array function to help in this matter.

It takes a list of values and returns an array. Listing 5.4 uses array

to build an array of the months of the year.

Each value is just as it would be if it were on the right side of the

assignment operator. Commas separate the values. By default, as

with using empty brackets, elements are numbered starting with

zero. You can override this by using the => operator. In Listing 5.4 I

have set January to have the index 1. Each subsequent element is

indexed by the next integer.

Listing 5.4 Initializing an array

<?php

 $monthName = array(1=>"January", "February", "March",

 "April", "May", "June", "July", "August",

 "September", "October", "November", "December");

 print("Month 5 is $monthName[5]
\n");

?>

You aren’t limited to setting the index for the first element, of course.

You can assign the index for every element. And you aren’t limited to

assigning integers as indexes. Listing 5.5 builds an array for

translating various ways to write a month into a single form.

Listing 5.5 Using an array to translate values

<?php

 $monthName = array(

 1=>"January", "February", "March",

 "April", "May", "June",

 "July", "August", "September",

 "October", "November", "December",

 "Jan"=>"January", "Feb"=>"February",

 "Mar"=>"March", "Apr"=>"April",

 "May"=>"May", "Jun"=>"June",

 "Jul"=>"July", "Aug"=>"August",

 "Sep"=>"September", "Oct"=>"October",

 "Nov"=>"November", "Dec"=>"December",

 "January"=>"January", "February"=>"February",

 "March"=>"March", "April"=>"April",

 "May"=>"May", "June"=>"June",

 "July"=>"July", "August"=>"August",

 "September"=>"September", "October"=>"October",

 "November"=>"November", "December"=>"December"

);

 print("Month 5 is " . $monthName[5] . "
\n");

 print("Month Aug is " . $monthName["Aug"] . "
\n");

 print("Month June is " .

 $monthName["June"] . "
\n");

?>

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

5.4 Multidimensional Arrays

An array element can be any type of data. You’ve seen numbers and

strings, but you can even put an array inside an array. An array of

arrays is also called a multidimensional array. Imagine a 10-by-10

grid. You’ve got 100 different squares, each of which can have its

own value. One way to represent this in code is with a two-

dimensional array: a 10-element array of 10-number arrays, 10 rows

of 10 columns.

To reference a single element, you first use square brackets to pick

the first dimension (row), then use a second pair of brackets to pick

the second dimension (column). Row 3, column 7, would be written

as $someArray[3][7].

Listing 5.6 initializes a multidimensional array using the array

function. This shows that multidimensional arrays are just arrays of

arrays. You may create arrays with any number of dimensions.

Listing 5.6 Creating and referencing a multidimensional

array

<?php

 $Cities = array(

 "California"=>array(

 "Martinez",

 "San Francisco",

 "Los Angeles"

),

 "New York"=>array(

 "New York",

 "Buffalo"

)

);

 print($Cities["California"][1]);

?>

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

5.5 Casting Arrays

You can cast an array as another data type to get results of various

usefulness. When you cast an array as an integer, double, or boolean,

you will get a value of 1. When you cast an array as a string, you will

get the word Array. This is useful as an indicator of when you have

mistakenly used an array as a string. An array will be promoted to a

string containing Array if you use it in a context that demands a

string, such as in a print statement. You can’t use an array in a

context that expects a number, such as with the addition operator.

This will cause an error. Listing 5.7 explores casting an array as other

data types.

Listing 5.7 Casting arrays as other data types

<?php

 $userInfo = array(

 "Name"=>"Leon Atkinson",

 "Location"=>"Martinez, California",

 "Occupation"=>"Programmer",

 "PHP Version"=>5.0);

 //Whether a boolean, integer or double,

 //PHP converts the array to 1

 $asBool = (boolean)$userInfo;

 print("Boolean: $asBool
\n");

 $asInt = (integer)$userInfo;

 print("Integer: $asInt
\n");

 $asDouble = (double)$userInfo;

 print("Double: $asDouble
\n");

 //When converting to a string, PHP

 //returns the string "Array"

 $asString = (string)$userInfo;

 print("String: $asString
\n");

 //When converting the array to an object,

 //PHP tries to convert all elements to properties.

 //Elements with spaces in their keys are not lost,

 //but are inaccessible.

 $asObject = (object)$userInfo;

 print("Object: $asObject->Location
\n");

 print("$asObject->PHP Version
\n"); //doesn't work!

 //uncommented, the following is a parse error

 //print($userInfo + 1);

 //PHP knows how to promote an array to a string, though

 //not with useful results.

 print("Promoted to string:" . $userInfo . "
\n");

 //PHP won't promote an array to an object

 print($userInfo->Name . "
\n");

?>

The most useful cast of an array you can perform is to an object. The

elements of the array become properties of the object. However,

elements indexed by values that are illegal as property names remain

inaccessible. These values are not lost, and if you recast the variable

as an array, they become available again. Objects are discussed in

Chapter 6.

5.6 The + Operator

The + operator has a special meaning for arrays. It merges the

elements from the array on the right into the array on the left. The

keys of the arrays are important. If a key exists in the array on the

left, it remains unchanged. Only elements from the array on the right

with different keys merge into the array on the left. Listing 5.8

demonstrates this functionality.

Listing 5.8 Using the + with arrays

<?php

 //define a couple of arrays

 $a = array(

 0=>"Apple",

 2=>"Ball");

 $b = array(

 1=>"Cat",

 2=>"Dog");

 foreach(($a + $b) as $key=>$value)

 {

 print("$key: $value
\n");

 }

?>

Figure 5.1 shows that Listing 5.8 prints an array with three elements.

The element indexed by 2 uses the value from a, not b.

Chapter 11 discusses the array_merge function, which performs a

different merge of arrays.

Figure 5.1 Output from Listing 5.8.

0: Apple

2: Ball

1: Cat

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

5.7 Referencing Arrays Inside Strings

As you know from Chapter 2, you may place a variable inside a string using

double quotes. The variable’s value will replace it. A single-dimensional array

indexed by integers will be interpreted correctly inside double quotes, but

other uses of arrays are problematic. To force the use of multidimensional

arrays, use curly braces. These suspend the normal parsing that occurs within

a double-quoted string. Of course, you may always concatenate strings.

Listing 5.9 explores some different ways to use arrays inside strings.

Listing 5.9 Referencing arrays in strings

<?php

 $monthInfo = array(

 1=>array("January", 31),

 array("February", 28),

 array("March", 31),

 array("April", 31),

 array("May", 31),

 array("June", 31),

 array("July", 31),

 array("August", 31),

 array("September", 30),

 array("October", 31),

 array("November", 30),

 array("December", 31));

 $userInfo = array(

 "Name"=>"Leon Atkinson",

 "Location"=>"Martinez, California",

 "Occupation"=>"Programmer");

 //This does not parse as expected. It prints

 //Array[0] because [0] isn't considered part of

 //the expression.

 print("$monthInfo[1][0]
\n");

 //Here the curly braces alert the parser to

 //consider the entire array expression,

 //including the second dimension.

 print("{$monthInfo[1][0]} has {$monthInfo[1][1]} days
\n");

 //Here we've avoided the confusion by keeping

 //the array values outside of the strings, perhaps

 //at the expense of some readability.

 print($monthInfo[1][0] . " has " . $monthInfo[1][1]

 . " days
\n");

 //This line would cause a parse error if uncommented

 //print("Name is $userInfo["Name"]
\n");

 //Once again, curly braces are used to clear up

 //confusion for the parser.

 print("Name is {$userInfo["Name"]}
\n");

?>

Chapter 6. Classes and Objects
Topics in This Chapter

Object-Oriented Programming

The PHP 5 Object Model

Defining a Class

Constructors and Destructors

Cloning

Accessing Properties and Methods

Static Class Members

Access Types

Binding

Abstract Methods and Abstract Classes

User-Level Overloading

Class Autoloading

Object Serialization

Namespaces

The Evolution of the Zend Engine

This chapter discusses object-oriented programming and PHP’s

implementation of objects. If you’re a PHP veteran, you will find

many new features in this chapter. If you’re relatively new to PHP,

you may feel overwhelmed, in which case you way wish to set this

chapter aside and return to it later. The functionality discussed here is

useful but not necessary to most programming tasks.

6.1 Object-Oriented Programming

Object-oriented programming was devised as a solution to problems

associated with large software projects where many programmers

work on a single system. When source code grows to be tens of

thousands of lines of code or more, each change can cause

unexpected side effects. This happens when modules form secret

alliances, as nations did in pre-WWI Europe. Imagine a module for

handling logins that allows a credit card processing module to share

its database connection. Surely it was done with the best intentions,

probably to save the overhead of acquiring another connection. Some

time later, the login module severs the agreement by changing the

variable name. The credit card processing code breaks; then the

module that handles invoices breaks. Soon, totally unrelated modules

are dragged into the fray.

So, I’m being a bit dramatic. Most programmers pick up an

appreciation for coupling and encapsulation. Coupling is the measure

of how dependent two modules are. Less coupling is better. We’d like

to take modules from existing projects and reuse them in new

projects. We’d like to make wholesale changes to the internals of

modules without worrying about how they affect other modules. The

solution is to follow the principle of encapsulation. Modules are

treated as independent states, and exchanges between modules are

done through narrow, structured interfaces. Modules do not spy on

each other by reaching into each other’s variables. They ask politely

through functions.

Encapsulation is a principle you can apply in any programming

language�if you have discipline. In PHP and many procedural

languages it’s easy to be tempted to be lazy. Nothing prevents you

from building a web of conceit between your modules. Object-

oriented programming is a way of making it nearly impossible to

violate encapsulation.

In object-oriented programming, modules are organized into objects.

These objects have methods and properties. From an abstract

perspective, methods are things an object does, and properties are

the characteristics of the object. From a programming perspective,

methods are functions and properties are variables. In an ideal

object-oriented system, each part is an object. The system consists

of objects exchanging objects with other objects using methods.

A class defines the attributes of objects. If you were baking a batch

of cookie objects, the class would be the cookie cutter. The properties

and methods of the class are called members. People may qualify the

expression by saying data members or method members.

Each language takes a different approach to objects. PHP borrows

from C++ and offers a data type that may contain functions and

variables under a single identifier. When PHP was first conceived, and

even when version 3 was created, PHP wasn’t intended to be capable

of powering projects of 100,000 lines or more of code. As PHP and

the Zend Engine evolved, it became possible to write larger projects,

but no matter the size of your project, building your scripts with

classes will certainly aid you in writing code that can be reused. This

is a good idea, especially if you wish to share your code.

The idea of objects is one of those mind-blowing concepts in

computer science. It’s hard to grasp at first, but I can attest that

once you get it, it becomes quite natural to think in its terms.

Nevertheless, you can ignore objects if you wish and return to this

chapter later. Some built-in functions return objects. You can find

alternatives that don’t, or you can cast the objects as arrays, as

described at the end of this chapter.

6.2 The PHP 5 Object Model

PHP 5 has a single-inheritance, access-restricted, and overloadable

object model. Inheritance, discussed in detail later in this chapter,

involves a parent-child relationship between classes. Other languages

allow for multiple parents; PHP allows for one parent per child.

Additionally, PHP supports restricting access to properties and

methods. You may declare members private, disallowing access from

outside the class. Finally, PHP allows a child class to overload the

members of its parent class.

The object model in PHP 5 treats objects differently from any other

kind of value that is available in PHP and implements implicit, pass-

by-reference behavior. That is, PHP does not require you to explicitly

pass or return objects by reference. The reasoning for moving to a

handle-based object model is closely detailed at the end of this

chapter. It’s the most important new feature of PHP 5.

In addition to providing a more intuitive object model, the handle-

based system has several additional advantages: improved

performance, reduced memory consumption, and increased flexibility.

In previous versions of PHP, scripts copied objects by default. Unless

this functionality specifically broke your design, it was easy to let PHP

move big chunks of memory. PHP now moves only a handle, which

requires less time. This increases performance of a given script

because it avoids unnecessary copies. The performance benefit

increases in step with the complexity of the object hierarchy. Fewer

copies means using less memory too. This may increase performance

of the system as a whole, since more memory remains available for

all processes.

The Zend Engine 2 allows for more flexibility. One happy consequence

of the new design is allowance for destructors, class methods that

execute immediately before destroying an object. This also benefits

memory use, as PHP knows exactly when no references to an object

remain, allowing it to make the memory available for other uses.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

6.3 Defining a Class

When you declare a class, you are really making a template for the

creation of objects. You list all the variables the object should have

and all the functions it will need. These are called properties and

methods respectively. Figure 6.1 displays the form of a class

declaration. Note that inside the curly braces you can declare only

variables or functions. Listing 6.1 shows the definition of a class with

three properties and two methods.

Figure 6.1 Defining a class.

class Name extends Another Class

{

 Access Variable Declaration

 Access Function Declaration

}

Listing 6.1 Using a class

<?php

 //define class for tracking users

 class User

 {

 //properties

 public $name;

 private $password, $lastLogin;

 //methods

 public function __construct($name, $password)

 {

 $this->name = $name;

 $this->password = $password;

 $this->lastLogin = time();

 $this->accesses++;

 }

 // get the date of the last login

 function getLastLogin()

 {

 return(date("M d Y", $this->lastLogin));

 }

 }

 //create an instance

 $user = new User("Leon", "sdf123");

 //get the last login date

 print($user->getLastLogin() ."
\n");

 //print the user's name

 print("$user->name
\n");

?>

When you declare a property, you don’t specify a data type. It is a

variable like any other, and it may contain an integer, a string, or

even another object. Depending on the situation, it might be a good

idea to add a comment near the declaration of the property that

states its intended use and data type.

When you declare a method, you do so just as you would declare a

function outside a class definition. Both methods and properties exist

within their own scope, or namespace. That means you can safely

create methods that have the same name as functions declared

outside of class definitions without conflicts. For example, a class can

define a method named date. You cannot name a method after a PHP

keyword, such as for or while.

Class methods may include what PHP calls type hints. A type hint is

the name of another class that precedes an argument to the method.

If your script calls the method and passes a variable that is not an

instance of the named class, PHP generates a fatal error. You may not

give type hints for other types, such as integer, string, or boolean. At

the time of writing, there was some debate over whether type hints

should include the array type.

Type hints are a shortcut for testing argument type with functions or

the instanceof operator. You may always fall back on this method.

Checking the type yourself allows you to force an argument to be an

integer, for example. Listing 6.2 demonstrates the use of type hints

to ensure the Assembler class makes Widget instances only.

Listing 6.2 Type hints

<?php

 //Widget class needs a helper class

 class Widget

 {

 public $name='none';

 public $created=FALSE;

 }

 //Assembler makes widgets only

 class Assembler

 {

 public function make(Widget $w)

 {

 print("Making $w->name
\n");

 $w->created=TRUE;

 }

 }

 //Create a widget

 $thing = new Widget;

 $thing->name = 'Gadget';

 //Assemble the widget

 Assembler::make($thing);

?>

Aside from the variables passed as arguments, methods contain a

special variable called this. It stands for the particular instance of

the class. You must use this to refer to properties and other

methods of the object. Some object-oriented languages assume an

unqualified variable refers to a local property, but in PHP any

variables referred to within a method are simply variables local to

that scope. Note the use of the this variable in the constructor for

the user class in Listing 6.1.

PHP looks for an access type before property and method

declarations. These are public, private, and protected.

Additionally, you can mark a member with the static keyword. You

can also declare constants within classes with the const directive. A

discussion of the various access types appears later in the chapter.

You may list properties of the same access type on a single line,

using commas to separate them. In Listing 6.1, the User class

contains two private properties, defined with private $password,

$lastLogin.

6.4 Constructors and Destructors

If you choose to declare a function within a class named

__construct, the function will be considered a constructor and will

be executed immediately upon creating an object from that class. To

be clear, the first two characters are underscores. Like any other

function, the constructor may have parameters and even default

values. You can set up classes that allow you to create an object and

set all its properties in one statement. You may also define a method

named __destruct. PHP calls this method when it destroys the

object. It’s called a destructor.

One powerful aspect of classes is inheritance, the idea that a class

can extend the functionality of another class. The new class will

contain all the methods and properties of the class it extends, plus

any others it lists within its body. You may also override methods and

properties from the extended class. As shown in Figure 6.1, you

extend a class using the extends keyword.

One issue you might wonder about is whether and how constructors

are inherited. While they are inherited along with all other methods,

they cease to have the property of being called when an object is

created from the class. If you require this functionality, you must

write it explicitly by calling the parent class’s constructor within the

child class’s constructor. Recall the :: operator from Chapter 2. It

allows you to refer to namespaces. The special parent namespace

refers to the immediate ancestor. You can call the parent constructor

with parent::__construct.

Some object-oriented languages name constructors after the class.

Previous versions of PHP used this method, and for the time being,

it’s still supported. That is, if you call you class Animal and you place

a method inside named Animal, PHP uses it as the constructor. If the

class has both __construct and a method named after the class,

PHP uses __construct. This allows classes written for previous

versions to continue to work as expected. Any new scripts should use

__construct.

PHP’s new convention for naming the constructor offers the ability to

reference constructors with a unified name regardless of the name of

their containing class. It allows you to change your class hierarchies

without having to change the actual code in the class itself.

You may give constructors an access type like other methods in PHP.

The access type will affect the ability of instantiating the object from

certain scopes. This allows for implementation of certain design

patterns, such as the Singleton pattern.

Destructors, as their name implies, are the opposite of constructors.

PHP calls them each time it frees an object from memory. By default,

PHP simply frees the memory of the properties in the object and

destroys any resources that the object referenced. Destructors allow

you to execute arbitrary code to properly clean up after your object.

Destructors are called as soon as PHP determines that your script no

longer references the object. Inside a function namespace, that

happens as soon as the function returns. For global variables, this

typically happens when the script terminates. If you wish to explicitly

destroy an object, you can assign any other value to every variable

pointing to the object. Assigning NULL to a variable or calling unset is

customary.

The class in Listing 6.3 counts the number of objects that were

instantiated from it. The class counter is incremented in the

constructor and decremented in the constructor.

Once you have defined a class, you use the new statement to create

an instance of the class, an object. If the definition of the class is the

blueprint, the instance is the widget rolling off the assembly line. The

new statement expects the name of a class and returns a new

instance of that class. If a constructor with parameters has been

declared, you may also follow the class name with parameters inside

parentheses. Look for the lines in Listing 6.3 that use the new

statement.

Listing 6.3 Constructors and destructors

<?php

 class Counter

 {

 private static $count = 0;

 function __construct()

 {

 self::$count++;

 }

 function __destruct()

 {

 self::$count--;

 }

 function getCount()

 {

 return self::$count;

 }

 }

 //create one instance

 $c = new Counter();

 //print 1

 print($c->getCount() . "
\n");

 //create a second instance

 $c2 = new Counter();

 //print 2

 print($c->getCount() . "
\n");

 //destroy one instance

 $c2 = NULL;

 //print 1

 print($c->getCount() . "
\n");

?>

When you create an instance, memory is set aside for all the

properties. Each instance has its own set of properties. However, the

methods are shared by all instances of that class.

6.5 Cloning

The object model in PHP 5 treats objects in a unique way by

implementing an implicit by-reference paradigm. In some situations,

you may wish to create a replica of an object so that changes to the

replica are not reflected in the original object. For that purpose, PHP

defines a special method, named __clone. As with __construct and

__destruct, use two underscores for the first two characters of the

method name.

Every object has a default implementation for __clone. The default

implementation creates a new object containing the same values and

resources as the original object. If you wish to override this default

implementation, you may declare your own version of __clone in

your class.

The clone method accepts no arguments, but it includes both this

and a second object pointer named that, which corresponds to the

object being replicated. If you choose to implement __clone yourself,

you have to take care of copying any information that you want your

object to contain, from that to this. PHP will not perform any

implicit value copying if you create your own implementation of

__clone.

Listing 6.4 illustrates a simple way of automating objects with serial

numbers.

Listing 6.4 The __clone method

<?php

 class ObjectTracker

 {

 private static $nextSerial = 0;

 private $id;

 private $name;

 function __construct($name)

 {

 $this->name = $name;

 $this->id = ++self::$nextSerial;

 }

 function __clone()

 {

 $this->name = "Clone of $that->name";

 $this->id = ++self::$nextSerial;

 }

 function getId()

 {

 return($this->id);

 }

 function getName()

 {

 return($this->name);

 }

 }

 $ot = new ObjectTracker("Zeev's Object");

 $ot2 = $ot->__clone();

 //1 Zeev's Object

 print($ot->getId() . " " . $ot->getName() . "
");

 //2 Clone of Zeev's Object

 print($ot2->getId() . " " . $ot2->getName() . "
");

?>

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

6.6 Accessing Properties and Methods

The properties of an instance are variables, just like any other PHP

variable. To refer to them, however, you must use the -> operator.

You do not use a dollar sign in front of the property name. For an

example, refer to line in Listing 6.1 that prints the name property of

the user object.

Use of -> can be chained. If an object’s property contains an object

itself, you can use two -> operators to get to a property on the inner

object. You may even place these expressions within double-quoted

strings. See Listing 6.5 for an example of an object that contains an

array of objects.

Accessing methods is similar to accessing properties. The -> operator

is used to point to the instance’s method. This is shown in Listing 6.1

in the call to getLastLogin. Methods behave exactly as functions

defined outside classes.

If a class extends another, the properties and methods of all ancestor

classes are available in the child class despite not being declared

explicitly. As mentioned previously, inheritance is very powerful. If

you wish to access an inherited property, you may simply refer to it

as you would any other local property. Alternatively, you may specify

a specific namespace using the :: operator.

Listing 6.5 Objects containing other objects

<?php

 class Room

 {

 public $name;

 function __construct($name="unnamed")

 {

 $this->name = $name;

 }

 }

 class House

 {

 //array of rooms

 public $room;

 }

 //create empty house

 $home = new house;

 //add some rooms

 $home->room[] = new Room("bedroom");

 $home->room[] = new Room("kitchen");

 $home->room[] = new Room("bathroom");

 //show the first room of the house

 print($home->room[0]->name);

?>

PHP recognizes two special namespaces within objects. The parent

namespace refers to the immediate ancestor class. The self

namespace refers to the current class. Listing 6.6 demonstrates the

use of the parent namespace to call parent constructors recursively.

It also uses self to call another method from within a constructor.

Listing 6.6 The parent and self namespaces

<?php

 class Animal

 {

 public $blood;

 public $name;

 public function __construct($blood, $name=NULL)

 {

 $this->blood = $blood;

 if($name)

 {

 $this->name = $name;

 }

 }

 }

 class Mammal extends Animal

 {

 public $furColor;

 public $legs;

 function __construct($furColor, $legs, $name=NULL)

 {

 parent::__construct("warm", $name);

 $this->furColor = $furColor;

 $this->legs = $legs;

 }

 }

 class Dog extends Mammal

 {

 function __construct($furColor, $name)

 {

 parent::__construct($furColor, 4, $name);

 self::bark();

 }

 function bark()

 {

 print("$this->name says 'woof!'");

 }

 }

 $d = new Dog("Black and Tan", "Angus");

?>

Chapter 4 introduced the idea of dynamic function calls, where a

variable stands for the name of a function. The same technique

applies for object members. For example, if you need to determine

the name of a property at runtime, you can write an expression like

$this->$dynamicProperty. Similarly, you can write an expression

like $obj->$method(1.23) to call a method you choose with the

method variable.

You can also use the return value of a function with the -> operator,

which was not allowed in previous versions of PHP. For example, you

can write an expression like $obj->getObject()->callMethod().

This avoids using an intermediate variable. It also aids the

implementation of some design patterns, such as the Factory pattern.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

6.7 Static Class Members

Static class members are different from regular class members: They

don’t relate to an object instance of the class, but to the class itself.

They are used to implement functionality and data that the class

should encapsulate but that does not belong to any particular object.

As with regular class members, there are static methods and static

properties.

Static properties contain data that should be encapsulated in a class

but that should be shared among all class instances. Practically, static

class properties are very similar to global variables, except that they

belong to a certain class and can be access-restricted.

We already used a static property in Listing 6.3: Counter::$count is

a static property. It belongs to the Counter class, not to any

particular instance of the Counter class. You cannot refer to it with

this, but you may use self or any other valid namespace

expression. In Listing 6.3, the getCount method returns

self::$count. Instead, it could have used Counter::$count.

Static methods implement functionality that should be encapsulated

in a class but that does not relate to any particular object. In very

much the same way that static properties are similar to global

variables, static methods are similar to global functions. Static

methods enjoy full access to the properties of the class to which they

belong as well as to object instances of that class, regardless of

access restrictions.

In Listing 6.3, getCount is an ordinary method, called with the ->

operator. PHP creates the this variable, although the body of the

method makes no use of it. However, much like count itself,

getCount does not belong to any particular object. In certain

situations, we may even wish to call it without even having an object

instance available. Static methods fit these situations well. PHP does

not create this inside static methods, even when you call them from

an object.

Listing 6.7 modifies Listing 6.3 to make getCount a static method.

The static keyword does not prevent calling getCount from an

instance with the -> operator, but PHP does not create this inside

the method. You can attempt to call any method statically with the

proper syntax. If the method uses this, PHP generates an error.

You can write a method to behave different depending on whether it’s

called statically or not by testing if this is set. Of course, if you use

the static keyword, the method will always be static regardless of

how it’s called.

Your classes may also define constant properties. Instead of using

public static, you use the const keyword. You may only refer to

constant properties statically. They are properties of the class, not of

objects that instantiate the class.

Listing 6.7 Static members

<?php

 class Counter

 {

 private static $count = 0;

 const VERSION = 2.0;

 function __construct()

 {

 self::$count++;

 }

 function __destruct()

 {

 self::$count--;

 }

 static function getCount()

 {

 return self::$count;

 }

 };

 //create one instance

 $c = new Counter();

 //print 1

 print(Counter::getCount() . "
\n");

 //print the version of the class

 print("Version used: " . Counter::VERSION . "
\n");

?>

6.8 Access Types

Access types allow developers to restrict access to members of their

classes. They are new to PHP 5, but are a well-known feature of

many object-oriented languages. Access types provide a fundamental

building block of reliable object-oriented applications and are a crucial

requirement for reusable object-oriented infrastructure libraries.

Like C++ and Java, PHP features three kinds of access types:

public, private, and protected. A class member may be one of

these. If you do not specify an access type, the member is public.

You may give an access type to a static member, in which case the

access type should precede the static keyword.

Public members can be accessed with no restrictions. Any code

outside of the class may read and write public properties. You may

call a public method from any part of your script. In previous versions

of PHP all methods and properties were public, which invoked the

thought that objects were little more than fancy arrays.

Private members are visible to members of the same class only. You

cannot change or even read the value of a private property outside of

a method in the class. Likewise, only other methods in the class may

call a private method. Even child classes have no access to private

members.

It’s important to keep in mind that any member of a class, not just a

particular instance, may access private members. Consider Listing

6.8. The equals method compares two widgets. The == operator

compares the properties of two objects of the same class, but in this

example each instance gets a unique ID. The equals method

compares name and price only. Note how equals accesses the

private properties of another instance of Widget. Java and C allow the

same behavior.

Listing 6.8 Private members

<?php

 class Widget

 {

 private $name;

 private $price;

 private $id;

 public function __construct($name, $price)

 {

 $this->name = $name;

 $this->price = floatval($price);

 $this->id = uniqid();

 }

 //checks if two widgets are the same

 public function equals($widget)

 {

 return(($this->name == $widget->name)AND

 ($this->price == $widget->price));

 }

 }

 $w1 = new Widget('Cog', 5.00);

 $w2 = new Widget('Cog', 5.00);

 $w3 = new Widget('Gear', 7.00);

 //TRUE

 if($w1->equals($w2))

 {

 print("w1 and w2 are the same
\n");

 }

 //FALSE

 if($w1->equals($w3))

 {

 print("w1 and w3 are the same
\n");

 }

 //FALSE, == includes id in comparison

 if($w1 == $w2)

 {

 print("w1 and w2 are the same
\n");

 }

?>

If you don’t have a lot of experience with object-oriented

programming, you may wonder about the purpose of private

members. Recall the ideas of encapsulation and coupling discussed at

the beginning of the chapter. Private members help encapsulate data

within an object. They remain hidden inside and untouched by

outside code. They also encourage loose coupling. If code from

outside of the data structure cannot access properties directly, it

cannot implement a hidden dependency.

Of course, most private properties still represent information to be

shared with code outside of the object. The solution is a pair of public

methods for getting and setting them. The constructor typically

accepts initial values for properties too. This forces interaction with

members through a narrow, well-defined interface. It also offers the

opportunity to alter values as they pass through the method. Note

how the constructor in Listing 6.8 forces the price to be a floating-

point number.

Protected members can be accessed by methods of their containing

class and any derived class. Public properties allow circumvention of

the spirit of encapsulation because they allow subclasses to depend

on writing to a particular property directly. Protected methods,

however, pose less of a threat. You may think of protected members

as being for experts only. A subclass that uses a protected method

should know its ancestors well.

In Listing 6.9 the code from Listing 6.8 evolves to include a subclass

of Widget named Thing. Note how Widget now includes a protected

method called getName. Calling this method from an instance of

Widget is not allowed: $w1->getName() generates an error. The

getName method inside the subclass Thing, however, may call this

protected method. This example is too simple to warrant making

Widget::getName protected, of course. In practice, use protected

methods for routines that rely on an understanding of the internal

structure of an object and provide functionality useful outside of the

class.

Listing 6.9 Protected members

<?php

 class Widget

 {

 private $name;

 private $price;

 private $id;

 public function __construct($name, $price)

 {

 $this->name = $name;

 $this->price = floatval($price);

 $this->id = uniqid();

 }

 //checks if two widgets are the same

 public function equals($widget)

 {

 return(($this->name == $widget->name)AND

 ($this->price == $widget->price));

 }

 protected function getName()

 {

 return($this->name);

 }

 }

 class Thing extends Widget

 {

 private $color;

 public function setColor($color)

 {

 $this->color = $color;

 }

 public function getColor()

 {

 return($this->color);

 }

 public function getName()

 {

 return(parent::getName());

 }

 }

 $w1 = new Widget('Cog', 5.00);

 $w2 = new Thing('Cog', 5.00);

 $w2->setColor('Yellow');

 //TRUE (still!)

 if($w1->equals($w2))

 {

 print("w1 and w2 are the same
\n");

 }

 //print Cog

 print($w2->getName());

?>

A child class may change the access type assigned to member by

overriding it; however, there are some restrictions. If you override a

public class member, it must remain public in the derived class. If you

override a protected class member, it may remain protected or

become public. Private members remain visible within their local class

only. Declaring a member with a name matching a private member of

a parent class simply creates a distinct member in the containing

class. Technically, therefore, you can’t override private members. You

may assign any access type you wish.

The final keyword offers another way to restrict access to a member

method. Derived classes cannot override methods marked final in any

of their ancestors. The final keyword does not apply to properties.

6.9 Binding

Other than restricting access, access types also determine which

method will be called or which property will be accessed in subclasses

that override methods or properties. Linking between function calls

and their corresponding function, and between member accesses and

the memory location of variables, is called binding.

There are two main types of binding in computer languages�static

binding and dynamic binding. Static binding matches references to

data structures and the data structures themselves. Static binding

occurs during compilation and consequently cannot make use of any

runtime information. It matches function calls to function bodies, and

it matches variables to their block of memory. Since PHP is a dynamic

language, it doesn’t use static binding. However, there are portions of

PHP that emulate static binding.

Dynamic binding matches access requests made at runtime, using

information available only during runtime. In the context of object-

oriented code, dynamic binding means determining which method to

call or which property to access based on the class of this, not based

on the scope in which the access is made.

Public and protected members behave similarly to the way methods

behaved in previous versions of PHP and are bound using dynamic

binding. This means that if a method accesses a class member that

was overridden in a child class, and our this is an instance of the

child class, the child’s member will be accessed.

Consider Listing 6.10. This code prints “Hey! I am Son.” because

when PHP reaches getSalutation, this is an instance of Son, which

overrides salutation. If salutation were public, PHP would produce

identical results. Overridden methods operate similarly. The call to

identify binds to the method in Son.

Dynamic binding occurs even if the access type in derived classes is

weakened from protected to public. Per the rules of access type

usage, it is impossible to increase the access restrictions on class

members. Changing the access type from public to protected is not

possible.

Listing 6.10 Dynamic binding

<?php

 class Father

 {

 protected $salutation = "Hello there!";

 public function getSalutation()

 {

 print("$this->salutation\n");

 $this->identify();

 }

 protected function identify()

 {

 print("I am Father.
\n");

 }

 };

 class Son extends Father

 {

 protected $salutation = "Hey!";

 protected function identify()

 {

 print("I am Son.
\n");

 }

 };

 $obj = new Son();

 $obj->getSalutation();

?>

Private members exist only to their containing class. Unlike public

and protected members, PHP emulates static binding for private class

members. Consider Listing 6.11. It displays “Hello there! I am

Father.”, despite the Child class overriding the value of salutation.

The script must bind this->salutation to the immediate class,

Father. Similar rules apply to the private method, identify.

Listing 6.11 Binding and private members

<?php

 class Father

 {

 private $salutation = "Hello there!";

 public function getSalutation()

 {

 print("$this->salutation\n");

 $this->identify();

 }

 private function identify()

 {

 print("I am Father.
\n");

 }

 }

 class Son extends Father

 {

 private $salutation = "Hey!";

 private function identify()

 {

 print("I am Son.
\n");

 }

 }

 $obj = new Son();

 $obj->getSalutation();

?>

The advantage of dynamic binding is that it allows derived classes to

alter the behavior of their parents while still taking advantage of their

parents’ interfaces and functionality. See Listing 6.12. Thanks to

dynamic binding, the version of isAuthorized that is called inside

deleteUser is determined based on the type of our object. If this is

an ordinary user, PHP calls User::isAuthorized, which returns

FALSE. If this is an instance of AuthorizedUser, PHP calls

AuthorizedUser::isAuthorized, which allows deleteUser to work

as expected.

Listing 6.12 The advantages of dynamic binding

<?php

 class User

 {

 protected function isAuthorized()

 {

 return(FALSE);

 }

 public function getName()

 {

 return($this->name);

 }

 public function deleteUser($username)

 {

 if(!$this->isAuthorized())

 {

 print("You are not authorized.
\n");

 return(FALSE);

 }

 //delete the user

 print("User deleted.
\n");

 }

 }

 class AuthorizedUser extends User

 {

 protected function isAuthorized()

 {

 return(TRUE);

 }

 }

 $user = new User;

 $admin = new AuthorizedUser;

 //not authorized

 $user->deleteUser("Zeev");

 //authorized

 $admin->deleteUser("Zeev");

?>

Why do private class members emulate static binding? In order to

answer that question, you must recall the reasons for having private

members in the first place. That is, when does it make sense to use

them instead of protected members?

Use private members only when you don’t want to let deriving classes

change or specialize the parent class’s behavior. Such cases are fewer

than you might expect. Generally, a good object hierarchy should

allow most of the functionality to be specialized, improved, or altered

by deriving classes: It is one of the foundations of object-oriented

programming. Certain cases demand private methods or variables,

such as when you’re certain you don’t want to allow deriving classes

to alter a particular aspect of the class.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

6.10 Abstract Methods and Abstract Classes

Object-oriented programs are built around class hierarchies. In a

single inheritance language such as PHP, class hierarchies are trees. A

root class has one or more classes that descend from it, with one or

more classes derived from each of them. Of course, there may be

multiple root classes, which implement different families of classes.

In a well-designed hierarchy, each root class will expose a useful

interface, which can be used by application code. If our application

code is designed to work with a root class, chances are it will also be

able to work with any specialized derivative of that class.

Abstract methods are methods that behave like placeholders for

regular methods in derived classes and�unlike regular class

methods�do not contain any code. The existence of one or more

abstract method in a class turns the class into an abstract class. You

may not instantiate abstract classes. You must extend them and

instantiate the child class. You can also think of an abstract class as a

template for derived classes.

If you override all of the abstract methods in it, the child class

becomes an ordinary class that matches the expectations defined by

the abstract class. If you define a subset of methods, the child class

remains abstract. If a class contains any abstract methods, you must

declare the class itself abstract by adding the abstract keyword

before the class keyword.

The syntax for declaring abstract methods differs from that of

declaring regular methods. In place of the function body, surrounded

by curly braces, abstract methods simply have a semicolon.

In Listing 6.13, we define class Shape to contain the getArea

method. However, since it is not possible to determine the area of

shape without knowing its type, we declare the getArea method to

be abstract. You cannot instantiate a Shape object, but you can

extend it or use it in an instanceof expression, as shown in Listing

6.13.

If you create a class with abstract methods only, you define an

interface. To clarify this situation, PHP includes the interface and

implements keywords. You may use interface in place of abstract

class and implements in place of extends to show that your class

defines or uses an interface. For example, you might write class

myClass implements myInterface. Use of either idiom is left to

personal preference.

Listing 6.13 Abstract classes

<?php

 //abstract root class

 abstract class Shape

 {

 abstract function getArea();

 }

 //abstract child class

 abstract class Polygon extends Shape

 {

 abstract function getNumberOfSides();

 }

 //concrete class

 class Triangle extends Polygon

 {

 public $base;

 public $height;

 public function getArea()

 {

 return(($this->base * $this->height)/2);

 }

 public function getNumberOfSides()

 {

 return(3);

 }

 }

 //concrete class

 class Rectangle extends Polygon

 {

 public $width;

 public $height;

 public function getArea()

 {

 return($this->width * $this->height);

 }

 public function getNumberOfSides()

 {

 return(4);

 }

 }

 //concrete class

 class Circle extends Shape

 {

 public $radius;

 public function getArea()

 {

 return(pi() * $this->radius * $this->radius);

 }

 }

 //concrete root class

 class Color

 {

 public $name;

 }

 $myCollection = array();

 //make a rectangle

 $r = new Rectangle;

 $r->width = 5;

 $r->height = 7;

 $myCollection[] = $r;

 unset($r);

 //make a triangle

 $t = new Triangle;

 $t->base = 4;

 $t->height = 5;

 $myCollection[] = $t;

 unset($t);

 //make a circle

 $c = new Circle;

 $c->radius = 3;

 $myCollection[] = $c;

 unset($c);

 //make a color

 $c = new Color;

 $c->name = "blue";

 $myCollection[] = $c;

 unset($c);

 foreach($myCollection as $s)

 {

 if($s instanceof Shape)

 {

 print("Area: " . $s->getArea() .

 "
\n");

 }

 if($s instanceof Polygon)

 {

 print("Sides: " .

 $s->getNumberOfSides() .

 "
\n");

 }

 if($s instanceof Color)

 {

 print("Color: $s->name
\n");

 }

 print("
\n");

 }

?>

6.11 User-Level Overloading

PHP 4 introduced the ability for module developers to overload the

object-oriented syntax and create mappings into external object

models, such as Java or COM. PHP 5 brings the power of object-

oriented overloading syntax to PHP developers, allowing them to

create custom behaviors for accessing properties and invoking

methods.

User-level overloading is done by defining one or more of the

following special methods: __get, __set, and __call. PHP calls these

methods when the Zend Engine attempts to access a member and

does not find it in the current scope.

In Listing 6.14 __get and __set relay all property accesses to the

properties array. If necessary, you can implement any kind of

filtering you wish. For example, the script could disallow setting of

properties that begin with a certain prefix or that contain specific

types of values.

The __call method illustrates how you can capture calls to undefined

methods. The callback receives the method name as well as an array

with the list of arguments that the method received. PHP passes the

return value of __call on as the return value of the original call to

the undefined method.

Listing 6.14 User-level overloading

<?php

 class Overloader

 {

 private $properties = array();

 function __get($property_name)

 {

 if(isset($this->properties[$property_name]))

 {

 return($this->properties[$property_name]);

 }

 else

 {

 return(NULL);

 }

 }

 function __set($property_name, $value)

 {

 $this->properties[$property_name] = $value;

 }

 function __call($function_name, $args)

 {

 print("Invoking $function_name()
\n");

 print("Arguments: ");

 print_r($args);

 return(TRUE);

 }

 }

 $o = new Overloader();

 //invoke __set()

 $o->dynaProp = "Dynamic Content";

 //invoke __get()

 print($o->dynaProp . "
\n");

 //invoke __call()

 $o->dynaMethod("Leon", "Zeev");

?>

6.12 Class Autoloading

When you attempt to use a class you haven’t defined, PHP generates

a fatal error, of course. The obvious solution to this situation involves

adding a class definition, probably by issuing an include statement.

After all, you should know which classes a script uses. However, PHP

offers class autoloading, which may save programming time. When

you attempt to use a class PHP does not recognize, it looks for a

global function named __autoload. If it exists, PHP calls it with a

single parameter, the name of the class. Inside the function, you may

take the necessary steps to create the class.

Listing 6.15 demonstrates the use of __autoload. It uses a simple

scheme that assumes files in the current directory match each class.

When the script attempts to instantiate User, PHP executes

__autoload. The script assumes class_User.php contains the class

definition. Despite the letter case used to invoke a class, PHP returns

the name in lowercase.

Listing 6.15 Class autoloading

<?php

 //define autoload function

 function __autoload($class)

 {

 include("class_" . ucfirst($class) . ".php");

 }

 //use a class that must be autoloaded

 $u = new User;

 $u->name = "Leon";

 $u->printName();

?>

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

6.13 Object Serialization

The serialize function, discussed in Chapter 15, converts variables,

including objects, into strings. You can store the serialized variable in

a file or send it across the network. Afterwards, unserialize can

convert the string back into the appropriate value. As long as you

define a class prior to unserializing an object of that class, PHP can

successfully restore the object’s properties and methods. In some

situations you may need to prepare an object prior to serialization

and likewise perform some procedure immediately after

unserialization. For these purposes, PHP looks for the __sleep and

__wakeup methods.

When serializing an object, PHP calls the __sleep method if it exists.

After unserializing an object, PHP calls the __wakeup method. Neither

method accepts arguments. The __sleep method must return an

array of properties to include in the serialization. PHP discards other

property values. Without a __sleep method, PHP preserves all

properties.

Listing 6.16 demonstrates serialization of an object with __sleep and

__wakeup methods. The id property is a temporary value not meant

to remain with a stored object. The __sleep method ensures PHP

does not include it in the serialized object. When unserializing a User

object, the __wakeup method creates a new value for id. This

example may be contrived for the sake of being self-contained. In

practice, you may find objects that contain resources, such as image

or stream handles, require these methods.

Listing 6.16 Object serialization

<?php

 class User

 {

 public $name;

 public $id;

 function __construct()

 {

 //give user a unique ID

 $this->id = uniqid();

 }

 function __sleep()

 {

 //do not serialize this->id

 return(array("name"));

 }

 function __wakeup()

 {

 //give user a unique ID

 $this->id = uniqid();

 }

 }

 //create object

 $u = new User;

 $u->name = "Leon";

 //serialize it

 $s = serialize($u);

 //unserialize it

 $u2 = unserialize($s);

 //$u and $u2 have different IDs

 print_r($u);

 print_r($u2);

?>

6.14 Namespaces

Naming variables, functions, and classes is difficult. Aside from the artistic

process of finding a name that communicates purpose, you must worry

whether the name is used anywhere else. Within the context of a short

script, this second problem is elementary. When you consider reusing your

code, any future project must avoid using your names. Generally, reusable

code finds itself inside functions or classes, which takes care of many

variable name conflicts. But functions and classes may find themselves in

conflict with duplicate names. You can try to avoid this situation by adding

prefixes to the names of all classes you create, or you can use a namespace

statement.

The namespace statement gives a name to a block of code. From outside the

block, scripts must refer to the parts inside with the name of the namespace

using the :: operator. This is the same way you refer to static members of

classes. Inside the namespace the code does not specify the namespace; it’s

the default. This method offers an advantage over simply prefixing names.

Your code may become more compact and more readable.

You may wonder whether you can create a hierarchy of namespaces. You

cannot. However, PHP allows you to include a colon in the name of a

namespace. You may recall that variables, functions, and classes may not

include a colon in their names. Namespaces allow colons as long as they are

not the first character, the last character, or next to another colon. Colons in

namespace names do not imply any meaning to PHP, but if you use them to

divide the names of your namespaces into logical partitions, they may

suggest parent-child relationships to anyone who reads your code.

You may not include anything other than function, class, or constant

definitions inside a namespace statement. This may prevent you from using

them to retrofit older function libraries if they used global variables.

Namespaces fit best with the object-oriented paradigm. Constants within

namespaces follow the same syntax used for class constants. You may not

create constants with the define function inside a namespace block.

Listing 6.17 demonstrates the use of a namespace to hold a simple class.

Listing 6.17 Using a namespace

<?php

 namespace core_php:utility

 {

 class textEngine

 {

 public function uppercase($text)

 {

 return(strtoupper($text));

 }

 }

 //make non-OO interface

 function uppercase($text)

 {

 $e = new textEngine;

 return($e->uppercase($text));

 }

 }

 //test class in namespace

 $e = new core_php:utility::textEngine;

 print($e->uppercase("from object") . "
");

 //test function in namespace

 print(core_php:utility::uppercase("from function") . "
");

 //bring class into global namespace

 import class textEngine from core_php:utility;

 $e2 = new textEngine;

?>

The import statement brings part of a namespace into the global

namespace. To import a single member of the namespace, specify the type

with constant, function, or class followed by the name of the member. If

you wish to import all members of a particular type, you may use * in place

of the name. If you wish to import all members of all types, use * by itself.

Following the members, specify the namespace preceded by the from

keyword. All together, you might write something like import * from

myNamespace or import class textEngine from core_php:utility, as

shown in Listing 6.17.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

6.15 The Evolution of the Zend Engine

For the rest of this chapter, Zeev discusses the object model introduced in Zend

Engine 2, especially with regard to how it differs from earlier object models in

PHP.

When we implemented PHP 3, PHP/FI’s replacement, back in the summer of

1997, we had no plans for object-oriented capabilities. It got pretty far without

having any notion of classes or objects. It was to be a purely structured

language. However, class support was added to the PHP 3 alpha source tree on

the night of August 27. Adding a feature to the language at that time required

little discussion because few people had discovered PHP. Starting August 1997,

PHP made the first step toward becoming an object-oriented�friendly

language.

Indeed, it was just the first step. Since relatively little thought contributed to

the design, object support wasn’t very powerful or impressive. Objects were

nothing beyond a cool way of accessing arrays. Instead of having to use

$foo[“bar”], you could use the nicer looking $foo->bar. The object-oriented

approach’s main advantage was simply the ability to store functionality in the

form of member functions, or methods. Listing 6.18 demonstrates a typical

block of code from that era. However, this isn’t significantly different from

Listing 6.19.

Listing 6.18 PHP 3 object-oriented programming

<?php

 class Example

 {

 var $value = "some value";

 function PrintValue()

 {

 print $this->value;

 }

 }

 $obj = new Example();

 $obj->PrintValue();

?>

Listing 6.19 PHP 3 structural programming

<?php

 function PrintValue($arr)

 {

 print $arr["value"];

 }

 function CreateExample()

 {

 $arr["value"] = "some value";

 $arr["PrintValue"] = "PrintValue";

 return $arr;

 }

 $arr = CreateExample();

 //Use PHP's indirect reference

 $arr["PrintValue"]($arr);

?>

We did save a couple of lines of code in the class version, and we did have to

explicitly pass arr to our function (the this equivalent), but considering PHP 3

didn’t offer programmers any other serious differences between these two

options, one could still consider the object model as syntactic sugar for

accessing arrays.

People who wanted to use PHP for object-oriented development, especially

those using design patterns, quickly found themselves against a brick wall.

Luckily, there weren’t too many of those people during the PHP 3 era.

PHP 4 improved the situation. The new version introduced the notion of

references, which allowed multiple symbols in PHP’s symbol space to actually

refer to the same place in memory. This means that you could have two or

more names for the same variable, as shown in Listing 6.20.

Listing 6.20 PHP 4 references

<?php

 $a = 5;

 //$b points to the same place in memory as $a

 $b = &$a;

 //we're changing $b, since $a is pointing to

 //the same place - it changes too

 $b = 7;

 //prints 7

 print $a;

?>

Since building networks of objects that point to each other is a fundamental

building block of almost all object-oriented design patterns, this new addition

to PHP’s arsenal was quite significant. However, things were far from being

idyllic. While references allowed for building of more powerful object-oriented

applications, the fact that PHP treated objects like any other data type brought

much agony to those brave enough to try it. As any object-oriented PHP 4

programmer will tell you, such applications suffered from the WTMA (Way Too

Many Ampersands) syndrome. To see how annoying things could get if you

were trying to build real-world object-oriented applications, consider Listing

6.21.

Listing 6.21 Problems with objects in PHP 4

1 class MyFoo {

2 function MyFoo()

3 {

4 $this->me = &$this;

5 $this->value = 5;

6 }

7

8 function setValue($val)

9 {

10 $this->value = $val;

11 }

12

13 function getValue()

14 {

15 return $this->value;

16 }

17

18 function getValueFromMe()

19 {

20 return $this->me->value;

21 }

22 }

23

24 function CreateObject($class_type)

25 {

26 switch ($class_type) {

27 case "foo":

28 $obj = new MyFoo();

29 break;

30 case "bar":

31 $obj = new MyBar();

32 break;

33 }

34 return $obj;

35 }

36

37 $global_obj = CreateObject ("foo");

38 $global_obj->setValue(7);

39

40 print "Value is " . $global_obj->getValue() . "\n";

41 print "Value is " . $global_obj->getValueFromMe() . "\n";

Let’s go through it step by step. We have a class, MyFoo. In the constructor, we

keep a reference to ourselves in this->me, and we also set this->value to 5.

We also have three other member functions: one that sets the value of this-

>value, another one that returns the value of this->value, and another one

that returns the value of this->value->me. But wait a minute�aren’t $this

and $this->me the same thing? Won’t MyFoo::getValue() and

MyFoo::getValueFromMe() always return the same thing?

Let’s see. First off, we call CreateObject(“foo”), which returns an object of

type MyFoo. Then, we call MyFoo::setValue(7). Finally, we call

MyFoo::getValue() and MyFoo::getValueFromMe(), expecting to get the

same result�7.

Of course, if we were to receive 7 in both cases, this would have been one of

the most pointless examples in the history of books, so I’m sure you guessed it

by now�if there’s one result that we will definitely not get, it’s two 7s.

But what result will we get, and more importantly, why?

The result we will get is 7 and 5 respectively. As to why�there are actually

three good reasons.

First, let’s consider the constructor. While we’re inside the constructor, we’re

establishing a reference between this and this->me. In other words, this and

this->me are virtually the same thing. But the key element in the sentence

was while we’re inside the constructor. As soon as the constructor terminates,

PHP has the job of assigning the newly created object (the result of new MyFoo,

line 28) into obj. Since objects are not special and are treated like any other

data type in PHP, assigning X to Y means making Y a copy of X. In other words,

obj becomes a copy of new MyFoo, that is, a copy of the this object that we

had inside the constructor. What about obj->me? Since it is a reference, it

stays intact during the copy process and goes on pointing to the same object

as it did before�this that we had inside the constructor. Voila�obj and obj-

>me are no longer the same thing: Changing one will not affect the other.

That was reason number one�and we promised three. Fortunately, you will

find the other reasons very similar to the first one. Let’s say that miraculously

we managed to overcome the problem in the instantiation of the object (line

28). Still, as soon as we assign the return value of CreateObject into

global_object, we would bump into the same problem�global_object

would become a replica of the return value, and again, global_object and

global_object->me wouldn’t have been the same (reason number two).

But, as a matter of fact, we wouldn’t have gone that far, even�we would have

broken the reference as soon as we returned from CreateObject as return

$obj (line 34, reason number three).

So, how can we fix all this? There are two options. Option one is to add

ampersands all over the place, as I have in Listing 6.22 (lines 24, 28, 31, and

37). Option two, if you’re lucky enough to be using PHP 5, is to thank your

good fortune and forget about all this, as PHP 5 takes care of it for you. Still, if

it interests you to understand how PHP 5 is taking care of this, read on.

Listing 6.22 WTMA syndrome in PHP 4

1 class MyFoo {

2 function MyFoo()

3 {

4 $this->me = &$this;

5 $this->value = 2;

6 }

7

8 function setValue($val)

9 {

10 $this->value = $val;

11 }

12

13 function getValue()

14 {

15 return $this->value;

16 }

17

18 function getValueFromMe()

19 {

20 return $this->me->value;

21 }

22 };

23

24 function &CreateObject($class_type)

25 {

26 switch ($class_type) {

27 case "foo":

28 $obj =& new MyFoo();

29 break;

30 case "bar":

31 $obj =& new MyBar();

32 break;

33 }

34 return $obj;

35 }

36

37 $global_obj =& CreateObject ("foo");

38 $global_obj->setValue(7);

39

40 print "Value is " . $global_obj->getValue() . "\n";

41 print "Value is " . $global_obj->getValueFromMe() . "\n";

PHP 5 is the first version of PHP to treat objects as different beings, separate

from all other types of values. From an end user’s perspective, this manifests

itself in a very clear way�objects in PHP 5 are always passed by reference,

even in situations where other types of values (such as integers, strings, or

arrays) are passed by value. Most notably, there is no need to use ampersands

at any point in order to pass your objects by reference�they do that out of the

box.

If you read the example, the motivation for making objects behave that way

should be obvious. Object-oriented programming makes extensive use of

object networks and complex relationships between objects, which requires

using references. The transparent replication employed by previous versions of

PHP, while making good sense when dealing with strings or arrays, is

counterintuitive when we’re dealing with objects. Therefore, moving objects by

reference by default and creating copies only if explicitly requested makes

more sense than the other way around.

How is it done?

Before PHP 5, all value types in PHP were stored in a special structure called

zval (Zend VALue). These values could store simple values, such as numbers or

strings, and complicated values, such as arrays or objects. When sent to or

returned from functions, these values were duplicated, creating another

structure with identical contents in another place in memory.

With PHP 5, values are still stored in the same way inside zval structures,

except for objects. Objects are located elsewhere, in a place called Object

Store, and are each given identification numbers called handles. A zval, instead

of storing an object itself, stores a handle of the object. When replicating a zval

that holds an object, such as when we’re passing an object as a function

argument, we no longer copy any data. We simply retain the same object

handle and notify the object store that this particular object is now pointed to

by another zval. Because the object itself sits in the Object Store, any changes

we make to it will be reflected in all of the zval structures that hold its handle.

This additional level of indirection makes PHP objects behave as if they’re

always passed by reference, in a transparent and efficient manner.

We can now go back to our example in Listing 6.21, get rid of all of the

ampersands, and everything would still work fine. As a special bonus, there’s

no need even to use an ampersand when we’re keeping a reference to

ourselves inside the constructor on line 4.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

Chapter 7. I/O and Disk Access
Topics in This Chapter

HTTP Connections

Writing to the Browser

Output Buffering

Environment Variables

Getting Input from Forms

Passing Arrays in Forms

Cookies

File Uploads

Reading and Writing to Files

Sessions

The include and require Functions

Don’t Trust User Input

Ultimately, in order to be useful, a script must communicate with the

outside world. We’ve seen PHP scripts that send text to the browser

and get some information from functions like date. In this chapter we

examine all the ways a PHP script can exchange data without using

special interfaces. This includes reading from local disk drives,

connecting to remote machines on the Internet, and receiving form

input.

PHP is similar to other programming environments�with one notable

exception: User input generally comes from HTML forms. The fields in

forms are turned into variables. You can’t stop your script in the

middle and ask the user a question. This situation provides unique

challenges. Each time a script runs, it is devoid of context. It is not

aware of what has gone on before unless you make it so.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

7.1 HTTP Connections

It will be helpful to review how data travels between a browser and a

Web server. I will review it simply for purposes of illustration, but you

may wish to refer to detailed descriptions, such as those found on the

W3C Web site <http://www.w3.org/Protocols/>.

When you type a URL into the location box on your browser, the first

task of the browser is to break it up into important parts, the first of

which is the protocol, HTTP. Next is the name of the Web server to

which the browser makes a connection. The browser must identify

the document it wants from the Web server, and it does so using the

HTTP protocol. Before completing the request, the browser may

provide lines of extra information called headers. These headers let

the server know the brand of the browser, the type of documents the

browser can accept, and perhaps even the URL of a referring page.

The Web server places these headers into environment variables to

conform with the Common Gateway Interface (CGI). When a PHP

script begins, PHP converts the environment variables into PHP

variables. One of the most useful headers describes the brand and

version of the Web browser. This header is sent by the browser as

User-agent. The Web server creates an environment variable called

HTTP_USER_AGENT that holds the value of the header. PHP adds an

element to the_SERVER array with this same name. You can refer to it

with $_SERVER[‘HTTP_USER_AGENT’]. If you are using Apache, you

also have the option of using the getallheaders function. It returns

an array of all headers exchanged between the browser and the

server.

As a PHP script begins to execute, the HTTP exchange is in the stage

where some headers have been sent to the browser, but no content

has. This is a window of opportunity to send additional headers. You

can send headers that cause the browser to ask for authentication,

headers that request that the browser cache a page, or headers that

redirect the browser to another URL. These are just some of the

many HTTP headers you can send using the header function. Some

common tasks are described in the last section of this book.

PHP places outgoing headers in a list. At the first place where PHP

must send content, it dumps all the headers in the list. Once any

content is sent, the opportunity to send headers is lost. Content

includes any text outside of PHP tags, even if it’s just a linefeed. If

you try to send a header after content is sent, PHP generates an error

message. You can use the headers_sent function to test whether it’s

safe to add more headers to the stack or whether it’s too late.

Cookies, described below, use headers and therefore are limited in

the same way.

As a script runs and sends content, the Web server buffers the

output. There is a bit of overhead to every network action, so a small

amount of memory temporarily stores the information to be sent out

in batches. The Web server owns this buffer. PHP does not have

control of it. However, you may request that the buffer be

flushed�immediately sent to the browser�by using the flush

http://www.w3.org/Protocols/default.htm

function. This is most useful in long scripts. Both browsers and people

have limits to how long they wait for a response, so you can let them

know you’re making progress by flushing the output.

Two events can make a script halt unexpectedly: when the script runs

too long and when the user clicks the stop button. By default, PHP

limits scripts to a number of seconds specified in php.ini. This is

usually 30 seconds, but you can change it. Look for the

max_execution_time directive. But 30 seconds is a good setting. In

case you write a script that could run forever, you want PHP to stop

it. Otherwise, a few errant scripts could slow your server to a crawl.

For the same reason, you usually want to allow users to be able to

abort a page request.

There are times when you do want a script to run to completion, and

you can instruct PHP to ignore time limits and user aborts. The

set_time_limit function resets PHP’s timer. See Chapter 15 for a

complete description and example. I’ve written some scripts that run

on their own once a night, perhaps doing a lot of work. These scripts

I allow to run for an hour or more. Likewise, ignore_user_abort tells

PHP to continue even after the user clicks the stop button.

Instead of just letting a script run, you may wish it to halt but deal

with the reason it halted with special code. To do this, you must first

tell PHP to execute a special function whenever a script ends. This is

done with register_shutdown_function. This function will execute

regardless of why a script ended. It even executes when the script

ends normally. You can test for the reason with two functions:

connection_aborted and connection_timeout. Chapter 9 discusses

these functions.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

7.2 Writing to the Browser

Three functions in PHP will send text to the browser: echo, print,

and printf. Each does the same thing: They take values and print

them to the browser. The printf function allows you to specify the

format of the output rather than sending values as-is. I’ve used

print so far in my examples, mostly out of personal preference. I

don’t usually need the formatting that printf provides. Many older

PHP examples you will find on the Web use echo because it existed in

PHP/FI. All three functions are discussed in Chapter 8.

It is important to remember everything you write is in the context of

a Web browser. Unless you take measures to make it otherwise, your

output will be treated as HTML text. If you send text that is HTML

code, it will be decoded by the browser into its intended form. I’ve

been sending
 via print throughout the book so far, but Listing

7.1 is a more dramatic example of this concept.

Listing 7.1 Sending HTML with print

<?php

 print("You're using " .

 $_SERVER['HTTP_USER_AGENT'] .

 " to see this page.
\n");

?>

Of course, PHP sends anything outside its tags directly to the

browser. This is undoubtedly the fastest and least flexible way to send

content. You might wonder at this point when it’s appropriate to use

print and when you should place text outside PHP tags. There are

issues of efficiency and readability to worry about, but put them aside

for now. The final section of the book deals with this issue at length.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

7.3 Output Buffering

As stated, the Web server buffers content sent to the browser, and

you can request that the buffer be flushed. PHP also includes a

mechanism for buffering output you can control completely. Among

the output buffering functions described in Chapter 8 are ob_start,

ob_end_flush, and ob_end_clean.

When you call the ob_start function, PHP places anything you send

to the browser into a buffer. This includes text outside of PHP tags.

The Web server does not receive this content until you call the

ob_end_flush function. There are several powerful applications of

these functions. One is to avoid the problem associated with sending

headers. Because PHP sends all headers at once, before any content,

you have to take care when using the header function. This results in

a script design in which early parts of a script are declared a “no

output” zone, which can be annoying. If you use output buffering,

you can safely add headers to the stack where you wish and delay

sending content until the last line of your script.

Another application of these functions is in building HTML tables.

Imagine creating a table filled with data from a database. You first

print the opening tags for the table. You execute a query and loop

over the results being returned. If everything executes without error,

you print a closing table tag. If an error occurs within the loop, you

may have to abort, and the code that closes the table is never

reached. This is bad because of the behavior of Netscape Navigator:

It won’t display information inside an unclosed table. The solution is

to turn on output buffering before assembling the table. If assembly

completes successfully, you can flush the buffer. Otherwise, you can

use ob_end_clean, which throws away anything in the buffer.

7.4 Environment Variables

PHP also makes environment variables available. These are the

variables that are created when you start a new shell. Some are the

standard variables like PATH. Others are variables defined by the CGI.

Examples are REMOTE_ADDR and HTTP_USER_AGENT. PHP adds them all

to the _SERVER array for your convenience.

Similar to environment variables are the variables that PHP itself

creates for you. The first is GLOBALS, which is an associative array of

every variable available to the script. Exploring this array will reveal

all the environment variables as well as a few other variables. Similar

to GLOBALS are _GET, _POST, _COOKIE, _SERVER, and _REQUEST. As

their names suggest, they are associative arrays of the variables

created by the three methods the browser may use to send

information to the server. The _REQUEST array merges _GET, _POST,

and _COOKIE into one array.

The combination of Web server and operating system will define the

set of environment variables. You can always write a script to dump

the GLOBALS array to see which are available to you. Alternatively,

you can simply view the output of the phpinfo function.

7.5 Getting Input from Forms

Sending text to the browser is easy to understand. Getting input from

forms is a little tricky. HTML offers several ways to get information

from the user via forms. There are text fields, text areas, selection

lists, and radio buttons, among others. Each of these becomes a

string of text offered to the Web server when the user clicks the

submit button.

When someone clicks the submit button in a form, PHP turns each

form field into an element of the _REQUEST array. PHP creates them

as if you had written the PHP code yourself. This means that if you

put two form variables on a page with the same name, the second

one may overwrite the value of the first. This allows you to send

arrays in form fields, as discussed later in this chapter.

All form fields from the GET method also go into _GET, and all form

fields from the POST method go into _POST. In the case where a GET

variable and a POST variable share the same name, PHP uses the

variables_order directive to determine which to apply first. By

default, PHP fills the _REQUEST array with GET variables, then POST

variables, and finally cookies. For example, if a cookie and a POST

variable share the same name, the cookie value overwrites the value

in _REQUEST.

Listing 7.2 is an example of using variables created from form fields.

The script expects a variable named color. The first time this page is

viewed, color is empty, so the script sets it to be six Fs, the RGB

code for pure white. On subsequent calls to the page, the value of the

text box contains the background color of the page. Notice that the

script also prepopulates the input fields with color. This way, each

time you submit the form, it remembers what you entered. As an

aside, you should also take note of the technique used here, in which

a page calls itself.

Listing 7.2 Getting form input

<?php

 print("<html>\n");

 print("<head>\n");

 print("<title>Figure 7-2</title>\n");

 print("</head>\n");

 // if here for the first time

 // use white for bgcolor

 if(!isset($_REQUEST['color']))

 {

 $_REQUEST['color'] = "FFFFFF";

 }

 // open body with background color

 print("<body bgcolor=\"#{$_REQUEST['color']}\">\n");

 // start form, action is this page itself

 print("<form " .

 "action=\"{$_SERVER['PHP_SELF']}\" " .

 "method=\"post\">\n");

 // ask for a color

 print("HTML color: " .

 "<input type=\"text\" name=\"color\" " .

 "value=\"{$_REQUEST['color']}\">\n");

 // show submit button

 print("<input type=\"submit\" value=\"Try It\">\n");

 print("</form>\n");

 print("</body>\n");

 print("</html>\n");

?>

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

7.6 Passing Arrays in Forms

Though it may not be apparent, it is possible to pass arrays from a

form. To understand how, you must recall how form fields are turned

into PHP variables. Each field is read in order by PHP and turned into

an assignment statement. An URL such as

http://www.example.com/script.php?name=leon executes an

assignment like $name = “leon”. By default, PHP places these

assignments into a set of associative arrays.

PHP treats the name of the form field as the left side of an

assignment statement. This means that if other special characters

appear as part of the name of the field, PHP interprets them

accordingly. You can include square brackets to force the variable to

be an array. An empty pair of square brackets will add a value to an

array using consecutive integers. So, if you name multiple fields in a

form with the same name that ends in a pair of empty brackets, an

array will be constructed for you when the form is submitted. Listing

7.3 illustrates this method.

Listing 7.3 Passing an array via a form

<?php

 print("<html>\n");

 print("<head>\n");

 print("<title>Listing 7-3</title>\n");

 print("</head>\n");

 print("<body>\n");

 if(isset($_REQUEST['part']))

 {

 print("<h3>Last Burger</h3>\n");

 print("\n");

 foreach($_REQUEST['part'] as $part)

 {

 print("$part\n");

 }

 print("\n");

 }

 $option = array("mustard", "ketchup",

 "pickles", "onions", "lettuce", "tomato");

 print("<h3>Create a Burger</h3>\n");

 print("<form action=\"{$_SERVER['PHP_SELF']}\">\n");

 foreach($option as $o)

 {

 print("<input type=\"checkbox\" " .

 "name=\"part[]\" value=\"$o\">" .

http://www.example.com/script.php@name=leon

 "$o
\n");

 }

 print("<input type=\"submit\">\n");

 print("</form>\n");

 print("</body>\n");

 print("</html>\n");

?>

7.7 Cookies

Cookies are small strings of data created by a Web server but stored on the client. In

addition to having names and values, cookies have an expiration time. Some are set

to last for only a matter of minutes. Others persist for months. This allows sites to

recognize you without requiring a password when you return. To learn more about

cookies, you may wish to visit Netscape’s site

<http://developer.netscape.com/docs/manuals/communicator/jsguide4/cookies.htm>.

Using cookies with PHP is almost as easy as using form fields. Any cookies passed

from the browser to the server are converted automatically into entries in _COOKIE

and _REQUEST.

If you wish to send a cookie, you use the setcookie function, described in Chapter 8.

The Web server sends a cookie to the browser as a header. Just like other headers,

you must set cookies before sending any content. When you do set a cookie, the

browser may refuse to accept it. Many people turn off cookies, so you cannot count on

the cookie being present the next time a user requests a page. However, cookies have

become so common that it’s not unusual for sites to require cookies for certain

functionality�it’s a design decision.

Setting a cookie does not create a value in _COOKIE�not immediately. When setting a

cookie, you are asking the browser to store information that it will return when it next

requests a page. Subsequent page requests will cause the cookie to be created as a

variable for your use. If you write a script that requires the cookie variable always be

set, set it immediately after sending the cookie.

Cookies are a sensitive topic, although they are less so than in the past. Some people

view them as intrusive. You are asking someone to store information on their

computer, although each cookie is limited in size. My advice with cookies is to keep

them minimal. In most cases it is practical to use a single cookie for your entire site.

If you can identify that user with a unique ID, you can use that ID to look up

information you know about them, such as preferences. Keep in mind that each page

load causes the browser to send the cookie. Imagine an extreme case in which you

have created ten 1K cookies. That’s 10K of data the browser must send with each

page request.

http://developer.netscape.com/docs/manuals/communicator/jsguide4/cookies.htm
file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

7.8 File Uploads

A file upload is a special case of getting form input. Half of the task is

putting together the correct HTML. File uploads are specified in RFC

1867. They are supported by Netscape Navigator 2 and above as well

as by Internet Explorer 4 and above. Placing an input tag inside an

HTML form with the type attribute set to file causes a text box and a

button for browsing the local filesystem to appear on the Web page.

Browsers that do not support uploads will likely render this as a text

box, so it’s best to present uploading forms only to capable browsers.

The forms must use the post method to allow for uploads, and they

must also contain the enctype attribute with a value of

multipart/form-data. A hidden form variable, MAX_FILE_SIZE, must

precede the file input tag. Its value is the maximum file size in bytes to

be accepted.

When the form is submitted, PHP detects the file upload and places it

in a temporary directory on the server, such as /var/tmp. PHP creates

an entry in the _FILES array. As with other form fields, PHP uses the

name of the form field for the key of the entry in _FILES. The entry is

an array itself with the elements shown in Table 7.1. For example, you

can find the name of an uploaded file from a field named portrait with

$_FILE[‘portrait’][‘name’].

Table 7.1. File Upload Array Elements

Element Description

error An error code matching a constant from Table 7.2.

name The name of the file on the remote client.

size The size of the file in bytes.

type The MIME type of the uploaded file.

tmp_name The path in the local filesystem to the uploaded file.

Table 7.2. File Upload Error Codes

Error Code Description

UPLOAD_ERR_FORM_SIZE The file exceeds MAX_FILE_SIZE.

UPLOAD_ERR_INI_SIZE The file exceeds the upload_max_filesize

directive.

UPLOAD_ERR_NO_FILE The browser didn’t send a file.

Error Code Description

UPLOAD_ERR_OK The upload completed successfully.

UPLOAD_ERR_PARTIAL The browser did not complete the upload.

If you plan to use the file later, move the new file into a permanent

spot. If you do not, PHP will delete the file when it finishes executing

the current page request. Listing 7.4 accepts uploads and immediately

deletes them.

Listing 7.4 File upload

<html>

<head>

<title>Listing 7.4</title>

</head>

<body>

<?php

 //check for file upload

 if(isset($_FILES['upload_test']))

 {

 if($_FILES['upload_test']['error'] != UPLOAD_ERR_OK)

 {

 print("Upload unsuccessful!
\n");

 }

 else

 {

 //delete the file

 unlink($_FILES['upload_test']['tmp_name']);

 //show information about the file

 print("Local File: " .

 $_FILES['upload_test']['tmp_name'] .

 "
\n");

 print("Name: " .

 $_FILES['upload_test']['name'] .

 "
\n");

 print("Size: " .

 $_FILES['upload_test']['size'] .

 "
\n");

 print("Type: " .

 $_FILES['upload_test']['type'] .

 "
\n");

 print("<hr>\n");

 }

 }

?>

<form enctype="multipart/form-data"

 action="<?= $_SERVER['PHP_SELF'] ?>" method="post">

<input type="hidden" name="MAX_FILE_SIZE" value="1024000">

<input name="upload_test" type="file">

<input type="submit" value="test upload">

</form>

</body>

</html>

File uploads are limited in size by a directive in php.ini,

upload_max_filesize. It defaults to two megabytes. If a file exceeds

this limit, your script will execute as if no file were uploaded. A warning

will be generated as well.

7.9 Reading and Writing to Files

Communication with files follows the pattern of opening a stream to a

file, reading from or writing to it, and then closing the stream. When

you open a stream, you get a resource that refers to the open

stream. Each time you want to read from or write to the file, you use

this stream identifier. Internally, PHP uses this integer to refer to all

the necessary information for communicating with the file.

To open a file on the local file system, you use the fopen function. It

takes a name of a file and a string that defines the mode of

communication. This may be r for read-only or w for write-only,

among other modes. It is also possible to specify an Internet address

by starting the filename with http:// or ftp:// and following it with

a full path including a host name. The file functions are fully defined

in Chapter 9.

Two other commonly used functions create file streams. You may

open a pipe with the popen function, or you may open a socket

connection with the fsockopen function. If you have much experience

with UNIX, you will recognize pipes as temporary streams of data

between executing programs. A common Perl method for sending

mail is to open a pipe to sendmail, the program for sending mail

across the Internet. Because PHP has so many built-in functions, it is

rarely necessary to open pipes, but it’s nice to know it’s an option.

You can open a file stream that communicates through TCP/IP with

fsockopen. This function takes a hostname and a port and attempts

to establish a connection. It is described in Chapter 10 along with the

rest of the network-related functions.

Once you have opened a file stream, you can read or write to it using

commands like fgets and fputs. Listing 7.5 demonstrates their use.

Notice how the script uses a while loop to get each line from the

example file. It tests for the end of the file with the feof function.

When you are finished with a file, end of file or not, you call the

fclose function. PHP will clean up the temporary memory it sets

aside for tracking an open file.

Listing 7.5 Writing to and reading from file

<?php

 // open file for writing

 $filename = "/tmp/data.txt";

 if(!($myFile = fopen($filename, "w")))

 {

 print("Error: ");

 print("'$filename' could not be created\n");

 exit;

 }

 //write some lines to the file

 fputs($myFile, "Save this line for later\n");

 fputs($myFile, "Save this line too\n");

 //close the file

 fclose($myFile);

 // open file for reading

 if(!($myFile = fopen($filename, "r")))

 {

 print("Error:");

 print("'$filename' could not be read\n");

 exit;

 }

 while(!feof($myFile))

 {

 //read a line from the file

 $myLine = fgets($myFile, 255);

 print("$myLine
\n");

 }

 //close the file

 fclose($myFile);

?>

Keep in mind that PHP scripts execute as a specific user. Frequently,

this is the “nobody” user. This user probably won’t have permission to

create files in your Web directories. Take care with allowing your

scripts to write in any directory able to be served to remote users. In

the simple case where you are saving something like guest book

information, you will be allowing anyone to view the entire file. A

more serious case occurs when those data files are executed by PHP,

which allows remote users to write PHP that could harm your system

or steal data. The solution is to place these files outside the Web

document tree.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

7.10 Sessions

If you build a Web application, it’s likely you will have information to associate

with each user. You may wish to remember the user’s name from page to

page. You may be collecting information on successive forms. You could

attempt to pass the growing body of information from page to page inside

hidden form fields, but this is impractical. An elegant solution is to use the

idea of a session. Each visitor is assigned a unique identifier with which you

reference stored information, perhaps in a file or in a database.

In the past, PHP developers were required to create their own code for

handling sessions, but Sascha Schumann and Andrei Zmievski added new

functions for session handling to PHP 4. The original system involved

registering global variables with the session handler. The preferred method

uses the _SESSION array. PHP saves this array in files on the server. When the

user requests another page, PHP restores the array.

The session identifier is a long series of numbers and letters sent to the user

as a cookie. It is possible that the user will reject the cookie, so PHP creates a

constant that allows you to send the session identifier in a URL. The constant

is SID and contains a full GET method declaration suitable for attaching to the

end of a URL.

Consider Listing 7.6, a simple script that tracks a user’s name and the number

of times the user has visited the page. To activate sessions, call the

session_start function. This sends the cookie to the browser, and therefore

it must be called before sending any content. In previous versions of PHP, you

had to call session_register for each global variable to be stored in the

session. Since PHP 4.1, the _SESSION array provides a better interface to

session data.

Listing 7.6 uses two session variables, Name and Count. The former tracks the

user’s name, and the latter counts the number of times the user views the

page. Once placed in _SESSION, these values remain in the session until the

session expires or you explicitly unset them. Before starting the HTML

document, the example script sets Name with input from a form submission if

present, and then it increments the page counter.

Listing 7.6 Using sessions

<?php

 //start session

 session_start();

 //Set variable based on form input

 if(isset($_REQUEST['inputName']))

 {

 $_SESSION['Name'] = $_REQUEST['inputName'];

 }

 //Increment counter with each page load

 if(isset($_SESSION['Count']))

 {

 $_SESSION['Count']++;

 }

 else

 {

 //start with count of 1

 $_SESSION['Count'] = 1;

 }

?>

<html>

<head>

<title>Listing 7-6</title>

</head>

<body>

<?php

 //print diagnostic info

 print("Diagnostic Information
\n");

 print("Session Name: " . session_name() . "
\n");

 print("Session ID: " . session_id() . "
\n");

 print("Session Module Name: " . session_module_name() .

 "
\n");

 print("Session Save Path: " . session_save_path() . "
\n");

 print("Encoded Session:" . session_encode() . "
\n");

 print("<hr>\n");

 if(isset($_SESSION['Name']))

 {

 print("Hello, {$_SESSION['Name']}!
\n");

 }

 print("You have viewed this page " .

 $_SESSION['Count'] . " times!
\n");

 //show form for getting name

 print("<form " .

 "action=\"{$_SERVER['PHP_SELF']}\" " .

 "method=\"post\">" .

 "<input type=\"text\" name=\"inputName\" " .

 "value=\"\">
\n" .

 "<input type=\"submit\" value=\"change name\">
\n" .

 "</form>");

 //use a link to reload this page

 print("reload
\n");

?>

</body>

</html>

The first bit of content the page provides is diagnostic information about the

session. The session name is set inside php.ini along with several other

session parameters. It is used to name the cookie holding the session

identifier. The identifier itself is a long string of letters and numbers, randomly

generated. By default, PHP stores sessions in /tmp using a built-in handler

called files. This directory isn’t standard on Windows, and if it is not

present, sessions will not work correctly.

You have the option of creating your own handler in PHP code using the

session_set_save_handler function. Chapter 8 contains an example of a

session save handler. PHP encodes session data using serialization, a method

for compacting variables into a form suitable for storing as text strings. If you

examine the files saved in /tmp, you will find they match the strings returned

by session_encode.

As stated earlier, PHP sends session identifiers with cookies, but a browser

may refuse them. PHP can detect when a browser does not accept cookies,

and in this situation it modifies all forms and links to include the session

identifier. It only modifies relative URLs to prevent sending session identifiers

to another site. As a backup, you can use the SID constant. It will contain a

string consisting of the session name, an equal sign, and the session

identifier. This is suitable for placing in a URL. If the browser returns a session

cookie to the script, the SID constant will be empty.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

7.11 The include and require Functions

The include and require functions take the path to a file. The file is

parsed as if it were a standalone PHP script. This is similar to the

include directive in C and the require directive in Perl. There is a

subtle difference between the two functions. When the require

function is processed, it is replaced with the file it points to. The

include function acts more like a function call.

The difference is most dramatic inside a loop. Imagine having three

files you wanted to execute one after the other. You could put an

include inside a for loop, and if the files were named something like

include1.php, include2.php, and include3.php, you would have no

problem. You could just build the name based on a counter variable.

If you used require, however, you would execute the first file three

times. That’s because on the first time through the loop, the call to

require would be replaced with the contents of the file. As I said, the

difference is subtle but can be very dramatic.

Listing 7.7 and Listing 7.8 show one possible use of the include

function. Here we revisit an example from the chapter on arrays. I’ve

taken the definition of the array from the main file and put it into its

own file. All the code that matches ways to refer to months with a

preferred output form is not necessarily interesting to the main script.

It is enough to know that we’ve included the translation array. This

makes the script in Listing 7.8 easier to understand.

Listing 7.7 Included file

<?php

 /*

 ** Build array for referencing months

 */

 $monthName = array(

 1=>"January", "February", "March",

 "April", "May", "June",

 "July", "August", "September",

 "October", "November", "December",

 "Jan"=>"January", "Feb"=>"February",

 "Mar"=>"March", "Apr"=>"April",

 "May"=>"May", "Jun"=>"June",

 "Jul"=>"July", "Aug"=>"August",

 "Sep"=>"September", "Oct"=>"October",

 "Nov"=>"November", "Dec"=>"December",

 "January"=>"January", "February"=>"February",

 "March"=>"March", "April"=>"April",

 "May"=>"May", "June"=>"June",

 "July"=>"July", "August"=>"August",

 "September"=>"September", "October"=>"October",

 "November"=>"November", "December"=>"December"

);

?>

Listing 7.8 Including a file

<?php

 /*

 ** Get monthName array

 */

 include("7-7.php");

 print("Month 5 is " . $monthName[5] . "
\n");

 print("Month Aug is " . $monthName["Aug"] . "
\n");

 print("Month June is " . $monthName["June"] . "
\n");

?>

This strategy of modularization will enhance the readability of your

code. It gives the reader a high-level view. If more detail is needed, it

takes a few clicks to open the included file. But more than enhancing

readability, coding in this way tends to help you write reusable code.

Today you may use the translation array for a catalog request form,

but in a week you may need it for displaying data from a legacy

database. Instead of duplicating the array definition, you can simply

include it.

Chapter 27 discusses modularization with include in depth.

7.12 Don’t Trust User Input

The examples in this chapter take a naïve approach to user input.

They expect users to send information to the scripts only though the

HTML forms. They also assume users won’t submit data outside

expected values. Some values may be harmless. Giving a word where

the script expects a number will simply result in zero. Some values

may disturb the user interface. For example, a long string without

any spaces may stretch an HTML page to a width that exceeds the

viewable area. Randal Schwartz coined the purple dinosaur technique

that involves submitting an HTML image tag where an application

expects plain text. Some values may actually be harmful, such as

shell commands smuggled into text fields.

Malicious users are not limited to using the HTML interface to your

forms. They can submit their own values to the Web server directly.

They can edit the value in the location box or modify your forms.

They can even write program to submit the data they wish to send.

You must account for these situations if you wish to protect your

server.

One precaution you can take involves massaging user input to fit size

and type. If your script expects a numeric ID, use a casting operator.

If the script expects text that shouldn’t exceed a certain length, use

the substr function discussed in Chapter 12.

Be aware of the special meaning of any text provided by users. Angle

brackets surround HTML tags. If you pass user input out of the

browser unchanged, it may contain HTML that changes the way your

application behaves. User input can even include JavaScript or links

to other sites. This technique is generally called cross-site scripting. If

you don’t expect HTML in user input, pass it through htmlentities

before printing it. Likewise, some characters have special meaning to

command shells. Never pass unchanged user input to a call to

system, exec, or similar functions. The escapeshellcmd function

does a good job of adding backslashes to special characters.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

Part II: Functional Reference
The chapters in this section of the book, Chapters 8 through 14,

are a functional reference. They describe how each PHP function

works: what arguments are expected, what value is returned,

and how they ought to be used. The functions are grouped

generally by what they do.

Chapter 8 is concerned with communication with the browser. In

addition to printing text, this chapter covers pregenerated

variables and HTTP headers.

Chapter 9 discusses interaction with the operating system,

including the local filesystem. There are functions for running

other programs, functions for reading and writing files, and a

collection of functions to help you debug your scripts.

Chapter 10 describes networking functions. There are functions

for generalized network I/O and specialized groups of functions

for FTP, HTTP and SNMP transfers.

Chapter 11 is all about data structures. There are functions for

handling arrays, objects, and your own functions.

Chapter 12 is concerned with transforming strings. This includes

cutting strings into pieces, making hash keys, and executing

regular expressions.

Chapter 13 is concerned with mathematics. Aside from the

standard mathematical functions you expect, PHP offers some

unique features for handling arbitrarily large or small numbers.

Chapter 14 describes time and date functions, including support

of alternative calendars.

Chapter 15 discusses configuration of PHP. It lists configuration

directives and the functions used to manipulate them.

Chapter 16 is a chapter on graphics functions. The GD library

allows you to create and manipulate images on the fly.

Chapter 17 describes the most popular database extensions.

This includes MySQL and PostgreSQL.

Chapter 18 is concerned with object layers: COM, CORBA, and

Java.

Chapter 19 contains miscellaneous functions, most of which

interface with specialized libraries, such as functions for

communicating with IMAP and mnoGoSearch servers.

Chapter 20 discusses XML functions.

Throughout this section I’ve used a standard format for showing

how a function works. Each description begins with a prototype

for the function. This tells you what type of data the function

returns and what type of data is expected to be passed. When a

function returns nothing, it isn’t preceded with a datatype.

Likewise, if a function takes no arguments, the parentheses

following the function’s name are empty.

Following the prototype is a description of the function. If

arguments are optional, it’s noted. If an argument needs to be

passed by reference, it is noted here. If the function is related

to another function, it is referred to here as well.

For most functions, after the description, an example appears.

It gives you an idea of how the function might work in a real

script. In many cases I’ve come up with pieces of code that

could be dropped into your own script unaltered. Occasionally,

I’ll point you to another example in the same section where I’ve

grouped several functions in one clear example. Most of the

database functions, for example, make little sense outside the

context of a complete script.

 • Chapter 8 Browser I/O

 • Chapter 9 Operating System

 • Chapter 10 Network I/O

 • Chapter 11 Data

 • Chapter 12 Encoding and Decoding

 • Chapter 13 Math

 • Chapter 14 Time and Date

 • Chapter 15 Configuration

 • Chapter 16 Images and Graphics>

 • Chapter 17 Database

 • Chapter 18 Object Layers

 • Chapter 19 Miscellaneous

 • Chapter 20 XML

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

Chapter 8. Browser I/O
Topics in This Chapter

Pregenerated Variables

Pregenerated Constants

Sending Text to the Browser

Output Buffering

Session Handling

HTTP Headers

If you are experienced in traditional application development, you

may be challenged by the unique characteristics of a stateless

operating environment. Your script can’t sit in a loop and get input

from the user until the quit button is clicked. Although there are ways

to force the preservation of state�that is, a collection of variables for

each user�I encourage you to work within PHP’s world. You may

come to find what at first were limitations are refreshing

opportunities.

8.1 Pregenerated Variables

Before executing a script, PHP creates a set of variables available in a

superglobal namespace. They are available inside functions and

classes without any extra declaration.

_COOKIE

The _COOKIE variable is an array of cookies sent from the browser to

the server. The keys in the array are names of cookies.

_ENV

The _ENV variable is an array of environment variables that existed

when the script began. The keys in the array are the names of the

environment variables.

_FILES

The _FILES array (Table 8.1) contains information about uploaded

files. The keys to the array are the names of the form variables. Each

value is an array of information about each file. See Chapter 7 for a

discussion of file uploads.

Table 8.1. Elements of _FILES Array

Element Description

error The error message, if any, associated with the uploaded

file.

name The name of the uploaded file as supplied by the uploading

browser.

size The size in bytes of the uploaded file.

tmp_nameThe path in the local file system to the uploaded file.

type The MIME type of the uploaded file, provided by the

browser.

_GET

The _GET array contains values for all fields passed using the GET

method. Keys in this array are the names of the variables passed in

the request.

GLOBALS

The GLOBALS array contains every variable in the global scope.

php_errormsg

This variable holds a string describing the last error if track_errors

is turned on. It’s overwritten with each error.

_POST

The _POST array contains values for all fields passed using the POST

method. Keys in this array are the names of the variables passed in

the request.

_REQUEST

The _REQUEST array combines the contents of _GET, _POST, _COOKIES,

and _FILES. In the case of variables with identical names, PHP

overwrites entries according to the variables_order directive in

php.ini.

_SERVER

The _SERVER array contains information describing the server and its

environment. The following list of elements may appear in the

_SERVER array, depending on the Web server or if the script is run

from a shell.

argc

If run from the command line, PHP will place an integer in this

variable representing the number of arguments passed.

argv

If run from the command line, PHP will set this variable with an array.

Each element of the array represents one argument passed. When

running within a Web server, PHP places the query string in this

variable.

DOCUMENT_ROOT

This value contains the path to document root. A typical value for

Apache is /usr/local/apache/htdocs.

GATEWAY_INTERFACE

This value describes the version of the Common Gateway Interface

(CGI) used by the Web server.

HTTP_ACCEPT

This value mirrors the Accept header sent by the Web server. It is a

comma-delimited list of MIME types.

HTTP_ACCEPT_CHARSET

This value mirrors the Accept-Charset header sent by the Web server.

HTTP_ACCEPT_ENCODING

This value mirrors the Accept-Encoding header sent by the Web

server.

HTTP_ACCEPT_LANGUAGE

This value mirrors the Accept-Language header sent by the Web

server.

HTTP_CONNECTION

This value mirrors the Connection header sent by the Web server.

HTTP_HOST

This value mirrors the Host header sent by the Web server.

HTTP_REFERER

This value mirrors the Referer header sent by the browser.

HTTP_USER_AGENT

This value mirrors the User-Agent header sent by the browser.

PATH_TRANSLATED

This value is the path to the requested PHP script.

PHP_AUTH_PW

This value is the password sent by the browser.

PHP_AUTH_TYPE

This value describes the authentication type.

PHP_AUTH_USER

This value is the user name sent by the browser.

PHP_SELF

This value is the path to the requested script relative to the document

root.

QUERY_STRING

This value is the complete query string.

REMOTE_ADDR

This value is the IP address of the browser.

REMOTE_PORT

This value is the port on the browser’s machine used for receiving

data from the server.

REQUEST_METHOD

This value describes the method used in the request by the browser.

It may contain GET, HEAD, POST, or PUT.

REQUEST_URI

This value is the Universal Resource Identifier (URI) requested by the

browser. Of the information that appears in a browser’s location box,

it excludes only the transport protocol and server name.

SCRIPT_FILENAME

This value is the path in the server’s local filesystem to the requested

script.

SCRIPT_NAME

This value is the external path to the requested script.

SERVER_ADMIN

This value is the email address of the Web server’s administrator.

SERVER_NAME

This value is the domain name of the server.

SERVER_PORT

This value is the port on which the server listens for requests.

SERVER_PROTOCOL

This value contains a description of the version of HTTP used by the

server.

SERVER_SIGNATURE

This value is a description of the server.

SERVER_SOFTWARE

This value describes the Web server software.

_SESSION

The _SESSION array contains variables placed in PHP’s built-in

sessions.

8.2 Pregenerated Constants

DEFAULT_INCLUDE_PATH

This constant contains the paths used by include, include_once,

require, and require_once.

__CLASS__

This constant returns the name of the class in which the executing

code is. It is an empty string when used outside a class.

E_ALL

This constant represents error messages of all levels.

E_COMPILE_ERROR

This constant represents an error encountered when the Zend Engine

attempts to compile the page.

E_COMPILE_WARNING

This constant represents a problem encountered by the Zend Engine

that doesn’t halt compilation.

E_CORE_ERROR

This constant represents an error generated by PHP’s core.

E_CORE_WARNING

This constant represents a warning generated by PHP’s core.

E_ERROR

This constant represents an error encountered by a PHP function that

halts execution.

E_NOTICE

This constant represents a possible error condition reported by a

function.

E_PARSE

This constant represents an error generated by PHP’s parser.

E_USER_ERROR

This constant represents an error generated by trigger_error.

E_USER_NOTICE

This constant represents a notice generated by trigger_error.

E_USER_WARNING

This constant represents a warning generated by trigger_error.

E_WARNING

This constant represents a warning generated by a PHP function.

Warnings don’t halt script execution.

__FILE__

This constant holds the full path to the executing script.

__FUNCTION__

This constant holds the name of the function in which it is viewed.

__LINE__

This constant holds the line number in the executing script.

PEAR_EXTENSION_DIR

This constant holds the path where loadable extensions are kept

according to PEAR. By default, PEAR sets this to PHP_EXTENSION_DIR,

but it may be overridden.

PEAR_INSTALL_DIR

This constant holds the path to the PEAR library, which is usually

/usr/local/lib/php.

PHP_BINDIR

This constant holds the path to the PHP command-line executable.

PHP_CONFIG_FILE_PATH

This constant holds the path to the configuration file, php.ini.

PHP_DATADIR

This constant holds a path to a directory for read-only architecture

independent data files used by PHP. A typical value for this constant

is /usr/local/share. At the time of writing, PHP’s core doesn’t use

this constant.

PHP_EXTENSION_DIR

This constant holds the default path to loadable extensions.

PHP_LIBDIR

This constant holds the path to PHP’s library of code. In addition to

PEAR, there are several other general-purpose functions and classes

for your use.

PHP_LOCALSTATEDIR

This constant holds a path to data files that PHP may need to modify

while running. It’s usually set to /usr/local/var.

PHP_OS

This constant holds a string describing the operating system. It’s no

more descriptive than “Linux.”

PHP_OUTPUT_HANDLER_CONT

This constant is used as a flag for the status value returned by

ob_get_status. If this bit is set, output buffering has begun and the

buffer has been flushed.

PHP_OUTPUT_HANDLER_END

This constant is used as a flag for the status value returned by

ob_get_status. If this bit is set, output buffering has ended.

PHP_OUTPUT_HANDLER_START

This constant is used as a flag for the status value returned by

ob_get_status. If this bit is set, output buffering has begun.

PHP_SYSCONFDIR

This constant holds the path to files that pertain to the configuration

of the server.

PHP_VERSION

This constant holds a string representing the version of PHP. This is

the same value returned by php_version. It’s common to treat this

value as a double in order to enforce a certain version of PHP in a

script. See Listing 8.1.

Listing 8.1 Example of testing PHP’s version

<?php

 if(PHP_VERSION < 5.0)

 {

 print('This script requires PHP 5 or better.');

 exit();

 }

?>

8.3 Sending Text to the Browser

Any text outside PHP tags is automatically sent to the browser. This is

as you would expect. Chapter 26 deals with the decision to send text

via a PHP function. PHP offers three functions that simply send text to

the browser: echo, print, and printf.

echo string first, string second, …, string last

The echo function (Listing 8.2) sends any number of parameters,

separated by commas, to the browser. Each will be converted to a

string and printed with no space between them. Unlike most other PHP

functions, the echo function does not require parentheses. In fact,

echo is more of a statement than a function.

Listing 8.2 echo

<?php

 echo "First string", 2, 3.4, "last string";

?>

flush()

As text is sent to the browser via functions like print and echo, it may

be stored in a memory buffer and written out only when the buffer

fills. The flush function (Listing 8.3) attempts to force the buffer to be

dumped to the browser immediately. Since the Web server ultimately

controls communication with the browser, the flush may not be

effective.

PHP provides another layer of output buffering, as described later in

this chapter.

Listing 8.3 flush

<?php

 //simulate long calculation

 //flush output buffer with each step

 for($n=0; $n<5; $n++)

 {

 print("Calculating...
\n");

 flush();

 sleep(3);

 }

 print("Finished!
\n");

?>

print(string output)

The output argument of print (Listing 8.4) is sent to the browser. Like

echo, print does not require parentheses.

Listing 8.4 print

<?php

 print("hello world!
\n");

?>

printf(string format, …)

The printf function (Listing 8.5) converts and outputs arguments to

the browser based on a format string. The format string contains

codes, listed in Table 8.2, for different data types. These codes begin

with a percentage sign, %, and end with a letter that determines the

type of data. The codes match up with a list of values that follow the

format string in the argument list. Any text outside these codes will be

sent unchanged to the browser.

Listing 8.5 printf

<?php

 printf("%-10s %5d %05.5f
\n", "a string", 10, 3.14);

?>

Table 8.2. printf Type Specifiers

Type

Specifier
Description

d Integer, decimal notation.

o Integer, octal notation.

x, X Integer, hexadecimal notation. x will use lowercase letters; X

will use uppercase letters.

b Integer, binary notation.

c Character specified by integer ASCII code. See Appendix B

for a complete list of ASCII codes.

s String.

f Double.

Type

Specifier
Description

e Double, using scientific notation such as 1.2e3.

% Print a percentage sign. This does not require a matching

argument.

You also have the option of placing characters between the % and the

type specifier that control how the data is formatted. Immediately

following the % you may place any number of flags. These flags control

padding and alignment. They are listed in Table 8.3.

Table 8.3. printf Flags

Flag Description

- Align text to the left.

space Pad output with spaces. This is the default padding

character.

0 Pad output with zeros.

’ plus any

character

Pad output with the character.

After any flags, you may specify a minimum field length. The

converted output will be printed in a field at least this wide, longer if

necessary. If the output is shorter than the minimum width, it will be

padded with a character, a space by default. The padding will normally

be placed to the left but, if the - flag is present, padding will be to the

right.

Next, you may specify a precision. It must start with a period to

separate it from the minimum field length. For strings, the precision is

taken to mean a maximum field length. For doubles, the precision is

the number of digits that appear after the decimal point. Precision has

no meaning for integers.

vprintf(string format, array values)

The vprintf function operates similarly to printf, except that values

for format codes are passed in an array.

8.4 Output Buffering

The output buffering commands add a layer of buffering controlled by

PHP in addition to whatever buffering the Web server uses. Some

performance penalty may be incurred by adding another layer of

buffering, but you may decide the greater control you have is worth

the price.

When ob_start is called, all output by functions such as print and

echo is held back in a buffer, a large area of memory. The contents of

the buffer may be sent to the browser using ob_end_flush, or it may

be thrown away using ob_end_clean. As you recall from Chapter 7,

headers cannot be sent after the first content is sent. Therefore,

these functions allow you to avoid errors created by sending headers

after content.

ob_clean()

This function erases the contents of the output buffer but does not

end output buffering. Following content will accumulate in the buffer.

ob_end_clean()

The ob_end_clean function halts output buffering and eliminates the

contents of the buffer. Nothing is sent to the browser.

ob_end_flush()

The ob_end_flush function halts output buffering and sends the

contents of the buffer to the browser.

ob_flush()

The ob_flush function sends the contents of the buffer to the

browser and erases the buffer.

string ob_get_clean()

The ob_get_clean function returns the contents of the buffer and

then empties the buffer. This is exactly what you’d get if you called

ob_getcontents and then ob_clean.

string ob_get_flush()

The ob_get_flush function returns the contents of the buffer, sends

the buffer out the browser, and then empties the buffer. This is

exactly what you’d get if you called ob_getcontents and then

ob_flush.

string ob_get_contents()

The ob_get_contents function returns the contents of the output

buffer.

integer ob_get_length()

This function returns the number of bytes in the output buffer.

integer ob_get_level()

The ob_get_level function returns the level of output buffer nesting.

Each call to ob_start begins a new output buffer nested in the outer

output buffer. Outside any call to ob_start, this function returns 1.

array ob_get_status(boolean full)

The ob_get_status function returns an array describing the current

output buffering status. By default, it returns an associative array

with the following elements: level, type, status, name, del. If the

full argument is set to TRUE, the return value is an array indexed by

nesting level. At the time of writing, this function was still in an

experimental stage.

ob_gzhandler(string buffer, integer mode)

The ob_gzhandler function returns the given buffer after

compressing it with the gzip algorithm. It’s meant to be used as a

handler for ob_start.

ob_iconv_handler(string buffer, integer mode)

The ob_iconv_handler function converts text from internal to

external character encoding. It’s meant to be used as a handler for

ob_start. This handler becomes available with the iconv extension.

You can set the character set used by this handler with

iconv_set_encoding. You can get the current character set with

iconv_get_encoding. You can encode individual strings with iconv.

ob_implicit_flush(boolean on)

This ob_implicit_flush function causes PHP to flush the buffer after

every instruction that creates output.

array ob_list_handlers()

The ob_list_handlers function returns an array of handlers

available.

ob_start(string callback)

The ob_start function (Listing 8.6) begins output buffering. All text

sent by print and similar functions is saved in a buffer. It will not be

sent to the browser until ob_end_flush is called. The buffer will also

be flushed when the script ends.

The optional callback argument allows you pass all output through

your own function. The function should accept a string and return a

string.

Listing 8.6 ob_start

<?php

 //begin output buffering

 ob_start();

?>

<html>

<head>

<title>ob_start</title>

</head>

<body>

<?php

 print("At this point ");

 print(strlen(ob_get_contents()));

 print(" characters are in the buffer.
\n");

?>

</body>

</html>

<?php

 //add a test header

 header("X-note: COREPHP");

 //dump the contents

 ob_end_flush();

?>

8.5 Session Handling

The functions in this section work with the session-handling capabilities of PHP. This

functionality takes some inspiration from session handling in other technologies,

such as Microsoft ASP and PHPLIB. The original vision was one of global variables

registered as part of a session that persist with each page load. PHP has moved

away from global variables created by the core, and I find it prudent to present

these functions in that spirit. I recommend the use of _SESSION rather than turning

on register_globals. This leads you toward compact, simple code. Chapter 7

discusses the purpose and use of sessions.

Sessions are managed by passing a cookie with a unique value between the server

and the browser. This cookie indexes an entry in a systemwide session cache. All

values in _SESSION are written into the cache when a script completes. PHP restores

the contents of _SESSION on the next request. You may start a session manually

with session_start, or you can configure PHP to automatically start sessions with

the session.auto_start directive in php.ini.

Listing 8.7 creates a session and initializes it with three variables. The script

increments a counter with each request, which proves that PHP is keeping the

counter value in the session and updating after the script finishes.

Listing 8.7 Session variables

<?php

 //start session

 session_start();

 //initialize a set of session variables

 if(!isset($_SESSION['a']))

 {

 print("Initializing Session
");

 $_SESSION['a'] = 'Session Var A';

 $_SESSION['b'] = 123.45;

 $_SESSION['c'] = 0;

 }

 //update session with access count

 $_SESSION['c']++;

 print("Access count: " . $_SESSION['c'] . "
");

 print("Session Dump: " . session_encode() . "
");

?>

As sessions use cookies, keep in mind that cookies are matched to specific domains.

You may find that sessions created for www1.yourdomain.com are lost when a

browser moves to www2.yourdomain.com. You can cope with this in many cases by

editing php.ini or using session_set_cookie_params.

boolean output_add_rewrite_var(string name, string value)

The output_add_rewrite_var function adds a variable and its value to the registry

of variables added to all URLs. The session handler uses this functionality to add the

session identifier to anchor tags you send to the browser.

boolean output_reset_rewrite_vars()

The output_reset_rewrite_vars function erases the registry of variables added to

all URLs.

integer session_cache_expire(integer minutes)

The session_cache_expire function returns the number of minutes a session is

allowed to remain idle before it expires and the system removes it. Optionally, you

may provide a new expiration value. By default, sessions expire after 180 minutes.

string session_cache_limiter(string limiter)

The session_cache_limiter function returns the method for limiting caching of

generated pages by browsers. The optional argument allows you to change the

limiter. By default, the session system uses the nocache setting, which prevents

most browsers from keeping a page in the cache.

PHP’s sessions handling assumes that pages requiring session identifiers will contain

data that immediately expires. It’s a reasonable assumption, but it’s not always true.

This function allows you to override the setting in php.ini. Table 8.4 shows the four

choices for limiters and the HTTP headers they produce. November 19, 1981, is

simply a date in the past that forces browsers to keep a page out the cache; 10800

is the number of seconds in 180 minutes and may vary depending on the value set

with session_cache_expire. The expiration time given by the public limiter is the

current time.

Table 8.4. Session Cache Limiters

Limiter HTTP Headers Sent

nocache [View full width]

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate

, post-check=0, pre-check=0

Pragma: no-cache

private
Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: private, max-age=10800, pre-check=10800

private_no_expireCache-Control: private, max-age=10800, pre-check=10800

public
Expires: Mon, 23 Jun 2003 19:32:00 GMT

Cache-Control: public, max-age=10800

Refer to the HTTP/1.1 specification <http://www.w3.org/Protocols/rfc2068/rfc2068>

to better understand the headers in Table 8.4.

boolean session_decode(string code)

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/&r=noccc&xmlid=0-13-046346-9/ch08lev1sec5#PLID1
http://www.w3.org/Protocols/rfc2068/rfc2068

Use session_decode to read encoded session data and set the values of global

variables in the session. This happens automatically when you start a session with

session_start.

boolean session_destroy()

The session_destroy function eliminates all the data stored in the session. It does

not destroy any global variables associated with the session, however.

string session_encode()

The session_encode function returns a string that contains encoded information

about the current session.

array session_get_cookie_params()

The session_get_cookie_params function returns an array describing the session’s

cookie. The returned array contains the following keys: domain, lifetime, path,

secure.

string session_id(string id)

Use session_id to get the value of the session identifier. If you wish to change the

session identifier, supply the optional id argument. If you do, take care to do so

before calling session_start. The default session handler accepts only letters and

numbers in session identifiers.

boolean session_is_registered(string name)

The session_is_registered function returns TRUE if the specified variable is

registered with the session. Note that this function expects the name of the variable,

not the variable itself. Instead of using this function, check for an entry in _SESSION.

string session_module_name(string name)

The session_module_name function returns the name of the module that handles

session duties. This is the same value set by the session.save_handler directive

inside php.ini. You can change the module name if you supply the optional name

argument. The default module is named files. If you compile PHP using the —with-

mm configuration, you can set the session module to mm. This module uses shared

memory for storing sessions.

If you wish to implement your own handler in PHP, see the

session_set_save_handler function.

string session_name(string name)

The session_name function returns the current name for the session variable. The

session may be renamed with the optional name argument. This name is used as the

name of the cookie that contains the session identifier. It’s also used for the back-up

GET variable. If you wish to override the name of the session defined in php.ini,

you must do so prior to registering any variables or starting the session.

session_readonly()

This function reads in the session data without locking it against writing from other

processes.

boolean session_regenerate_id()

The session_regenerate_id function makes a new session identifier for the current

session.

boolean session_register(…)

The session_register function accepts any number of arguments, each of which

may be a string or an array. Each argument names a global variable that will be

attached to the session. Arrays passed as arguments will be traversed for elements.

You can even pass multidimensional arrays. Each registered variable that is set when

the script ends will be serialized and written into the session information. When the

user returns with a later request, the variables will be restored.

Note that this function expects the name of the variable as a string, not the variable

itself. Because this function works on global variables, it isn’t as interesting as it

once was. You are encouraged to set values in _SESSION directly.

string session_save_path(string path)

The session_save_path function returns the path in the file system used to save

serialized session information. This is /tmp by default. The optional path argument

will change the path. Keep in mind that the permissions for this directory must

include read/write access for the Web server.

session_set_cookie_params(integer lifetime, string path, string
domain, bool secure)

The session_set_cookie_params function sets the four parameters used for session

cookies. You are required to supply the lifetime only.

session_set_save_handler(string open, string close, string
read, string write, string destroy, string garbage)

The session_set_save_handler function allows you to implement an alternative

method for handling sessions. Each argument is the name of a function for handling

a certain aspect of the session-handling process. See Table 8.5. You can implement

these as standalone functions or as class methods. If you choose the latter, as I

have in Listing 8.8, you must pass the method names as two-element arrays. The

first element should reference an object or class. The second element names the

method. If you wish to use static methods, pass the name of the class. If you wish

to use an object, pass the reference to the object as the first element, as I have

done below.

Table 8.5. Functions for Use with session_set_save_handler

Function Arguments Description

open string path, string name Begins the session.

close none Ends the session.

read string id Returns the encoded session data.

write string id, data Writes encoded session data.

destroy none Removes session from data store.

garbage integer lifetime Cleans up stale sessions.

Listing 8.8 Session save handler

<?php

 class mySession

 {

 //prefix with which to mark session files

 var $mark;

 //path for storing session files

 var $path;

 //name of session cookie

 var $name;

 function mySession($mark='mySession_')

 {

 $this->mark = $mark;

 }

 function getFilePath($id)

 {

 return($this->path . '/' . $this->mark . $id);

 }

 function open($path, $name)

 {

 $this->path = $path;

 $this->name = $name;

 return(TRUE);

 }

 function close()

 {

 return(TRUE);

 }

 function read($id)

 {

 if($fp = @fopen(getFilePath($id), "r"))

 {

 return(fread($fp,

 filesize($this->getFilePath($id))));

 }

 else

 {

 return("");

 }

 }

 function write($id, $data)

 {

 if($fp = @fopen($this->getFilePath($id), "w"))

 {

 return(fwrite($fp, $data));

 }

 else

 {

 return(FALSE);

 }

 }

 function destroy($id)

 {

 return(@unlink($this->getFilePath($id)));

 }

 function garbage($lifetime)

 {

 $d = dir($this->path);

 while($f = $d->read())

 {

 //file begins with mark and it's too old

 if((strpos($f, $this->mark) == 0) AND

 (time() > (fileatime($f) + $lifetime)))

 {

 unlink("$this->path/$f");

 }

 }

 $d->close();

 return(TRUE);

 }

 }

 $s = new mySession();

 session_set_save_handler(

 array($s, 'open'),

 array($s, 'close'),

 array($s, 'read'),

 array($s, 'write'),

 array($s, 'destroy'),

 array($s, 'garbage')

);

 //start session

 session_start();

 //initialize a set of session variables

 if(!isset($_SESSION['a']))

 {

 print("Initializing Session
");

 $_SESSION['a'] = 'Session Var A';

 $_SESSION['b'] = 123.45;

 $_SESSION['c'] = 0;

 }

 //update session with access count

 $_SESSION['c']++;

 print("Access count: " . $_SESSION['c'] . "
");

 print("Session Dump: " . session_encode() . "
");

?>

boolean session_start()

Use session_start to activate a session. If no session exists, one will be created.

Since this involves sending a cookie, you must call session_start before sending

any text to the browser. You can avoid using this function by configuring PHP to

automatically start sessions with each request. This is done with the

session.auto_start directive in php.ini. Once you start a session, the contents of

the _SESSION array are preserved for the session user.

boolean session_unregister(string name)

Use session_unregister to remove a global variable from the session. It will not be

saved with the session when the script ends. Instead of using this function, remove

the appropriate entry from the _SESSION array.

session_unset()

The session_unset function clears all session variables from _SESSION.

session_write_close()

This function immediately writes the session to save handler. Ordinarily, PHP will

write session variables when output to the browser finishes, making this function

unnecessary. If you have simultaneous connections using the same session, as you

would with an HTML frameset, you may improve throughput by closing sessions

manually. Otherwise, each request will block until the locks on the session are

released. This has the visual affect of loading each frame, one at a time.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

8.6 HTTP Headers

HTTP headers are special commands sent between the browser and Web server before

the browser receives any content. Some of the headers let the server know which file

the browser wants. Others may instruct the browser about the type of file it will soon

send. To learn more about headers, refer to the HTTP specification, originally

described in RFC 1945 and currently described in RFC 2616. It and other documents

may be found at the W3C site, which has a section devoted to the HTTP protocol

<http://www.w3.org/Protocols/>. For an overview of how headers work with PHP, turn

back to Chapter 7.

boolean header(string http_header, boolean replace, integer
response)

The header function (Listing 8.9) sends an HTTP header to the browser. Unless you

use the output buffering described earlier in this chapter, header must be called

before any output is sent to the browser. You may wish to turn back to the description

of HTTP connections in Chapter 7. Many different kinds of headers may be sent.

Perhaps the most common is a location header, which redirects the browser to another

URI.

Each time you call header, the HTTP is added to a list that’s dumped to the browser

when the first output is sent to the browser. The headers are sent in the same order

you created them. Setting a header a second time will replace the previous value

unless you set the optional second argument to FALSE, in which case PHP will send

both headers.

The optional third argument sets the HTTP response code returned by the server.

PHP treats two header cases specially. The first is when you send the response header.

This is the first line returned by a Web server. PHP detects this by looking for HTTP/ at

the beginning of the string you pass to header. PHP will always send this header first.

The other special case concerns the Location header. PHP will change the response

code to 302 to match Location headers unless you set the response header manually

to a value that begins with 3.

Headers are also used to send cookies, but PHP’s setcookie function is better suited

for this purpose.

One common trick the header function provides is sending a user to another page, as

demonstrated in the example below. Another is to force the browser to either

download the file or display it in an OLE container. This is done by setting the

Content-type header, which PHP defaults to text/html. Sending a value of

application/octet-stream will cause most browsers to prompt the user for where to

save the file. You can also use other MIME types to get the browser to run a helper

application. For example, if you use application/ vnd.ms-excel, a Windows

machine with Microsoft Excel installed will launch Excel in an OLE container inside the

browser window. In this case you don’t need to send an actual Excel file. A simple tab-

delimited file will be interpreted correctly.

Listing 8.9 header

<?php

 // redirect request to another address

 header("Location: http://www.leonatkinson.com/");

?>

http://www.w3.org/Protocols/default.htm

boolean setcookie(string name, string value, integer expire,
string path, string domain, integer secure)

Use setcookie (Listing 8.10) to set a cookie to the browser. Cookies are sent as

headers during an HTTP connection. Since cookie headers are more complex than

other headers, it is nice to have a function specifically for sending cookies. Keep in

mind that all headers must be sent prior to any content. Also, calling setcookie does

not create a PHP variable until the cookie is set back by the browser on the next page

load.

If setcookie is called with only the name argument, the cookie will be deleted from

the browser’s cookie database. Otherwise, a cookie will be created on the client

browser with the name and value given.

The optional expire argument sets a time when the cookie will automatically be

deleted by the browser. This takes the form of seconds since January 1, 1970. PHP

converts this into Greenwich Mean Time and the proper form for the Set-Cookie

header. If the expire argument is omitted, the browser will delete the cookie when the

session ends. Usually, this means when the browser application is shut down.

The path and domain arguments are used by the browser to determine whether to

send the cookie. The hostname of the Web server is compared to the domain. If it is

left empty, the complete hostname of the server setting the cookie is used. The path

is matched against the beginning of the path on the server to the document. The

cookie specification requires that domains contain two periods. This is to prevent

scripts that get sent to every top-level domain (.com, .edu, .net). It also prevents a

domain value of leonatkinson.com. Just remember to add a leading dot.

The secure argument is used to tell the browser to send the cookie only over secure

connections that use Secure Socket Layers. Use a value of 1 to denote a secure

cookie.

Like other headers, those created by the setcookie function are pushed onto a stack,

which causes them to be sent in reverse order. If you set the same cookie more than

once, the first call to setcookie will be executed last. Most likely, this isn’t what you

intend. Keep track of the value you intend to set as the value of the cookie, and call

setcookie once.

Netscape, which developed cookies, offers more information about them in a

document titled “Persistent Client State: HTTP Cookies.” Its URL is

<http://developer.netscape.com/docs/manuals/communicator/jsguide4/cookies.htm>.

How do you know if a browser accepts your cookie? The only way is to send one and

test that it is returned on the next page request.

Listing 8.10 setcookie

<?php

 /*

 ** mark this site as being visited

 ** for the next 24 hours

 */

 setcookie("HasVisitedLast24Hours", "Yes", time()+86400);

?>

http://developer.netscape.com/docs/manuals/communicator/jsguide4/cookies.htm
file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

Chapter 9. Operating System
Topics in This Chapter

Files

Compressed File Functions

Direct I/O

Debugging

POSIX

Shell Commands

Process Control

This chapter describes functions that interact with the operating

system and the underlying hardware. Most of these functions deal

with files. Others interact with command shells, allowing you to

execute programs. Additionally, this chapter discusses debugging

functions that return reflexive information about PHP.

9.1 Files

These functions manipulate or return information about files. Many of them are

wrappers for the commands you execute in a UNIX or Windows command shell.

When the functions in this section call for a filename or a directory, you may

name a file in the same directory as the script itself. You may also use a full or

relative path. The . and .. directories are valid in both UNIX and Windows. You

may also specify drive letters on a Windows machine. Backslashes can delimit

directories and filenames when running under Windows, but forward slashes

are interpreted correctly, so stick with them.

boolean chdir(string directory)

When a PHP script begins to execute, its default path is the path to the script

itself. That is, if the fully qualified path to the script were /users/leon/

public_html/somescript.php, then all relative paths would work off

/users/leon/public_html/. You may change this default path with the chdir

function (Listing 9.1). It returns TRUE if the change was made, FALSE if the

script was unable to change directories.

Listing 9.1 chdir

<?php

 if(chdir("/tmp"))

 {

 print("current directory is /tmp");

 }

 else

 {

 print("unable to change to /tmp");

 }

?>

boolean chgrp(string filename, string group)

The chgrp function (Listing 9.2) invokes the UNIX idea of changing the group

to which a file belongs. If successful, TRUE is returned. If the group cannot be

changed, FALSE is returned. Under Windows this function always returns TRUE

and leaves the file unchanged. Two similar functions are chmod and chown. If

you want to find the group to which a file is currently assigned, use the

filegroup function. You may wish to refer to the UNIX man page for the shell

command of the same name.

Listing 9.2 chgrp

<?php

 if(chgrp("log.txt", "editors"))

 {

 print("log.txt changed to editors group");

 }

 else

 {

 print("log.txt not changed to editors group");

 }

?>

boolean chmod(string filename, integer mode)

The chmod function (Listing 9.3) sets the UNIX permissions for the given file

based on the mode supplied. The mode is interpreted like the UNIX shell

command except that it is not converted to octal. Unless prefixed with a 0,

chmode is treated as a decimal number.

Under UNIX, three octal numbers specify access privileges for owner, group,

and others respectively. The modes may be added in order to combine

privileges. For example, to make a file readable and executable, use mode 5.

Refer to Table 9.1. You also may wish to refer to the man page for chmod on

your UNIX system.

Table 9.1. File Modes

Mode Description

0 No access

1 Execute

2 Write

4 Read

Under Windows, chmod has limited use. The modes described in Table 9.2 are

defined by Microsoft. They may be combined with the bitwise-OR (|) but in

practice only write permission has any meaning. All files in Windows are

readable, and the file extension determines whether the file will execute.

Table 9.2. Windows File Modes

Mode Description

0000400 Read permission, owner

0000200 Write permission, owner

0000100 Execute/search permission, owner

This function is part of a group of three functions that change similar

information about files. The other two are chgrp and chown. The fileperms

function will tell you the file’s current modes.

Listing 9.3 chmod

<?php

 /*

 ** allow everyone to read and write to file

 ** when running PHP under UNIX

 */

 if(chmod("data.txt", 0666))

 {

 print("mode change successful");

 }

 else

 {

 print("mode change unsuccessful");

 }

?>

boolean chown(string filename, string user)

The owner of the named file is changed by the chown function (Listing 9.4). If

successful, TRUE is returned. Otherwise, the function returns FALSE. Under

Windows, this function does nothing and always returns TRUE. This function is

similar to chgrp and chmod. If you need to know the current owner of a file,

use the fileowner function.

Listing 9.4 chown

<?php

 /*

 ** change owner to leon

 */

 if(chown("data.txt", "leon"))

 {

 print("owner changed");

 }

 else

 {

 print("couldn't change owner");

 }

?>

boolean chroot(string path)

The chroot function changes the root directory to the given path. This

disallows all access to any directories above the root. This change will remain

with the server process until it ends, which means it may not be useful when

PHP runs as an Apache module. This function is not available on Windows.

closedir(integer directory_handle)

The closedir function (Listing 9.5) closes a directory after it has been opened

with the opendir function. PHP will close a directory connection for you when

the script ends, so use of this function is not strictly necessary.

Listing 9.5 closedir

<?php

 // print the current directory in unordered list

 print("\n");

 // open directory

 $myDirectory = opendir(".");

 // get each entry

 while(FALSE !== ($entryName = readdir($myDirectory)))

 {

 print("$entryName\n");

 }

 // close directory

 closedir($myDirectory);

 print("\n");

?>

boolean copy(string source, string destination)

The copy function (Listing 9.6) copies a file specified by the source argument

into the file specified by the destination argument. This results in two

separate and identical files. You may wish to create a link to the file instead, in

which case you should use link or symlink. If you wish to move a file to

another directory, consider rename.

This function supports URLs for both arguments.

Listing 9.6 copy

<?php

 if(copy("data.txt", "/tmp/data.txt"))

 {

 print("data.txt copied to /tmp");

 }

 else

 {

 print("data.txt could not be copied");

 }

?>

float disk_free_space(string path)

The disk_free_space function (Listing 9.7) returns the number of free bytes

for the given path.

Listing 9.7 disk_free_space

<?php

 $total = disk_total_space("/");

 $free = disk_free_space("/");

 $ratio = sprintf("%.2f", $free/$total*100.00);

 print("Disk Usage: $ratio% free ($free/$total)");

?>

float disk_total_space(string path)

This function returns the number of bytes of disk space in the given path.

object dir(string directory)

The dir function (Listing 9.8) creates a directory object to be used as an

alternative to the group of functions that includes opendir and closedir. The

returned object has two properties: handle and path. The handle property can

be used with other directory functions, such as readdir, as if it were created

with opendir. The path property is the string used to create the directory

object. The object has three methods: read, rewind, and close. These behave

exactly like readdir, rewinddir, and closedir.

Listing 9.8 dir

<?php

 // print the current directory in unordered list

 print("\n");

 // open directory

 $myDirectory = dir(".");

 // get each entry

 while(FALSE !== ($entryName = $myDirectory->read()))

 {

 print("$entryName\n");

 }

 // close directory

 $myDirectory->close();

 print("\n");

?>

boolean fclose(resource file)

The fclose function (Listing 9.9) closes an open file. When a file is opened,

you are given an integer that represents a file handle. This file handle is used

to close the file when you are finished using it. The functions used to open files

are fopen and fsockopen. To close a pipe, use pclose.

Listing 9.9 fclose

<?php

 // open file for reading

 $myFile = fopen("data.txt", "r");

 // make sure the open was successful

 if(!($myFile))

 {

 print("file could not be opened");

 exit;

 }

 while(!feof($myFile))

 {

 // read a line from the file

 $myLine = fgets($myFile, 255);

 print("$myLine
\n");

 }

 // close the file

 fclose($myFile);

?>

boolean feof(resource file)

As you read from a file, PHP keeps a pointer to the last place in the file you

read. The feof function returns TRUE if you are at the end of the file. It is most

often used in the conditional part of a while loop where a file is being read

from start to finish. See Listing 9.9 for an example of use. If you need to know

the exact position you are reading from, use the ftell function.

boolean fflush(resource file)

The fflush function flushes any buffers associated with the given file handle,

as returned by fopen, fsockopen, or popen. If you wish to flush buffers used

for data sent to the browser, turn back to Chapter 8 and read about flush and

ob_flush.

string fgetc(resource file)

The fgetc function (Listing 9.10) returns a single character from a file. It

expects a file handle as returned by fopen, fsockopen, or popen. Some other

functions for reading from a file are fgetcsv, fgets, fgetss, fread, and

gzgetc.

Listing 9.10 fgetc

<?php

 // open file and print each character

 if($myFile = fopen("data.txt", "r"))

 {

 while(!feof($myFile))

 {

 $myCharacter = fgetc($myFile);

 print($myCharacter);

 }

 fclose($myFile);

 }

?>

array fgetcsv(resource file, integer length, string separator)

The fgetcsv function (Listing 9.11) is used for reading comma-separated data

from a file. It requires a valid file handle as returned by fopen, fsockopen, or

popen. It also requires a maximum line length. The optional separator

argument specifies the character to separate fields. If left out, a comma is

used. Fields may be surrounded by double quotes, which allow embedding of

commas and linebreaks in fields. The return value is an array containing one

field per element, starting with element zero.

Listing 9.11 fgetcsv

<?

 // open file

 if($myFile = fopen("data.csv", "r"))

 {

 print("<table border=\"1\">\n");

 while(!feof($myFile))

 {

 print("<tr>\n");

 $myField = fgetcsv($myFile, 1024);

 $fieldCount = count($myField);

 for($n=0; $n<$fieldCount; $n++)

 {

 print("\t<td>");

 print($myField[$n]);

 print("</td>\n");

 }

 print("</tr>\n");

 }

 fclose($myFile);

 print("</table>\n");

 }

?>

string fgets(resource file, integer length)

The fgets function (Listing 9.12) returns a string that it reads from a file

specified by the file handle, which must have been created with fopen,

fsockopen, or popen. It will attempt to read as many characters as specified by

the length argument less one. If you leave out the length argument, PHP

defaults it to 1024. A linebreak character is treated as a stopping point, as is

the end of the file. Linebreaks are included in the returned string. Keep in mind

that different operating systems use different linebreaks. Some other functions

for reading from a file are fgetc, fgetcsv, fgetss, fread, and gzgets.

Listing 9.12 fgets

<?php

 // open file and print each line

 if($myFile = fopen("data.txt", "r"))

 {

 while(!feof($myFile))

 {

 $myLine = fgets($myFile, 255);

 print($myLine);

 }

 fclose($myFile);

 }

?>

string fgetss(resource file, integer length, string ignore)

The fgetss function (Listing 9.13) is in all respects identical to fgets except

that it attempts to strip any HTML or PHP code before returning a string. The

optional ignore argument specifies tags that are allowed to pass through

unchanged. Note that if you wish to ignore a tag, you need only specify the

opening form. Some other functions for reading from a file are fgetc, fgetcsv,

fgetss, fread, and gzgets. If you wish to preserve HTML but prevent it from

being interpreted, you can use the htmlentities function.

Listing 9.13 fgetss

<?php

 // open file and print each line,

 //stripping HTML except for anchor tags

 if($myFile = fopen("index.html", "r"))

 {

 while(!feof($myFile))

 {

 $myLine = fgetss($myFile, 1024, "<a>");

 print($myLine);

 }

 fclose($myFile);

 }

?>

array file(string filename, boolean use_include_path)

The file function returns an entire file as an array. Each line of the file is a

separate element of the array, starting at zero. Linebreaks are included in each

array element. The optional use_include_path argument causes PHP to search

for the file in your default include path.

Prior to the introduction of file_get_contents, many PHP scripts used the

implode function to combine all lines into one string, as in Listing 9.14.

The file function is not binary-safe. That is, it is not appropriate for working

with binary files that may contain NUL characters.

If you are planning on sending a file directly to browser, use readfile instead.

Listing 9.14 file

<?php

 // open file

 $myFile = file("data.txt");

 //fold array elements into one string

 $myFile = implode("", $myFile);

 //print entire file

 print($myFile);

?>

boolean file_exists(string filename)

The file_exists function returns TRUE if the specified file exists and FALSE if

it does not. This function is a nice way to avoid errors with the other file

functions. Listing 9.15 tests that a file exists before trying to send it to the

browser.

Unlike many other file system functions, this function does not accept URLs.

You may attempt to check for the existence of a file by using fopen and

suppressing error messages with the @ operator. Beware that a Web server will

usually return a 404 error document for a missing file, which makes the file

appear to be available. You may need a more sophisticated solution that looks

at the response code from the Web server in this situation.

Listing 9.15 file_exists

<?php

 $filename = "data.txt";

 //if the file exists, print it

 if(file_exists($filename))

 {

 readfile($filename);

 }

 else

 {

 print("'$filename' does not exist");

 }

?>

string file_get_contents(string filename, boolean
use_include_path)

This file_get_contents function returns the entire contents of the named

files as a string. This function is binary-safe, which makes it appropriate for

loading image files. The optional use_include_path argument causes PHP to

search for the file in the default include path. This function will read files

specified by URLs. If you are planning on sending a file directly to browser, use

readfile instead.

boolean file_set_contents(string filename, string contents)

The file_set_contents function creates the named file with the given

contents. If the file exists, PHP replaces it.

integer fileatime(string filename)

The fileatime function (Listing 9.16) returns the last access time for a file in

standard timestamp format, the number of seconds since January 1, 1970.

FALSE is returned if there is an error. A file is considered accessed if it is

created, written, or read. Unlike some other file-related functions, fileatime

operates identically on Windows and UNIX. Two other functions for getting

timestamps associated with files are filectime and filemtime.

Listing 9.16 fileatime, filectime, filemtime

<?php

 $filename = 'data.txt';

 $LastAccess = fileatime($filename);

 $LastChange = filectime($filename);

 $LastMod = filemtime($filename);

 print("Last access was " .

 date("l F d, Y", $LastAccess) .

 "
\n");

 print("Last change was " .

 date("l F d, Y", $LastChange) .

 "
\n");

 print("Last modification was " .

 date("l F d, Y", $LastMod) .

 "
\n");

?>

integer filectime(string filename)

When running on UNIX, the filectime function returns the last time a file was

changed in standard timestamp format, the number of seconds since January

1, 1970. A file is considered changed if it is created or written to or its

permissions have been changed. When running on Windows, filectime

returns the time the file was created. If an error occurs, FALSE is returned. Two

other functions for getting timestamps associated with files are fileatime and

filemtime.

integer filegroup(string filename)

The filegroup function (Listing 9.17) returns the group identifier for the given

file, or FALSE when there is an error. This function always returns FALSE under

Windows. Other functions that return information about a file are fileinode,

fileowner, and fileperms. To change a file’s group, use chgrp.

Listing 9.17 filegroup, fileinode, fileowner, fileperms, filesize,

filetype

<?php

 $filename = 'data.txt';

 $groupID = filegroup($filename);

 $groupInfo = posix_getgrgid($groupID);

 $inode = fileinode($filename);

 $userID = fileowner($filename);

 $userInfo = posix_getpwuid($userID);

 print("Filename: $filename
\n");

 print("Group: $groupID [{$groupInfo['name']}]
\n");

 print("Owner: $userID [{$userInfo['name']}]
\n");

 printf("Permissions: %o
\n", (fileperms($filename)

 & 0777));

 print("Size: " . filesize($filename) . "
\n");

 print("Type: " . filetype($filename) . "
\n");

?>

integer fileinode(string filename)

The fileinode function returns the inode of the given file, or FALSE on error.

This function always returns FALSE under Windows. Similar functions are

filegroup, fileowner, and fileperms.

integer filemtime(string filename)

The filemtime function returns the last time a file was modified in standard

timestamp format, the number of seconds since January 1, 1970. FALSE is

returned if there is an error. A file is considered modified when it is created or

its contents change. Operation of this function is identical under any operating

system. There are two other functions related to timestamps on files:

fileatime and filectime.

integer fileowner(string filename)

The fileowner function returns the user identifier of the owner, or FALSE if

there is an error. This function always returns FALSE under Windows. If you

need to change the owner of a file, use the chown function. Similar functions

for getting information about a file are filegroup, fileinode, and fileperms.

integer fileperms(string filename)

The fileperms function returns the permission number for the given file, or

FALSE when there is an error. If you are using UNIX, you may wish to refer to

the man page for the stat system function. You may be surprised to find that

printing this number in octal, as is customary, produces six digits. The first

three give you information about the file that doesn’t actually refer to

read/write/execute permissions. You may wish to filter that information out, as

I have in Listing 9.17, by performing a logical AND operation. If you need to

change the mode of a file, use the chmod function.

integer filesize(string filename)

The filesize function returns the size of the given file in bytes.

string filetype(string filename)

The filetype function returns the type of the given file as a descriptive string.

Possible values are block, char, dir, fifo, file, link, and unknown. This

function is an interface to C’s stat function, whose man page may be helpful in

understanding the different file types.

boolean flock(resource file, integer mode)

Use the flock function (Listing 9.18) to temporarily restrict access to a file.

PHP uses its own system for locking, which works across multiple platforms.

However, all processes must be using the same locking system, so the file will

be locked for PHP scripts but likely not locked for other processes.

The file argument must be an integer returned by fopen. The mode argument

determines whether you obtain a lock that allows others to read the file

(LOCK_SH), you obtain a lock that doesn’t allow others to read the file

(LOCK_EX), or you release a lock (LOCK_UN). Add LOCK_NB to LOCK_SH or

LOCK_EX to turn off blocking

When obtaining a lock, the process may block. That is, if the file is already

locked, it will wait until it gets the lock to continue execution. If you prefer, you

may turn off blocking using modes 5 and 6. Table 9.3 lists the modes.

Listing 9.18 flock

<?php

 $fp = fopen("/tmp/log.txt", "a");

 //get lock

 flock($fp, (LOCK_EX + LOCK_NB));

 //add a line to the log

 fputs($fp, date("h:i A l F dS, Y\n"));

 //release lock

 flock($fp, LOCK_UN);

 fclose($fp);

 //dump log

 print("<pre>");

 readfile("/tmp/log.txt");

 print("</pre>\n");

?>

Table 9.3. flock Modes

Mode Value Operations Allowed

LOCK_SH 1 Allow reads.

LOCK_EX 2 Disallow reads.

LOCK_UN 3 Release lock.

LOCK_SH + LOCK_NB 4 Allow reads, do not block.

LOCK_EX + LOCK_NB 5 Disallow reads, do not block.

resource fopen(string filename, string mode, boolean
use_include_path, resource context)

The fopen function (Listing 9.19) opens a file for reading or writing. The

function expects the name of a file and a mode. It returns an integer, which is

called a file handle. Internally, PHP uses this integer to reference a block of

information about the open file. The file handle is used by other file-related

functions, such as fputs and fgets.

Setting use_include_path to TRUE will cause PHP to search for the named file

in the default include path. Its use is optional.

You may optionally provide a stream context as the fourth argument. This

allows you to configure some aspects of the open stream and monitor I/O. See

stream_context_create.

Ordinarily, the filename argument is a path to a file. It can be fully qualified or

relative to the path of the script. If the filename begins with http:// or

ftp://, the file will be opened using HTTP or FTP protocol over the Internet.

The mode argument determines whether the file is to be read from, written to,

or added to. Modes with a plus sign (+) are update modes that allow both

reading and writing. If the letter b appears as the last part of the mode, the file

is assumed to be a binary file, which means no special meaning will be given to

end-of-line characters. Table 9.4 lists all the modes.

Table 9.4. File Read/Write Modes

Mode Operations Allowed

r[b] reading only [binary]

w[b] writing only, create if necessary, discard previous contents if any [binary]

a[b] append to file, create if necessary, start writing at end of file [binary]

r+

[b]

reading and writing [binary]

w+

[b]

reading and writing, create if necessary, discard previous contents if any

[binary]

a+

[b]

reading and writing, create if necessary, start writing at end of file

[binary]

While it is an error to open a file for writing when an HTTP URL is specified, this

is not the case with FTP. You may upload an FTP file by using write mode.

However, this functionality is limited. You can create remote files, but you may

not overwrite existing files. With either HTTP or FTP connections, you may only

read from start to finish from a file. You may not use fseek or similar

functions.

Sometimes files on HTTP and FTP servers are protected by usernames and

passwords. You can specify a username and a password exactly as popular

Web browsers allow you to do. After the network protocol and before the

server name, you may insert a username, a colon, a password, and an at-

symbol (@).

Three other ways to open a file are the fsockopen, gzopen, and popen

functions.

Listing 9.19 fopen

<?php

 print("<h1>HTTP</h1>\n");

 //open a file using http protocol

 //Use username and password

 if(!($myFile =

 fopen("http://leon:password@www.php.net/", "r")))

 {

 print("file could not be opened");

 exit;

 }

 while(!feof($myFile))

 {

 // read a line from the file

 $myLine = fgetss($myFile, 255);

 print("$myLine
\n");

 }

 // close the file

 fclose($myFile);

 print("<hr>\n");

 print("<h1>FTP</h1>\n");

 // open a file using ftp protocol

 if(!($myFile = fopen("ftp://php.he.net/welcome.msg", "r")))

 {

 print("file could not be opened");

 exit;

 }

 while(!feof($myFile))

 {

 // read a line from the file

 $myLine = fgetss($myFile, 255);

 print("$myLine
\n");

 }

 // close the file

 fclose($myFile);

 print("<hr>\n");

 print("<h1>Local</h1>\n");

 // open a local file

 if(!($myFile = fopen("data.txt", "r")))

 {

 print("file could not be opened");

 exit;

 }

 while(!feof($myFile))

 {

 // read a line from the file

 $myLine = fgetss($myFile, 255);

 print("$myLine
\n");

 }

 // close the file

 fclose($myFile);

?>

boolean fpassthru(resource file)

The fpassthru function (Listing 9.20) prints the contents of the file to the

browser. Data from the current file position to the end are sent, so you can

read a few lines and output the rest. The file is closed after being sent. If an

error occurs, fpassthru returns FALSE. The gzpassthru function offers the

same functionality for compressed files. The readfile function will save you

the bother of opening the file first.

Listing 9.20 fpassthru

<?php

 /*

 ** Get a Web page, change the title tag

 */

 // open a file using http protocol

 if(!($myFile = fopen("http://www.php.net/", "r")))

 {

 print("file could not be opened");

 exit;

 }

 $KeepSearching = TRUE;

 while(!feof($myFile) AND $KeepSearching)

 {

 // read a line from the file

 $myLine = fgets($myFile, 1024);

 //watch for body tag

 if(eregi("<body", $myLine))

 {

 //no chance to find a title tag

 //after a body tag

 $KeepSearching = FALSE;

 }

 //try adding some text after the title tag

 $myLine = eregi_replace("<title>",

 "<title>(fpassthru example)", $myLine);

 //send line to browser

 print("$myLine");

 }

 // send the rest of file to browser

 fpassthru($myFile);

?>

fprintf(resource file, string format, …)

The fprintf function operates like printf except that it sends output to a file.

See the description of printf in Chapter 8.

integer fputs(resource file, string output)

The fputs function is an alias for fwrite.

string fread(resource file, integer length)

The fread function (Listing 9.21) is a binary-safe version of the fgets function.

That means it does not pay attention to end-of-line characters. It will always

return the number of bytes specified by the length argument unless it reaches

the end of the file. This function is necessary if you wish to read from binary

files, such as jpeg image files.

Listing 9.21 fread

<?php

 /*

 ** Check that a file is a GIF89

 */

 $filename = "php.gif";

 $fp = fopen($filename, "r");

 //get first 128 bytes

 $data = fread($fp, 128);

 //close file

 fclose($fp);

 //check for GIF89

 if(substr($data, 0, 5) == "GIF89")

 {

 print("$filename is a GIF89 file.\n");

 }

 else

 {

 print("$filename isn't a GIF89 file.\n");

 }

?>

array fscanf(resource file, string format, …)

The fscanf function (Listing 9.22) reads a line from an open file and attempts

to break it into variables according to the format argument. If only two

arguments are given, fscanf returns an array. Otherwise, it attempts to place

the values in the supplied list of variable references.

The format argument is a series of literal characters and codes compared to

the input string. Literal characters must match the input string. The codes

specify various data types, which fscanf converts from text into native data

types. Whitespace in the format stands for any amount of whitespace in the

input. For example, a single space in the format can match several tab

characters in the input.

Each format code begins with the % character and ends with a character

specifying the type. Table 9.5 shows codes available. Between the % and code,

you may specify a width as an integer. The input must match this width

exactly.

Additionally, you may place an asterisk (*) between the leading % and the

width. This causes the field to be scanned and discarded.

PHP also includes sscanf for evaluating strings, described in Chapter 12.

Table 9.5. Format Codes for fscanf

Code Description

% A literal % character.

d An optionally signed decimal integer.

I An optionally signed integer, recognized as hex if it starts with 0x or 0X,

recognized as octal if it starts with k.

o An octal integer.

u An unsigned integer.

x An unsigned hexadecimal integer.

f A double-precision floating-point number.

s A sequence of non-whitespace characters.

c Any number of non-whitespace characters specified by a width flag or by

1 if no width is given.

[] A regular expression.

n The number of characters read so far.

Listing 9.22 fscanf

<?php

 $fp = fopen('data.txt', 'r');

 while(!feof($fp))

 {

 $a = fscanf($fp,

 "%*4d %*i %o %u %x %f %s %3c %[a-zA-Z] %n");

 print_r($a);

 print("
");

 }

 fclose($fp);

?>

integer fseek(resource file, integer offset, integer from)

To change PHP’s internal file pointer, use fseek (Listing 9.23). It expects a

valid file handle as created by fopen. It also expects an offset, the number of

bytes past the beginning of the file. If an error occurs, fseek returns negative

one (�1); otherwise it returns zero (0). Take note that this is different from

most other PHP functions.

The optional third argument changes how PHP interprets the offset argument.

By default, or if specified as SEEK_SET, fseek starts from the beginning of the

file. You can start from the end of the file with SEEK_END, but don’t forget to

use a negative offset in that case. You can use SEEK_CUR to offset from the

current position, in which case negative and positive values are valid.

Seeking past the end of the file is not an error; however, using fseek on a file

opened by fopen if it was used with http:// or ftp:// is forbidden.

If you need to know where the file pointer points, use the ftell function.

Listing 9.23 fseek

<?php

 // open a file

 if($myFile = fopen("data.txt", "r"))

 {

 // jump 32 bytes into the file

 fseek($myFile, 32);

 // dump the rest of the file

 fpassthru($myFile);

 }

 else

 {

 print("file could not be opened");

 }

?>

array fstat(resource file)

The fstat function gets information from C’s stat function about an open file

and returns it in an associative array. The elements of the array are atime,

blksize, blocks, ctime, dev, gid, ino, mode, mtime, nlink, rdev, size, and

uid. This function returns the same information returned by stat and lstat.

integer ftell(resource file)

Given a valid file handle, ftell returns the offset of PHP’s internal file pointer.

If you wish to move the file pointer, use the fseek function.

boolean ftruncate(resource file, integer size)

The ftrunctate function truncates a file to a specified size, expressed in

number of bytes. It does not change the current file position, even if the

truncation would place the position past the end of the file. You may need to

use fseek to restore the file pointer to a valid position.

integer fwrite(resource file, string data, integer length)

The fwrite function (Listing 9.24) writes a string to a file. The file argument

must be an integer returned by fopen, fsockopen, or popen. The length

argument is optional and sets the maximum number of bytes to write. If

present, it causes the magic quotes functionality to be suspended. This means

backslashes inserted into the string by PHP to escape quotes will not be

stripped before writing.

Listing 9.24 fwrite

<?php

 // open file for writing

 $myFile = fopen("data.txt","w");

 // make sure the open was successful

 if(!($myFile))

 {

 print("file could not be opened");

 exit;

 }

 for($index=0; $index<10; $index++)

 {

 // write a line to the file

 fwrite($myFile, "line $index\n");

 }

 // close the file

 fclose($myFile);

?>

array get_meta_tags(string filename, boolean
use_include_path)

The get_meta_tags function (Listing 9.25) opens a file and scans for HTML

meta tags. The function assumes it is a well-formed HTML file that uses native

linebreaks. An array indexed by the name attribute of the meta tag is returned.

If the name contains any characters illegal in identifiers, they will be replaced

with underscores.

The optional use_include_path will cause get_meta_tags to look for the file in

the include path instead of the current directory. The include path is set in

php.ini and normally is used by the include function.

Like many of the file functions, get_meta_tags allows specifying a URL instead

of a path on the local filesystem.

Listing 9.25 get_meta_tags

<html>

<head>

<title>get_meta_tags</title>

<meta name="description" content="Demonstration of get_meta_tags.">

<meta name="keywords" content="PHP, Core PHP, Leon Atkinson">

<meta name="Name with Space" content="See how the name changes">

</head>

<body>

<?php

 $tag = get_meta_tags($_SERVER["PATH_TRANSLATED"]);

 //dump all elements of returned array

 print("<pre>");

 print_r($tag);

 print("</pre>\n");

?>

</body>

</html>

array glob(string pattern, integer flags)

The glob function applies a pattern to the current working directory and

returns an array of matching files. The pattern may contain typical shell

wildcards, such as * and ?. The flags passed in the optional second argument

control certain aspects of the pattern matching. At the time of writing, their

exact implementation was unfinished.

include(string filename)

The include function causes the PHP parser to open the given file and execute

it. The file is treated as a normal PHP script. That is, text is sent directly to the

browser unless PHP tags are used. You may use a variable to specify the file,

and if the call to include is inside a loop, it will be reevaluated each time.

You may also specify files by URL by starting them with http:// or ftp://.

PHP will fetch the file via the stated protocol and execute it as if it were in the

local filesystem.

Compare this function to require.

include_once(string filename)

The include_once function is identical to include except that it will process a

file only once. Any attempt to include the file a second time will result in silent

failure.

boolean is_dir(string filename)

The is_dir function (Listing 9.26) returns TRUE if the given filename is a

directory; otherwise it returns FALSE. Similar functions are is_file and

is_link.

Listing 9.26 is_dir, is_executable, is_file, is_link, is_readable,

is_uploaded_file, is_writeable

<?php

 $filename = "data.txt";

 print("$filename is...
\n");

 if(is_dir($filename))

 {

 print("...a directory.");

 }

 else

 {

 print("...not a directory.");

 }

 print("
\n");

 if(is_executable($filename))

 {

 print("...executable.");

 }

 else

 {

 print("...not executable.");

 }

 print("
\n");

 if(is_file($filename))

 {

 print("...a file.");

 }

 else

 {

 print("...not a file.");

 }

 print("
\n");

 if(is_link($filename))

 {

 print("...a link.");

 }

 else

 {

 print("...not a link.");

 }

 print("
\n");

 if(is_readable($filename))

 {

 print("...readable.");

 }

 else

 {

 print("...not readable.");

 }

 print("
\n");

 if(is_uploaded_file($filename))

 {

 print("...an upload.");

 }

 else

 {

 print("...not an upload.");

 }

 print("
\n");

 if(is_writeable($filename))

 {

 print("...writeable.");

 }

 else

 {

 print("...not writeable.");

 }

 print("
\n");

?>

boolean is_executable(string filename)

The is_executable function returns TRUE if a file exists and is executable;

otherwise it returns FALSE. On UNIX this is determined by the file’s

permissions. On Windows this is determined by the file extension. Two related

functions are is_readable and is_writeable.

boolean is_file(string filename)

The is_file function returns TRUE if the given filename is neither a directory

nor a symbolic link; otherwise it returns FALSE. Similar functions are is_dir

and is_link.

boolean is_link(string filename)

The is_link function returns TRUE if the given filename is a symbolic link;

otherwise it returns FALSE. Similar functions are is_dir and is_file.

boolean is_readable(string filename)

The is_readable function returns TRUE if a file exists and is readable;

otherwise it returns FALSE. On UNIX this is determined by the file’s

permissions. On Windows, TRUE is always returned if the file exists. This

function is similar to is_executable and is_writeable.

boolean is_uploaded_file(string filename)

The is_uploaded_file function returns TRUE if a file was uploaded in an HTML

form during the current request. Its purpose is to ensure that the file you

expect to treat as an upload was indeed uploaded.

boolean is_writeable(string filename)

The is_writeable function returns TRUE if a file exists and is writeable;

otherwise it returns FALSE. Similar functions are is_executable and

is_readable.

boolean link(string source, string destination)

The link function creates a hard link. A hard link may not point to a directory,

may not point outside its own filesystem, and is indistinguishable from the file

to which it links. See the man page for link or ln for a full description. The

link function expects a source file and a destination file. On Windows this

function does nothing and returns nothing. You can create a symbolic link with

the symlink function.

integer linkinfo(string filename)

The linkinfo function calls the C function lstat for the given filename and

returns the st_dev field lstat generates. This may be used to verify the

existence of a link. It returns FALSE on error. You can read more about lstat

on the man page or in the help file for Microsoft Visual C++.

array lstat(string filename)

The lstat function (Listing 9.27) executes C’s stat function and returns an

array. The array contains 13 elements, numbered starting with zero. If the

filename argument points to a symbolic link, the array will reflect the link, not

the file to which the link points. The stat function always returns information

about the file when called on a symbolic link. Table 9.6 lists the contents of the

array, which contains two copies of the data. One copy is referenced by integer,

the other by name.

Table 9.6. Array Elements Returned by the lstat and stat

Functions

Integer Name Description

0 dev This is a number identifying the device of the filesystem. On

Windows this number denotes the drive letter the file is on,

with the A drive being zero.

1 ino A unique identifier for the file, always zero on Windows. This is

the same value you get from the fileinode function.

Integer Name Description

2 mode This is the same value you will get from fileperms, the

read/write/execute permissions.

3 nlink Number of links to file. On Windows this will always be 1 if the

file is not on an NTFS partition.

4 uid User ID of the owner, always zero on Windows. This is the

same value you will get from the fileowner function.

5 gid Group ID, always zero on Windows. This is the same value you

will get from the filegroup function.

6 rdev This is the type of the device. On Windows it repeats the

device number.

7 size Size of the file in bytes, which is the same as reported by

filesize.

8 atime Last time the file was accessed, as defined in the description

of fileatime.

9 mtime Last time the file was modified, as defined in the description of

filemtime.

10 ctime Last time the file was changed, as defined in the description of

filectime. On Windows this is the time the file was created.

11 blksizeSuggested block size for I/O to file, �1 under Windows.

12 blocks Number of blocks used by file, �1 under Windows.

Listing 9.27 lstat

<?php

 $statInfo = lstat("data.txt");

 if(eregi("windows", PHP_OS))

 {

 // print useful information for Windows

 printf("Drive: %c
\n", ($statInfo[0]+65));

 printf("Mode: %o
\n", $statInfo[2]);

 print("Links: $statInfo[3]
\n");

 print("Size: $statInfo[7] bytes
\n");

 printf("Last Accessed: %s
\n",

 date("F d, Y", $statInfo[8]));

 printf("Last Modified: %s
\n",

 date("F d, Y", $statInfo[9]));

 printf("Created: %s
\n",

 date("F d, Y", $statInfo[10]));

 }

 else

 {

 // print UNIX version

 print("Device: $statInfo[0]
\n");

 print("INode: $statInfo[1]
\n");

 printf("Mode: %o
\n", $statInfo[2]);

 print("Links: $statInfo[3]
\n");

 print("UID: $statInfo[4]
\n");

 print("GID: $statInfo[5]
\n");

 print("Device Type: $statInfo[6]
\n");

 print("Size: $statInfo[7] bytes
\n");

 printf("Last Accessed: %s
\n",

 date("F d, Y", $statInfo[8]));

 printf("Last Modified: %s
\n",

 date("F d, Y", $statInfo[9]));

 printf("Last Changed: %s
\n",

 date("F d, Y", $statInfo[10]));

 print("Block Size: $statInfo[11]
\n");

 print("Blocks: $statInfo[12]
\n");

 }

?>

string md5_file(string filename)

The md5_file function returns the MD5 hash for the given file. MD5 hashes are

128-bit numbers, usually expressed as text strings, that uniquely identify files.

boolean mkdir(string directory, integer mode)

The mkdir function (Listing 9.28) creates a new directory with the supplied

name. Permissions will be set based on the mode argument, which follows the

same rules as chmod. On Windows the mode argument is ignored. You can use

the rmdir function to remove a directory.

Listing 9.28 mkdir

<?php

 if(mkdir("myDir", 0777))

 {

 print("directory created");

 }

 else

 {

 print("directory cannot be created");

 }

?>

boolean move_uploaded_file(string filename, string
destination)

The move_uploaded_file function combines the functionality of

is_uploaded_file and rename. If the named file is an uploaded file, it will be

renamed to the destination name. If the file is not an upload or if the rename

fails, the function returns FALSE.

array parse_ini_file(string filename, boolean
process_sections)

The parse_ini_file function parses a text file that conforms to the common

format used by configuration files, particularly those postfixed with .ini.

Named settings are followed by values separated by an equal sign (=). Values

that contain special characters should be surrounded by quotation marks (”).

Semicolons (;) begin comments, which are ignored by the parser.

You may break the configuration settings into sections by surrounding section

names with square brackets. Listing 9.29 shows a sample configuration file.

Listing 9.30 demonstrates parsing the contents of Listing 9.29. Figure 9.1

shows the results. If you leave process_sections out, the sections will be

ignored. If you set it to TRUE, the returned array will be two-dimensional,

dividing settings into subarrays named by section.

Listing 9.29 Example configuration file

; Sample Configuration file: test.ini

; Use Semicolons to begin comments.

[User Interface]

text = "#333333"

highlight = "#FF3333"

[Database]

username = php

password = secret

dbname = ft3

Listing 9.30 parse_ini_file

<?php

 print_r(parse_ini_file('test.ini'));

 print("\n");

 print_r(parse_ini_file('test.ini', TRUE));

?>

Figure 9.1 Output from parse_ini_file.

Array

(

 [text] => #333333

 [highlight] => #FF3333

 [username] => php

 [password] => secret

 [dbname] => ft3

)

Array

(

 [User Interface] => Array

 (

 [text] => #333333

 [highlight] => #FF3333

)

 [Database] => Array

 (

 [username] => php

 [password] => secret

 [dbname] => ft3

)

)

integer opendir(string directory)

The opendir function (Listing 9.31) requires a directory name and returns a

directory handle. This handle may be used by readdir, rewinddir, and

closedir. The dir function described above provides an alternative to this

group of functions.

Listing 9.31 opendir

<table border="1">

<tr>

 <th>Filename</th>

 <th>Size</th>

</tr>

<?php

 // open directory

 $myDirectory = opendir(".");

 // get each entry

 while($entryName = readdir($myDirectory))

 {

 print("<tr>");

 print("<td>$entryName</td>");

 print("<td align=\"right\">");

 print(filesize($entryName));

 print("</td>");

 print("</tr>\n");

 }

 // close directory

 closedir($myDirectory);

?>

</table>

integer pclose(resource file)

The pclose function closes a file stream opened by popen. The return value is

the integer returned by the underlying call to the C function wait4. Check your

man page for description of this value.

resource popen(string command, string mode)

The popen function (Listing 9.32) opens a pipe to an executing command that

may be read from or written to as if it were a file. A file handle is returned that

is appropriate for use with functions such as fgets. Pipes work in one direction

only, which means you can’t use update modes with popen. You may open a

bidirectional pipe with proc_open.

When you open a pipe, you are executing a program in the local filesystem. As

with the other functions that execute a command, you should consider both the

high cost of starting a new process and the security risk if user input is

included in the command argument. If you must pass user-supplied data to a

command, pass the information through the escapeshellcmd function first.

Listing 9.32 popen

<?php

 /*

 ** see who's logged in

 */

 $myPipe = popen('who', 'r');

 while(!feof($myPipe))

 {

 print(nl2br(fread($myPipe, 1024)));

 }

 pclose($myPipe);

?>

string readdir(integer directory_handle)

The readdir function returns the name of the next file from a directory handle

created by opendir, or FALSE when no entries remain. You can place readdir

in the conditional expression of a while loop to get every entry in a directory.

Keep in mind that . and .. are always present and will be returned. See

closedir for an example of use.

integer readfile(string filename, boolean use_include_path)

The file given is read and sent directly to the browser by the readfile function

(Listing 9.33), and the number of bytes read is returned. If an error occurs,

FALSE is returned. If the filename begins with http:// or ftp://, the file will

be fetched using HTTP or FTP respectively. Otherwise, the file is opened in the

local filesystem. If you need to send a compressed file to the browser, use

readgzfile. If you’d rather read a file into a variable, use the

file_get_contents function.

If you set the optional argument use_include_path to TRUE, PHP will search

for the file in the default include path.

Listing 9.33 readfile

<?php

 print("Here is some data
\n");

 readfile("data.txt");

?>

string readlink(string filename)

The readlink function (Listing 9.34) returns the path to which a symbolic link

points. It returns FALSE on error. Another function that gets information about

a link is linkinfo.

Listing 9.34 readlink

<?php

 print(readlink("/etc/rc"));

?>

string realpath(string path)

The realpath function (Listing 9.35) returns a genuine, minimal path by

following symbolic links, removing relational directories, and collapsing extra

slashes. If the path does not exist, FALSE is returned.

Listing 9.35 realpath

<?php

 //prints /etc/rc.d/rc

 print(realpath('/usr/../etc/.////rc'));

?>

boolean rename(string old_name, string new_name)

The rename function (Listing 9.36) changes the name of a file specified by the

old_name argument to the name specified in the new_name argument. The new

and old names may contain complete paths, which allow you to use rename to

move files.

Listing 9.36 rename

<?php

 //move data.txt from local directory

 //to the temp directory

 rename("./data.txt", "/tmp/data.dat");

?>

require(string filename)

The require function causes the PHP parser to open the given file and execute

it. The file is treated as a normal PHP script. That is, text is sent directly to the

browser unless PHP tags are used. PHP attempts to process require

statements prior to executing any other code but can do so only if the path to

the filename is static. If you use a variable to specify the file, PHP must wait

until after it executes preceding code to execute the require statement. In

either case, PHP executes a require statement only once. If called inside a

loop, the code inserted by the require statement remains the same regardless

of changes to variables used in the path.

You may also specify files by URL by starting them with http:// or ftp://.

PHP will fetch the file via the stated protocol and execute it as if it were in the

local filesystem. Compare this function to include.

include_once(string filename)

The include_once function is identical to require except that it will process a

file only once per request. Any attempt to include the file a second time will

result in silent failure.

boolean rewind(resource file)

The rewind function (Listing 9.37) moves PHP’s internal file pointer back to the

beginning of the file. This is the same as using fseek to move to position zero.

Listing 9.37 rewind

<?php

 /*

 ** print a file, then print the first line again

 */

 // open a local file

 $myFile = fopen("data.txt", "r");

 while(!feof($myFile))

 {

 // read a line from the file

 $myLine = fgetss($myFile, 255);

 print("$myLine
\n");

 }

 rewind($myFile);

 $myLine = fgetss($myFile, 255);

 print("$myLine
\n");

 // close the file

 fclose($myFile);

?>

boolean rewinddir(integer handle)

The rewinddir function resets PHP’s internal pointer to the beginning of a

directory listing. It returns TRUE unless an error occurs, in which case it returns

FALSE. The handle is an integer returned by opendir.

boolean rmdir(string directory)

Use the rmdir function (Listing 9.38) to remove a directory. The directory must

be empty. To remove a file, use unlink.

Listing 9.38 rmdir

<?php

 if(rmdir("/tmp/leon"))

 {

 print("Directory removed");

 }

 else

 {

 print("Directory not removed");

 }

?>

array scandir(string path, boolean reverse_order)

The scandir function returns an array of files in the given path. By default,

items are sorted alphabetically. You can reverse them with the optional

reverse_order argument.

set_file_buffer(resource file, integer size)

This function is now an alias to stream_set_write_buffer.

string sha1_file(string filename)

The sha1_file function returns the SHA-1 (Secure Hash Algorithm 1) hash for

the given file. These 160-bit hash keys are unique for files and are an

alternative to MD5 hash keys.

array stat(string filename)

The stat function executes C’s stat function and returns an array. The array

contains 13 elements, numbered starting at zero. If the filename argument

points to a symbolic link, the array will reflect the file to which the link points.

To get information about the link itself, use the lstat function. Table 9.6 lists

the contents of the array.

resource stream_context_create(array options)

The stream_context_create function creates a stream context used to

configure and monitor streams. You may use this context for multiple streams

you create with fopen. The optional options argument sets one or more

options for the context. It must be an array of arrays. Each key must match a

wrapper and point to an array of key/value pairs.

array stream_context_get_options(resource context)

The stream_context_get_options function returns the options for the given

context or stream.

boolean stream_context_set_option(resource context,
string wrapper, string option, string value)

The stream_context_set_option function sets a single option for a context or

stream.

boolean stream_context_set_params(resource context,
array options)

The stream_context_set_params function sets parameters on the given

context or stream. The options array should use parameter names for keys.

boolean stream_filter_append(resource stream, string
filter)

The stream_filter_append function adds a filter to the end of the list of filters

for a stream.

boolean stream_filter_prepend(resource stream, string
filter)

The stream_filter_prepend function adds a filter to the beginning of the list

of filters for a stream.

array stream_get_filters()

The stream_get_filters function returns a list of available filters, including

those you register.

array stream_get_wrappers()

The stream_get_wrappers function returns a list of available wrappers,

including those you register.

array stream_get_meta_data(resource file)

The stream_get_meta_data function (Listing 9.39, Figure 9.2) returns an array

describing the state of the open stream created by fopen, fsockopen, or

pfsockopen. Table 9.7 describes the elements of the returned array.

Table 9.7. Array Returned by stream_get_meta_data

Name Description

blocked TRUE if the stream is in blocking mode.

eof TRUE if the stream has reached end-of-file.

stream_type A string describing the stream type.

timed_out TRUE if the stream aborted after waiting too long for data.

unread_bytes The number of bytes left to read.

wrapper_data An array of data related to the stream.

wrapper_type A string describing the wrapper used.

It’s possible for the eof element to be TRUE while there are still unread bytes.

You may wish to use feof instead.

Listing 9.39 stream_get_meta_data

<?php

 //connect to PHP site

 if(!($myFile = fopen("http://www.php.net/", "r")))

 {

 print("file could not be opened");

 exit;

 }

 //dump meta data

 print_r(stream_get_meta_data($myFile));

 // close the file

 fclose($myFile);

?>

Figure 9.2 Output from stream_get_meta_data.

Array

(

 [wrapper_data] => Array

 (

 [0] => HTTP/1.0 200 OK

 [1] => Date: Tue, 22 Oct 2002 21:11:36 GMT

 [2] => Server: Apache/1.3.26 (Unix) PHP/4.3.0-dev

 [3] => X-Powered-By: PHP/4.3.0-dev

 [4] => Last-Modified: Tue, 22 Oct 2002 20:48:31 GMT

 [5] => Content-Type: text/html

 [6] => Age: 4

 [7] => X-Cache: HIT from rs1.php.net

 [8] => Connection: close

)

 [wrapper_type] => HTTP

 [stream_type] => socket

 [unread_bytes] => 1190

 [timed_out] =>

 [blocked] => 1

 [eof] =>

)

boolean stream_register_filter(string name, string class)

The stream_register_filter function (Listing 9.40) allows you to define a

stream filter. You must supply the name of the filter and the name of a class

that extends php_user_filter. Table 9.8 lists the methods you may include in

the given class. If you do not implement a method, PHP uses the method in the

parent.

Filters that change data character-by-character are easy to implement,

probably needing only read and write methods. Filters that change the length

of the data going in and out most likely require a buffer.

Table 9.8. Stream Protocol Filter Methods

Method Parameters Returns

flush boolean

closing

An integer containing the number of bytes flushed.

PHP calls this method when the stream executes a buffer flush. The closing

argument tells you whether or not the stream is in the process of closing. If

you implement this method, be sure to call parent::flush($closing) at the

end of your method.

onclose None Nothing

PHP calls this method when it shuts down the filter. It will call flush first.

oncreateNone Nothing

PHP calls this method when the filter is registered.

read integer

maximum

A string of the read bytes, the length not to exceed the

given maximum.

PHP calls this method when it reads from the stream. It should first get data

by calling parent::read($maximum). The maximum argument sets maximum

number of bytes to return.

Method Parameters Returns

write string data An integer telling the number of bytes in the data.

PHP calls this method when the stream writes data. The data argument holds

data to be written to the resource. After manipulating the data, call

parent::write($data) to pass it along to the next filter or the wrapper.

Returns the number of bytes in the data passed in, not the number of bytes in

the output.

Listing 9.40 stream_register_filter

<?php

 //define filter

 class caseChanger extends php_user_filter

 {

 function read($maximum)

 {

 //get data from stream

 $data = parent::read($maximum);

 //change to uppercase

 $data = ucwords($data);

 //return data

 return($data);

 }

 }

 //register filter

 stream_register_filter("corephp.cc", "caseChanger");

 //open stream

 $fp = fopen("/tmp/test.txt", "rb");

 //attach filter to the stream

 stream_filter_append($fp, "corephp.cc");

 //read contents

 $data = "";

 while(!feof($fp))

 {

 $data .= fgets($fp, 255);

 }

 //close stream

 fclose($fp);

 //show contents

 print($data);

?>

boolean stream_register_wrapper(string protocol, string
class)

The stream_register_wrapper function (Listing 9.41) allows you to implement

a wrapper for a stream protocol. The second argument is the name of a class

that implements a certain set of methods, described below. You may not

override an existing stream protocol wrapper. Table 9.9 lists the methods

expected in the given class.

Table 9.9. Stream Protocol Wrapper Methods

Method Parameter Returns

stream_closeNone Nothing

This method closes the stream and is called by fclose.

stream_eof None TRUE if end-of-file

reached, FALSE

otherwise.

This method wraps calls to feof.

stream_flushNone TRUE if the buffer

flushes successfully,

FALSE otherwise.

This method wraps calls to fflush.

stream_open string path The URL used in the fopen

call.

string mode The mode used in the fopen

call.

integer options Additional flags set by

the call. If the STREAM_USE_PATH bit is set,

the path is relative. If the STREAM_

REPORT_ERRORS is set, you must raise

errors yourself with trigger_error.

string opened_path This parameter is a

reference to a string in which you should

place the full path to the opened resource.

TRUE if the resource

opens successfully,

FALSE if the open

fails.

This method opens the stream and is called immediately after code uses your

wrapper in a URL.

stream_read integer count The maximum number of

bytes to return.

A string of the read

bytes, the length not

to exceed the given

count. FALSE if no

bytes remain.

This method returns a string of data read from the resource. You must not

return more bytes than requested by the count argument. This method must

also update its internal position counter to match the number of bytes

returned.

Method Parameter Returns

stream_seek integer offset The number of bytes to

move the pointer, positive or negative.

TRUE if the move

completes

successfully, FALSE

otherwise.

 integer from An integer describing a

relative starting point for the offset, as

discussed in the fseek description.

This method wraps the fseek function.

stream_tell None An integer count of

the current position

within the resource.

This method wraps the ftell function.

stream_writestring data The data to be written to the

resource.

An integer telling the

number of bytes

written.

This method writes the given data to the resource. Returns the actual number

of bytes written. This method must also update its internal position counter to

match the number of bytes written.

Listing 9.41 stream_register_wrapper

<?php

 class MemoryStream

 {

 var $filename;

 var $filedata;

 var $position;

 function stream_open($path, $mode, $options, &$opened_path)

 {

 //break URL into parts

 $url = parse_url($path);

 //set the filename

 $this->filename = $url["host"];

 //just for kicks we'll set the opened path

 $opened_path = $this->filename;

 //start at zero

 $this->position = 0;

 //copy variable from global scope

 $this->filedata =

 $GLOBALS['MemoryStream'][$this->filename];

 //open was successful

 return(TRUE);

 }

 function stream_read($count)

 {

 //get data

 $data = substr($this->filedata, $this->position,

 $count);

 //move the pointer forward

 $this->position += strlen($data);

 return($data);

 }

 function stream_write($data)

 {

 //start writing at the current position, leaving

 //existing data if it stretches beyond the given data

 $this->filedata =

 substr($this->filedata, 0, $this->position) .

 $data .

 substr($this->filedata, $this->position

 + strlen($data));

 $this->position += strlen($data);

 return(strlen($data));

 }

 function stream_tell()

 {

 return($this->position);

 }

 function stream_eof()

 {

 return($this->position >= strlen($this->filedata));

 }

 function stream_flush()

 {

 //copy the entire set of data over

 //what's there globally

 $GLOBALS['MemoryStream'][$this->filename] =

 $this->filedata;

 return(TRUE);

 }

 function stream_close()

 {

 $this->stream_flush();

 return(TRUE);

 }

 function stream_seek($offset, $from)

 {

 switch($from)

 {

 case SEEK_SET:

 $position = $offset;

 break;

 case SEEK_CUR:

 $position += $offset;

 break;

 case SEEK_END:

 $position = strlen($this->filedata) + $offset;

 break;

 default:

 return false;

 }

 //check for impossible positions

 if(($position < 0) OR ($position >=

 strlen($this->filedata)))

 {

 return(FALSE);

 }

 $this->position = $position;

 return(TRUE);

 }

 }

 $GLOBALS['MemoryStream']['test.txt'] = 'test test test test';

 //register the new RAM Disk wrapper

 if(!stream_register_wrapper('ram', 'MemoryStream'))

 {

 print('Could not register RAM Disk wrapper.');

 exit;

 }

 //open file in RAM disk

 if(!($fp = fopen('ram://test.txt', 'r+')))

 {

 print('Could not open file.');

 exit;

 }

 //write three lines

 fwrite($fp, "test 1\n");

 fwrite($fp, "test 2\n");

 fwrite($fp, "test 3\n");

 //move pointer back to beginning

 rewind($fp);

 //read the contents

 while(!feof($fp))

 {

 print(fgets($fp) . '
');

 }

 //close

 fclose($fp);

?>

integer stream_select(array read, array write, array
exception, integer timeout_seconds, integer
timeout_microseconds)

The stream_select function waits for changes to streams. PHP watches the

streams given in the read array for new data coming in. PHP watches the

streams given in the write array for being ready to accept more data. PHP

watches the streams given in the exception argument for errors. If the

number of seconds specified in the timeout_seconds argument passes, the

function returns. Use the optional timeout_microseconds argument to specify

a timeout less than 1 second.

The stream_select function returns the number of streams that changed or

FALSE if an error occurred. If the call timed out, this function returns zero. It

also modifies the given arrays so that they only include those streams that

changed. If you have no streams of a particular type to watch, you may pass

an empty array or a variable set to NULL.

boolean stream_set_blocking(resource file, boolean mode)

The stream_set_blocking function sets whether a stream blocks. If mode is

TRUE, reads and writes to the stream will wait until the resource is available. If

mode is FALSE, the call will return immediately.

boolean stream_set_timeout(resource file, integer seconds,
integer microseconds)

The stream_set_timeout function (Listing 9.42) sets the time the PHP will wait

for an operation on a stream to complete.

Listing 9.42 stream_set_timeout

<?php

 //open connection to

 if(!$fp = fsockopen("localhost", 80))

 {

 exit();

 }

 //wait for 500 microseconds

 stream_set_timeout($fp, 0, 500);

 //send request for home page

 fputs($fp, "GET / HTTP/1.0\r\n\r\n");

 //attempt to read the first 1K

 print(fread($fp, 1024));

 fclose($fp);

?>

integer stream_set_write_buffer(resource file, integer size)

Use stream_set_write_buffer (Listing 9.43) to set the size of the write buffer

on a file stream. It requires a valid file handle as created by fopen, fsockopen,

or popen. The size argument is a number of bytes, and if you set a buffer size

of zero, no buffering will be used. You may only set the buffer size before

making any reads or writes to the file stream. By default, file streams start

with 8K buffers.

Listing 9.43 stream_set_write_buffer

<?php

 // make sure the open was successful

 if(!($fp = fopen("/tmp/data.txt","w")))

 {

 print("file could not be opened");

 exit;

 }

 //use unbuffered writes

 stream_set_write_buffer($fp, 0);

 for($index=0; $index<10; $index++)

 {

 // write a line to the file

 fwrite($fp, "line $index\n");

 }

 // close the file

 fclose($fp);

?>

boolean symlink(string source, string destination)

The symlink function (Listing 9.44) creates a symbolic link to the source

argument with the name in the destination argument. To create a hard link,

use the link function.

Listing 9.44 symlink

<?php

 //link moredata.txt to existing file data.txt

 if(symlink("data.txt", "moredata.txt"))

 {

 print("Symbolic link created");

 }

 else

 {

 print("Symbolic link not created");

 }

?>

string tempnam(string path, string prefix)

The tempnam function creates a new file in the path given. The name of the file

will be prefixed with the prefix argument. The implementation is different for

each operating system. On Linux, six characters will be added to the filename

to make it unique. The file is set to read/write mode for all users. The name of

the file is returned.

integer tmpfile()

The tmpfile function (Listing 9.45) opens a new temporary file and returns its

file handle. This handle may be used in the same way as one returned by

fopen using an update mode. When you close the file or your script ends, the

file will be removed. This function is a wrapper for the C function of the same

name. If for some reason a temporary file cannot be created, FALSE is

returned.

Listing 9.45 tmpfile

<?php

 //open a temporary file

 $fp = tmpfile();

 //write 10K of random data

 //to simulate some process

 for($i=0; $i<10240; $i++)

 {

 //randomly choose a letter

 //from a range of printables

 fputs($fp, chr(rand(ord(' '), ord('z'))));

 }

 //return to start of file

 rewind($fp);

 //dump and close file,

 //therefore deleting it

 fpassthru($fp);

?>

boolean touch(string filename, integer time, integer atime)

The touch function (Listing 9.46) attempts to set the time the file was last

modified to the given time, expressed in seconds since January 1, 1970. If the

time argument is omitted, the current time is used. If the atime argument is

present, the access time will be set with the given time. If the file does not

exist, it will be created with zero length. This function is often used to create

empty files.

To find out when a file was last modified, use filemtime. To find out when a

file was last accessed, use fileatime.

Listing 9.46 touch

<?php

 touch("data.txt");

?>

integer umask(integer umask)

The umask function (Listing 9.47) returns the default permissions given files

when they are created. If the optional umask argument is given, it sets the

umask to a logical-AND (&) performed on the given integer and 0777. Under

Windows this function does nothing and returns FALSE. To find out the

permissions set on a particular file, use fileperms.

Listing 9.47 umask

<?php

 printf("umask is %o", umask(0444));

?>

boolean unlink(string filename)

The unlink function (Listing 9.48) removes a file permanently. To remove a

directory, use rmdir.

Listing 9.48 unlink

<?php

 if(unlink("data2.txt"))

 {

 print("data2.txt deleted");

 }

 else

 {

 print("data2.txt could not be deleted");

 }

?>

vfprintf(resource file, string format, array values)

The vfprintf function operates similarly to fprintf except that values for

format codes are passed in an array.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

9.2 Compressed File Functions

The functions in this section use one of two compression libraries:

zlib or bzip2. The zlib library is the same used by GNU compression

tools, such as gzip, written by Jean-loup Gaill and Mark Adler. You

can obtain more information and the library itself from the zlib home

page <http://www.cdrom.com/pub/infozip/zlib/>. The bzip2 library

was written by Julian Seward and powers the bzip2 command-line

utility. You can read more about it on the bzip2 home page

<http://sources.redhat.com/bzip2/>.

Most of the functions for reading and writing files are duplicated here,

and they operate similarly. One difference is the lack of support for

specifying files using HTTP or FTP protocol.

Functions that compress and decompress strings, which also rely on

these two libraries, are described in Chapter 12.

boolean bzclose(resource file)

This function closes a stream opened with bzopen.

integer bzerrno(resource file)

This function returns the error number of the last error for the given

stream opened with bzopen.

array bzerror(resource file)

The bzerror function returns an array with two elements describing

the last error for the given stream opened with bzopen. The errno

element contains the error number and the errstr element contains

the error description.

string bzerrstr(resource file)

This function returns the error description of the last error for the

given stream opened with bzopen.

boolean bzflush(resource file)

The bzflush function flushes the contents of the write buffer for a

stream opened with bzopen.

resource bzopen(string filename, string mode)

http://www.cdrom.com/pub/infozip/zlib/default.htm
http://sources.redhat.com/bzip2/default.htm

The bzopen function opens a stream to a file compressed with the

bzip2 library. The mode argument follows the same specification used

by fopen, listed in Table 9.4. A resource handle to the stream is

returned, or is FALSE on error.

string bzread(resource file, integer length)

The bzread function reads from a compressed file opened with

bzopen. The optional length argument sets a maximum string length

returned. The default length is 1024 characters.

integer bzwrite(resource file, string data, integer
length)

The bzwrite function (Listing 9.49) writes a string into a file handle

opened by bzopen. The optional length argument limits the string

written to a certain length prior to compression.

Listing 9.49 bzwrite

<?php

 $filename = '/tmp/test.bz2';

 //open file

 if(!($bz = bzopen($filename, 'w')))

 {

 print('Could not open file.');

 exit();

 }

 //write some text

 for($n=0; $n < 10; $n++)

 {

 bzwrite($bz, "Test Line $n\n");

 }

 //close file

 bzclose($bz);

 //open again in read mode

 if(!($bz = bzopen($filename, 'r')))

 {

 print('Could not open file.');

 exit();

 }

 //print each line

 while(!feof($bz))

 {

 print(nl2br(bzread($bz)));

 }

 //close file

 bzclose($bz);

?>

boolean gzclose(resource file)

The gzclose function closes a file opened with gzopen. TRUE is

returned if the file closed successfully. FALSE is returned if the file

cannot be closed.

boolean gzeof(resource file)

As you read from a compressed file, PHP keeps a pointer to the last

place in the file you read. The gzeof function returns TRUE if you are

at the end of the file.

array gzfile(string filename, boolean
use_include_path)

The gzfile function (Listing 9.50) reads an entire file into an array.

The file is first uncompressed. Each line of the file is a separate

element of the array, starting at zero. The optional

use_include_path argument causes gzfile to search for the file

within the include path specified in php.ini.

Listing 9.50 gzfile

<?php

 // open file and print each line

 foreach(gzfile("data.gz") as $line)

 {

 print("$line
\n");

 }

?>

string gzgetc(resource file)

The gzgetc function (Listing 9.51) returns a single character from a

compressed file. It expects a file handle as returned by gzopen.

Listing 9.51 gzgetc

<?php

 // open compressed file and print each character

 if($gz = gzopen("data.gz", "r"))

 {

 while(!gzeof($gz))

 {

 print(gzgetc($gz));

 }

 gzclose($gz);

 }

?>

string gzgets(resource file, integer length)

The gzgets function (Listing 9.52) returns a string it reads from a

compressed file specified by the file handle, which must have been

created with gzopen. It will attempt to read as many characters as

specified by the length argument less one (presumably this is PHP

showing its C heritage). A linebreak is treated as a stopping point, as

is the end of the file. Linebreaks are included in the return string.

Listing 9.52 gzgets

<?php

 // open file and print each line

 if($gz = gzopen("data.gz", "r"))

 {

 while(!gzeof($gz))

 {

 print(gzgets($gz, 255));

 }

 gzclose($gz);

 }

?>

string gzgetss(resource file, integer length, string
ignore)

The gzgetss function (Listing 9.53) is in all respects identical to

gzgets except that it attempts to strip any HTML or PHP code before

returning a string. The optional ignore argument may contain tags to

be ignored.

Listing 9.53 gzgetss

<?php

 // open file and print each line

 if($gz = gzopen("data.gz", "r"))

 {

 while(!gzeof($gz))

 {

 print(gzgetss($gz, 255));

 }

 gzclose($gz);

 }

?>

integer gzopen(string filename, string mode,
boolean use_include_path)

The gzopen function is similar in operation to the fopen function

except that it operates on compressed files. If the use_include_path

argument is TRUE, the include path specified in php.ini will be

searched.

The mode argument accepts a few extra parameters compared to

fopen. In addition to the modes listed in Table 9.4, you may specify a

compression level and a compression strategy if you are creating a

new file. Immediately following the write mode, you may place an

integer between zero and nine that specifies the level of compression.

Zero means no compression, and nine is maximum compression.

After the compression level, you may use h to force Huffman

encoding only, or f to optimize for filtered input. Filtered data is

defined by the zlib source code as being small values of somewhat

random distribution. In almost all cases the default settings are a

good choice and the extra mode settings are unnecessary.

It is possible to open an uncompressed file with gzopen. Reads from

the file will operate as expected. This can be convenient if you do not

know ahead of time whether a file is compressed.

boolean gzpassthru(resource file)

The gzpassthru function (Listing 9.54) prints the contents of the

compressed file to the browser exactly like the fpassthru function

does.

Listing 9.54 gzpassthru

<?php

 // open a compressed file

 if(!($myFile = gzopen("data.html.gz", "r")))

 {

 print("file could not be opened");

 exit;

 }

 // send the entire file to browser

 gzpassthru($myFile);

?>

boolean gzputs(resource file, string output, integer
length)

The gzputs function (Listing 9.55) writes data to a compressed file. It

expects a file handle as returned by gzopen. It returns the number of

bytes written if the write was successful, FALSE if it failed. The

optional length argument specifies a maximum number of input

bytes to accept. A side effect of specifying length is that the

magic_quotes_runtime configuration setting will be ignored.

Listing 9.55 gzputs

<?php

 // open file for writing

 // use maximum compress and force

 // Huffman encoding only

 if(!($gz = gzopen("data.gz","wb9h")))

 {

 print("file could not be opened");

 exit;

 }

 for($index=0; $index<10; $index++)

 {

 // write a line to the file

 gzputs($gz, "line $index\n");

 }

 // close the file

 gzclose($gz);

?>

gzread

The gzread function is an alias to gzgets.

boolean gzrewind(resource file)

The gzrewind function moves PHP’s internal file pointer back to the

beginning of a compressed file. It returns TRUE on success, FALSE if

there is an error.

integer gzseek(resource file, integer offset)

This function works exactly like fseek except that it operates on

compressed files.

integer gztell(resource file)

Given a valid file handle, gztell returns the offset of PHP’s internal

file pointer.

gzwrite

The gzwrite function is an alias to gzputs.

integer readgzfile(string filename, boolean
use_include_path)

The readgzfile function (Listing 9.56) operates identically to the

readfile function except that it expects the file to be compressed.

The file is uncompressed on the fly and sent directly to the browser.

Listing 9.56 readgzfile

<?php

 //dump uncompressed contents of

 //data.gz to browser

 readgzfile("data.gz");

?>

9.3 Direct I/O

PHP supports lower level I/O than provided by the functions

discussed earlier in this chapter. The file handles used by these

functions are incompatible with those functions. Using Direct I/O for

regular files is not interesting in most cases because the higher level

functions are more convenient. Direct I/O becomes interesting when

you wish to write to devices such as terminals, parallel ports, and

serial ports. Keep in mind permission issues. Under normal

circumstances, your Web server should not have permission to write

directly to a serial port, for instance.

Sterling Hughes created the Direct I/O extension.

dio_close(resource file)

The dio_close function closes an open file handle.

resource dio_fcntl(resource file, integer command,
integer additional_args)

The dio_fcntl function performs miscellaneous operations on an

open file handle. The return value and expected type of the optional

additional_args argument are determined by the command chosen

from Table 9.10. Table 9.11 contains the elements that may appear in

additional_args.

Table 9.10. dio_fcntl Commands

Command Description

F_DUPFD Find the lowest-numbered file descriptor greater than the

one specified by additional_args, make it a copy of the

given file handle, and return it.

F_GETLK Get the status of a lock. An associate array is returned.

F_SETFL Set the flags for file handle. Specify O_APPEND,

O_NONBLOCK, or O_ASYNC.

F_SETLK Attempt to set or clear the lock on the file. If another

process holds the lock, -1 is returned.

F_SETLKW Attempt to set or clear the lock on the file. If another

process holds the lock, wait until it gives it up.

Table 9.11. dio_fcntl Argument Elements

Key Description

lengthSize of locked area. Set to 0 to go to the end of the file.

start Starting offset.

type Lock type. Valid values are F_RDLCK, F_WRLCK, and F_UNLCK.

wenth Meaning of starting offset. Valid values are SEEK_SET,

SEEK_END, and SEEK_CUR.

resource dio_open(string filename, integer flags,
integer mode)

The dio_open function (Listing 9.57) opens a file and returns a file

handle. The flags argument must include one of flags from Table

9.12. Optionally, you may combine these flags with any of those

listed in Table 9.13 using the bitwise-OR operator (|). The optional

mode argument sets the permissions for the file, as defined by chmod.

Listing 9.57 dio_open

<?php

 //open file for appending, in synchronous mode

 $fp = dio_open('/tmp/data.txt',

 O_WRONLY | O_CREAT | O_APPEND | O_SYNC,

 0666);

 if($fp == -1)

 {

 print('Unable to open file.');

 exit();

 }

 //write some random data

 for($i=0; $i < 10; $i++)

 {

 dio_write($fp, "Test: " . rand(1,100) . "\n");

 }

 //close

 dio_close($fp);

?>

Table 9.12. dio_open Required Flags

Flag Description

Flag Description

O_RDONLY Read only

O_RDWR Read/Write

O_WRONLY Write only

Table 9.13. dio_open Optional Flags

Flag Description

O_APPEND Open in append mode.

O_CREAT Create the file if it doesn’t exist.

O_EXCL Cause dio_open to fail if O_CREAT is set and the file

exists.

O_NDELAY Alias for O_NONBLOCK.

O_NOCTTY If the filename is a terminal device, it will not become

the processes controlling terminal.

O_NONBLOCKStart in nonblocking mode.

O_SYNC Start in synchronous mode, which causes writes to block

until data is written to the hardware.

O_TRUNC If file exists and opened for write access, PHP truncates

it to zero length.

string dio_read(resource file, integer length)

The dio_read function (Listing 9.58) returns a string read from an

open file handle created by dio_open. The optional length argument

specifies the number of bytes read. It defaults to 1024.

Listing 9.58 dio_read

<?php

 //open /dev/random for reading

 $fp = dio_open('/dev/random', O_RDONLY);

 if($fp == -1)

 {

 print('Unable to open /dev/random');

 exit();

 }

 //read 4 bytes

 $data = dio_read($fp, 4);

 //covert raw binary into an integer

 $n = 0;

 for($i=0; $i < 4; $i++)

 {

 //get integer for this byte

 $p = ord(substr($data, $i, 1));

 //multiply it by the next power of 256

 $n += $p * pow(256, $i);

 }

 //print random number

 print($n);

 //close

 dio_close($fp);

?>

dio_seek(resource file, integer position, integer
from)

The dio_seek function moves the file pointer to the given position.

The optional from argument may be SEEK_SET, SEEK_CUR, or

SEEK_END, as described in relation to the fseek function.

array dio_stat(resource file)

The dio_stat function returns an associative array that matches the

data returned by the stat function. It requires a file handle created

by dio_open.

dio_tcsetattr(resource file, array options)

Use dio_tcsetattr to set terminal attributes for a file handle created

with dio_open. Table 9.14 describes the options array.

Table 9.14. dio_tcsetattr Options Array Elements

Key Description

baud Set the baud rate. Valid values are 38400, 19200, 9600, 4800,

2400, 1800, 1200, 600, 300, 200, 150, 134, 110, 75, and 50.

The default is 9600 baud.

Key Description

bits Set the number of data bits. Valid values are 8, 7, 6, and 5.

The default is 8 data bits.

paritySet the number of parity bits. Valid values are 0, 1, and 2.

The default is 0.

stop Set the number of stop bits. Valid values are 1 and 2. The

default is 1.

boolean dio_truncate(resource file, integer length)

The dio_truncate function truncates a file to the given length. If the

file is shorter than the given length, it is left to the operating system

to decide if the file is left alone or padded with NULL characters.

integer dio_write(resource file, string data, integer
length)

The dio_write function writes the given data into an open file. If the

optional length argument is set, it sets a maximum number of bytes

written.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

9.4 Debugging

The debugging functions help you figure out just what is going on with the

inevitable broken script. Some of these functions make diagnostic

information available to you inside your script. Others communicate with

either a system log or a remote debugger. Practical approaches to

debugging are addressed in Chapter 28.

assert(boolean expression)
 assert(string expression)

The assert function (Listing 9.59) tests an expression. If the assertion is

TRUE, no action is taken and the script continues. If the assertion is FALSE,

behavior is dictated by the assertion options. By default, assertions are not

active, which means they are simply ignored. Use assert_options to

activate them.

Assertions are a nice way to add error checking to your code, especially

paranoid checks that are useful during development but unneeded during

production.

If the expression given assert is a string, PHP will evaluate it as it does

with eval. This has the advantage of saving the time spent parsing the

expression when assertions are turned off. It also has the advantage of

making the expression available to a registered callback function.

Listing 9.59 assert

<?php

 //create custom assertion function

 function failedAssertion($file, $line, $expression)

 {

 print("On line $line, in file '$file' ");

 print("the following assertion failed:

 '$expression'
\n");

 }

 //turn on asserts

 assert_options(ASSERT_ACTIVE, TRUE);

 //bail on assertion failure

 assert_options(ASSERT_CALLBACK, "failedAssertion");

 //assert a false expression

 assert("1 == 2");

?>

value assert_options(integer flag, value)

Use assert_options to get and set assert flags. Table 9.15 lists the flags

and their meanings. The previous value is returned. Most of the options

expect a boolean because they are either on or off. The exception is the

option for setting the callback function. This option expects the name of a

function to be called when an assertion fails. This function will be called

with three arguments: the filename, the line number, and the expression

that evaluated as FALSE.

If you wish to register a class method for the callback, pass an array with

two elements. The first is the name of the class, the second is the name of

the method. To register that method of an object, pass a reference to the

object as the first element.

Table 9.15 describes the options you can set with assert.

Table 9.15. Assert Options

Flag Description

ASSERT_ACTIVE Asserts are ignored unless activated with this option.

ASSERT_BAIL Exits the script if assertion fails. FALSE by default.

ASSERT_CALLBACK Registers a function to be called on failure. No function

is registered by default.

ASSERT_QUIET_EVALPrints the expression passed to assert. FALSE by

default.

ASSERT_WARNING Prints a regular PHP warning message. TRUE by

default.

boolean class_exists(string name)

The class_exists function (Listing 9.60) checks for the existence of a

class.

Listing 9.60 class_exists

<?php

 class Counter

 {

 private $value;

 function Counter()

 {

 $this->value = 0;

 }

 function getValue()

 {

 return($this->value);

 }

 function increment()

 {

 $this->value++;

 }

 }

 if(!class_exists('counter'))

 {

 print('The counter class does not exist!');

 exit();

 }

 $c = new Counter;

 $c->increment();

 $c->increment();

 print($c->getValue());

?>

closelog()

The closelog function closes any connection to the system log. Calling it is

optional, as PHP will close the connection for you when necessary. See

syslog for an example of use.

boolean connection_aborted()

Use connection_aborted (Listing 9.61) to test if a request for your script

was aborted. The user may do this by clicking the stop button on the

browser or closing the browser completely. Ordinarily, your script will stop

executing when aborted. However, you may change this behavior with the

ignore_user_abort function. You can also set abort handling using

commands in php.ini or with an Apache directive. PHP can detect an abort

only after it tries to send data to the browser.

Listing 9.61 connection_aborted

<?php

 //allow script continuation if aborted

 ignore_user_abort(TRUE);

 //fake a long task

 for($i=0; $i < 20; $i++)

 {

 print('Working...
');

 sleep(1);

 }

 //check for abort

 if(connection_aborted())

 {

 //write to log that the process was aborted

 openlog("TEST", LOG_PID | LOG_CONS, LOG_USER);

 syslog(LOG_INFO, "The fake task has been aborted!");

 closelog();

 }

 else

 {

 print("Thanks for waiting!\n");

 }

?>

integer connection_status()

The connection_status function (Listing 9.62) returns an integer

describing the status of the connection to the browser. The integer uses

bitfields to signal whether a connection was aborted or timed out. That is,

binary digits are flipped on to signal either of the conditions. The first bit

signals whether the script aborted. The second signals whether the script

reached its maximum execution time. Rather than using 1 or 2, you can

use the convenient constants CONNECTION_ABORTED and

CONNECTION_TIMEOUT. There’s also a constant named CONNECTION_NORMAL,

which is set to zero, meaning no bitfields are turned on.

Listing 9.62 connection_status

<?php

 function cleanUp()

 {

 $status = connection_status();

 $statusMessage = date("Y-m-d H:i:s");

 $statusMessage .= " Status was $status. ";

 if($status & CONNECTION_ABORTED)

 {

 $statusMessage .= "The script was aborted. ";

 }

 if($status & CONNECTION_TIMEOUT)

 {

 $statusMessage .= "The script timed out. ";

 }

 $statusMessage .= "\n";

 //write status to log file

 error_log($statusMessage, 3, "/tmp/status.log");

 return(TRUE);

 }

 //set cleanUp to the shutdown function

 register_shutdown_function("cleanUp");

 set_time_limit(3);

 //wait out the max execution time

 while(TRUE)

 {

 for($i=1; $i < 80; $i++)

 {

 print('x');

 }

 print('
');

 }

 print("Fake task finished.\n");

?>

array debug_backtrace()

The debug_backtrace function (Listing 9.63) returns an array describing

the call stack. Each element of the array is an array describing the calling

function. The following elements are present in each array: file, line,

function, and args. Class methods will also contain class and type

elements, the latter being with :: or -> depending on whether the method

executed statically or from an object respectively.

Listing 9.63 debug_backtrace

<?php

 function A()

 {

 print_r(debug_backtrace());

 }

 class B

 {

 function testB()

 {

 A();

 }

 }

 class C

 {

 function testC()

 {

 B::testB();

 }

 }

 $c = new C;

 $c->testC();

 B::testB();

?>

debug_print_backtrace()

The debug_print_backtrace function prints call stack information rather

than returning an array as debug_backtrace does.

string debug_zval_dump(…)

The debug_zval_dump function (Listing 9.64) returns a string describing the

internal Zend value of each argument. The arguments may be variables or

literals. The description gives the type, the length for strings, the value,

and the reference count.

Listing 9.64 debug_zval_dump

<?php

 //string(24) "/usr/local/apache/htdocs" refcount(2)

 debug_zval_dump($_SERVER["DOCUMENT_ROOT"]);

?>

boolean error_log(string message, integer type, string
destination, string extra_headers)

The error_log function (Listing 9.65) sends an error message to one of

four places depending on the type argument. The values for the type

argument are listed in Table 9.16. An alternative to error_log is the

syslog function.

Listing 9.65 error_log

<?php

 //send log message via email to root

 error_log("The error_log is working", 1, "root", "");

?>

Table 9.16. error_log Message Types

Type Description

0 Depending on the error_log configuration directive, the message is

sent either to the system log or to a file.

1 The message is sent by email to the address specified by the

destination argument. If the extra_headers argument is not empty,

it is sent as headers to the email.

Type Description

3 The message is appended to the file specified by the destination

argument.

boolean extension_loaded(string extension)

Use extension_loaded (Listing 9.66) to test for the presence of an

extension.

Listing 9.66 extension_loaded

<?php

 if(extension_loaded("mysql"))

 {

 print("mysql extension loaded");

 }

 else

 {

 print("mysql extension not loaded");

 }

?>

boolean function_exists(string function)

Use function_exists (Listing 9.67) to test that a function is available,

either natively or defined previously by PHP code. Note that it’s possible for

a function to exist and not be callable. You may wish to use is_callable

instead.

Listing 9.67 function_exists

<?php

 $function = "date";

 if(function_exists($function))

 {

 print($function . " exists");

 }

?>

object get_browser(string user_agent)

The get_browser function (Listing 9.68) works with the browscap.ini

(browser capabilities) file to report the capabilities of a browser. The

user_agent argument is the text a browser identifies itself with during an

HTTP transaction. If you leave out this argument, PHP uses the user-agent

request header. The argument is matched against all the browsers in the

browscap.ini file. When a match occurs, each of the capabilities becomes

a property in the object returned.

The location of the browscap.ini file is specified in php.ini using the

browscap directive. If the directive is not used, or PHP can’t match a

browser to an entry in your browscap.ini file, no error will be produced.

However, the returned object will have no properties.

Microsoft provides a browscap.ini file for use with its Web server, but it is

not freely distributable. The best alternative is Gary Keith’s Browser

Capabilities Project <http://www.garykeith.com/>.

Listing 9.68 get_browser

<?php

 $browser = get_browser();

 print("You are using " . $browser->browser . "
\n");

 if($browser->javascript)

 {

 print("Your browser supports JavaScript.
\n");

 }

?>

string get_cfg_var(string variable)

The get_cfg_var function (Listing 9.69) returns the value of the specified

configuration variable. These are the variables specified in php.ini or in

Apache’s configuration files. You can get a report on all configuration

information by calling the phpinfo function.

Listing 9.69 get_cfg_var

<?php

 print("Scripts are allowed to run " .

 get_cfg_var("max_execution_time") .

 " seconds");

?>

string get_current_user()

The get_current_user function (Listing 9.70) returns the name of the user

who owns the script being executed.

Listing 9.70 get_current_user

<?php

 print(get_current_user());

?>

http://www.garykeith.com/default.htm

string getcwd()

The getcwd function (Listing 9.71) returns the name of the current working

directory, including the full path.

Listing 9.71 getcwd

<?php

 print(getcwd());

?>

array get_declared_classes()

The get_declared_classes function (Listing 9.72) returns an array of

classes created by PHP, by extensions, or by your script.

Listing 9.72 get_declared_classes, get_defined_constants,

get_defined_functions, get_defined_vars

<?php

 print("Classes\n");

 print_r(get_declared_classes());

 print("Constants\n");

 print_r(get_defined_constants());

 print("Functions\n");

 print_r(get_defined_functions());

 print("Variables\n");

 print_r(get_defined_vars());

?>

array get_defined_constants()

The get_defined_constants function returns an array of all defined

constants.

array get_defined_functions()

The get_defined_functions function returns an array of available

functions. The returned array contains two arrays indexed as internal and

user.

array get_defined_vars()

The get_defined_vars function returns an array of variables in the current

scope.

array get_extension_funcs(string extension)

Use get_extension_funcs to get an array of the names of functions

created by an extension.

string get_include_path()

The get_include_path function returns the current include path.

array get_included_files()

The get_included_files function returns a list of files executed by PHP via

include, include_once, require, and require_once. The currently

executing file is included too.

array get_loaded_extensions()

The get_loaded_extensions function returns an array of the names of the

extensions available. This includes extensions compiled into PHP or loaded

with dl. Another way to see this list is with phpinfo.

integer getmygid()

Use getmygid to get the group ID of the owner of the executing script.

array getopt(string options)

The getopt function (Listing 9.73) evaluates options passed to the PHP

script on the command line. It uses the C function of the same name. At

the time of writing, it only handled single-character options.

Pass a string of valid options for which you wish to check. Following the

option with a colon requires the option to provide a value. Following the

option with two colons makes a qualifying value optional. You may use

letters and numbers for options.

The returned array uses the options for keys, which point to passed values

if they exist. Options named more than once become arrays of values in the

returned array.

Listing 9.73 getopt

<?php

 $option = getopt("a::");

 if(isset($option['a']))

 {

 print("Option a activated\n");

 if(is_array($option['a']))

 {

 print(count($option['a']) . " values:\n");

 foreach($option['a'] as $o)

 {

 if($o)

 {

 print(" Value: $o\n");

 }

 else

 {

 print(" No value\n");

 }

 }

 }

 elseif($option['a'])

 {

 print("Value: {$option['a']}\n");

 }

 else

 {

 print("No value\n");

 }

 }

?>

get_required_files

This is an alias to get_included_files.

array get_html_translation_table(integer table, integer
quote_style)

Use get_html_translation_table (Listing 9.74) to get the table used by

htmlentities and htmlspecialchars. Both arguments are optional. The

table argument may be set to HTML_ENTITIES or HTML_SPECIALCHARS but

defaults to the latter. The quote_style argument may be ENT_COMPAT,

ENT_QUOTES, or ENT_NOQUOTES. It defaults to ENT_COMPAT.

Listing 9.74 get_html_translation_table

<?php

 $trans = get_html_translation_table(HTML_ENTITIES);

 var_dump($trans);

?>

integer get_magic_quotes_gpc()

The get_magic_quotes_gpc function (Listing 9.75) returns the

magic_quotes_gpc directive setting, which controls whether quotes are

escaped automatically in user-submitted data.

Listing 9.75 get_magic_quotes_gpc

<?php

 if(get_magic_quotes_gpc() == 1)

 {

 print("magic_quotes_gpc is on");

 }

 else

 {

 print("magic_quotes_gpc is off");

 }

?>

integer get_magic_quotes_runtime()

The get_magic_quotes_runtime function (Listing 9.76) returns the

magic_quotes_runtime directive setting, which controls whether quotes

are escaped automatically in data retrieved from databases. You can use

set_magic_quotes_runtime to change its value.

Listing 9.76 get_magic_quotes_runtime

<?php

 if(get_magic_quotes_runtime() == 1)

 {

 print("magic_quotes_runtime is on");

 }

 else

 {

 print("magic_quotes_runtime is off");

 }

?>

integer getlastmod()

The getlastmod function (Listing 9.77) returns the date the executing

script was last modified. The date is returned as a number of seconds since

January 1, 1970. This is the same as calling filemtime on the current file.

Listing 9.77 getlastmod

<?php

 printf("This script was last modified %s",

 date("m/d/y", getlastmod()));

?>

integer getmyinode()

The getmyinode function (Listing 9.78) returns the inode of the executing

script. Under Windows zero is always returned. You can get the inode of

any file using fileinode.

Listing 9.78 getmyinode

<?php

 print(getmyinode());

?>

integer getmypid()

The getmypid function (Listing 9.79) returns the process identifier of the

PHP engine.

Listing 9.79 getmypid

<?php

 print(getmypid());

?>

integer getmyuid()

The getmyuid function (Listing 9.80) returns the user identifier of the

owner of the script.

Listing 9.80 getmyuid

<?php

 print(getmyuid());

?>

array getrusage(integer children)

The getrusage function (Listing 9.81) is a wrapper for the C function of the

same name. It reports information about the resources used by the calling

process. If the children argument is 1, the function will be called with the

RUSAGE_CHILDREN constant. You may wish to read the man page for more

information.

Listing 9.81 getrusage

<?php

 //show CPU time used

 $rusage = getrusage(1);

 print($rusage["ru_utime.tv_sec"] . " seconds used.");

?>

boolean headers_sent(string file, integer line)

The headers_sent function (Listing 9.82) returns TRUE if HTTP headers

have been sent. Headers must precede any content, so executing a print

statement or placing text outside PHP tags will cause headers to be sent.

Attempting to add headers to the stack after they’re sent causes an error.

The optional file and line arguments will receive the name of the file and

the line number where headers were sent.

Listing 9.82 headers_sent

<?php

 if(headers_sent($file, $line))

 {

 print("Headers were sent in $file on line $line
\n");

 }

 else

 {

 header("X-Debug: It's OK to send a header");

 }

?>

string highlight_file(string filename, boolean
return_instead)

The highlight_file function (Listing 9.83) prints a PHP script directly to

the browser using syntax highlighting. HTML is used to emphasize parts of

the PHP language in order to aid readability. If the optional

return_instead argument is TRUE, PHP returns the HTML instead of

printing it.

Listing 9.83 highlight_file

<?php

 //highlight this file

 highlight_file(__FILE__);

?>

string highlight_string(string code, boolean
return_instead)

The highlight_string function (Listing 9.84) prints a string of PHP code

to the browser using syntax highlighting. If the optional return_instead

argument is TRUE, PHP returns the HTML instead of printing it.

Listing 9.84 highlight_string

<?php

 //create some code

 $code = "<?php print(\"a string\"); ?>";

 //highlight sample code

 $source = highlight_string($code, TRUE);

 //show the HTML PHP uses to highlight code

 print(htmlentities($source));

?>

array iconv_get_encoding(string type)

The iconv_get_encoding function returns the encoding types in use. The

type argument may be all, input_encoding, internal_encoding, or

output_encoding. If you set type to all, PHP returns an array with keys

matching the three encoding types. If you fetch a single encoding type, PHP

returns a string.

You may set iconv encodings with iconv_set_encoding. You may translate

text with the iconv function or with the ob_iconv_handler output buffer

handler.

boolean is_callable(string function, boolean syntax,
string name)

 boolean is_callable(array method, boolean syntax, string
name)

Use is_callable (Listing 9.85) to test whether a function or object method

is available for execution. You may pass a function name as a string or a

two-element array that names an object method. The first element of the

array must be the name of a class or an instance of the class. The second

element must be a string containing the name of the method.

The optional syntax argument suppresses any checking for the function. In

this mode, PHP checks on the syntax of the first argument only. The

optional third argument receives the name of the function or method being

tested. This is helpful when you want to report to the user about the

function not being available.

Listing 9.85 is_callable

<?php

 //Call function if it's available

 function callIfPossible($f, $arg=FALSE)

 {

 //if no arguments, use empty array

 if($arg === FALSE)

 {

 $arg = array();

 }

 if(is_callable($f, FALSE, $callName))

 {

 call_user_func_array($f, $arg);

 }

 else

 {

 print("Unable to call $callName
");

 }

 }

 //functions for testing

 function a()

 {

 print('function a
');

 }

 class c

 {

 function m()

 {

 print('method m
');

 }

 }

 //built-in function

 callIfPossible('print_r', array('print_r
'));

 //not technically a function

 callIfPossible('print', array('print
'));

 //user function

 callIfPossible('a');

 //non-existent

 callIfPossible('b');

 //method from a class

 callIfPossible(array('c', 'm'));

 //non-existent

 callIfPossible(array('d', 'm'));

 //method from an object

 $C = new c;

 callIfPossible(array($C, 'm'));

 //non-existent

 callIfPossible(array($C, 'x'));

?>

boolean leak(integer bytes)

The leak function (Listing 9.86) purposely leaks memory. It is useful

mostly for testing the garbage-collecting routines of PHP itself. You might

also use it to simulate lots of memory usage if you are stress testing.

Listing 9.86 leak

<?php

 //leak 8 megs

 leak(8388608);

?>

array localeconv()

The localeconv function returns an array describing the formatting

performed by the current locale. It wraps the C function of the same name,

so reading the man page may be helpful. You can change these by using

setlocale. Table 9.17 lists the elements of the return array.

Table 9.17. localeconv Return Elements

Name Description

currency_symbol Currency symbol, such as $.

decimal_point Character used to for the decimal point, such as a

period.

frac_digits Number of fractional digits.

grouping Array of numeric groupings.

int_curr_symbol International currency symbol, such as USD.

int_frac_digits Number of fractional digits.

Name Description

mon_decimal_pointDecimal point character used in monetary figures.

mon_grouping Array of numeric groupings used in monetary figures.

mon_thousands_sepCharacter used to separate groups of thousands in

monetary figures.

n_cs_precedes Boolean for whether the currency symbol precedes a

negative sign.

n_sep_by_space Boolean for whether a space is inserted between a

negative sign and a currency symbol.

n_sign_posn 0 Parentheses surround the quantity and currency

symbol.

1 Negative sign precedes the quantity and currency

symbol.

2 Negative sign succeeds the quantity and currency

symbol.

3 Negative sign immediately precedes the currency

symbol.

4 Negative sign immediately succeeds the currency

symbol.

negative_sign Character used to denote a negative value, such as -.

p_cs_precedes Boolean for whether the currency symbol precedes a

positive sign.

p_sep_by_space Boolean for whether a space is inserted between a

positive sign and a currency symbol.

p_sign_posn 0 Parentheses surround the quantity and currency

symbol.

1 Positive sign precedes the quantity and currency

symbol.

2 Positive sign succeeds the quantity and currency

symbol.

3 Positive sign immediately precedes the currency

symbol.

4 Positive sign immediately succeeds the currency

symbol.

positive_sign Character used to denote a positive value, such as +.

thousands_sep Character used to separate groups of thousands, such

as a comma.

string nl_langinfo(integer code)

The nl_langinfo function wraps the C function of the same name and

offers more flexible access to the same information provided by

localeconv. Reading the man page for nl_langinfo may be helpful. The

codes in Table 9.18 are defined as constants.

Table 9.18. nl_langinfo Codes

Code Description

ABDAY_[1-

7]

The abbreviated name of the day of the week, where DAY_1 is

Sunday.

ABMON_[1-

12]

The abbreviated name of the month, where MON_1 is January.

CODESET The name of the character encoding used.

CRNCYSTR The currency symbol, preceded by - if the symbol should appear

before the value, + if the symbol should appear after the value,

or . if the symbol should replace the radix character.

DAY_[1-7] The name of the day of the week, where DAY_1 is Sunday.

D_FMT A string suitable for passing to strftime to represent a date.

D_T_FMT A string suitable for passing to strftime to represent a date

and time.

MON_[1-

12]

The name of the month, where MON_1 is January.

NOEXPR A regular expression that represents a negative response to a

yes/no question.

RADIXCHAR The radix character, the character that separates whole numbers

from decimal digits.

THOUSEP The character used to separate thousands.

T_FMT A string suitable for passing to strftime to represent a time.

YESEXPR A regular expression that represents a positive response to a

yes/no question.

openlog(string identifier, integer option, integer facility)

The openlog function begins a connection to the system log and calls C’s

openlog function. It is not strictly required to call openlog before using

syslog, but it may be used to change the behavior of the syslog function.

You may wish to refer to the man page for openlog for more details. On

Windows emulation code is used to mimic UNIX functionality.

The identifier argument will be added to the beginning of any messages

sent to the system log. Usually, this is the name of the process or task

being performed.

The option argument is a bitfield that controls toggling of miscellaneous

options. Use a logical-OR operator to combine the options you want. Table

9.19 lists the values available. Only the LOG_PID option has no effect under

Windows.

Table 9.19. openlog Options

Constant Description

LOG_CONS If a message can’t be sent to the log, send it to the system

console.

LOG_NDELAYOpen the log immediately. Do not wait for first call to syslog.

LOG_NOWAITDo not wait for child processes. The use of this flag is

discouraged.

LOG_ODELAYDelay opening log until the first call to syslog. This is TRUE by

default.

LOG_PERRORLog all messages to stderr as well.

LOG_PID Add process identifier to each message.

The facility argument sets a default value for the source of the

error�that is, from which part of the system the report comes. The

argument is ignored under Windows. Table 9.20 lists the facilities available.

See syslog for an example of use.

Table 9.20. openlog Facilities

Constant Facility

LOG_AUTH Authorization

LOG_AUTHPRIV Authorization Privileges

LOG_CRON Cron

LOG_DAEMON Daemon

LOG_KERN Kernel

LOG_LPR Printer

LOG_MAIL Mail

Constant Facility

LOG_NEWS News

LOG_SYSLOG System Log

LOG_USER User

LOG_UUCP UNIX to UNIX Protocol

phpcredits(integer flags)

The phpcredits function prints information about the major contributors to

the PHP project. If the optional flags argument is left out, all information

will be provided. Otherwise, you may combine the flags listed in Table 9.21

to choose a specific set of information. The PHP_FULL_PAGE constant will

cause the credits to be surrounded with tags for defining an HTML

document.

You can also see this information by adding ?=PHPB8B5F2A0-3C92-11d3-

A3A9-4C7B08C10000 to a request for a PHP script. This is similar to the

technique described below for fetching the PHP or Zend logos.

Table 9.21. Flags for phpcredits

Flag Description

CREDITS_ALL Print all credits and include HTML tags for creating a

complete HTML document.

CREDITS_DOCS Documentation team.

CREDITS_FULLPAGE Include HTML tags for creating a complete HTML

document.

CREDITS_GENERAL General credits.

CREDITS_GROUP Core developers.

CREDITS_MODULES Module authors.

CREDITS_SAPI Server API module authors.

boolean phpinfo(integer flags)

The phpinfo function sends a large amount of diagnostic information to the

browser and returns TRUE. The flags argument is not required. By default,

all information is returned. You may use the flags listed in Table 9.22 with

bitwise-OR operators to choose specific information.

Table 9.22. Flags for phpinfo

Flag Description

INFO_CONFIGURATIONConfiguration settings from php.ini and for the

current script.

INFO_CREDITS Credits as returned by phpcredits.

INFO_ENVIRONMENT Environment variables.

INFO_GENERAL Description of server, build date, line used to

configure PHP for compilation, Server API, virtual

directory support, path to php.ini, PHP API ID,

extension ID, Zend Engine ID, debug build, thread

safety, list of registered streams.

INFO_LICENSE The PHP license.

INFO_MODULES Extensions available.

INFO_VARIABLES Predefined variables.

Calling phpinfo is a good way to find out which environment variables are

available to you.

string php_ini_scanned_files()

The php_ini_scanned_files function returns a comma-separated list of

configuration files parsed after php.ini. These are found in a path as

defined by the —with-config-file-scan-dir option to PHP’s configure

script, which is used prior to compilation.

string php_logo_guid()

The php_logo_guid function (Listing 9.87) returns a special code that when

passed to a PHP script returns the PHP logo in GIF format. This is the logo

shown on the page generated by phpinfo.

Listing 9.87 php_logo_guid

<?php

 //show PHP logo

 print('<img src="' . $_SERVER["PHP_SELF"] . '?=' .

 php_logo_guid() . '">');

 //show Zend log

 print('<img src="' . $_SERVER["PHP_SELF"] . '?=' .

 zend_logo_guid() . '">');

?>

string php_sapi_name()

The php_sapi_name function returns the name of the Server API module

used for the request.

string php_uname()

Use php_uname to get information about the server that compiled PHP. This

is the same information shown by the phpinfo function.

string phpversion()

The phpversion function returns a string that describes the version of PHP

executing the script.

print_r(expression, boolean value)

The print_r function (Listing 9.88) prints the value of an expression. If the

expression is a string, integer, or double, the simple representation of it is

sent to the browser. If the expression is an object or array, special notation

is used to show indices or property names. Arrays and objects are explored

recursively. After showing an array, print_r will leave the internal pointer

at the end of the array.

The formatting used by print_r is intended to be more readable than

var_dump, which performs a similar function. It is usually helpful to use

print_r inside PRE tags.

Listing 9.88 print_r

<?php

 //define some test variables

 $s = "an example string";

 $a = array("x", "y", "z", array(1, 2, 3));

 print('<pre>');

 //print a string

 print("\$s: ");

 print_r($s);

 print("\n");

 //print an array

 print("\$a: ");

 print_r($a);

 print("\n");

 print('</pre>');

?>

register_tick_function(string function, …)

Use register_tick_function to execute a function with each PHP

operation. You must supply the name of a function and then execute a

block of code inside a declare statement that sets the ticks value.

Optionally, you may supply any number of additional arguments, which PHP

passes to the callback function. See Chapter 3 for a discussion of the

declare statement.

This function offers a way to profile code. You can log the time on the

microsecond clock to test how long each operation takes to execute. Keep

in mind that many lines of code represent several operations.

Use unregister_tick_function to unregister a tick function.

show_source

Use show_source as an alias to highlight_file.

syslog(integer priority, string message)

The syslog function (Listing 9.89) adds a message to the system log. It is

a wrapper for C’s function of the same name. The priority is an integer

that stands for how severe the situation is. Under UNIX the priority may

cause the system to take special measures. Priorities are listed in Table

9.23.

Table 9.23. syslog Priorities

Constant Priority Description

LOG_EMERG Emergency This is a panic situation, and the message may be

broadcast to all users of the system. On Windows

this is translated to a warning.

LOG_ALERT Alert This is a situation that demands being corrected

immediately. It is translated into being an error

on Windows.

LOG_CRIT Critical This is a critical condition that may be created by

hardware errors. It is translated into being a

warning on Windows.

LOG_ERR Error These are general error conditions. They are

translated into warnings on Windows.

LOG_WARNINGWarning These are warnings, less severe than errors.

Constant Priority Description

LOG_NOTICE Notice A notice is not an error but requires more

attention than an informational message. It is

translated into a warning on Windows.

LOG_INFO Information Informational messages do not require that any

special action be taken.

LOG_DEBUG Debug These messages are of interest only for

debugging tasks. They are translated into

warnings.

Under Windows emulation code is used to simulate the UNIX functionality.

Messages generated by the syslog function are added to the application

log, which may be viewed with Event Viewer. The priority is used in two

ways. First, it is translated into being an error, a warning, or information.

This determines the icon that appears next to the message in Event Viewer.

It is also used to fill the Category column. The Event column will always be

set to 2000, and the User column will be set to null.

Listing 9.89 syslog

<?php

 openlog("Core PHP", LOG_PID | LOG_CONS, LOG_USER);

 syslog(LOG_INFO, "The log has been tested");

 closelog();

?>

trigger_error(string message, integer type)

Use trigger_error to cause PHP to report an error through its error-

handling functionality. The first argument is the message displayed. The

second argument is optional and may be set to E_USER_ERROR,

E_USER_WARNING, or E_USER_NOTICE, which is the default.

user_error

You may use user_error as an alias to trigger_error.

var_dump(expression, …)

The var_dump function (Listing 9.90) reports all information about a given

variable. Information is printed directly to the browser. You may supply any

number of variables separated by commas. The output of the command is

well formatted, including indention for cases such as arrays containing

other arrays. Arrays and objects are explored recursively.

The output of var_dump is more verbose but perhaps less readable than

that of print_r.

Listing 9.90 var_dump

<?php

 //define some test variables

 $s = "an example string";

 $a = array("x", "y", "z", array(1, 2, 3));

 print('<pre>');

 //print a string

 print("\$s: ");

 var_dump($s);

 print("\n");

 //print an array

 print("\$a: ");

 var_dump($a);

 print("\n");

 print('</pre>');

?>

string var_export(expression, boolean return)

The var_export function prints the PHP code for representing the given

expression. If the optional return argument is TRUE, the string is returned

instead. This function does not return usable information about objects.

Compare this function to var_dump.

integer version_compare(string version1, string
version2, string operator)

The version_compare function (Listing 9.91) compares two PHP version

strings. Without the optional third argument, it returns -1, 0, or 1,

depending on version1 being less-than, equal-to, or greater-than

version2. If you supply one of the operators shown in Table 9.24,

version_compare returns TRUE or FALSE.

Listing 9.91 version_compare

<?php

 if(version_compare(PHP_VERSION, '5.0.10', '<'))

 {

 print('PHP version ' . PHP_VERSION . ' is too old.');

 }

 else

 {

 print('PHP version ' . PHP_VERSION . ' is new enough.');

 }

?>

Table 9.24. version_compare Operators

Operator Description

<, lt Less than

<=, le Less than or equal to

>, gt Greater than

>=, ge Greater than or equal to

==, =, eq Equal to

!=, <>, ne Not equal to

unregister_tick_function(string name)

Use unregister_tick_function to unregister a tick function. See

register_tick_function.

string zend_logo_guid()

The zend_logo_guid function returns a special code that when passed to a

PHP script returns the Zend logo in GIF format. This is the logo shown on

the page generated by phpinfo.

string zend_version()

Use zend_version (Listing 9.92) to get the version of the Zend library.

Listing 9.92 zend_version

<?php

 print(zend_version());

?>

string zlib_get_coding_type()

The zlib_get_coding_type function returns the name of the encoding type

used for output compression.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

9.5 POSIX

Kristian Koehntopp added a module to PHP to support the POSIX.1 standard,

also known as IEEE 1003.1. This standard describes functionality provided to

user processes by an operating system. A few functions in this section are

not part of the standard, but are commonly available in System V or BSD

UNIX systems.

Many of these functions are available only to the root user. PHP scripts are

executed by the owner of the Web server process, which is usually a special

user for just this purpose. Running the Web server as root is unusual and

dangerous. Anyone able to view a PHP file through the Web server could

have arbitrary control over the system. Keep in mind, however, that PHP can

be compiled as a standalone executable. In this case it can be used like any

other scripting engine.

These functions are wrappers for underlying C functions, usually named by

the part after the posix_ prefix. If you require detailed information, I

suggest reading the man pages.

Listing 9.93 demonstrates many of the POSIX functions.

Listing 9.93 Posix functions

<?php

 print("Terminal Path Name: " . posix_ctermid() . "\n");

 print("Current Working Directory: " . posix_getcwd() . "\n");

 print("Effective Group ID: " . posix_getegid() . "\n");

 print("Effective User ID: " . posix_geteuid() . "\n");

 print("Group ID: " . posix_getgid() . "\n");

 $groupInfo = posix_getgrgid(posix_getgid());

 print("Group Name: " . $groupInfo['name'] . "\n");

 print("Supplementary Group IDs:" .

 implode(',', posix_getgroups()) . "\n");

 print("Login: " . posix_getlogin() . "\n");

 print("Process Group ID: " .

 posix_getpgid(posix_getpid()) . "\n");

 print("Current Process Group ID: " . posix_getpgrp() . "\n");

 print("Current Process ID: " . posix_getpid() . "\n");

 print("Parent Process ID: " . posix_getppid() . "\n");

 print("User Info (posix_getlogin): ");

 print_r(posix_getpwnam(posix_getlogin()));

 print("User Info (): ");

 print_r(posix_getpwuid(posix_geteuid()));

 print("Resource Limits: ");

 print_r(posix_getrlimit());

 print("SID: " . posix_getsid(posix_getpid()) . "\n");

 print("Real User ID: " . posix_getuid() . "\n");

 print("System Information: ");

 print_r(posix_uname());

?>

string posix_ctermid()

The posix_ctermid function returns the terminal path name.

integer posix_errno()

This function returns the last error created by a POSIX function.

string posix_getcwd()

The posix_getcwd function returns the current working directory.

integer posix_getegid()

The posix_getegid function returns the effective group ID of the calling

process.

integer posix_geteuid()

The posix_geteuid function returns the effective user ID for the process

running the PHP engine.

integer posix_getgid()

The posix_getgid function returns the ID of the current group.

array posix_getgrgid(integer group)

The posix_getgrgid function returns an array describing access to the

group database given the group number. The elements of the returned array

are gid, members, name, and an entry of each member of the group.

array posix_getgrnam(string group)

The posix_getgrnam function returns an array describing access to the

group database given the group name. The elements of the returned array

are gid, members, name, and an entry of each member of the group.

array posix_getgroups()

The posix_getgroups function returns supplementary group IDs.

string posix_getlogin()

Use posix_getlogin to get the login name of the user executing the PHP

engine.

integer posix_getpgid(integer pid)

The posix_getpgid function returns the group ID for the given process ID.

integer posix_getpgrp()

The posix_getpgrp function returns the current process group ID.

integer posix_getpid()

The posix_getpid function returns the process ID.

integer posix_getppid()

The posix_getppid function returns the process ID of the parent process.

array posix_getpwnam(string user)

The posix_getpwnam function returns an array describing an entry in the

user database. The elements of the array are dir, gecos, gid, name, passwd,

shell, and uid.

array posix_getpwuid(integer user)

The posix_getpwuid function returns an array describing an entry in the

user database based on a given user ID. The elements of the array are dir,

gecos, gid, name, passwd, shell, and uid. These are the same elements

returned by posix_getpwnam.

array posix_getrlimit()

The posix_getrlimit function returns an array describing system resource

usage. The array contains elements that begin with hard or soft followed by

a space and one of the following limit names: core, cpu, data, filesize,

maxproc, memlock, openfiles, rss, stack, totalmem, or virtualmem.

integer posix_getsid()

The posix_getsid function returns the process group ID of the session

leader.

integer posix_getuid()

The posix_getuid function returns the user ID of the user executing the

PHP engine.

boolean posix_isatty(integer descriptor)

The posix_isatty function returns TRUE if the given file descriptor is a TTY.

boolean posix_kill(integer process, integer signal)

The posix_kill function sends a signal to a process.

boolean posix_mkfifo(string path, integer mode)

The posix_mkfifo function creates a FIFO file. The mode argument follows

the same rules as chmod.

boolean posix_setegid(integer group)

Use posix_setegid to change the effective group for the current process.

Only the root user may switch groups.

boolean posix_seteuid(integer user)

Use posix_seteuid to change the effective user for the current process.

Only the root user may change the user ID.

boolean posix_setgid(integer group)

Use posix_setgid to change the group for the current process. Only the

root user may switch groups.

integer posix_setpgid(integer process, integer group)

The posix_setpgid function puts the process into a process group.

integer posix_setsid()

The posix_setsid function sets the current process as the session leader.

The session ID is returned.

boolean posix_setuid(integer user)

Use posix_setuid to change the user for the current process. Only the root

user may change the user ID.

string posix_strerror()

This function returns the description of the last error generated by a POSIX

function.

array posix_times()

The posix_times function returns an array of values on system clocks. The

elements of the array are cstime, cutime, stime, ticks, and utime. Table

9.25 describes these elements. Typically, there are 1 million ticks in a

second.

Table 9.25. Array Returned by posix_times

Element Description

cstime The number of ticks spent by the operating system while executing

child processes.

cutime The number of ticks used by child processes.

stime The number of ticks used by the operating system on behalf of the

calling process.

ticks The number of ticks since the system last rebooted.

utime The number of ticks used by the CPU while executing user

instructions.

string posix_ttyname(integer descriptor)

The posix_ttyname function returns the name of the terminal device.

array posix_uname()

The posix_uname function returns an array of information about the system.

The elements of the array are machine, nodename, release, sysname, and

version.

9.6 Shell Commands

This section describes functions that interact with the command shell

in some way. Some of them execute other programs, and two of

them read or write to environment variables.

string exec(string command, array output, integer
return)

The exec function (Listing 9.94) attempts to execute the command

argument as if you had typed it in the command shell. PHP sends

nothing to the browser but returns the last line of output from the

execution. If you supply the optional output argument, PHP adds

each line of output to the output argument. If you supply the

optional return argument, PHP sets it with the command’s return

value.

It is very dangerous to put any user-supplied information inside the

command argument. Users may pass values in form fields that allow

them to execute their own commands on your Web server. If you

must execute a command based on user input, pass the information

through the escapeshellcmd function.

Compare this function to passthru, shell_exec, and system.

Listing 9.94 exec

<?php

 // get directory list for the root of C drive

 $lastLine = exec("ls -l /", $allOutput, $returnValue);

 print("Last Line: $lastLine
\n");

 print("All Output:
\n");

 foreach($allOutput as $line)

 {

 print("$line
\n");

 }

 print("
\n");

 print("Return Value: $returnValue
\n");

?>

string getenv(string variable)

The getenv function (Listing 9.95) returns the value of the given

environment variable, or FALSE if there is an error. PHP places all

environment variables into the _ENV array, so this function is useful

only in those rare instances when environment variables change after

a script begins executing. If you need to set the value of an

environment variable, use putenv.

Listing 9.95 getenv

<?php

 print(getenv("PATH"));

?>

string passthru(string command, integer return)

The passthru function is similar to exec and system. The command

argument is executed as if you typed it in a command shell. If you

provide the optional return argument, it will be set with the return

value of the command. All output will be returned by the passthru

function and sent to the browser. The output will be sent as binary

data. This is useful in situations where you need to execute a shell

command that creates some binary file, such as an image.

It is very dangerous to put any user-supplied information inside the

command argument. Users may pass values in form fields that allow

them to execute their own commands on your Web server. If you

must allow this, pass the information through the escapeshellcmd

function first.

Compare this function to exec, shell_exec, and system.

integer proc_close(resource process)

Use proc_close to close a process opened with proc_open. It returns

the value returned by the underlying file closure, which is usually 0

when the close completes successfully and 1 when an error occurs.

array proc_get_status(resource process)

The proc_get_status function returns an array of information about

the status of an open process. Table 9.26 describes the elements of

this array.

Table 9.26. Process Status Array

Element Description

command The name of the command executing.

exitcode The return code of the command if it finishes normally.

Element Description

pid The process identifier.

running TRUE if still running.

signaled TRUE if terminated due to an uncaught signal.

stopped TRUE if stopped.

stopsig Signal number if stopped.

termsig Signal number if terminated due to an uncaught signal.

boolean proc_nice(integer level)

The proc_nice function sets the priority of the current process.

Unless the PHP script executes as the superuser, it may only decrease

priority.

resource proc_open(string command, array
descriptor, array pipe)

The proc_open function (Listing 9.96) offers a powerful way to

execute commands in the shell and manage input and output

streams. The command argument is executed as if you typed it in the

command shell.

The descriptor array instructs PHP where to send output for

corresponding standard I/O. The keys to this array are valid file

descriptor numbers. Keep in mind that all UNIX processes start with

three standard file descriptors: 0 for stdin, 1 for stdout, and 2 for

sterr. It is possible to use other file descriptor numbers for

interprocess communication.

The values of the descriptor array should be a file handle created

by fopen or an array describing a new stream PHP creates for you.

The first element of this array is a string signifying type, pipe or

file. If opening a pipe, supply a second argument to denote mode.

If opening a file, supply a path and then a mode. Modes are the same

as used by fopen and are shown in Table 9.4. Keep in mind that the

modes are given from the perspective of the process. Therefore,

opening a pipe with mode r will be for the process to read from,

which means your script will write to it.

The pipe argument receives an array of open file handles. Use these

handles exactly as if you had opened them with fopen or popen.

When you finish with the process, be sure to close the open file

handles, then close the process.

Listing 9.96 proc_open

<?php

 $descriptor = array(

 //process input (stdin)

 0=>array("pipe", "r"),

 //process output (stdout)

 1=>array("pipe", "w"),

 //error message sent to temporary file (stderr)

 2=>array("file", uniqid("/tmp/errors"), "w")

);

 //Execute CLI PHP

 if(!($process = proc_open("php", $descriptor, $pipe)))

 {

 print("Couldn't start process!");

 exit();

 }

 //Send PHP a short script

 $script =

 "<?php\n" .

 "print('Core PHP
');\n" .

 "trigger_error('Testing stderr');\n" .

 "?>";

 fwrite($pipe[0], $script);

 //finished writing to pipe, so close it

 fclose($pipe[0]);

 //read output

 while(!feof($pipe[1]))

 {

 //send to browser

 print(fread($pipe[1], 128));

 }

 //close output pipe

 fclose($pipe[1]);

 //close process

 proc_close($process);

?>

integer proc_terminate(resource process, integer
signal)

The proc_terminate function sends a signal to an open process. By

default, the signal is SIGTERM. On Windows this function calls the C

function TerminateProcess.

putenv(string variable)

The putenv function sets the value of an environment variable. You

must use syntax similar to that used by a command shell, as shown

in Listing 9.97. To get the value of an environment variable, use

getenv or use phpinfo to dump all environment variables.

Listing 9.97 putenv

<?php

 putenv("PATH=/local/bin;.");

?>

string shell_exec(string command)

The shell_exec function executes a command in the shell and

returns the output as a string. It is very dangerous to put any user-

supplied information inside the command argument. Users may pass

values in form fields that allow them to execute their own commands

on your Web server. If you must allow this, pass the information

through the escapeshellcmd function first.

Compare this function to exec, passthru, and system.

string system(string command, integer return)

The system function (Listing 9.98) behaves identically to C’s system

function. It executes the command argument, sends the output to the

browser, and returns the last line of output. If the return argument

is provided, it is set with the return value of the command. If you do

not wish for the output to be sent to the browser, use the exec

function.

It is very dangerous to put any user-supplied information inside the

command argument. Users may pass values in form fields that allow

them to execute their own commands on your Web server. If you

must allow this, pass the information through the escapeshellcmd

function first.

Compare this function to exec, passthru, and shell_exec.

Listing 9.98 system

<?php

 // list files in directory

 print("<pre>");

 system("ls -l");

 print("</pre>");

?>

9.7 Process Control

The process control functions wrap UNIX functions for signal handling.

They are appropriate for PHP CLI executable running on a UNIX operating

system only. Signals are beyond the scope of this text but are a common

topic in any relatively in-depth text on UNIX programming.

integer pcntl_alarm(integer seconds)

The pcntl_alarm function sets up a SIGALRM signal after the given

number of seconds. The operating system discards any previous alarm

and returns the number of seconds left on it.

boolean pcntl_exec(string path, array arguments, array
environment)

The pcntl_exec function (Listing 9.99) executes a program. Set the

optional arguments array with any number of arguments to pass on the

command line. Set the environment argument with an associative array of

environment variable definitions.

Listing 9.99 pcntl_exec

<?php

 pcntl_exec('/bin/ls', array('-a'), array("COLUMNS"=>"40"));

?>

integer pcntl_fork()

The pcntl_fork function (Listing 9.100) creates a child process. It returns

the child’s process ID to the parent. It returns zero to the child process.

Listing 9.100 pcntl_fork

<?php

 //create child

 $pid = pcntl_fork();

 if($pid == 0)

 {

 //child process

 print(microtime() . " Child\n");

 //pretend to do some calculation

 for($i=0; $i < 10; $i++)

 {

 $x = pow($i, $i+1);

 print(microtime() . " Child working on $i\n");

 }

 exit(123);

 }

 elseif($pid > 0)

 {

 //parent process

 print(microtime() . " Parent\n");

 //wait for child

 pcntl_waitpid($pid, $status);

 if(pcntl_wifexited($status))

 {

 $retval = pcntl_wexitstatus($status);

 print(microtime() . " Parent gets $retval\n");

 }

 }

 else

 {

 print("Error: child not created!\n");

 }

?>

boolean pcntl_signal(integer signal, string handler,
boolean restart_syscalls)

The pcntl_signal function (Listing 9.101) registers a signal handler for

the given signal. Choose a signal constant from Table 9.27. You may

specify the handler by naming a function or by using a two-element array.

The element may be the name of a class or an object. The second element

should be the name of a method. You may also use SIG_IGN for the

handler to ignore the specified signal. If you use SIG_DFL for the handler,

PHP restores the default handler.

By default, PHP uses system call restarting. You may set the

restart_syscalls argument to FALSE to change this behavior.

Table 9.27. Signal Constants

SIGABRT SIGCLD SIGINT SIGPOLL SIGSTKFLT SIGTSTP SIGUSR2

SIGALRM SIGCONT SIGIO SIGPROF SIGSTOP SIGTTIN SIGVTALRM

SIGBABY SIGFPE SIGIOT SIGPWR SIGSYS SIGTTOU SIGWINCH

SIGBUS SIGHUP SIGKILL SIGQUIT SIGTERM SIGURG SIGXCPU

SIGCHLD SIGILL SIGPIPE SIGSEGV SIGTRAP SIGUSR1 SIGXFSZ

Listing 9.101 pcntl_signal

<?php

 //define handler class

 class signal

 {

 function handle($signal)

 {

 if($signal == SIGHUP)

 {

 print("Caught HUP!\n");

 }

 }

 }

 //tell PHP to look signals

 declare(ticks=1);

 //register handler

 pcntl_signal(SIGHUP, array('signal', 'handle'));

 //generate a signal

 posix_kill(posix_getpid(), SIGHUP);

?>

integer pcntl_waitpid(integer pid, integer status, integer
options)

The pcntl_waitpid function halts execution of the parent process until

the child process finishes. It returns the process ID of the terminated

child. On error, it returns -1. If you use the WNOHANG option, it may return

0 if no children exist.

If you call this function with pid less than -1, PHP waits on a child process

with a group ID that matches the absolute value of the pid argument. If

you call this function with pid equal to -1, PHP waits for any child to

terminate. If you call this function with pid equal to 0, PHP waits for any

child with the same group ID.

PHP places a status identifier in the status argument. Use this value with

any of the following functions: pcntl_wexitstatus, pcntl_wifexited,

pcntl_wifsignaled, pcntl_wifstopped, pcntl_wstopsig,

pcntl_wtermsig. This allows you to test for why the child process ended.

The options argument accepts two constants: WNOHANG and WUNTRACED.

With WNOHANG, pcntl_waitpid returns immediately if no child has expired.

With WUNTRACED, pcntl_waitpid returns for children that are stopped. You

may combine these two with a bitwise-OR.

integer pcntl_wexitstatus(integer status)

The pcntl_wexitstatus returns the exit value returned by the child

status if it finished normally.

boolean pcntl_wifexited(integer status)

This function tests the status set by pcntl_waitpid. It returns TRUE if the

child process finished normally.

boolean pcntl_wifsignaled(integer status)

This function tests the status set by pcntl_waitpid. It returns TRUE if the

child process finished due to an uncaught signal.

boolean pcntl_wifstopped(integer status)

This function tests the status set by pcntl_waitpid. It returns TRUE if the

child process is stopped.

integer pcntl_wstopsig(integer status)

This function tests the status set by pcntl_waitpid. It returns the signal

that caused the child to stop if pcntl_wifstopped returns TRUE.

boolean pcntl_wtermsig(integer status)

This function tests the status set by pcntl_waitpid. It returns the signal

that caused the child to terminate if pcntl_wifsignaled returns TRUE.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

Chapter 10. Network I/O
Topics in This Chapter

General Network I/O

Sockets

FTP

Curl

SNMP

The functions in this chapter allow you to communicate over a

network. Compared to the network protocol wrappers used by PHP’s

file functions, the functions here operate at a lower level. This allows

for greater flexibility and greater access to detail.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

10.1 General Network I/O

The functions in this section offer general and simplified access to the

Internet. Some of these functions talk to specific network services or return

information about network services.

checkdnsrr

You may use checkdnsrr as an alias to dns_check_record.

boolean dns_check_record(string host, string type)

The dns_check_record function (Listing 10.1) checks DNS records for a

host. The type argument defines the type of records for which to search.

Valid types are listed in Table 10.1. If a type is not specified,

dns_check_record checks for MX records. You may wish to read the man

page for named, the Internet domain name server daemon.

Listing 10.1 dns_check_record

<?php

 if(dns_check_record("php.net", "MX"))

 {

 print("php.net is a mail exchanger");

 }

?>

Table 10.1. DNS Record Types

Type Description

A IP address.

ANY Any records.

CNAME Canonical name.

MX Mail exchanger.

NS Name server.

SOA Start of a zone of authority.

boolean dns_get_mx(string host, array mxhost, array
weight)

The dns_get_mx function (Listing 10.2) gets mail-exchanger DNS records for

a host. Hostnames will be added to the array specified by the mxhost

argument. The optional weight array is assigned with the weight for each

host. The return value signals whether the operation was successful. Chapter

24 contains an example of using dns_get_mx to verify an email address.

Listing 10.2 dns_get_mx

<?php

 //get mail-exchanger records for netscape.com

 dns_get_mx("netscape.com", $mxrecord, $weight);

 //display results

 foreach($mxrecord as $key=>$host)

 {

 print("$host - $weight[$key]
\n");

 }

?>

array dns_get_record(string hostname, integer type,
array authoritative, array additional)

The dns_get_record function returns an array of DNS Resource Records for

the given host. Each element of the array is an associative array. Table 10.2

shows the possible elements of the returned array. The optional type

argument controls which records to return. Table 10.3 describes available

type constants. By default, PHP attempts to return records of any type,

which you may specify by setting type to DNS_ANY. Depending on operating

system, the default mode may not return all available records. The DNS_ALL

mode forces returning all records. This function is not available on Windows.

The optional authoritative argument receives an array of records for the

authoritative name server. The optional additional argument receives an

array of additional records.

Table 10.2. Array Elements Returned by dns_get_record

Element Description

class Class of record, which is always IN.

cpu IANA CPU number.

expire Expiration time in seconds.

host Hostname.

ip IPv4 address.

ipv6 IPv6 address.

Element Description

minimum-ttl Minimum time-to-live in seconds.

mname Domain name of the domain originator.

os IANA OS number.

pri Mail-exchanger priority.

refresh Suggested refresh interval.

retry Seconds to wait before a retry.

rname Email address of the administrative contact.

serial Serial number.

target Target domain.

ttl Time-to-live seconds left before refresh.

txt Descriptive text.

type Type of record.

Table 10.3. Type Constants for dns_get_record

Constant Description

DNS_A IPv4 address.

DNS_AAAA IPv6 address.

DNS_ALL Slower mode that returns all records.

DNS_ANY Default mode that shows all records, depending on operating

system.

DNS_CNAMECanonical name.

DNS_HINFOHost information.

DNS_MX Mail exchanger.

DNS_NS Name server.

DNS_PTR Reverse domain pointer.

DNS_SOA Start of authority.

DNS_TXT Descriptive text.

integer fsockopen(string hostname, integer port, integer
error_number, string error_description, double timeout)

The fsockopen function (Listing 10.3) begins a network connection as a file

stream, returning a file descriptor suitable for use by fputs, fgets, and

other file-stream functions discussed earlier in this chapter. A connection is

attempted to the hostname at the given port. The hostname may also be a

numerical IP address. The hostname may also be the path to a UNIX domain

socket, in which case port should be set to 0. Some operating systems,

specifically Windows, don’t support UNIX domain sockets.

You may prefix host names with several qualifiers to change the protocol

used for connections. Adding udp:// will open a UDP connection. Adding

ssl:// or tls:// will open an SSL or a TLS connection respectively, but only

if PHP uses the OpenSSL extension.

If an error occurs, FALSE is returned and the optional error_number and

error_description arguments are set. If the error number returned is zero,

an error occurred before PHP tried to connect. This may indicate a problem

initializing the socket.

The optional timeout argument will set the number of seconds PHP will wait

for a connection to be established. You may specify fractions of a second as

well if you wish. If you need to set a timeout for reads and writes, use

stream_set_timeout. You can set several other options for the connection

using the stream functions described in Chapter 9, such as setting the

blocking mode shown in Listing 10.3.

The pfsockopen adds persistence to the fsockopen functionality.

Listing 10.3 fsockopen

<?php

 //tell browser not to render this

 header("Content-type: text/plain");

 //try to connect to Web server,

 //timeout after 60 seconds

 $fp = fsockopen("www.leonatkinson.com", 80,

 $error_number, $error_description,

 60);

 if($fp)

 {

 //set nonblocking mode

 stream_set_blocking($fp, FALSE);

 // tell server we want root document

 fputs($fp, "GET / HTTP/1.0\r\n");

 fputs($fp, "\r\n");

 while(!feof($fp))

 {

 //print next 4K

 print(fgets($fp, 4096));

 }

 //close connection

 fclose($fp);

 }

 else

 {

 //$connect was false

 print("An error occurred!
\n");

 print("Number: $error_number
\n");

 print("Description: $error_description
\n");

 }

?>

string gethostbyaddr(string ip_address)

The gethostbyaddr function (Listing 10.4) returns the name of the host

specified by the numerical IP address. If the host cannot be resolved, the

address is returned.

Listing 10.4 gethostbyaddr

<?php

 print(gethostbyaddr("216.218.178.111"));

?>

string gethostbyname(string hostname)

The gethostbyname function (Listing 10.5) returns the IP address of the host

specified by its name. It is possible a domain name resolves to more than

one IP address. To get each one, use gethostbynamel.

Listing 10.5 gethostbyname

<?php

 print(gethostbyname("www.php.net"));

?>

array gethostbynamel(string hostname)

The gethostbynamel function (Listing 10.6) returns a list of IP addresses

that a given hostname resolves to.

Listing 10.6 gethostbynamel

<?php

 foreach(gethostbynamel("www.microsoft.com") as $host)

 {

 print("$host
\n");

 }

?>

getmxrr

You may use getmxrr as an alias to dns_get_mx.

integer getprotobyname(string name)

The getprotobyname function returns the number associated with a protocol.

string getprotobynumber(integer protocol)

The getprotobynumber function (Listing 10.7) returns the name of a

protocol given its number.

Listing 10.7 getprotobyname and getprotobynumber

<?php

 print("UDP is protocol " . getprotobyname('udp') . "
\n");

 print("Protocol 6 is " . getprotobynumber(6) . "
\n");

?>

integer getservbyname(string service, string protocol)

The getservbyname function (Listing 10.8) returns the port used by a

service. The protocol argument must be tcp or udp.

Listing 10.8 getservbyname and getservbyport

<?php

 //check which port ftp uses

 $port = getservbyname("ftp", "tcp");

 print("FTP uses port $port
\n");

 //check which service uses port 25

 $service = getservbyport(25, "tcp");

 print("Port 25 is $service
\n");

?>

string getservbyport(integer port, string protocol)

The getservbyport function returns the name of the service that uses a

specified port. The protocol argument must be tcp or udp.

boolean mail(string recipient, string subject, string body,
string headers, string parameters)

The mail function (Listing 10.9) sends email. Under UNIX it runs the

sendmail shell command. Under Windows it makes a connection to an SMTP

server. The mail is sent to the address specified in the recipient argument.

You may specify multiple recipients by separating them with commas. You

must also provide a subject and a message body. Optionally, you may

provide additional headers in the fourth argument. Separate each header

with a carriage return (\r) and a newline character (\n). The fifth argument

is passed to the sendmail shell command if PHP runs on UNIX. If the mail is

sent successfully, mail returns TRUE.

On Windows, Date: and From: headers are added to the message

automatically unless you supply them yourself.

There are a few directives in php.ini for configuring this function. For

Windows, you can set the name of the SMTP host using the SMTP directive,

and you can set the default From: header with the sendmail_from directive.

It’s valid to point to an SMTP server on the localhost. For UNIX, you may

specify the path to your sendmail executable, which may have an

acceptable default compiled in already. You can’t set up PHP on UNIX to send

mail directly to a remote SMTP host. You can configure sendmail to relay

messages to a specific host, but the instructions are outside the scope of this

text.

See Chapter 24 for an example that sends attachments.

Listing 10.9 mail

<?php

 //define who is to receive the mail

 //(in this case, root of the localhost)

 $mailTo = "Admin <{$_SERVER["SERVER_ADMIN"]}>";

 //set the subject

 $mailSubject = "Testing Mail";

 //build body of the message

 $mailBody = "This is a test of PHP's mail function. ";

 $mailBody .= "It was generated by PHP version ";

 $mailBody .= phpversion();

 //add a from header

 $mailHeaders = "From: PHP Script".

 "<php@{$_SERVER["SERVER_NAME"]}>\r\n";

 //send mail

 if(mail($mailTo, $mailSubject, $mailBody, $mailHeaders))

 {

 print("Mail sent successfully.");

 }

 else

 {

 print("Mail failed!");

 }

?>

integer pfsockopen(string hostname, integer port, integer
error_number, string error_description, double timeout)

The pfsockopen function operates identically to fsockopen, except that

connections are cached. Connections opened with pfsockopen are not closed

when a script terminates. They persist with the server process.

10.2 Sockets

The socket functions send information directly over the Internet Protocol.

They operate at a much lower level compared to fsockopen and streams.

Generally, they wrap C functions of the same name. If you have experience

programming for sockets in C, these functions will be familiar. A full discussion

of sockets programming is out of scope.

Use of these functions implies solving a problem that the higher level

functions can’t address. In other words, it makes little sense to use these

functions to implement functionality provided by fopen. You may find them

most useful when using PHP in a nontraditional way, such as starting an

Internet daemon from the CLI (command-line interface) version of PHP.

resource socket_accept(resource socket)

Use socket_accept to accept an incoming connection, making your script a

server. You must first create the socket, bind it to a name, and set it to listen

on a port. In blocking mode, socket_accept will return only after accepting a

connection. In nonblocking mode, it returns FALSE when no connections wait

for acceptance. Otherwise, you get a new socket resource for reading and

writing.

Listing 10.10 demonstrates a simple echo server. Start it from the CLI, and it

will wait for connections from clients on port 12345.

Listing 10.10 socket_accept

<?php

 set_time_limit(0);

 //create the socket

 if(($socket = socket_create(AF_INET, SOCK_STREAM, 0)) < 0)

 {

 print("Couldn't create socket: " .

 socket_strerror(socket_last_error()) . "\n");

 }

 //bind it to the given address and port

 if(($error = socket_bind($socket,

 gethostbyname($_SERVER['HOSTNAME']), 12345)) < 0)

 {

 print("Couldn't bind socket: " .

 socket_strerror(socket_last_error()) . "\n");

 }

 if(($error = socket_listen($socket, 5)) < 0)

 {

 print("Couldn't list on socket: " .

 socket_strerror(socket_last_error()) . "\n");

 }

 while(TRUE)

 {

 //wait for connection

 if(($accept = socket_accept($socket)) < 0)

 {

 print("Error while reading: " .

 socket_strerror($message) . "\n");

 break;

 }

 //send welcome message

 socket_write($accept, "Connection accepted\n");

 print(date('Y-m-d H:i:s') . " STATUS: Connection

 accepted\n");

 ob_flush();

 while(TRUE)

 {

 //read line from client

 if(FALSE === ($line = socket_read($accept, 1024)))

 {

 print("Couldn't read from socket: " .

 socket_strerror(socket_last_error()) . "\n");

 break 2;

 }

 if(!@socket_write($accept, "ECHO: $line"))

 {

 print(date('Y-m-d H:i:s') . " STATUS: Connection

 interrupted\n");

 break;

 }

 print(date('Y-m-d H:i:s') . " READ: $line");

 ob_flush();

 }

 socket_close($accept);

 }

?>

bool socket_bind(resource socket, string address, integer
port)

The socket_bind function binds an address to a socket resource. The socket

argument must be a resource returned by socket_create. The address must

be an IP address or a path to a UNIX socket. For Internet sockets, you must

supply a port.

socket_clear_error(resource socket)

This function clears the error on a specific socket or, when called with no

argument, for all sockets.

socket_close(resource socket)

The socket_close function closes a socket and cleans up the memory

associated with it.

boolean socket_connect(resource socket, string address,
integer port)

This function makes a client connection to a port or socket. You must supply a

socket created by socket_create. The address argument is a path to a

socket or an IP address. If the latter, you must supply a port number.

Listing 10.11 demonstrates the use of UDP sockets to fetch information about

game servers.

Listing 10.11 socket_connect

<?php

 //create UDP socket

 if(($socket = socket_create(AF_INET, SOCK_DGRAM, SOL_UDP))

 < 0)

 {

 print("Couldn't create socket: " .

 socket_strerror(socket_last_error()) . "\n");

 }

 //timeout after 5 seconds

 socket_set_option($socket, SOL_SOCKET,

 SO_RCVTIMEO, array('sec'=>5,'usec'=>0));

 //connect to the RtCW master server

 if(!socket_connect($socket, 'wolfmaster.idsoftware.com',

 27950))

 {

 print("Couldn't connect: " .

 socket_strerror(socket_last_error()) . "\n");

 }

 //send request for servers

 socket_write($socket, "\xFF\xFF\xFF\xFFgetservers\x00");

 //get servers

 $server = array();

 while(FALSE !== ($line = @socket_read($socket, 4096)))

 {

 //parse data

 for($i=22; ($i+5) < strlen($line); $i += 7)

 {

 $ip = ord(substr($line, $i+1, 1)) . '.' .

 ord(substr($line, $i+2, 1)) . '.' .

 ord(substr($line, $i+3, 1)) . '.' .

 ord(substr($line, $i+4, 1));

 $port = (ord(substr($line, $i+5, 1)) * 256) +

 ord(substr($line, $i+6, 1));

 $server[] = array('ip'=>$ip, 'port'=>$port);

 }

 }

 print("<h1>" . count($server) . " Servers</h1>\n");

 //loop over servers, getting status

 foreach($server as $s)

 {

 print("<h1>{$s['ip']}:{$s['port']}</h1>\n");

 //connect to RtCW server

 if(!socket_connect($socket, $s['ip'], $s['port']))

 {

 print("<p>\n" .

 socket_strerror(socket_last_error()) .

 "\n</p>\n");

 continue;

 }

 //send request for status

 socket_write($socket, "\xFF\xFF\xFF\xFFgetstatus\x00");

 //get status from server

 if(FALSE === ($line = @socket_read($socket, 1024)))

 {

 print("<p>\n" .

 socket_strerror(socket_last_error()) .

 "\n</p>\n");

 continue;

 }

 $part = explode("\n", $line);

 //settings are in second line separated by backslashes

 $setting = explode("\\", $part[1]);

 print("<h2>Configuration</h2>\n");

 print("<p>\n");

 for($s=1; $s < count($setting); $s += 2)

 {

 print("\t\t{$setting[$s]} = {$setting[$s+1]}
\n");

 }

 print("</p>\n");

 print("<h2>Players</h2>\n");

 $lastPlayer = count($part) - 1;

 for($p=2; $p < $lastPlayer; $p++)

 {

 $player = explode(" ", $part[$p]);

 print("{$player[2]} Score={$player[0]} " .

 "Ping={$player[1]}
\n");

 }

 print("</p>\n");

 ob_flush();

 }

 print("</table>\n");

 socket_close($socket);

?>

resource socket_create(integer family, integer
socket_type, integer protocol)

The socket_create function initializes a framework for using the rest of the

socket functions. The first argument is the protocol family, or domain. You

must use AF_INET for Internet connections or AF_UNIX for UNIX socket

connections. The second argument is the type of socket. Choose one from

Table 10.4. Ordinarily, scripts use SOCK_STREAM for TCP and SOCK_DGRAM for

UDP. The third argument specifies the protocol. Use SOL_TCP or SOL_UDP for

TCP and UDP respectively. Alternatively, you can use getprotobyname.

Table 10.4. Socket Types

Constant Description

SOCK_DGRAM Datagram socket.

SOCK_RAW Raw-protocol interface.

SOCK_RDM Reliably-delivered message.

SOCK_SEQPACKET Sequenced packet socket.

SOCK_STREAM Stream socket.

resource socket_create_listen(integer port, integer
backlog)

Use socket_create_listen as a less complicated alternative to socket_

create when you wish to create a socket for listening. The created socket will

listen on all available interfaces for the given port. The optional backlog

argument sets the maximum size of the queue for connections.

boolean socket_create_pair(integer family, integer
socket_type, integer protocol, array handles)

The socket_create_pair function (Listing 10.12) creates a pair of connected

sockets. The first three arguments follow the description of socket_create.

The handles argument is set to an array of the two socket resources. This

function wraps C’s socketpair function.

Listing 10.12 socket_create_pair

<?php

 if(!socket_create_pair(AF_UNIX, SOCK_STREAM, 0, $socket))

 {

 print("Couldn't make sockets!\n");

 exit();

 }

 $child = pcntl_fork();

 if($child == -1)

 {

 print("Couldn't fork!\n");

 exit();

 }

 elseif($child > 0)

 {

 //parent

 socket_close($socket[0]);

 print("Parent: waiting for message\n");

 $message = socket_read($socket[1], 1024, PHP_NORMAL_READ);

 print("Parent: got message--$message\n");

 socket_write($socket[1], "Hello, Child Process!\n");

 pcntl_waitpid($child, $status);

 }

 else

 {

 //child

 socket_close($socket[1]);

 socket_write($socket[0], "Hello, Parent Process!\n");

 print("Child: waiting for message\n");

 $message = socket_read($socket[0], 1024, PHP_NORMAL_READ);

 print("Child: got message--$message\n");

 exit(0);

 }

?>

value socket_get_option(resource socket, integer level,
integer option)

The socket_get_option function (Listing 10.13) returns the value of one of

the options given in Table 10.5. Additionally, you must provide a socket

handle as created by socket_create and a level. To get values at the socket

level, use SOL_SOCKET for the level argument. Otherwise, use the protocol,

such as SOL_TCP for the TCP protocol. These options may be set with

socket_set_option.

Listing 10.13 socket_get_options

<?php

 $socket = socket_create(AF_INET, SOCK_STREAM, SOL_TCP);

 print('SO_BROADCAST: ' .

 socket_get_option($socket, SOL_SOCKET,

 SO_BROADCAST) . "
\n");

 print('SO_DEBUG: ' .

 socket_get_option($socket, SOL_SOCKET,

 SO_DEBUG) . "
\n");

 print('SO_DONTROUTE: ' .

 socket_get_option($socket, SOL_SOCKET,

 SO_DONTROUTE) . "
\n");

 print('SO_ERROR: ' .

 socket_get_option($socket, SOL_SOCKET,

 SO_ERROR) . "
\n");

 print('SO_KEEPALIVE: ' .

 socket_get_option($socket, SOL_SOCKET,

 SO_KEEPALIVE) . "
\n");

 print('SO_LINGER: ' .

 print_r(socket_get_option($socket, SOL_SOCKET,

 SO_LINGER), TRUE) . "
\n");

 print('SO_OOBINLINE: ' .

 socket_get_option($socket, SOL_SOCKET,

 SO_OOBINLINE) . "
\n");

 print('SO_RCVBUF: ' .

 socket_get_option($socket, SOL_SOCKET,

 SO_RCVBUF) . "
\n");

 print('SO_RCVLOWAT: ' .

 socket_get_option($socket, SOL_SOCKET,

 SO_RCVLOWAT) . "
\n");

 print('SO_RCVTIMEO: ' .

 print_r(socket_get_option($socket, SOL_SOCKET,

 SO_RCVTIMEO), TRUE) . "
\n");

 print('SO_REUSEADDR: ' .

 socket_get_option($socket, SOL_SOCKET,

 SO_REUSEADDR) . "
\n");

 print('SO_SNDBUF: ' .

 socket_get_option($socket, SOL_SOCKET,

 SO_SNDBUF) . "
\n");

 print('SO_SNDLOWAT: ' .

 socket_get_option($socket, SOL_SOCKET,

 SO_SNDLOWAT) . "
\n");

 print('SO_SNDTIMEO: ' .

 print_r(socket_get_option($socket, SOL_SOCKET,

 SO_SNDTIMEO), TRUE) . "
\n");

 print('SO_TYPE: ' .

 socket_get_option($socket, SOL_SOCKET,

 SO_TYPE) . "
\n");

?>

Table 10.5. Socket Options

Option Description

SO_BROADCASTAllow datagram sockets to send and receive broadcast packets.

SO_DEBUG Enable socket debugging. Only root may enable this option.

SO_DONTROUTEDisallow routing packets through a gateway.

SO_ERROR Get and clear the last socket error. This option may not be set.

Option Description

SO_KEEPALIVEEnable keep-alive messages.

SO_LINGER Blocks socket_close and socket_shutdown until all queued

messages are sent or the timeout has expired. This option uses

an array with two keys: l_onoff and l_linger.

SO_OOBINLINEPlace out-of-band data directly into receive buffer.

SO_RCVBUF Limit receive buffer to a maximum number of bytes.

SO_RCVLOWAT Delay passing data to the user until receiving a minimum

number of bytes.

SO_RCVTIMEO Delay reporting a timeout error while receiving until the given

time passes. This option uses an array with two keys: sec and

usec.

SO_REUSEADDRAllow reuse of local addresses.

SO_SNDBUF Limit send buffer to a maximum number of bytes.

SO_SNDLOWAT Delay sending data to the protocol until receiving a minimum

number of bytes.

SO_SNDTIMEO Delay reporting a timeout error while sending until the given

time passes. This option uses an array with two keys: sec and

usec.

SO_TYPE Get the socket type. This option may not be set.

boolean socket_getpeername(resource socket, string
address, integer port)

Use socket_getpeername to get the address and port for the peer at the

other side of a connection. If connected via a UNIX socket, the address is set

with the path in the filesystem.

boolean socket_getsockname(resource socket, string
address, integer port)

The socket_getsockname function puts the name of the socket into the

address argument and the port number into the port argument. It returns

FALSE on failure.

boolean socket_iovec_add(resource iovector, integer
length)

The socket_iovec_add unction adds an I/O vector to the scatter/gather

array.

resource socket_iovec_alloc(integer count, …)

The socket_iovec_alloc function returns a resource for handling a collection

of I/O vectors. The first argument specifies the number of vectors. Following

arguments specify the length of each vector.

boolean socket_iovec_delete(resource iovector, integer
position)

The socket_iovec_delete function removes the I/O vector at the given

position.

string socket_iovec_fetch(resource iovector, integer
position)

The socket_iovec_fetch function returns the value of the specified vector in

the I/O vector resource.

boolean socket_iovec_free(resource iovector)

The socket_iovec_free function frees the memory used for an I/O vector

resource.

boolean socket_iovec_set(resource iovector, integer
position, string value)

The socket_iovec_set sets the value of I/O vector at the given position.

integer socket_last_error(resource socket)

The socket_last_error function returns the last error generated by a socket

function. You may set the optional socket argument with a socket resource to

get the last error for a specific connection. Table 10.6 lists the error codes

returned. You may also use socket_strerror to get a description of the error.

Use socket_clear_error to clear the error from the socket.

Table 10.6. Socket Errors

Constant Description

Constant Description

SOCKET_E2BIG Argument list too long.

SOCKET_EACCES Permission denied.

SOCKET_EADDRINUSE Address already in use.

SOCKET_EADDRNOTAVAIL Cannot assign requested address.

SOCKET_EADV Advertise error.

SOCKET_EAFNOSUPPORT Address family not supported by protocol.

SOCKET_EAGAIN Resource temporarily unavailable.

SOCKET_EALREADY Operation already in progress.

SOCKET_EBADE Invalid exchange.

SOCKET_EBADF Bad file descriptor.

SOCKET_EBADFD File descriptor in bad state.

SOCKET_EBADMSG Bad message.

SOCKET_EBADR Invalid request descriptor.

SOCKET_EBADRQC Invalid request code.

SOCKET_EBADSLT Invalid slot.

SOCKET_EBUSY Device or resource busy.

SOCKET_ECHRNG Channel number out of range.

SOCKET_ECOMM Communication error on send.

SOCKET_ECONNABORTED Software caused connection abort.

SOCKET_ECONNREFUSED Connection refused.

SOCKET_ECONNRESET Connection reset by peer.

SOCKET_EDESTADDRREQ Destination address required.

SOCKET_EDQUOT Disk quota exceeded.

SOCKET_EEXIST File exists.

SOCKET_EFAULT Bad address.

SOCKET_EHOSTDOWN Host is down.

SOCKET_EHOSTUNREACH No route to host.

Constant Description

SOCKET_EIDRM Identifier removed.

SOCKET_EINPROGRESS Operation now in progress.

SOCKET_EINTR Interrupted system call.

SOCKET_EINVAL Invalid argument.

SOCKET_EIO Input/output error.

SOCKET_EISCONN Transport endpoint is already connected.

SOCKET_EISDIR Is a directory.

SOCKET_EISNAM Is a named type file.

SOCKET_EL2HLT Level 2 halted.

SOCKET_EL2NSYNC Level 2 not synchronized.

SOCKET_EL3HLT Level 3 halted.

SOCKET_EL3RST Level 3 reset.

SOCKET_ELNRNG Link number out of range.

SOCKET_ELOOP Too many levels of symbolic links.

SOCKET_EMEDIUMTYPE Wrong medium type.

SOCKET_EMFILE Too many open files.

SOCKET_EMLINK Too many links.

SOCKET_EMSGSIZE Message too long.

SOCKET_EMULTIHOP Multihop attempted.

SOCKET_ENAMETOOLONG Filename too long.

SOCKET_ENETDOWN Network is down.

SOCKET_ENETRESET Network dropped connection on reset.

SOCKET_ENETUNREACH Network is unreachable.

SOCKET_ENFILE Too many open files in system.

SOCKET_ENOANO No anode.

SOCKET_ENOBUFS No buffer space available.

SOCKET_ENOCSI No CSI structure available.

Constant Description

SOCKET_ENODATA No data available.

SOCKET_ENODEV No such device.

SOCKET_ENOENT No such file or directory.

SOCKET_ENOLCK No locks available.

SOCKET_ENOLINK Link has been severed.

SOCKET_ENOMEDIUM No medium found.

SOCKET_ENOMEM Cannot allocate memory.

SOCKET_ENOMSG No message of desired type.

SOCKET_ENONET Machine is not on the network.

SOCKET_ENOPROTOOPT Protocol not available.

SOCKET_ENOSPC No space left on device.

SOCKET_ENOSR Out of streams resources.

SOCKET_ENOSTR Device not a stream.

SOCKET_ENOSYS Function not implemented.

SOCKET_ENOTBLK Block device required.

SOCKET_ENOTCONN Transport endpoint is not connected.

SOCKET_ENOTDIR Not a directory.

SOCKET_ENOTEMPTY Directory not empty.

SOCKET_ENOTSOCK Socket operation on non-socket.

SOCKET_ENOTTY Inappropriate ioctl for device.

SOCKET_ENOTUNIQ Name not unique on network.

SOCKET_ENXIO No such device or address.

SOCKET_EOPNOTSUPP Operation not supported.

SOCKET_EPERM Operation not permitted.

SOCKET_EPFNOSUPPORT Protocol family not supported.

SOCKET_EPIPE Broken pipe.

SOCKET_EPROTO Protocol error.

Constant Description

SOCKET_EPROTONOSUPPORT Protocol not supported.

SOCKET_EPROTOTYPE Protocol wrong type for socket.

SOCKET_EREMCHG Remote address changed.

SOCKET_EREMOTE Object is remote.

SOCKET_EREMOTEIO Remote I/O error.

SOCKET_ERESTART Interrupted system call should be restarted.

SOCKET_EROFS Read-only file system.

SOCKET_ESHUTDOWN Cannot send after transport endpoint shutdown.

SOCKET_ESOCKTNOSUPPORT Socket type not supported.

SOCKET_ESPIPE Illegal seek.

SOCKET_ESRMNT Srmount error.

SOCKET_ESTRPIPE Streams pipe error.

SOCKET_ETIME Timer expired.

SOCKET_ETIMEDOUT Connection timed out.

SOCKET_ETOOMANYREFS Too many references: Cannot splice.

SOCKET_EUNATCH Protocol driver not attached.

SOCKET_EUSERS Too many users.

SOCKET_EWOULDBLOCK Resource temporarily unavailable.

SOCKET_EXDEV Invalid cross-device link.

SOCKET_EXFULL Exchange full.

boolean socket_listen(resource socket, integer backlog)

The socket_listen function waits for a connection from a client on the given

socket. The optional backlog argument sets the size of the queue of waiting

connection requests.

string socket_read(resource socket, integer length,
integer type)

The socket_read function reads the specified number of bytes from the given

socket. It returns FALSE on error. By default, reads are binary-safe. You may

make this mode explicit by setting the optional type argument to

PHP_BINARY_READ. You may make PHP pay attention to linebreaks by setting

type to PHP_NORMAL_READ.

boolean socket_readv(resource socket, resource iovector)

The socket_readv function reads data into the iovector resource.

integer socket_recv(resource socket, string buffer, integer
length, integer flags)

The socket_recv function reads data into the given buffer. The length

argument sets the maximum number of bytes received. Set the flags

argument with MSG_OOB or MSG_PEEK. This function returns the number of

bytes read.

integer socket_recvfrom(resource socket, string buffer,
integer length, string host, integer port)

The socket_recvfrom function reads data into the given buffer. The length

argument sets the maximum number of bytes received. Set the flags

argument with MSG_OOB or MSG_PEEK. PHP sets the host and port arguments

with the appropriate values of the host sending the data.

boolean socket_recvmsg(resource socket, resource
iovector, array control, integer length, integer flags, string
host, integer port)

The socket_recvmsg function reads data from a socket into an I/O vector

resource. PHP sets the control argument to an associative array with three

elements: cmsg_level, cmsg_type, and cmsg_data. The length argument gets

the length of the ancillary data. The flags argument accepts values and

returns values. At the time of writing, PHP doesn’t implement all of the output

constants. You may wish to refer to the recvmsg man page.

PHP sets the host and port arguments with the appropriate values of the host

sending the data.

integer socket_select(array read, array write, array
exception, integer timeout_seconds, integer
timeout_microseconds)

The socket_select function waits for changes to sockets. PHP watches the

sockets given in the read array for new data coming in. PHP watches the

streams given in the write array for being ready to accept more data. PHP

watches the streams given in the exception argument for errors. If the

number of seconds specified in the timeout_seconds argument passes, the

function returns. Use the optional timeout_microseconds argument to

specify a timeout less than 1 second.

The socket_select function returns the number of sockets that changed or

FALSE if an error occurred. If the call timed out, this function returns zero. It

also modifies the given arrays so that they include only those sockets that

changed.

If you have no sockets of a particular type to watch, you may pass an empty

array or a variable set to NULL.

integer socket_send(resource socket, string buffer,
integer length, integer flags)

The socket_send function writes data in the buffer argument into the given

connection. You must specify the number of bytes from the buffer to write.

You must also set the flags argument with NULL or a combination of the

following constants: MSG_DONTROUTE and MSG_OOB. The number of bytes

written is returned. FALSE is returned on error.

boolean socket_sendmsg(resource socket, resource
iovector, integer flags, string address, integer port)

The socket_sendmsg function attempts to send data through a socket. It is

most appropriate for connectionless sockets. The iovector argument is a

resource returned by socket_iovec_alloc. You must specify flags to be

NULL, MSG_DONTROUTE, MSG_OOB, or a combination of the two constants. You

must specify the address. Internet sockets require a port.

The socket_sendmsg function returns TRUE if it sends the data, but this does

not guarantee delivery.

integer socket_sendto(resource socket, string buffer,
integer length, integer flags, string address, integer port)

The socket_sendto function attempts to send data in the buffer argument

through a socket. It is most appropriate for connectionless sockets. You must

specify flags to be NULL, MSG_DONTROUTE, MSG_OOB or a combination of the

two constants. You must specify the address. Internet sockets require a port.

The socket_sendto function returns TRUE if it sends the data, but this does

not guarantee delivery.

boolean socket_set_block(resource socket)

The socket_set_block function sets the socket into blocking mode, the

default mode. In blocking mode, I/O operations wait for requests to complete.

boolean socket_set_nonblock(resource socket)

The socket_set_nonblock function sets the socket into nonblocking mode,

the default mode. In nonblocking mode, I/O operations return immediately

even if no data can be transmitted.

boolean socket_set_option(resource socket, integer level,
integer option, integer value)

The socket_set_option function sets an option on the given socket. The

level argument should be a constant indicating the level at which the option

applies. Valid values include SOL_SOCKET, SOL_TCP and SOL_UDP. The option

argument should match one of the constants from Table 10.5.

boolean socket_shutdown(resource socket, integer how)

The socket_shutdown function shuts down a socket for I/O. Set the how

argument to 0 to stop receiving data. Set it to 1 to stop sending data. Set it

to 2 to stop both.

string socket_strerror(integer error)

The socket_strerror function returns the description of the given error

number.

integer socket_write(resource socket, string buffer,
integer length)

The socket_write function writes data in the given buffer to a socket.

Optionally, you may specify the number of bytes from the buffer to write with

the length argument. Otherwise, PHP sends the entire buffer. This function is

usually more convenient than socket_send.

boolean socket_writev(resource socket, resource
iovector)

The socket_writev function writes the given I/O vectors into a socket.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

10.3 FTP

The functions in this section allow you to make connections to FTP servers. FTP

is the File Transfer Protocol. While the file functions allow you to open and

manipulate remote files by specifying a URL instead of a local path, these

functions operate directly with the FTP protocol. They offer a greater degree of

control. They also allow you to get a list of files on the server. The FTP

functions were added to PHP by Andrew Skalski.

FTP operates in one of two modes, text or binary. In text mode, FTP attempts

to translate line endings between different systems. Originally, PHP used the

FTP_ASCII and FTP_IMAGE constants for choosing the mode. FTP_TEXT and

FTP_BINARY were added for better readability.

Several new functions allow for nonblocking FTP transfers. This allows your

script to execute code while the transfer continues in the background.

boolean ftp_cdup(resource ftp)

The ftp_cdup function changes the working directory to the parent directory of

the current working directory.

boolean ftp_chdir(resource ftp, string directory)

The ftp_chdir function moves the working directory to the specified directory.

boolean ftp_chmod(resource ftp, integer mode, string path)

The ftp_chmod function changes the permissions on a remote file.

ftp_close(resource ftp)

The ftp_close function closes an FTP connection and frees the memory

associated with it.

resource ftp_connect(string host, integer port, integer
timeout)

Use ftp_connect (Listing 10.14) to begin an FTP connection. The port

argument is optional and defaults to 21. The timeout argument is optional and

defaults to 90 seconds. This timeout applies to all FTP operations for the

connection. An FTP resource identifier will be returned if the connection is

successful; otherwise it returns FALSE. Use this resource with the rest of the

FTP commands. Once you connect, you must log in before you can issue any

commands.

Listing 10.14 ftp_connect

<?php

 //connect to server

 if(!($ftp = ftp_connect("www.leonatkinson.com")))

 {

 print("Unable to connect!
\n");

 exit();

 }

 print("Connected
\n");

 //log in

 if(!ftp_login($ftp, "anonymous", "corephp@"))

 {

 print("Unable to login!
\n");

 exit();

 }

 print("Logged in
\n");

 print("System Type: " . ftp_systype($ftp) . "
\n");

 print("Timeout: " .

 ftp_get_option($ftp, FTP_TIMEOUT_SEC) .

 " seconds
\n");

 //make sure passive mode is off

 ftp_pasv($ftp, FALSE);

 print("Working Directory: " . ftp_pwd($ftp) . "
\n");

 print("Raw List:
\n");

 foreach(ftp_rawlist($ftp, ".") as $line)

 {

 print("$line
\n");

 }

 print("
\n");

 if(!ftp_chdir($ftp, "pub/leon"))

 {

 print("Unable to go to the pub/leon directory!
\n");

 }

 print("Moved to pub/leon directory
\n");

 print("Files:
\n");

 foreach(ftp_nlist($ftp, ".") as $filename)

 {

 print("$filename
\n");

 }

 print("
\n");

 if(!ftp_cdup($ftp))

 {

 print("Failed to move up a directory!
\n");

 }

 //close connection

 ftp_close($ftp);

?>

boolean ftp_delete(resource ftp, string path)

The ftp_delete function removes a file on the remote server. The link

argument is as returned by ftp_connect. The path argument is the path on

the remote server to the file to be deleted. See ftp_put for an example of use.

boolean ftp_exec(resource ftp, string command)

The ftp_exec function executes a command on the remote server. Most

servers do not allow this functionality.

boolean ftp_fget(resource ftp, resource file, string filename,
integer mode, integer position)

The ftp_fget function (Listing 10.15) copies a remote file into an open file

stream. You must create a file resource using fopen or a similar function to

pass as the second argument. The mode argument should be set with one of

two constants: FTP_TEXT or FTP_BINARY. These are sometimes referred to as

text or binary modes. The optional position argument sets the position within

the file to begin reading, allowing for resuming interrupted transfers.

Listing 10.15 ftp_fget

<?php

 //connect to server

 if(!($ftp = ftp_connect("www.leonatkinson.com")))

 {

 print("Unable to connect!
\n");

 exit();

 }

 //log in

 if(!ftp_login($ftp, "anonymous", "corephp@"))

 {

 print("Unable to login!
\n");

 exit();

 }

 //open local file for writing

 if(!$fp = fopen("/tmp/corephp3_examples.tar.gz", "w"))

 {

 print("Unable to open file!
\n");

 exit();

 }

 //save remote file in open file stream

 if(!ftp_fget($ftp, $fp, "/pub/leon/corephp3_examples.tar.gz",

 FTP_BINARY))

 {

 print("Unable to get remote file!
\n");

 }

 print("File downloaded!
\n");

 //close local file

 fclose($fp);

 //close connection

 ftp_close($ftp);

?>

boolean ftp_fput(resource ftp, string remote, integer file,
integer mode, integer position)

The ftp_fput function (Listing 10.16) creates a file on the remote server from

the contents of an open file stream. The ftp argument is as returned by

ftp_connect. The remote argument is the path to the file to be created on the

remote server. The file argument is a file identifier as returned by fopen or a

similar function. The mode argument should be FTP_TEXT or FTP_BINARY. The

optional position argument sets the position within the file to begin writing,

allowing for resuming interrupted transfers.

Listing 10.16 ftp_fput

<?php

 //connect to server

 if(!($ftp = ftp_connect("localhost")))

 {

 print("Unable to connect!
\n");

 exit();

 }

 //log in

 if(!ftp_login($ftp, "anonymous", "corephp@"))

 {

 print("Unable to login!
\n");

 exit();

 }

 //open local file

 if(!($fp = fopen("data.txt", "r")))

 {

 print("Unable to open local file!
\n");

 exit();

 }

 //write file to remote server

 if(!ftp_fput($ftp, "/pub/data.txt", $fp, FTP_TEXT))

 {

 print("Unable to upload file!
\n");

 exit();

 }

 print("File uploaded!
\n");

 //close local file

 fclose($fp);

 //close connection

 ftp_close($ftp);

?>

boolean ftp_get(resource ftp, string local, string remote,
integer mode, integer position)

Use ftp_get (Listing 10.17) to copy a file from the remote server to the local

filesystem. The link argument is as returned by ftp_connect. The local and

remote arguments specify paths. The mode argument should use FTP_TEXT or

FTP_BINARY. The optional position argument sets the position within the file

to begin reading, allowing for resuming interrupted transfers.

Listing 10.17 ftp_get

<?php

 //connect to server

 if(!($ftp = ftp_connect("www.leonatkinson.com")))

 {

 print("Unable to connect!<br\n");

 exit();

 }

 //log in

 if(!ftp_login($ftp, "anonymous", "corephp@"))

 {

 print("Unable to login!
\n");

 exit();

 }

 //save file to tmp directory

 ftp_get($ftp,

 "/tmp/data.bin",

 "/pub/leon/corephp3_examples.tar.gz",

 FTP_BINARY);

 print("File downloaded!
\n");

 //close connection

 ftp_close($ftp);

?>

value ftp_get_option(resource ftp, integer option)

Use ftp_get_option to get one of the two options for an FTP connection. You

must supply a resource created by ftp_connect. Available options are listed in

Table 10.7.

Table 10.7. FTP Options

Option DescriptionOption Description

FTP_AUTOSEEK The autoseek functionality moves the local file pointer to the

correct position when you use the position argument of

ftp_fget, ftp_fput, ftp_get or ftp_put. This option is

enabled by default.

FTP_TIMEOUT_SEC This option defines the timeout used for FTP operations.

boolean ftp_login(resource ftp, string username, string
password)

Once you make a connection to an FTP server, you must use ftp_login to

identify yourself. All three arguments are required, even if you are logging in

anonymously. See ftp_connect for an example of use.

integer ftp_mdtm(resource ftp, string path)

The ftp_mdtm function (Listing 10.18) returns the last modification time for the

file named in the path argument.

Listing 10.18 ftp_mdtm

<?php

 //connect to server

 if(!($ftp = ftp_connect("www.leonatkinson.com")))

 {

 print("Unable to connect!
\n");

 exit();

 }

 //log in

 if(!ftp_login($ftp, "anonymous", "corephp@"))

 {

 print("Unable to login!
\n");

 exit();

 }

 print("Size: " .

 ftp_size($ftp, "/pub/leon/corephp3_examples.tar.gz") .

 "
\n");

 print("Modified: " .

 date("Y-m-d",

 ftp_mdtm($ftp, "/pub/leon/corephp3_examples.tar.gz")) .

 "
\n");

 //close connection

 ftp_close($ftp);

?>

string ftp_mkdir(resource ftp, string directory)

The ftp_mkdir function (Listing 10.19) creates a directory on the remote

server. FALSE is returned if the directory cannot be created.

Listing 10.19 ftp_mkdir

<?php

 //connect to server

 if(!($ftp = ftp_connect("localhost")))

 {

 print("Unable to connect!
\n");

 exit();

 }

 //log in

 if(!ftp_login($ftp, "leon", "corephp@"))

 {

 print("Unable to login!
\n");

 exit();

 }

 //create a new directory

 $result = ftp_mkdir($ftp, "corephp");

 if($result)

 {

 print("Created directory: $result
\n");

 }

 else

 {

 print("Unable to create corephp directory!
\n");

 }

 //remove corephp directory

 if(!ftp_rmdir($ftp, "corephp"))

 {

 print("Unable to remove corephp directory!
\n");

 }

 //close connection

 ftp_close($ftp);

?>

integer ftp_nb_continue(resource ftp)

Use ftp_nb_continue to continue a nonblocking transfer. The return value is

an integer that matches one of the constants in Table 10.8.

Table 10.8. FTP Nonblocking Status

Status Description

Status Description

FTP_FAILED The transfer failed.

FTP_FINISHED The transfer finished.

FTP_MOREDATA The transfer has not finished yet.

integer ftp_nb_fget(resource ftp, resource file, string
filename, integer mode, integer position)

The ftp_nb_fget function (Listing 10.20) operates exactly as ftp_fget except

that it is nonblocking.

Listing 10.20 ftp_nb_fget

<?php

 //connect to server

 if(!($ftp = ftp_connect("www.leonatkinson.com")))

 {

 print("Unable to connect!
\n");

 exit();

 }

 //log in

 if(!ftp_login($ftp, "anonymous", "corephp@"))

 {

 print("Unable to login!
\n");

 exit();

 }

 //open local file for writing

 if(!$fp = fopen("/tmp/corephp3_examples.tar.gz", "w"))

 {

 print("Unable to open file!
\n");

 exit();

 }

 //save remote file in open file stream

 $status = ftp_nb_fget($ftp, $fp,

 "/pub/leon/corephp3_examples.tar.gz", FTP_BINARY);

 while($status == FTP_MOREDATA)

 {

 print("Still downloading...");

 //fake some process

 usleep(100);

 $status = ftp_nb_continue($ftp);

 }

 if($status == FTP_FAILED)

 {

 print("Unable to get remote file!
\n");

 }

 else

 {

 print("File downloaded!
\n");

 }

 //close local file

 fclose($fp);

 //close connection

 ftp_close($ftp);

?>

integer ftp_nb_fput(resource ftp, string remote, integer file,
integer mode, integer position)

The ftp_nb_fput function operates exactly as ftp_fput except that it is

nonblocking.

integer ftp_nb_get(resource ftp, string local, string remote,
integer mode, integer position)

The ftp_nb_get function operates exactly as ftp_get except that it is

nonblocking.

integer ftp_nb_put(resource ftp, string remote, string local,
integer mode, integer position)

The ftp_nb_put function operates exactly as ftp_put except that it is

nonblocking.

array ftp_nlist(resource ftp, string directory)

The ftp_nlist function returns an array of files in the specified directory.

boolean ftp_pasv(resource ftp, boolean on)

Use ftp_pasv to turn passive mode on or off. It is off by default.

boolean ftp_put(resource ftp, string remote, string local,
integer mode, integer position)

The ftp_put function (Listing 10.21) copies a file from the local filesystem to

the remote server. The link argument is as returned by ftp_connect. The

local and remote arguments specify paths. The mode argument should be

either FTP_TEXT or FTP_BINARY. The optional position argument sets the

position within the file to begin writing, allowing for resuming interrupted

transfers.

Listing 10.21 ftp_put

<?php

 //connect to server

 if(!($ftp = ftp_connect("localhost")))

 {

 print("Unable to connect!
\n");

 exit();

 }

 //log in

 if(!ftp_login($ftp, "anonymous", "corephp@localhost"))

 {

 print("Unable to login!
\n");

 exit();

 }

 //copy local file to remote server

 ftp_put($ftp, "/uploads/data.txt", "/tmp/data.txt", FTP_TEXT);

 //remove remote file

 ftp_delete($ftp, "/uploads/data.txt");

 print("File uploaded!
\n");

 //close connection

 ftp_quit($ftp);

?>

string ftp_pwd(resource ftp)

The ftp_pwd function returns the name of the current directory.

boolean ftp_quit(resource ftp)

Use ftp_quit as an alias to ftp_close.

ftp_raw(resource ftp, string command)

The ftp_raw function sends a command to the ftp server unaltered.

array ftp_rawlist(resource ftp, string directory)

The ftp_rawlist returns the raw output of an ls -l command on the given

directory.

boolean ftp_rename(resource ftp, string original, string
new)

The ftp_rename function changes the name of a file on the remote server.

boolean ftp_rmdir(resource ftp, string directory)

Use ftp_rmdir to remove a directory.

boolean ftp_set_option(resource ftp, integer option, value
setting)

Use ftp_set_option to change the value of an option. Refer to Table 10.7 for

a list of options.

boolean ftp_site(resource ftp, string command)

The ftp_site function sends a SITE command, which varies by server. You

may obtain a list of valid commands by sending site help during an

interactive session.

integer ftp_size(resource ftp, string path)

The ftp_size function returns the size of a remote file in bytes. If an error

occurs, �1 is returned.

resource ftp_ssl_connect(string host, integer port, integer
timeout)

Use ftp_ssl_connect to make an FTP connection over SSL. Otherwise, it

operates exactly as ftp_connect. You must enable OpenSSL when compiling

PHP to activate this function.

string ftp_systype(resource ftp)

The ftp_systype function returns the system type of the remote FTP server.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

10.4 Curl

Daniel Stenberg leads the Curl project, which aims to handle interpreting

URLs and fetching data from them. PHP uses the Curl library to provide

this functionality to your scripts. A typical session involves creating a Curl

resource with curl_init, setting options with curl_setopt, and

executing the request with curl_exec. Instead of a large set of functions,

the Curl extension uses a small set of functions paired with a large set of

constants used with curl_setopt.

You can learn more about Curl at its home page: <http://curl.haxx.se/>.

Recently, the Curl project added the so-called multi-interface. PHP includes

support for these functions, but keep in mind their relative newness.

void curl_close(resource curl)

Use curl_close to free the memory associated with the Curl resource.

integer curl_errno(resource curl)

The curl_errno function returns the number of the last error generated

for the given Curl resource. Table 10.9 shows the PHP constants that

represent the error codes returned by curl_errno.

Table 10.9. Curl Error Codes

Constant Description

CURLE_ABORTED_BY_CALLBACK Callback aborted operation.

CURLE_BAD_CALLING_ORDER Incorrect function calling order.

CURLE_BAD_FUNCTION_ARGUMENT Incorrect parameter to function.

CURLE_BAD_PASSWORD_ENTERED Bad password entered.

CURLE_COULDNT_CONNECT Couldn’t connect to host.

CURLE_COULDNT_RESOLVE_HOST Couldn’t resolve host.

CURLE_COULDNT_RESOLVE_PROXY Couldn’t resolve proxy.

CURLE_FAILED_INIT Initialization failure.

CURLE_FILE_COULDNT_READ_FILE Couldn’t read file.

http://curl.haxx.se/default.htm

Constant Description

CURLE_FTP_ACCESS_DENIED Access denied during FTP

operation.

CURLE_FTP_BAD_DOWNLOAD_RESUME FTP download resume failed.

CURLE_FTP_CANT_GET_HOST Cannot resolve FTP host.

CURLE_FTP_CANT_RECONNECT Unable to reconnect to FTP server.

CURLE_FTP_COULDNT_GET_SIZE FTP SIZE command failed.

CURLE_FTP_COULDNT_RETR_FILE Couldn’t retrieve file from FTP.

CURLE_FTP_COULDNT_SET_ASCII Unable to select FTP ASCII mode.

CURLE_FTP_COULDNT_SET_BINARY Unable to select FTP BINARY

mode.

CURLE_FTP_COULDNT_STOR_FILE FTP STOR command failed.

CURLE_FTP_COULDNT_USE_REST FTP REST command failed.

CURLE_FTP_PORT_FAILED FTP PORT command failed.

CURLE_FTP_QUOTE_ERROR FTP QUOTE command error.

CURLE_FTP_USER_PASSWORD_INCORRECTUser/password incorrect for FTP

connection.

CURLE_FTP_WEIRD_227_FORMAT Unknown FTP 227 reply.

CURLE_FTP_WEIRD_PASS_REPLY Unrecognized answer to FTP PASS.

CURLE_FTP_WEIRD_PASV_REPLY Unrecognized answer to FTP PASV.

CURLE_FTP_WEIRD_SERVER_REPLY Unrecognized FTP server reply.

CURLE_FTP_WEIRD_USER_REPLY Unrecognized answer to FTP USER.

CURLE_FTP_WRITE_ERROR FTP server reported write

problems.

CURLE_FUNCTION_NOT_FOUND LDAP function not found.

CURLE_HTTP_NOT_FOUND HTTP page not found.

CURLE_HTTP_POST_ERROR HTTP post error.

CURLE_HTTP_RANGE_ERROR HTTP range error.

CURLE_LDAP_CANNOT_BIND LDAP bind failed.

CURLE_LDAP_SEARCH_FAILED LDAP search failed.

Constant Description

CURLE_LIBRARY_NOT_FOUND LDAP library not found.

CURLE_MALFORMAT_USER Username badly specified.

CURLE_OK No error.

CURLE_OPERATION_TIMEOUTED Operation timed out.

CURLE_OUT_OF_MEMORY Out of memory.

CURLE_PARTIAL_FILE Only a part of the file was

transferred.

CURLE_READ_ERROR Local read error.

CURLE_SSL_CONNECT_ERROR SSL handshaking failed.

CURLE_SSL_PEER_CERTIFICATE Unverified remote SSL certificate.

CURLE_TOO_MANY_REDIRECTS Too many redirects.

CURLE_UNKNOWN_TELNET_OPTION Unknown TELNET option specified.

CURLE_UNSUPPORTED_PROTOCOL Unsupported protocol.

CURLE_URL_MALFORMAT Malformed URL.

CURLE_URL_MALFORMAT_USER Malformed URL in user.

CURLE_WRITE_ERROR Local write error.

string curl_error(resource curl)

The curl_error function returns the description of the last error

generated for the given Curl resource.

boolean curl_exec(resource curl)
 string curl_exec(resource curl)

Use curl_exec (Listing 10.22) to execute the request. Depending on the

CURLOPT_RETURNTRANSFER option, curl_exec returns a boolean or the

data requested.

Listing 10.22 curl_exec

<?php

 if(!($curl = curl_init()))

 {

 print("Unable to initialize Curl resource!");

 exit();

 }

 //configure for a post request to php.net's search engine

 curl_setopt($curl, CURLOPT_URL,

 'http://www.php.net/search.php');

 curl_setopt($curl, CURLOPT_RETURNTRANSFER, TRUE);

 curl_setopt($curl, CURLOPT_POST, TRUE);

 curl_setopt($curl, CURLOPT_POSTFIELDS,

 'lang=en_US&pattern=Zend API&show=nosource');

 //make request

 $results = curl_exec($curl);

 print("<pre>");

 print(htmlentities($results));

 print("</pre>");

?>

string curl_getinfo(resource curl, integer info)

Use curl_getinfo (Listing 10.23) to retrieve information about a Curl

request. Table 10.10 lists constants for use with the info argument.

Table 10.10. Curl Request Information

Constant Description

CURLINFO_CONNECT_TIME The time spent making the

connection.

CURLINFO_CONTENT_LENGTH_DOWNLOADThe value of the HTTP Content-

length header.

CURLINFO_CONTENT_LENGTH_UPLOAD The size of the upload file.

CURLINFO_CONTENT_TYPE The value of the HTTP Content-

type header.

CURLINFO_EFFECTIVE_URL The effective URL used for the last

request.

CURLINFO_FILETIME If Curl can determine the

modification time of the requested

file, this will be set with a UNIX

timestamp. Curl returns �1 if it

fails to get the modification time.

CURLINFO_HEADER_SIZE The number of bytes in all HTTP

requests.

Constant Description

CURLINFO_HTTP_CODE The HTTP code returned by the

server.

CURLINFO_NAMELOOKUP_TIME A double describing the number of

seconds needed to resolve the

hostname.

CURLINFO_PRETRANSFER_TIME A double describing the number of

seconds elapsed until just before

the transfer begins.

CURLINFO_REDIRECT_COUNT The number of redirects.

CURLINFO_REDIRECT_TIME A double describing the number of

seconds needed for all redirect

steps.

CURLINFO_REQUEST_SIZE The size of the HTTP request.

CURLINFO_SIZE_DOWNLOAD Total bytes downloaded.

CURLINFO_SIZE_UPLOAD Total bytes uploaded.

CURLINFO_SPEED_DOWNLOAD The speed of all downloads in bytes

per second.

CURLINFO_SPEED_UPLOAD The speed of all uploads in bytes

per second.

CURLINFO_SSL_VERIFYRESULT The result of verifying the peer in

an SSL request.

CURLINFO_STARTTRANSFER_TIME The time spent starting the transfer.

CURLINFO_TOTAL_TIME A double describing the number of

seconds needed to complete the

transfer, excluding the connection

time.

Listing 10.23 curl_getinfo

<?php

 //get Zend home page

 $curl = curl_init('http://www.zend.com/');

 curl_setopt($curl, CURLOPT_RETURNTRANSFER, TRUE);

 curl_exec($curl);

 //dump information about the

 print("CURLINFO_CONNECT_TIME: " .

 curl_getinfo($curl, CURLINFO_CONNECT_TIME) .

 '
');

 print("CURLINFO_CONTENT_LENGTH_DOWNLOAD: " .

 curl_getinfo($curl, CURLINFO_CONTENT_LENGTH_DOWNLOAD) .

 '
');

 print("CURLINFO_CONTENT_LENGTH_UPLOAD: " .

 curl_getinfo($curl, CURLINFO_CONTENT_LENGTH_UPLOAD) .

 '
');

 print("CURLINFO_CONTENT_TYPE: " .

 curl_getinfo($curl, CURLINFO_CONTENT_TYPE) .

 '
');

 print("CURLINFO_EFFECTIVE_URL: " .

 curl_getinfo($curl, CURLINFO_EFFECTIVE_URL) .

 '
');

 print("CURLINFO_FILETIME: " .

 curl_getinfo($curl, CURLINFO_FILETIME) .

 '
');

 print("CURLINFO_HEADER_SIZE: " .

 curl_getinfo($curl, CURLINFO_HEADER_SIZE) .

 '
');

 print("CURLINFO_HTTP_CODE: " .

 curl_getinfo($curl, CURLINFO_HTTP_CODE) .

 '
');

 print("CURLINFO_NAMELOOKUP_TIME: " .

 curl_getinfo($curl, CURLINFO_NAMELOOKUP_TIME) .

 '
');

 print("CURLINFO_PRETRANSFER_TIME: " .

 curl_getinfo($curl, CURLINFO_PRETRANSFER_TIME) .

 '
');

 print("CURLINFO_REDIRECT_COUNT: " .

 curl_getinfo($curl, CURLINFO_REDIRECT_COUNT) .

 '
');

 print("CURLINFO_REDIRECT_TIME: " .

 curl_getinfo($curl, CURLINFO_REDIRECT_TIME) .

 '
');

 print("CURLINFO_REQUEST_SIZE: " .

 curl_getinfo($curl, CURLINFO_REQUEST_SIZE) .

 '
');

 print("CURLINFO_SIZE_DOWNLOAD: " .

 curl_getinfo($curl, CURLINFO_SIZE_DOWNLOAD) .

 '
');

 print("CURLINFO_SIZE_UPLOAD: " .

 curl_getinfo($curl, CURLINFO_SIZE_UPLOAD) .

 '
');

 print("CURLINFO_SPEED_DOWNLOAD: " .

 curl_getinfo($curl, CURLINFO_SPEED_DOWNLOAD) .

 '
');

 print("CURLINFO_SPEED_UPLOAD: " .

 curl_getinfo($curl, CURLINFO_SPEED_UPLOAD) .

 '
');

 print("CURLINFO_SSL_VERIFYRESULT: " .

 curl_getinfo($curl, CURLINFO_SSL_VERIFYRESULT) .

 '
');

 print("CURLINFO_STARTTRANSFER_TIME: " .

 curl_getinfo($curl, CURLINFO_STARTTRANSFER_TIME) .

 '
');

 print("CURLINFO_TOTAL_TIME: " .

 curl_getinfo($curl, CURLINFO_TOTAL_TIME) .

 '
');

?>

resource curl_init(string url)

Use curl_init to create a Curl resource handle. The optional url

argument sets the CURLOPT_URL option.

integer curl_multi_add_handle(resource multi, resource
curl)

The curl_multi_add_handle function adds an ordinary Curl resource to a

multiresource stack. It returns a status code.

curl_multi_close(resource multi)

The curl_multi_close function closes a Curl multiresource. It calls Curl’s

curl_multi_cleanup function.

integer curl_multi_exec(resource multi)

The curl_multi_exec function reads and writes data on all sockets in the

multiresource stack. It calls Curl’s curl_multi_perform function.

string curl_multi_getcontent(resource multi)

The curl_multi_getcontent function returns content read from the

multiresource.

array curl_multi_info_read(resource multi)

The curl_multi_info_read function returns an array of information about

a multiresource.

resource curl_multi_init()

The curl_multi_init function returns a resource pointing to the multi-

interface.

integer curl_multi_remove_handle(resource multi,
resource curl)

The curl_multi_remove_handle function removes an ordinary Curl

resource from a multiresource stack. It returns a status code.

curl_multi_select(resource multi, integer timeout)

The multi_select function executes a C library select call on the set of

Curl resources in the multiresource stack. The optional timeout argument

is passed through to select.

boolean curl_setopt(resource curl, string option, value
setting)

The curl_setopt function configures a Curl connection prior to execution

with curl_exec. You must supply a Curl resource handle as created by

curl_init. Choose one of the options from Table 10.11.

Table 10.11. Curl Options

Option Description

CURLOPT_BINARYTRANSFER Use CURLOPT_BINARYTRANSFER with

CURLOPT_RETURNTRANSFER to make sure

the return value is binary safe.

CURLOPT_CAINFO Set CURLOPT_CAINFO with the path to a

file holding one or more certificates used

for verifying the peer. You must pair this

option with CURLOPT_SSL_VERIFYPEER.

CURLOPT_CAPATH Set x with the path to a directory

containing certificates used for verifying

the peer. You must pair this option with

CURLOPT_SSL_VERIFYPEER.

CURLOPT_CLOSEPOLICY Use CURLOPT_CLOSEPOLICY to set the

policy for closing connections when the

connection is full. Set this option to

CURLCLOSEPOLICY_LEAST_

RECENTLY_USED or

CURLCLOSEPOLICY_OLDEST.

CURLOPT_CONNECTTIMEOUT Set CURLOPT_CONNECTTIMEOUT to the

maximum number of seconds to wait

while making a connection.

CURLOPT_COOKIE Use CURLOPT_COOKIE to pass cookies in

the request. Specify cookies as a string

with the equal sign separating cookie

name from value and semicolons

separating cookies. For example,

cookie1=valueA;cookie1=valueB sets

two cookies named cookie1 and cookie2.

Option Description

CURLOPT_COOKIEFILE Set CURLOPT_COOKIEFILE to the path to

a file used to pass cookies for requests.

The file may follow the format used by

Netscape Navigator or normal HTTP

header format.

CURLOPT_COOKIEJAR Set CURLOPT_COOKIEJAR with the path to

a file used for saving cookies. Curl saves

any cookies it receives during the

request in this file. You may then use

this file with CURLOPT_COOKIEFILE.

CURLOPT_CRLF If TRUE, Curl converts UNIX newlines

into carriage return/linefeed pairs.

CURLOPT_CUSTOMREQUEST Use CURLOPT_CUSTOMREQUEST to send an

alternative command during an HTTP

request. Set it with the command only,

not the entire request string.

CURLOPT_DNS_CACHE_TIMEOUT Curl keeps a cache of hostname lookups.

Set CURLOPT_DNS_CACHE_TIMEOUT to the

number of seconds to keep a name in

the cache.

CURLOPT_DNS_USE_GLOBAL_CACHE If TRUE, Curl shares a cache of

hostname lookups. This option is not

thread-safe.

CURLOPT_EGDSOCKET Set CURLOPT_EGDSOCKET with the path to

the Entropy Gathering Daemon socket.

Curl uses this to seed the random

number generator used for SSL.

CURLOPT_FAILONERROR If TRUE, HTTP response codes greater

than 300 to cause a silent error instead

of returning whatever page the server

returns.

CURLOPT_FILE Set CURLOPT_FILE with an open file

stream to send output into the file

instead of out to the browser.

CURLOPT_FILETIME If TRUE, Curl attempts to get the

modification time of the requested file.

CURLOPT_FOLLOWLOCATION If TRUE, Curl follows redirection headers

returned by HTTP servers.

CURLOPT_FORBID_REUSE If TRUE, Curl closes the connection after

completing the request, forbidding its

reuse.

Option Description

CURLOPT_FRESH_CONNECT If TRUE, Curl makes a fresh connection

regardless of having an appropriate

connection in the cache.

CURLOPT_FTPAPPEND If TRUE, Curl appends to an FTP upload

instead of overwriting.

CURLOPT_FTPLISTONLY If TRUE, Curl returns a list of files in an

FTP directory.

CURLOPT_FTPPORT The CURLOPT_FTPPORT option sets the

configuration for an FTP POST command,

which requests a connection from the

server. Set this option to an IP address,

hostname, network interface name, or -

to use the default address.

CURLOPT_FTP_USE_EPSV Curl uses the EPSV command during

passive FTP transfers by default. Set this

option to FALSE to stop the use of EPSV.

CURLOPT_HEADER If TRUE, Curl includes the headers in the

output.

CURLOPT_HEADERFUNCTION Set CURLOPT_HEADERFUNCTION with the

name of a function that Curl calls for

each received HTTP header. The function

must accept two arguments, the Curl

resource and a string containing a

complete header.

CURLOPT_HTTPGET If TRUE, Curl uses GET method for HTTP

transfers. This may be useful only when

reusing a Curl resource.

CURLOPT_HTTPHEADER Set CURLOPT_HTTPHEADER with an array

of HTTP headers to send during the

request.

CURLOPT_HTTPPROXYTUNNEL If TRUE, Curl tunnels all requests

through a proxy.

CURLOPT_HTTP_VERSION Use CURLOPT_HTTP_VERSION to force

Curl to use a particular HTTP protocol

version. Set the option to

CURL_HTTP_VERSION_NONE to allow Curl

to choose. Set the option to

CURL_HTTP_VERSION_1_0 to force

HTTP/1.0. Set the option to

CURL_HTTP_VERSION_1_1 to force

HTTP/1.1.

Option Description

CURLOPT_INFILE Setting CURLOPT_INFILE with an open

file stream causes Curl to read input

from the file.

CURLOPT_INFILESIZE Use CURLOPT_INFILESIZE to specify the

size of an uploaded file.

CURLOPT_INTERFACE Set CURLOPT_INTERFACE to the name of

the interface used. You may use the

interface name, host name, or IP

address.

CURLOPT_KRB4LEVEL For FTP transfers, you may set the

Kerberos security level with the

CURLOPT_KRB4LEVEL option. Set the

option value with one of the following

strings: clear, safe, confidential,

private. Alternatively, setting the string

to FALSE will disable Kerberos security.

CURLOPT_LOW_SPEED_LIMIT Use CURLOPT_LOW_SPEED_LIMIT to set

the lower limit for transfer speeds,

specified in bytes per second. If the

transfer speed falls below this limit for

the number of seconds given by

CURLOPT_LOW_SPEED_TIME, Curl aborts

the transfer.

CURLOPT_LOW_SPEED_TIME Use CURLOPT_LOW_SPEED_TIME together

with CURLOPT_LOW_SPEED_LIMIT to

enforce a lower transfer speed limit.

CURLOPT_MAXCONNECTS The CURLOPT_MAXCONNECTS option sets

the size of the connection cache.

CURLOPT_MAXREDIRS Set CURLOPT_MAXREDIRS to the

maximum number of redirects to follow.

CURLOPT_MUTE If TRUE, PHP generates no browser

output when executing Curl functions.

CURLOPT_NETRC If TRUE, Curl looks in ~/.netrc for user

authentication.

CURLOPT_NOBODY If TRUE, Curl excludes the body from the

output.

CURLOPT_NOPROGRESS If FALSE, Curl shows a progress

indicator. This option is TRUE by default.

Option Description

CURLOPT_PASSWDFUNCTION Set CURLOPT_PASSWDFUNCTION to the

name of a function for handling

password requests. The function should

accept three arguments: the Curl

resource, the password prompt sent by

the server, and a reference into which

you place the password. The function

should return zero if successful and

nonzero if an error occurs. Set this

option to FALSE to restore the default

functionality.

CURLOPT_PORT Use CURLOPT_PORT to set the port

number used for the request.

CURLOPT_POST If TRUE, Curl makes an HTTP POST

request using application/x-www-

form-urlencoded encoding.

CURLOPT_POSTFIELDS Pass a string containing the complete

post data with the CURLOPT_POSTFIELDS

option. Format the post fields exactly as

you would get fields. For example,

apple=1&ball=red&cat=45.56 would

send three post fields named apple,

ball, and cat respectively.

CURLOPT_POSTQUOTE Set CURLOPT_POSTQUOTE with an array of

FTP commands executed after the main

request.

CURLOPT_PROXY Set this option to the proxy server.

CURLOPT_PROXYUSERPWD Use CURLOPT_PROXYUSERPWD to set the

username and password required by the

proxy server. Use the

username:password format.

CURLOPT_PUT If TRUE, Curl executes an HTTP PUT

request. You must set CURLOPT_INFILE

and CURLOPT_INFILESIZE.

CURLOPT_QUOTE Set CURLOPT_QUOTE with an array of FTP

commands executed prior to the main

request.

CURLOPT_RANDOM_FILE Set CURLOPT_RANDOM_FILE with the path

to a file Curl will read for seeding the

SSL random number generator.

Option Description

CURLOPT_RANGE Use CURLOPT_RANGE to set the range

header sent to the HTTP server. Pass a

string containing beginning and ending

byte offsets separated by a hyphen.

Multiple ranges may be separated by

commas, 100-150,233-502, for

example. You can read more about

ranges in the HTTP 1.1 specification.

CURLOPT_READFUNCTION Set CURLOPT_READFUNCTION with the

name of a function for sending data to

the peer. The function should accept two

arguments, the Curl resource and a

string reference. Copy data into the

string reference and return the number

of bytes. Returning zero signals the end

of the file.

CURLOPT_REFERER Use CURLOPT_REFERER to set the

Referer field passed in HTTP requests.

CURLOPT_RESUME_FROM Use CURLOPT_RESUME_FROM to resume a

transfer. Specify an offset in bytes.

CURLOPT_RETURNTRANSFER Ordinarily, Curl sends the results of

commands directly to the browser. Set

CURLOPT_RETURNTRANSFER to TRUE to get

results a return value from curl_exec.

CURLOPT_SSLCERT Set CURLOPT_SSLCERT with the path to

an SSL certificate in PEM (Privacy

Enhanced Mail) format.

CURLOPT_SSLCERTPASSWD Set CURLOPT_SSLCERTPASSWD to the

password needed to read the SSL

certificate specified by

CURLOPT_SSLCERT.

CURLOPT_SSLENGINE Set this option with the name of the SSL

engine used for the private key.

CURLOPT_SSLENGINE_DEFAULT Set this option with the name of the SSL

engine used for most cases, excluding

private keys.

CURLOPT_SSLKEY Set CURLOPT_SSLKEY with the path to a

private key. The default type is PEM and

can be changed with

CURLOPT_SSLKEYTYPE.

CURLOPT_SSLKEYPASSWD Set CURLOPT_SSLKEYPASSWD with the

password necessary to use the private

key specified by CURLOPT_SSLKEY.

Option Description

CURLOPT_SSLKEYTYPE Set CURLOPT_SSLKEYTYPE with the type

of private key specified by

CURLOPT_SSLKEY. Pass the type as one

of the following strings: PEM, DER, ENG.

CURLOPT_SSLVERSION Use CURLOPT_SSLVERSION to enforce

SSL version 2 or 3. Ordinarily, Curl can

guess the appropriate protocol version.

CURLOPT_SSL_CIPHER_LIST Use CURLOPT_SSL_CIPHER_LIST to set

the list of ciphers to use for SSL

connections. Use colons to separate

cipher names. The default list is set

when compiling OpenSSL.

CURLOPT_SSL_VERIFYHOST Set CURLOPT_SSL_VERIFYHOST to 1 if

you wish Curl to verify the common

name on the SSL certificate. Set it to 2

to ensure it matches the host name.

CURLOPT_SSL_VERIFYPEER If TRUE, Curl will attempt to verify the

identity of the peer using the certificates

specified by CURLOPT_CAINFO.

CURLOPT_STDERR Set CURLOPT_STDERR with an open file

stream to redirect error messages.

CURLOPT_TIMECONDITION Use CURLOPT_TIMECONDITION to enforce

a condition on the transfer based on the

last modification time of the remote file.

Use CURLOPT_ TIMEVALUE to set the

time value used for this condition. Use

TIMECOND_IFMODSINCE to require the file

to be modified since the given time. Use

TIMECOND_ISUNMODSINCE to require the

file to be unmodified since the given

time.

CURLOPT_TIMEOUT The CURLOPT_TIMEOUT option holds the

maximum time in seconds that a Curl

operation may execute.

CURLOPT_TIMEVALUE Use CURLOPT_TIMEVALUE to set the time

in standard UNIX timestamp format

used by CURLOPT_TIMECONDITION.

CURLOPT_TRANSFERTEXT If TRUE, Curl makes FTP transfers in

ASCII mode and LDAP in text instead of

HTML.

CURLOPT_UPLOAD If TRUE, Curl makes an HTTP upload. You

must set CURLOPT_INFILE and

CURLOPT_INFILESIZE.

Option Description

CURLOPT_URL Set CURLOPT_URL to the URL to execute.

You may also set this option with

curl_init.

CURLOPT_USERAGENT Use CURLOPT_USERAGENT to set the

User-agent field passed in HTTP

requests.

CURLOPT_USERPWD Use CURLOPT_USERPWD to set the

username and password required by a

connection. Use the username:password

format.

CURLOPT_VERBOSE If TRUE, Curl reports verbose status

messages.

CURLOPT_WRITEFUNCTION Set CURLOPT_WRITEFUNCTION with the

name of a function for receiving data

from the connection. The function

should accept two arguments, the Curl

resource and a string of data. The

function must return the number of

bytes processed. If this return value

does not match the number of bytes

passed in, Curl signals an error.

CURLOPT_WRITEHEADER Set CURLOPT_WRITEHEADER with an open

file stream that will receive the headers.

The option value should be a resource as

returned by fopen.

string curl_version()

Use curl_version to get the version of the underlying Curl library.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

10.5 SNMP

SNMP, the Simple Network Management Protocol, is a protocol for

Internet network management. It was first described in RFC 1089. One

place to start learning about SNMP is SNMP Research at

<http://www.snmp.com/>. To use these functions under UNIX, you

must have the UCD SNMP libraries. You can find them at

<http://www.net-snmp.org/>.

boolean snmp_get_quick_print()

The snmp_get_quick_print function returns the status of the UCD

SNMP library’s quick_print setting. The quick_print setting controls

how verbose object values are. By default, quick_print is FALSE, and

values include types and other information. The UCD SNMP manual

provides more information.

snmp_set_quick_print(boolean on)

The snmp_set_quick_print function sets the value of the UCD SNMP

library’s quick_print setting. See the description of

snmp_get_quick_print for a brief description of the quick_print

setting.

string snmpget(string host, string community, string
object, integer timeout, integer retries)

The snmpget function (Listing 10.24) returns the value of the specified

object. The host may be numerical or named. You must also specify

the community and the object. Optionally, you may supply a timeout in

seconds and a number of times to retry a connection.

Listing 10.24 snmpget

<?php

 //find out how long the system has been up

 //should return something like

 //Timeticks: (586731977) 67 days, 21:48:39.77

 if($snmp = snmpget("test.net-snmp.org",

 "demopublic", "system.sysUpTime.0"))

 {

 print($snmp);

 }

 else

 {

 print("snmpget failed!");

http://www.snmp.com/default.htm
http://www.net-snmp.org/default.htm

 }

?>

boolean snmpset(string host, string community,
string object, string type, string value, integer
timeout, integer retries)

The snmpset function (Listing 10.25) sets the value of the specified

object. The host may be numerical or named. You must also specify

the community and the object. The type argument is a one-character

string. Table 10.12 lists valid types. Optionally, you may supply a

timeout in seconds and a number of times to retry a connection.

Table 10.12. SNMP Types

Type Description

a IP address.

d Decimal string.

i Integer.

o Object ID.

s String.

t Time ticks.

u Unsigned integer.

x Hex string.

D Double.

F Float.

I Signed 64-bit integer.

U Unsigned 64-bit integer.

Listing 10.25 snmpset

<?php

 //show current value of the demo string

 $snmp = snmpget("test.net-snmp.org",

 "demopublic", "ucdDemoPublicString.0");

 print("$snmp (original value)
\n");

 //set it to something else

 snmpset("test.net-snmp.org",

 "demopublic", "ucdDemoPublicString.0",

 "s", "Core PHP Programming");

 //see current value of the demo string

 $snmp = snmpget("test.net-snmp.org",

 "demopublic", "ucdDemoPublicString.0");

 print("$snmp (new value)
\n");

?>

array snmpwalk(string host, string community, string
object, integer timeout, integer retries)

The snmpwalk function (Listing 10.26) returns an array of all objects in

the tree that starts at the specified object. You can use an empty

string for the object parameter to get all objects. Optionally, you may

supply a timeout in seconds and a number of times to retry a

connection.

Listing 10.26 snmpwalk

<?php

 //get all the SNMP objects

 $snmp = snmpwalk("test.net-snmp.org", "demopublic", "");

 print_r($snmp);

?>

Chapter 11. Data
Topics in This Chapter

Data Types, Constants, and Variables

Arrays

Objects and Classes

User Defined Functions

The functions in this chapter manipulate data. They check the values

of variables. They transform one type of data into another. They also

deal with arrays. You may find it useful to turn back to Chapter 2 and

read the discussion on data types and variables.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

11.1 Data Types, Constants, and Variables

These functions check the status of a variable, change its type, or

return a value as a particular data type.

value constant(string name)

Use constant (Listing 11.1) to fetch the value of a constant. This

offers the ability to specify a constant with a variable.

Listing 11.1 constant

<?php

 function getDatabaseProperty($property)

 {

 return(constant("DATABASE_$property"));

 }

 define("DATABASE_HOST", "localhost");

 define("DATABASE_USER", "httpd");

 define("DATABASE_PASSWORD", "");

 define("DATABASE_NAME", "freetrade");

 print(getDatabaseProperty('HOST'));

?>

boolean ctype_alnum(string text)

The ctype_alnum function tests whether every character in the given

string is in the set of all digits and letters, uppercase and lowercase.

An empty string matches this set.

boolean ctype_alpha(string text)

The ctype_alpha function tests whether every character in the given

string is in the set of all letters, uppercase and lowercase. An empty

string matches this set.

boolean ctype_cntrl(string text)

The ctype_cntrl function tests whether every character in the given

string is a control character. An empty string matches this set.

boolean ctype_digit(string text)

The ctype_digit function tests whether every character in the given

string is a digit. An empty string passes this test.

boolean ctype_graph(string text)

The ctype_graph function tests whether every character in the given

string has a graphical representation. An empty string passes this test.

boolean ctype_lower(string text)

The ctype_lower function tests whether every character in the given

string is in the set of lowercase letters. An empty string matches this

set.

boolean ctype_print(string text)

The ctype_print function tests whether every character in the given

string is printable, including spaces and tabs. An empty string passes

this test.

boolean ctype_punct(string text)

The ctype_punct function tests whether every character in the given

string is in the set of punctuation characters. An empty string matches

this set.

boolean ctype_space(string text)

The ctype_space function tests whether every character in the given

string is in the set of space characters, which includes tabs and

linefeeds. An empty string matches this set.

boolean ctype_upper(string text)

The ctype_upper function tests whether every character in the given

string is in the set of uppercase letters. An empty string matches this

set.

boolean ctype_xdigit(string text)

The ctype_xdigit function tests whether every character in the given

string is in the set of hexadecimal digits. An empty string matches this

set.

boolean define(string name, value, boolean
non_case_sensitive)

The define function (Listing 11.2) creates a constant, which is

essentially a variable that may be set only once. The value argument

may be a string, integer, double, or boolean. It may not be an array or

object. The non_case_sensitive argument is optional. By default,

constants are case sensitive, which is the same as with variables.

If the constant cannot be created for some reason, FALSE will be

returned. If you wish to check that a constant is defined, use the

defined function.

It is customary to name constants using all uppercase letters, as is the

practice in C. This makes them stand out among other identifiers.

Because PHP allows for unquoted string literals, it is possible to write

code that uses constants that do not exist yet produces no error. When

you are using constants to hold strings to be displayed on the page,

this is simply an annoyance, because you can see the error right away.

When used for values not displayed, it can be a frustrating source of

bugs. If you discover a constant mysteriously evaluating to zero, check

that you defined the constant. PHP creates an E_NOTICE level error

message if you use an undefined constant.

Listing 11.2 define

<?php

 /*

 ** Database variables

 */

 define("DATABASE_HOST", "localhost");

 define("DATABASE_USER", "httpd");

 define("DATABASE_PASSWORD", "");

 define("DATABASE_NAME", "freetrade");

 print("Connecting to " . DATABASE_HOST . "
\n");

?>

boolean defined(string constantname)

The defined function (Listing 11.3) returns TRUE if a constant exists

and FALSE otherwise.

Listing 11.3 defined

<?php

 define("THERMOSTAT","72 degrees");

 if(defined("THERMOSTAT"))

 {

 print("THERMOSTAT is " . THERMOSTAT);

 }

?>

double doubleval(expression)

The doubleval function (Listing 11.4) returns its argument as a

double. Chapter 2 discusses converting between data types. Related

functions are strval and intval. It is an error to pass an array or

object to doubleval.

Listing 11.4 doubleval

<?php

 $myNumber = "13.1cm";

 print(doubleval($myNumber));

?>

boolean empty(variable)

The empty function returns FALSE if the variable has been given a

value or TRUE if the variable has never been on the left side of a set

operator. In other words, it tests that the variable has been set with a

value other than NULL. It returns the opposite value of isset.

floatval

Use floatval as an alias for doubleval.

string get_resource_type(resource handle)

The get_resource_type function returns a string describing the type

of resource of the handle argument.

boolean import_request_variables(string types,
string prefix)

The import_request_variables function (Listing 11.5) creates

variables in the global scope from submitted form fields. This matches

the functionality of the register_globals directive in php.ini. The

types argument should be a string containing one or more of the

following letters: G, P, C. These import get variables, post variables,

and cookies respectively. The order of the letters specifies the order in

which variables of different types and duplicate names overwrite each

other. You may use lowercase letters if you wish.

The prefix argument is optional but causes an E_NOTICE error if left

out. PHP adds the prefix to the form field names when creating the

global variables.

Listing 11.5 import_request_variables

<?php

 import_request_variables('GP', 'form_');

 if(isset($form_message))

 {

 print("Text: $form_message
");

 }

?>

<form>

<input type="text" name="message">

<input type="submit">

</form>

integer intval(expression, integer base)

The intval function (Listing 11.6) returns its argument as an integer.

The optional base argument instructs intval to use a numerical base

other than 10. Chapter 2 discusses converting between types.

Listing 11.6 intval

<?php

 //drop extraneous stuff after decimal point

 print(intval("13.5cm") . "
\n");

 //convert from hex

 print(intval("EE", 16));

?>

boolean is_array(expression)

The is_array function (Listing 11.7) returns TRUE if the expression is

an array; otherwise FALSE is returned.

Listing 11.7 is_array

<?php

 $colors = array("red", "blue", "green");

 if(is_array($colors))

 {

 print("colors is an array");

 }

?>

boolean is_bool(expression)

Use is_bool to test whether an expression is a boolean.

boolean is_double(expression)

The is_double function (Listing 11.8) returns TRUE if the expression is

a double and FALSE otherwise.

Listing 11.8 is_double

<?php

 $Temperature = 15.23;

 if(is_double($Temperature))

 {

 print("Temperature is a double");

 }

?>

boolean is_finite(expression)

The is_finite function returns TRUE if the expression is a finite

number and FALSE otherwise. In this context, finite means that the

value fits within the boundaries of floating-point numbers for the

platform.

is_float

The is_float function is an alias for the is_double function.

boolean is_infinite(expression)

The is_infinite function returns TRUE if the expression is an infinite

number and FALSE otherwise. In this context, infinite means that the

value falls outside the boundaries of floating-point numbers for the

platform.

is_int

The is_int function is an alias for the is_integer function.

boolean is_integer(expression)

The is_integer function (Listing 11.9) returns TRUE if the expression

is an integer, FALSE otherwise.

Listing 11.9 is_integer

<?php

 $PageCount = 2234;

 if(is_integer($PageCount))

 {

 print("$PageCount is an integer");

 }

?>

is_long

The is_long function is an alias for the is_integer function.

boolean is_nan(expression)

The is_nan function (Listing 11.10) returns TRUE if the given

expression is not a number. Some mathematic functions generate this

value when given nonsense values.

Listing 11.10 is_nan

<?php

 if(is_nan(asin(2)))

 {

 print("This is not a number.");

 }

?>

boolean is_null(expression)

Use is_null to test whether the given express is NULL. Refer to

Chapter 2 for a discussion of the NULL type.

boolean is_numeric(expression)

Use is_numeric (Listing 11.11) to test an expression for being a

number or a string that would covert to a number with no extra

characters.

Listing 11.11 is_numeric

<?php

 function testNumeric($n)

 {

 if(is_numeric($n))

 {

 print("'$n' is numeric
");

 }

 else

 {

 print("'$n' is not numeric
");

 }

 }

 //numeric

 testNumeric(3);

 testNumeric('4');

 testNumeric(4e+5);

 testNumeric(0xDE);

 testNumeric('0xDE');

 testNumeric(0667);

 //not numeric

 testNumeric('3 fish');

 testNumeric('4e+5');

?>

boolean is_object(expression)

The is_object function (Listing 11.12) returns TRUE if the expression

is an object and FALSE otherwise.

Listing 11.12 is_object

<?php

 class widget

 {

 var $name;

 var $length;

 }

 $thing = new widget;

 if(is_object($thing))

 {

 print("thing is an object");

 }

?>

boolean is_real(expression)

The is_real function is an alias for the is_double function.

boolean is_resource(variable)

This function returns TRUE if the given variable is a resource, such as

the return value of fopen.

boolean is_scalar(expression)

Use is_scalar (Listing 11.13) to test whether an express is a scalar,

which in this context means a single value as compared to aggregate

value. The is_scalar function returns FALSE when given a NULL value.

Listing 11.13 is_scalar

<?php

 function testScalar($s)

 {

 if(is_scalar($s))

 {

 print("'$s' is scalar
");

 }

 else

 {

 print(print_r($s, TRUE) . " is not scalar
");

 }

 }

 class c { }

 //scalar

 testScalar(TRUE);

 testScalar(1234);

 testScalar(1.234);

 testScalar('a string');

 //not scalar

 testScalar(array(1,2,3,4));

 testScalar(new c);

 testScalar(fopen('/tmp/test', 'w'));

 testScalar(NULL);

?>

boolean is_string(expression)

The is_string function (Listing 11.14) returns TRUE if the expression

is a string and FALSE otherwise.

Listing 11.14 is_string

<?php

 $Greeting = "Hello";

 if(is_string($Greeting))

 {

 print("Greeting is a string");

 }

?>

boolean isset(variable)

The isset function (Listing 11.15) returns TRUE if the variable has

been given a value or FALSE if the variable has never been on the left

side of a set operator. In other words, it tests that the variable has

been set with a value. This complements the is_null function.

Listing 11.15 isset

<?php

 if(isset($Name))

 {

 print("Your Name is $Name");

 }

 else

 {

 print("I don't know your name");

 }

?>

boolean settype(variable, string type)

The settype function (Listing 11.16) changes the type of a variable.

The type is written as a string and may be one of the following: array,

bool, double, float, int, integer, null, object, string. If the type

could not be set, FALSE is returned.

Listing 11.16 settype

<?php

 $myValue = 123.45;

 settype($myValue, "integer");

 print($myValue);

?>

string strval(expression)

The strval function (Listing 11.17) returns its argument as a string.

Listing 11.17 strval

<?php

 $myNumber = 13;

 print(strval($myNumber));

?>

unset(variable)

The unset function (Listing 11.18) destroys a variable, causing all

memory associated with the variable to be freed. You may accomplish

the same effect by setting the variable to NULL.

Listing 11.18 unset

<?php

 $list= array("milk", "eggs", "sugar");

 unset($list);

 if(!isset($list))

 {

 print("list has been cleared and has ");

 print(count($list));

 print(" elements");

 }

?>

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

11.2 Arrays

The functions in this section operate on arrays. Some of them sort the

arrays; some of them help you find and retrieve values from arrays. Chapter

5 discusses arrays in depth.

array array(…)

The array function (Listing 11.19) takes a list of values separated by

commas and returns an array. This is especially useful for creating one-off

arrays to be passed to functions. Elements will be added to the array as if

you used empty square brackets, which means they are numbered

consecutively starting at zero. You may use the => operator to specify index

values.

Listing 11.19 array

<?php

 //create an array

 $myArray = array(

 "Name"=>"Leon Atkinson",

 "Profession"=>array("Programmer", "Author"),

 "Residence"=>"Martinez, California"

);

?>

array array_change_key_case(array data, integer case)

Use array_change_key_case to change the keys in an array to all uppercase

or all lowercase. You may use CASE_LOWER or CASE_UPPER for the optional

case argument. By default, this function coverts keys to lowercase. Any

nonalphabetic characters used in keys are unaffected.

Keep in mind that since array keys are case-sensitive, this function may

return an array with fewer elements than given in the data argument. When

two keys become identical due to change in case, PHP keeps the element

that appears last in the array. Listing 11.20 and Figure 11.1 demonstrate this

behavior.

Listing 11.20 array_change_key_case

<?php

 $location = array('Leon Atkinson'=>'home',

 'john villarreal'=>'away',

 'leon atkinson'=>'away',

 'Carl porter'=>'home',

 'Jeff McKillop'=>'away',

 'Rick Marazzani'=>'away',

 'bob dibetta'=>'away',

 'Joe Tully'=>'home'

);

 print_r(array_change_key_case($location, CASE_UPPER));

?>

Figure 11.1 array_change_key_case output.

Array

(

 [LEON ATKINSON] => away

 [JOHN VILLARREAL] => away

 [CARL PORTER] => home

 [JEFF MCKILLOP] => away

 [RICK MARAZZANI] => away

 [BOB DIBETTA] => away

 [JOE TULLY] => home

)

array array_chunk(array data, integer size, boolean
preserve_keys)

The array_chunk function (Listing 11.21) splits the elements of the given

array into subarrays of the given size. The optional preserve_keys

argument preserves the original keys. Otherwise, the subarrays use integers

starting with zero for keys. See Figure 11.2.

Listing 11.21 array_chunk

<?php

 //set available players

 $players = array(

 'Leon Atkinson',

 'John Villarreal',

 'Carl Porter',

 'Jeff McKillop',

 'Rick Marazzani',

 'Bob Dibetta',

 'Joe Tully',

 'John Foster'

);

 //shuffle players

 srand(time());

 shuffle($players);

 //divide players into two teams

 $teams = array_chunk($players, count($players)/2);

 print_r($teams);

?>

Figure 11.2 array_chunk output.

Array

(

 [0] => Array

 (

 [0] => Jeff McKillop

 [1] => Carl Porter

 [2] => Rick Marazzani

 [3] => Joe Tully

)

 [1] => Array

 (

 [0] => John Foster

 [1] => Bob Dibetta

 [2] => John Villarreal

 [3] => Leon Atkinson

)

)

array array_combine(array keys, array values)

The array_combine function returns an array that uses the elements of the

first array for keys that point to the elements given in the second array. If

the arrays do not have the same number of elements, PHP generates an

error.

array array_count_values(array data)

The array_count_values function (Listing 11.22) returns counts for each

distinct value in the data argument. The returned array is indexed by the

values of the data argument. Although the example below uses an array of

numbers, array_count_values will count the appearance of elements that

contain any data type.

Listing 11.22 array_count_values

<?php

 //generate random numbers between 1 and 5

 $sample_size = 100;

 srand(time());

 for($i=0; $i<$sample_size; $i++)

 {

 $data[] = rand(1,5);

 }

 //count elements

 $count = array_count_values($data);

 //sort by keys

 ksort($count);

 //print out totals

 foreach($count as $number=>$count)

 {

 print("$number: $count (" .

 (100 * $count/$sample_size) .

 "%)
\n");

 }

?>

array array_diff(array data, array comparison, …)

The array_diff function (Listing 11.23) returns an array containing the

elements in the first argument that are not in any of the following

arguments. The keys in the first array are preserved. Two elements are

considered identical if their string representation is the same, meaning

“123” equals 123.00 in this context. See Figure 11.3.

You can find the intersection of two arrays with array_intersect.

Listing 11.23 array_diff

<?php

 $a = array(1,2,3,4,5,6,7,8);

 $b = array(2,6);

 $c = array(8,1,5,6);

 print_r(array_diff($a, $b, $c));

 print_r(array_intersect($a, $b, $c));

?>

Figure 11.3 array_diff output.

Array

(

 [2] => 3

 [3] => 4

 [6] => 7

)

Array

(

 [5] => 6

)

array array_diff_assoc(array data, array comparison, …)

The array_diff_assoc function (Listing 11.24) returns an array containing

the elements in the first argument and not in any of the following

arguments, just as with array_diff. In addition to values being identical,

keys must match. Otherwise, functionality matches array_diff. See Figure

11.4.

The array_intersect_assoc function complements this function.

Listing 11.24 array_diff_assoc

<?php

 $a = array(

 1=>'apple',

 2=>'ball',

 3=>'cat',

 4=>'dog',

 'ape'=>'banana'

);

 $b = array(

 2=>'apple',

 'ape'=>'banana'

);

 $c = array(

 3=>'cat',

 2=>'ball',

 'cat'=>'ball',

 'ape'=>'banana'

);

 print_r(array_diff_assoc($a, $b, $c));

 print_r(array_intersect_assoc($a, $b, $c));

?>

Figure 11.4 array_diff_assoc output.

Array

(

 [1] => apple

 [4] => dog

)

Array

(

 [ape] => banana

)

array array_fill(integer start, integer number, value)

Use array_fill (Listing 11.25, Figure 11.5) to create an array of the given

size filled out with the same value. The keys are numeric and start with the

value passed as the start argument. Be careful if you pass an object for the

filler value. PHP passes objects in function calls by reference, not by value.

Consequently, using an object for this function’s third argument will create

an array of references to the same object. If you wish to create copies of the

object, use the __clone method. You can read more about objects in

Chapter 6.

Listing 11.25 array_fill

<?php

 print_r(array_fill(100, 3, 'filler'));

?>

Figure 11.5 array_fill output.

Array

(

 [100] => filler

 [101] => filler

 [102] => filler

)

array array_filter(array data, string function)

The array_filter function (Listing 11.26) removes elements from an array

based on a callback function, preserving keys. The callback function should

accept a single value and return a boolean. It should return TRUE if the value

should appear in the returned array.

Listing 11.26 array_filter

<?php

 function is_square($n)

 {

 $s = sqrt($n);

 return(intval($s) == $s);

 }

 $a = range(2, 100);

 foreach(array_filter($a, 'is_square') as $n)

 {

 print("$n
");

 }

?>

array array_flip(array data)

The array_flip function (Listing 11.27) returns the data argument with the

keys and values exchanged. Values must be valid keys�that is, integers or

strings. Otherwise, PHP generates a warning and skips that element. Multiple

occurrences of a value, will overwrite each other as they become keys. See

Figure 11.6.

Listing 11.27 array_flip

<?php

 $colors = array("red", "blue", "green");

 print_r(array_flip($colors));

?>

Figure 11.6 array_flip output.

Array

(

 [red] => 0

 [blue] => 1

 [green] => 2

)

array array_intersect(array data, array comparison, …)

The array_intersect function returns an array containing the elements that

appear in every given array. The keys are preserved. Two elements are

considered identical if their string representation is the same, meaning

“123” equals 123.00 in this context.

You can find the difference of two or more arrays with array_diff.

array array_intersect_assoc(array data, array
comparison, …)

The array_intersect_assoc function returns an array containing the

elements common to every array passed as an argument, just as with

array_intersect. In addition to values being identical, keys must match.

The array_diff_assoc function complements this function.

boolean array_key_exists(key, array data)

The array_key_exists tests for the existence of a key in the given array.

array array_keys(array data, string value)

The array_keys function (Listing 11.28) returns an array of the keys used in

the data array. If the optional value argument is supplied, only the subset

of indices that point to the given element value are returned.

Listing 11.28 array_keys

<?php

 //create random test data with 0 or 1

 srand(time());

 for($i=0; $i<10; $i++)

 {

 $data[] = rand(0,1);

 }

 //print out the keys to 1's

 foreach(array_keys($data, 1) as $key)

 {

 print("$key
\n");

 }

?>

array array_map(string function, array data, …)

Use array_map (Listing 11.29) to apply a callback function to every element

of the data argument. PHP calls the given function with each element of the

array. You can pass any number of additional arrays to this function, and PHP

uses their elements for the callback function. This implies that the callback

should accept as many arguments as arrays passed. See Figure 11.7.

Listing 11.29 array_map

<?php

 $a = array(1, 2, 3);

 $b = array(4, 5, 6);

 $c = array(7, 8);

 function add($n1, $n2)

 {

 return($n1 + $n2);

 }

 //each each element

 print_r(array_map('add', $a, $b));

 //combine arrays into map

 print_r(array_map(NULL, $a, $b, $c));

?>

Figure 11.7 array_map output.

Array

(

 [0] => 5

 [1] => 7

 [2] => 9

)

Array

(

 [0] => Array

 (

 [0] => 1

 [1] => 4

 [2] => 7

)

 [1] => Array

 (

 [0] => 2

 [1] => 5

 [2] => 8

)

 [2] => Array

 (

 [0] => 3

 [1] => 6

 [2] =>

)

)

It is possible to call this function with a NULL callback function, in which case

PHP will create an array of arrays from the submitted arrays. The first

element will be an array of the first elements from each array, and so on.

If any of the arrays are shorter than the rest, PHP fills them in with NULL

values.

array array_merge(array data, array data, …)

The array_merge function (Listing 11.30) takes two or more arrays and

returns a single array containing all elements. Elements indexed by integers

are added to the new array one at a time, in most cases renumbering them.

Elements indexed by strings retain their index values and are added as they

are encountered in the input arrays. They may replace previous values. If

you are unsure of the indices used in the merged arrays, you can use

array_values to make sure all values are indexed by an integer.

Listing 11.30 array_merge

<?php

 //set up an array of color names

 $colors = array("red", "blue", "green");

 $more_colors = array("yellow", "purple", "orange");

 //merge arrays

 print_r(array_merge($colors, $more_colors));

?>

array array_merge_recursive(array data, array data, …)

The array_merge_recursive function (Listing 11.31) operates like

array_merge except that it merges elements with string keys into subarrays.

See Figure 11.8.

Listing 11.31 array_merge_recursive

<?php

 $robot1 = array(

 'name'=>'Avenger',

 'weapon'=>array(

 'Machine Gun',

 'Laser'),

 'motivation'=>'tires'

);

 $robot2 = array(

 'name'=>'Assassin',

 'weapon'=>'Machine Gun',

 'motivation'=>array(

 'tires',

 'wings'

)

);

 print_r(array_merge_recursive($robot1, $robot2));

?>

Figure 11.8 array_merge_recursive output.

Array

(

 [name] => Array

 (

 [0] => Avenger

 [1] => Assassin

)

 [weapon] => Array

 (

 [0] => Machine Gun

 [1] => Laser

 [2] => Machine Gun

)

 [motivation] => Array

 (

 [0] => tires

 [1] => tires

 [2] => wings

)

)

boolean array_multisort(array data, integer direction, …)

The array_multisort function (Listing 11.32) sorts arrays together, as if the

arrays were columns in a table. The data argument is an array, and the

direction argument is one of two constants: SORT_ASC or SORT_DESC. These

stand for ascending and descending respectively. If left out, the direction

defaults to ascending order, which is smallest to largest. You may specify any

number of arrays, but you must alternate between arrays and sort order

constants as you do.

The way array_multisort works is similar to the way a relational database

sorts the results of a join. The first element of each array is joined into a

virtual row, and all elements in a row move together. The arrays are sorted

by the first array. In the case where elements of the first array repeat, rows

are sorted on the second row. Sorting continues as necessary.

Listing 11.32 array_multisort

<?php

 //create data

 $color = array("green", "green", "blue", "white", "white");

 $item = array("dish soap", "hand soap", "dish soap", "towel",

 "towel");

 $dept = array("kitchen", "bathroom", "kitchen", "kitchen",

 "bathroom");

 $price = array(2.50, 2.25, 2.55, 1.75, 3.00);

 //sort by department, item name, color, price

 array_multisort($dept, SORT_ASC,

 $item, SORT_ASC,

 $color, SORT_ASC,

 $price, SORT_DESC);

 //print sorted list

 for($i=0; $i < count($item); $i++)

 {

 print("$dept[$i] $item[$i] $color[$i] $price[$i]
\n");

 }

?>

array array_pad(array data, integer size, value padding)

The array_pad function (Listing 11.33) adds elements to an array until it has

the number of elements specified by the size argument. If the array is long

enough already, no elements are added. Otherwise, the padding argument is

used for the value of the new elements. If the size argument is positive,

padding is added to the end of the array. If the size argument is negative,

padding is added to the beginning.

Listing 11.33 array_pad

<?php

 //create test data

 $data = array(1,2,3);

 //add "start" to beginning of array

 $data = array_pad($data, -4, "start");

 //add "end" to end of array twice

 print_r(array_pad($data, 6, "end"));

?>

value array_pop(array stack)

The array_pop function (Listing 11.34) returns the last element of an array,

removing it from the array as well. The array_push function complements it,

and array_shift and array_unshift add and remove elements from the

beginning of an array.

Listing 11.34 array_pop, array_push

<?php

 //set up an array of color names

 $colors = array("red", "blue", "green");

 $lastColor = array_pop($colors);

 //prints "green"

 print($lastColor . "\n");

 //shows that colors contains red, blue

 print_r($colors);

 //push two more items on the stack

 array_push($colors, "purple", "yellow");

 //shows that colors contains red, blue, purple, yellow

 print_r($colors);

?>

boolean array_push(array stack, expression entry, …)

The array_push function adds one or more values to the end of an array. It

treats the array as a stack. Use array_pop to remove elements from the

stack. The array_shift and array_unshift functions to add and remove

elements to the beginning of an array.

array array_rand(array data, integer quantity)

The array_rand function (Listing 11.35) returns a number of randomly

chosen keys from an array. The optional quantity argument defaults to one,

in which case this function returns one key. Otherwise, the function returns

an array of keys.

Listing 11.35 array_rand

<?php

 //set up an array of color names

 $colors = array("red", "blue", "green");

 //seed random number generator

 srand(time());

 //choose one

 print($colors[array_rand($colors)] . "\n");

 //choose two

 print_r(array_rand($colors, 2));

?>

value array_reduce(array data, string function, value
initial)

The array_reduce function (Listing 11.36) converts an array into a single

value by repeatedly submitting pairs of values to a callback function. By

default, PHP submits the first two elements to the callback function, which

must return a value. PHP then calls the callback function with this value and

the next element of the array. If you supply a value for the optional initial

argument, PHP uses it for the first value when first calling the callback.

Listing 11.36 array_reduce

<?php

 //set up an array of color names

 $colors = array(0xFF99FF, 0xCCFFFF, 0xFFFFEE);

 function maskColors($c1, $c2)

 {

 return($c1 & $c2);

 }

 $color = array_reduce($colors, 'maskColors', 0xFFFFFF);

 $colorHTML = sprintf('#%X', $color);

 print('<table><tr>' .

 "<td bgcolor=\"$colorHTML\">$colorHTML</td>".

 '</tr></table>');

?>

array array_reverse(array data, boolean preserve_keys)

The array_reverse function (Listing 11.37) returns the data argument with

the elements in reverse order. The elements are not sorted in any way. They

are simply in the opposite order. If you set the optional preserve_keys

argument to TRUE, PHP keeps the key values. See Figure 11.9.

Listing 11.37 array_reverse

<?php

 $data = array(3, 1, 2, 7, 5);

 print_r(array_reverse($data));

 print_r(array_reverse($data, TRUE));

?>

Figure 11.9 array_reverse output.

Array

(

 [0] => 5

 [1] => 7

 [2] => 2

 [3] => 1

 [4] => 3

)

Array

(

 [4] => 5

 [3] => 7

 [2] => 2

 [1] => 1

 [0] => 3

)

value array_search(value query, array data, boolean
check_type)

The array_search function (Listing 11.38) returns the key of the element in

data that matches query or FALSE if not found. If check_type is TRUE, PHP

only matches if the types match as well.

Listing 11.38 array_search

<?php

 $data = array(3, 1, 2, 7, 5);

 if(FALSE !== ($key = array_search(3, $data, TRUE)))

 {

 print("Found 3 at element $key");

 }

 else

 {

 pring("Not found");

 }

?>

value array_shift(array stack)

The array_shift function (Listing 11.39) returns the first element of an

array, removing it as well. This allows you to treat the array like a stack. The

array_unshift function adds an element to the beginning of an array. Use

array_pop and array_push to perform the same actions with the end of the

array. Each shift operation changes the key values appropriately.

Listing 11.39 array_shift, array_unshift

<?php

 //set up an array of color names

 $colors = array("red", "blue", "green");

 $firstColor = array_shift($colors);

 //print "red"

 print($firstColor . "\n");

 //dump colors (0=>blue, green)

 print_r($colors);

 array_unshift($colors, "purple", "yellow");

 //dump colors (0=>purple, yellow, blue, green)

 print_r($colors);

?>

array array_slice(array data, integer start, integer stop)

The array_slice function (Listing 11.40) returns part of an array, starting

with the element specified by the start argument. If you specify a negative

value for start, the starting position will be that many elements before the

last element. The optional stop argument allows you to specify how many

elements to return or where to stop returning values. A positive value is

treated as a maximum number of elements to return. A negative stop is

used to count backward from the last element to specify the element at

which to stop.

Compare this function to array_merge and array_splice.

Listing 11.40 array_slice

<?php

 //set up an array of color names

 $colors = array("red", "blue", "green",

 "purple", "cyan", "yellow");

 //get a new array consisting of a slice

 //from "green" to "cyan"

 print_r(array_slice($colors, 2, 3));

?>

array_splice(array data, integer start, integer length, array
insert_data)

The array_splice function (Listing 11.41) removes part of an array and

inserts another in its place. The array passed is altered in place, not

returned. Starting with the element specified by the start argument, PHP

removes the number of elements specified by the length argument. If you

leave out length, removal continues to the end of the array. If length is

negative, it references a stopping point from the end of the array backward.

If you wish to insert but not remove elements, use a length of zero.

In place of any removed elements, the array passed as the insert_data

argument is inserted if it is supplied. Declaring it is optional, as you may

wish simply to remove some elements. If you wish to insert a single element

into the array, you may use a single value instead.

Compare this function to array_merge and array_slice.

Listing 11.41 array_splice

<?php

 //set up an array of color names

 $colors = array("red", "blue", "green",

 "yellow", "orange", "purple");

 print_r($colors);

 //remove green

 array_splice($colors, 2, 1);

 print_r($colors);

 //insert "pink" after "blue"

 array_splice($colors, 2, 0, "pink");

 print_r($colors);

 //insert "cyan" and "black" between

 //"orange" and "purple"

 array_splice($colors, 4, 0, array("cyan", "black"));

 print_r($colors);

?>

value array_sum(array data)

Use array_sum (Listing 11.42) to get the sum of every element of an array.

Listing 11.42 array_sum

<?php

 $data = array(1, 2, 3, 4.0, 5.6, 'nothing');

 //print 15.6

 print(array_sum($data));

?>

array array_unique(array data)

The array_unique function (Listing 11.43) returns the given array with

duplicates removed, preserving the keys and keeping the first key

encountered.

Listing 11.43 array_unique

<?php

 $colors = array(

 "red"=>"FF0000",

 "blue"=>"0000FF",

 "green"=>"00FF00",

 "purple"=>"FF00FF",

 "violet"=>"FF00FF"

);

 //removes "violet"

 print_r(array_unique($colors));

?>

boolean array_unshift(array stack, expression entry, …)

The array_unshift function adds one or more values to the beginning of an

array, as if the array were a stack. Use array_shift to remove an element

from the beginning of an array. Compare this function to array_pop and

array_push, which operate on the end of the array.

array array_values(array data)

The array_values function (Listing 11.44) returns just the array elements,

reindexed with integers. See Figure 11.10.

Listing 11.44 array_values

<?php

 $UserInfo = array("First Name"=>"Leon",

 "Last Name"=>"Atkinson",

 "Favorite Language"=>"PHP");

 print_r(array_values($UserInfo));

?>

Figure 11.10 array_values output.

Array

(

 [0] => Leon

 [1] => Atkinson

 [2] => PHP

)

boolean array_walk(array data, string function, value
extra)

The array_walk function (Listing 11.45) executes the specified function on

each element of the given array. By default, PHP passes two arguments to

the callback function: the value and the key respectively. If you set the

optional extra argument, PHP passes it as a third argument. You may define

the first argument of the function to accept a reference if you wish to modify

the element value in place.

Listing 11.45 array_walk

<?php

 //set up an array of color names

 $colors = array("red", "blue", "green");

 function printElement($value)

 {

 print("$value\n");

 }

 function printElement2($value, $key, $extra)

 {

 print("$key: $value ($extra)\n");

 }

 array_walk($colors, "printElement");

 array_walk($colors, "printElement2", "user data");

?>

boolean array_walk_recursive(array data, string function,
value extra)

The array_walk_recursive function operates like array_walk with the

added feature that it traverses subarrays recursively. This allows PHP to

explore multidimensional arrays.

arsort(array unsorted_array, integer comparison)

The arsort function sorts an array in reverse order by its values. The indices

are moved along with the values. This sort is intended for associative arrays.

The optional comparison argument sets the method for comparing elements.

See Table 11.1 for valid comparison methods. By default, PHP uses

SORT_REGULAR.

Table 11.1. Comparison Methods for Sorting Functions

Method Description

SORT_NUMERICCompare as numbers.

SORT_REGULARCompare mixed types as string, compare all numbers

numerically.

SORT_STRING Compare as strings.

asort(array unsorted_array, integer comparison)

The asort function sorts an array by its values. The indices are moved along

with the values. This sort is intended for associative arrays. The optional

comparison argument sets the method for comparing elements. See Table

11.1 for valid comparison methods. By default, PHP uses SORT_REGULAR.

array compact(…)

The compact function (Listing 11.46) returns an array containing the names

and values of variables named by the arguments. Any number of arguments

may be passed, and they may be single string values or arrays of string

values. Arrays containing other arrays will be recursively explored. The

variables must be in the current scope; otherwise, PHP silently ignores them.

This function complements extract, which creates variables from an array.

See Figure 11.11.

Listing 11.46 compact

<?php

 //create some variables

 $name = "Leon";

 $language = "PHP";

 $color = "blue";

 $city = "Martinez";

 //get variables as array

 $variable = compact("name",

 array("city", array("language", "color")));

 //print out all the values

 print_r($variable);

?>

Figure 11.11 compact output.

Array

(

 [name] => Leon

 [city] => Martinez

 [language] => PHP

 [color] => blue

)

integer count(variable array)

The count function (Listing 11.47) returns the number of elements in an

array. If the variable has never been set, count returns zero. If the variable

is not an array, count returns 1. Despite this added functionality, you should

use the isset and is_array functions to determine the nature of a variable.

Listing 11.47 count

<?php

 $colors = array("red", "green", "blue");

 print(count($colors));

?>

value current(array data)

The current function (Listing 11.48) returns the value of the current

element pointed to by PHP’s internal pointer. Each array maintains a pointer

to one of the elements of an array. By default, it points to the first element

added to the array until it is moved by a function such as next or reset.

Listing 11.48 current

<?php

 //create test data

 $colors = array("red", "green", "blue");

 //loop through array using current

 for(reset($colors); $value = current($colors); next($colors))

 {

 print("$value\n");

 }

?>

array each(array arrayname)

The each function returns a four-element array that represents the next

value from an array. The four elements of the returned array (0, 1, key, and

value) refer to the key and value of the current element. You may refer to

the key with 0 or key, and to get the value use 1 or value. You may traverse

an entire array by repeatedly using list and each, as in the example below.

Historically, this function preceded the foreach statement. During that time,

it was common to use the idiom shown in Listing 11.49, looping over an

array with each and list called in a while loop. Today, foreach offers a

better choice.

Listing 11.49 each

<?php

 //create test data

 $colors = array("red", "green", "blue");

 //loop through array using each

 //output will be like "0 = red"

 reset($colors);

 while(list($key, $value) = each($colors))

 {

 print("$key = $value\n");

 }

?>

value end(array arrayname)

The end function (Listing 11.50) moves PHP’s internal array pointer to the

array’s last element and returns it. The reset function moves the internal

pointer to the first element.

Listing 11.50 end

<?php

 $colors = array("red", "green", "blue");

 //print blue twice

 print(end($colors) . "\n");

 print(current($colors) . "\n");

?>

array explode(string delimiter, string data, integer limit)

The explode function (Listing 11.51) creates an array from a string. The

delimiter argument divides the data argument into elements but is not

included in the resulting strings in the new array. The optional limit

argument limits the total number of elements, in which case the last element

may contain a longer string containing delimiters.

This function is safe for use with binary strings. The implode function will

convert an array into a string.

Listing 11.51 explode

<?php

 //convert tab-delimited list into an array

 $data = "red\tgreen\tblue";

 $colors = explode("\t", $data);

 //print out the values

 foreach($colors as $key=>$val)

 {

 print("$key: $val\n");

 }

?>

integer extract(array variables, integer mode, string
prefix)

The extract function (Listing 11.52) creates variables in the local scope

based on elements in the variables argument and returns a count of

variables extracted. Elements not indexed by strings are ignored. The

optional mode argument controls whether variables overwrite existing

variables or are renamed to avoid a collision. The valid modes are listed in

Table 11.2. If left out, EXTR_OVERWRITE mode is assumed. The prefix

argument is required only if EXTR_PREFIX_SAME or EXTR_PREFIX_ALL modes

are chosen. If used, the prefix argument and an underscore are added to

the name of the extracted variable.

Listing 11.52 extract

<?php

 $new_variables = array('Name'=>'Leon', 'Language'=>'PHP');

 $Language = 'English';

 extract($new_variables, EXTR_PREFIX_SAME | EXTR_REFS,

 "collision");

 //print extracted variables

 print("$Name\n");

 print("$collision_Language\n");

?>

Table 11.2. extract Modes

Mode Description

EXTR_IF_EXISTS Extract variables only if they exist in the current

scope.

EXTR_OVERWRITE Overwrite any variables with the same name.

EXTR_PREFIX_ALL Prefix all variables.

Mode Description

EXTR_PREFIX_IF_EXISTSExtract variables with prefixes added only if the

non-prefixed variable exists.

EXTR_PREFIX_INVALID Prefix variables that otherwise would be ignored

due to keys that start with numbers.

EXTR_PREFIX_SAME Add prefix to variables with same name.

EXTR_REFS Extract variables as references. You may combine

this flag with any of the others using a bitwise-OR

(|).

EXTR_SKIP Skip any variables with the same name.

Compare this function to compact, which creates an array based on variables

in the local scope.

boolean in_array(value query, array data, boolean strict)

The in_array function (Listing 11.53) returns TRUE if the query argument is

an element of the data argument. The optional strict argument requires

that query and the element be of the same type. You may pass an array for

the query argument.

Listing 11.53 in_array

<?php

 //create test data

 $colors = array("red", "green", "blue");

 //test for the presence of green

 if(in_array("green", $colors))

 {

 print("Yes, green is present!");

 }

?>

string implode(string delimiter, array data)

The implode function (Listing 11.54) transforms an array into a string. The

elements are concatenated with the optional delimiter string separating

them. To perform the reverse functionality, use explode.

Listing 11.54 implode

<?php

 $colors = array("red", "green", "blue");

 //red,green,blue

 print(implode($colors, ","));

?>

join

You may use join as an alias to the implode function.

value key(array arrayname)

The key function (Listing 11.55) returns the index of the current element.

Use current to find the value of the current element. If PHP’s internal array

pointer moves past the end of the array, key returns NULL.

Listing 11.55 key

<?php

 $colors = array(

 "FF0000"=>"red",

 "00FF00"=>"green",

 "0000FF"=>"blue");

 for(reset($colors); (NULL !== ($key=key($colors)));

 next($colors))

 {

 print("$key is $colors[$key]\n");

 }

?>

boolean krsort(array data, integer comparison)

The krsort function (Listing 11.56) sorts an array by its keys in reverse

order�that is, largest values first. The element values are moved along with

the keys. This is mainly for the benefit of associative arrays, since arrays

indexed by integers can easily be traversed in order of their keys.

The optional comparison argument sets the method for comparing elements.

See Table 11.1 for valid comparison methods. By default, PHP uses

SORT_REGULAR.

Listing 11.56 krsort

<?php

 $colors = array(

 "red"=>"FF0000",

 "green"=>"00FF00",

 "blue"=>"0000FF");

 // sort an array by its keys

 krsort($colors);

 print_r($colors);

?>

boolean ksort(array data, integer comparison)

The ksort function (Listing 11.57) sorts an array by its keys, or index

values. The element values are moved along with the keys. This is mainly for

the benefit of associative arrays, since arrays indexed by integers can easily

be traversed in order of their keys.

The optional comparison argument sets the method for comparing elements.

See Table 11.1 for valid comparison methods. By default, PHP uses

SORT_REGULAR.

Listing 11.57 ksort

<?php

 $colors = array(

 "red"=>"FF0000",

 "green"=>"00FF00",

 "blue"=>"0000FF");

 // sort an array by its keys

 ksort($colors);

 print_r($colors);

?>

list(…)

The list function (Listing 11.58) treats a list of variables as if they were an

array. It may only be used on the left side of an assignment operator. It

considers only elements indexed by integers. This function is useful for

translating a returned array directly into a set of variables.

Listing 11.58 list

<?php

 $colors = array("red", "green", "blue");

 //put first two elements of returned array

 //into key and value, respectively

 list($key, $value) = each($colors);

 print("$key: $value\n");

?>

value max(array arrayname)
 value max(…)

The max function (Listing 11.59) returns the largest value from all the array

elements. If all values are strings, then the values will be compared as

strings. If any of the values is a number, only the integers and doubles will

be compared numerically. The alternate version of the max function takes

any number of arguments and returns the largest of them. With this use,

you must supply at least two values. To find the minimum value, use min.

Listing 11.59 max

<?php

 $colors = array("red"=>"FF0000",

 "green"=>"00FF00",

 "blue"=>"0000FF");

 //prints FF0000

 print(max($colors) . "\n");

 //prints 13

 print(max("hello", "55", 13) . "\n");

 //prints 17

 print(max(1, 17, 3, 5.5) . "\n");

?>

value min(array arrayname)
 value min(…)

The min function (Listing 11.60) returns the smallest value from all the array

elements. If all values are strings, then the values will be compared as

strings. If any of the values is a number, only the integers and doubles will

be compared numerically. The alternate version of the min function takes

any number of arguments and returns the smallest of them. You must supply

at least two values.

Listing 11.60 min

<?php

 $colors = array("red"=>"FF0000",

 "green"=>"00FF00",

 "blue"=>"0000FF");

 //prints 0000FF

 print(min($colors) . "\n");

 //prints 13

 print(min("hello", "55", 13) . "\n");

 //prints 1

 print(min(1, 17, 3, 5.5) . "\n");

?>

natcasesort(array data)

The natcasesort function sorts an array the way a person might, ignoring

case. That is, uppercase and lowercase values appear together.

natsort(array data)

The natsort function (Listing 11.61) sorts an array in a natural order, as

described by Martin Pool on his Web site

<http://www.naturalordersort.org/>. This sorting method pays attention to

numbers embedded in strings and recognizes that abc2 ought to come

before abc12. See Figure 11.12.

Listing 11.61 natcasesort, natsort

<?php

 $files = array(

 'Picture12.jpg',

 'picture3.jpg',

 'Picture1.jpg',

 'Picture7.jpg',

 'picture11.jpg',

 'Picture2.jpg'

);

 natsort($files);

 print_r($files);

 natcasesort($files);

 print_r($files);

 sort($files);

 print_r($files);

?>

Figure 11.12 natcasesort, natsort output.

Array

(

 [2] => Picture1.jpg

 [5] => Picture2.jpg

 [3] => Picture7.jpg

 [0] => Picture12.jpg

 [1] => picture3.jpg

 [4] => picture11.jpg

)

Array

http://www.naturalordersort.org/default.htm

(

 [2] => Picture1.jpg

 [5] => Picture2.jpg

 [1] => picture3.jpg

 [3] => Picture7.jpg

 [4] => picture11.jpg

 [0] => Picture12.jpg

)

Array

(

 [0] => Picture1.jpg

 [1] => Picture12.jpg

 [2] => Picture2.jpg

 [3] => Picture7.jpg

 [4] => picture11.jpg

 [5] => picture3.jpg

)

value next(array arrayname)

The next function (Listing 11.62) moves PHP’s array pointer forward one

element and returns it. If the pointer is already at the end of the array,

FALSE is returned.

Listing 11.62 next

<?php

 $colors = array("red", 0, "green", 43, "blue", 5);

 $c = current($colors);

 do

 {

 print("$c\n");

 }

 while(FALSE !== ($c = next($colors)))

?>

pos

You may use pos as an alias to the current function.

value prev(array arrayname)

The prev function (Listing 11.63) operates similarly to the next function,

except that it moves backward through the array. The internal pointer to the

array is moved back one element, and the value at that position is returned.

If the pointer is already at the beginning, FALSE is returned.

Listing 11.63 prev

<?php

 $colors = array("red", 0, "green", 43, "blue", 5);

 $c = end($colors);

 do

 {

 print("$c\n");

 }

 while(FALSE !== ($c = prev($colors)))

?>

array range(integer start, integer stop, integer step)

Use range (Listing 11.64) to create an array containing every integer or

character between the first argument and the second, inclusive. The optional

step argument can skip over elements. If using characters with range, PHP

considers only the first character of the given string and orders them

according to their ASCII values.

Listing 11.64 range

<?php

 //13, 14, 15, 16, 17, 18, 19

 print_r(range(13, 19));

 //15, 14, 13, 12

 print_r(range(15, 12));

 //x, y, z

 print_r(range('x', 'z'));

 //1, 4, 7, 10

 print_r(range(1, 10, 3));

?>

value reset(array arrayname)

Use the reset function (Listing 11.65) to move an array’s internal pointer to

the first element. The element in the first position is returned. Use end to set

the pointer to the last element.

Listing 11.65 reset

<?php

 //create test data

 $colors = array("red", "green", "blue");

 //move internal pointer

 next($colors);

 //set internal pointer to first element

 reset($colors);

 //show which element we're at (red)

 print(current($colors));

?>

rsort(array unsorted_array, integer comparison)

The rsort function (Listing 11.66) sorts an array in reverse order. As with

other sorting functions, the presence of string values will cause all values to

be treated as strings, and the elements will be sorted alphabetically. If all

the elements are numbers, they will be sorted numerically. The difference

between rsort and arsort is that rsort discards any key values and

reassigns elements with key values starting at zero. Chapter 15 discusses

sorting in depth.

The optional comparison argument sets the method for comparing elements.

See Table 11.1 for valid comparison methods. By default, PHP uses

SORT_REGULAR.

Listing 11.66 rsort

<?php

 //create test data

 $colors = array("one"=>"orange", "two"=>"cyan",

 "three"=>"purple");

 //sort and discard keys

 rsort($colors);

 //show array

 print_r($colors);

?>

shuffle(array data)

The shuffle function (Listing 11.67) randomly rearranges the elements in

an array. The srand function may be used to seed the random number

generator, but as with the rand function, a seed based on the current time

will be used if you do not.

Listing 11.67 shuffle

<?php

 //create test data

 $numbers = range(1, 10);

 //rearrange

 shuffle($numbers);

 //print out all the values

 print_r($numbers);

?>

sizeof

This is an alias for the count function.

sort(array unsorted_array, integer comparison)

The sort function (Listing 11.68) sorts an array by element values from

lowest to highest. If any element is a string, all elements will be converted to

strings for the purpose of comparison, which will be made alphabetically. If

all elements are numbers, they will be sorted numerically. Like rsort, sort

discards key values and reassigns elements with key values starting at zero.

Chapter 15 discusses sorting in depth.

The optional comparison argument sets the method for comparing elements.

See Table 11.1 for valid comparison methods. By default, PHP uses

SORT_REGULAR.

Listing 11.68 sort

<?php

 //create test data

 $colors = array("one"=>"orange", "two"=>"cyan",

 "three"=>"purple");

 //sort and discard keys

 sort($colors);

 //show array

 print_r($colors);

?>

uasort(array unsorted_array, string comparison_function)

The uasort function (Listing 11.69) sorts an array using a custom

comparison function. The index values, or keys, move along with the

element values, similar to the behavior of the asort function.

The comparison function must return a signed integer. If it returns zero, then

two elements are considered equal. If a negative number is returned, the

two elements are considered to be in order. If a positive number is returned,

the two elements are considered to be out of order.

Listing 11.69 uasort

<?php

 //duplicate normal ordering

 function compare($left, $right)

 {

 return($left - $right);

 }

 //create test data

 $some_numbers = array(

 "red"=>6,

 "green"=>4,

 "blue"=>8,

 "yellow"=>2,

 "orange"=>7,

 "cyan"=>1,

 "purple"=>9,

 "magenta"=>3,

 "black"=>5);

 //sort using custom compare

 uasort($some_numbers, "compare");

 //show sorted array

 print_r($some_numbers);

?>

uksort(array unsorted_array, string comparison_function)

The uksort function (Listing 11.70) sorts an array using a custom

comparison function. Unlike usort, the array will be sorted by the index

values, not the elements. The comparison function must return a signed

integer. If it returns zero, then two indices are considered equal. If a

negative number is returned, the two indices are considered to be in order. If

a positive number is returned, the two indices are considered to be out of

order.

Listing 11.70 uksort

<?php

 //duplicate normal ordering

 function compare($left, $right)

 {

 return($left - $right);

 }

 //create test data

 srand(time());

 for($i=0; $i<10; $i++)

 {

 $data[rand(1,100)] = rand(1,100);

 }

 //sort using custom compare

 uksort($data, "compare");

 //show sorted array

 print_r($data);

?>

usort(array unsorted_array, string compare_function)

The usort function (Listing 11.71) sorts an array by element values using a

custom comparison function. It also reindexes the array starting from zero.

The function must return a signed integer. If it returns zero, then two

elements are considered equal. If a negative number is returned, the two

elements are considered to be in order. If a positive number is returned, the

two elements are considered to be out of order.

Listing 11.71 usort

<?php

 //duplicate normal ordering

 function compare($left, $right)

 {

 return($left - $right);

 }

 //create test data

 srand(time());

 for($i=0; $i<10; $i++)

 {

 $data[rand(1,100)] = rand(1,100);

 }

 //sort using custom compare

 usort($data, "compare");

 //show sorted array

 print_r($data);

?>

11.3 Objects and Classes

These functions return information about objects and classes.

string get_class(object variable)

The get_class function (Listing 11.72) returns the name of the class

for the given object. From within a class method, you may use the

__CLASS__ constant to get the same value. Note that PHP always

returns class names in all lowercase.

Listing 11.72 get_class

<?php

 class animal

 {

 var $name;

 }

 $gus = new animal;

 print("Gus is of type " . get_class($gus) . "
\n");

?>

array get_class_methods(string class)
 array get_class_methods(object instance)

The get_class_methods function (Listing 11.73) returns an array of

the names of the methods for the given class. You may give the class

name or an instance of the class.

Listing 11.73 get_class_methods

<?php

 class dog

 {

 var $name="none";

 var $sound="woof!";

 function speak()

 {

 print($this->sound);

 }

 }

 $gus = new dog;

 $gus->name = "Gus";

 foreach(get_class_methods($gus) as $method)

 {

 print("$method
\n");

 }

?>

array get_class_vars(string class)

The get_class_vars function (Listing 11.74) returns an array

containing properties of a class and their default values. Compare this

function to get_object_vars.

Listing 11.74 get_class_vars, get_object_vars

<?php

 class animal

 {

 var $name="none";

 var $age=0;

 var $color="none";

 }

 $gus = new animal;

 $gus->name = "Gus";

 $gus->age = 7;

 $gus->color = "black and tan";

 print("get_class_vars
\n");

 foreach(get_class_vars("animal") as $key=>$val)

 {

 print("$key=$val
\n");

 }

 print("
\n");

 print("get_object_vars
\n");

 foreach(get_object_vars($gus) as $key=>$val)

 {

 print("$key=$val
\n");

 }

?>

array get_object_vars(object data)

The get_object_vars function returns an array describing the

properties of an object and their values. See get_class_vars for an

example of use.

string get_parent_class(object variable)
 string get_parent_class(string class)

The get_parent_class function (Listing 11.75) returns the name of

the parent class for an object or class.

Listing 11.75 get_parent_class

<?php

 class animal

 {

 var $name;

 }

 class dog extends animal

 {

 var $owner;

 }

 $gus = new dog;

 $gus->name = "Gus";

 //Gus is of type dog, which is of type animal

 print("$gus->name is of type " .

 get_class($gus) . ", which is of type ".

 get_parent_class($gus) . "
\n");

?>

boolean is_a(object instance, string class)

The is_a function (Listing 11.76) returns TRUE if the given object is a

member of the named class or its parents.

Listing 11.76 is_a

<?php

 class Fruit

 {

 var $color;

 }

 class Apple extends Fruit

 {

 var $variety;

 }

 $a = new Apple;

 //true

 if(is_a($a, 'Fruit'))

 {

 $a->color = 'yellow';

 }

 //true

 if(is_a($a, 'Apple'))

 {

 $a->variety = 'Fuji';

 }

 //false

 if(is_a($a, 'Vegetable'))

 {

 $a->vitamin = 'E';

 }

 print_r($a);

?>

boolean is_subclass_of(object instance, string
class)

Use is_subclass_of to test if an object is a subclass of the named

class.

boolean method_exists(object variable, string
method)

The method_exists function (Listing 11.77) returns TRUE when the

named method exists in the specified object.

Listing 11.77 method_exists

<?php

 class animal

 {

 var $name;

 }

 class dog extends animal

 {

 var $owner;

 function speak()

 {

 print("woof!");

 }

 }

 $gus = new dog;

 $gus->name = "Gus";

 if(method_exists($gus, "speak"))

 {

 $gus->speak();

 }

?>

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

11.4 User Defined Functions

These functions support using and creating your own functions.

value call_user_func(string function, …)

Use call_user_func (Listing 11.78) to execute a function you’ve defined. The

function argument names the function. Arguments to be passed to the

function follow. This allows you to determine the function you wish to call at

runtime.

You may use this function to call a method on a class or object by passing an

array for the function name. The first element of the array should be the

name of the class or the object. The second element should be the method

name.

Listing 11.78 call_user_func

<?php

 function addThree($a, $b, $c)

 {

 return($a + $b + $c);

 }

 function multiplyThree($a, $b, $c)

 {

 return($a + $b + $c);

 }

 class mathClass

 {

 function subtractThree($a, $b, $c)

 {

 return($a - $b - $c);

 }

 }

 //call first function

 $f = 'addThree';

 print(call_user_func($f, 1, 2, 3) . '
');

 //call second function

 $f = 'multiplyThree';

 print(call_user_func($f, 4, 5, 6) . '
');

 //call method on class

 $f = array('mathClass', 'subtractThree');

 print(call_user_func($f, 10, 5, 2) . '
');

 //call method on object

 $m = new mathClass;

 $f = array($m, 'subtractThree');

 print(call_user_func($f, 7, 2, 1) . '
');

?>

value call_user_func_array(string function, array
parameters)

This function works exactly like call_user_func except that it expects the

parameters as an array.

string create_function(string arguments, string code)

The create_function function creates a function and returns a unique name.

These are called anonymous functions. This allows for functions that depend

on information known only at runtime. Although you could store the name of

this new function in a variable and call it later, create_function is perhaps

most useful for defining simple lambda-style callback functions. Listing 11.79

shows an example of this idea.

Listing 11.79 create_function

<?php

 $data = array('carrot', 'apple', 'banana');

 //add underscore to each end and make all letters uppercase

 array_walk($data, create_function('&$v',

 '$v = "_" . strtoupper($v) . "_";'));

 print_r($data);

?>

eval(string phpcode)

The eval function (Listing 11.80) attempts to execute the phpcode argument

as if it were a line in your PHP script. As with all strings, double quotes will

cause the string to be evaluated for embedded strings and other special

characters, so you may wish to use single quotes or escape dollar signs with

backslashes.

In some ways, eval is like include or require. Beyond the obvious

difference that eval works on strings instead of files, eval starts in a mode

where it expects PHP code. If you need to switch to a mode where plain HTML

is passed directly to the browser, you will need to insert a closing PHP tag (?

>). Why would you ever want to execute eval on a string that contained plain

HTML? Probably because the code was stored in a database.

Be extremely careful when calling eval on any string that contains data that

at any time came from form variables. This includes database fields that were

originally set through a form. When possible, use nested $ operators instead

of eval.

Listing 11.80 eval

<?php

 //Simulation of using eval

 //on data from a database

 $code_from_database = '<?php print(date("Y-m-d")); ?>';

 eval("?>" . $code_from_database);

?>

value func_get_arg(integer argument)

The func_get_arg function (Listing 11.81) allows you to get by number an

argument passed to a function you write. The first argument will be number

zero. This allows you to write functions that take any number of arguments.

The return value might be any type, matching the type of the argument being

fetched. The func_num_args function returns the number of arguments

available.

Chapter 4 discusses functions, including writing functions that accept an

unlimited number of arguments.

Listing 11.81 func_get_arg

<?php

 /*

 ** Function concat

 ** Input: any number of strings

 ** Output: string

 ** Description: input strings are put together in

 ** order and returned as a single string.

 */

 function concat()

 {

 //start with empty string

 $data = "";

 //loop over each argument

 for($i=0; $i < func_num_args(); $i++)

 {

 //add current argument to return value

 $data .= func_get_arg($i);

 }

 return($data);

 }

 //prints "OneTwoThree"

 print(concat("One", "Two", "Three"));

?>

array func_get_args()

Use func_get_args (Listing 11.82) to get an array containing all the

arguments passed to the function. The elements of the array will be indexed

with integers, starting with zero. This provides an alternative to using

func_get_arg and func_num_args.

Listing 11.82 func_get_args

<?php

 /*

 ** Function gcd

 ** Input: any number of integers

 ** Output: integer

 ** Description: Returns the greatest common

 ** denominator from the input.

 */

 function gcd()

 {

 /*

 ** start with the smallest argument and try every

 ** value until we get to 1, which is common to all

 */

 $start = 2147483647;

 foreach(func_get_args() as $arg)

 {

 if(abs($arg) < $start)

 {

 $start = abs($arg);

 }

 }

 for($i=$start; $i > 1; $i--)

 {

 //assume we will find a gcd

 $isCommon = TRUE;

 //try each number in the supplied arguments

 foreach(func_get_args() as $arg)

 {

 //if $arg divided by $i produces a

 //remainder, then we don't have a gcd

 if(($arg % $i) != 0)

 {

 $isCommon = FALSE;

 }

 }

 //if we made it through the previous code

 //and $isCommon is still TRUE, then we found

 //our gcd

 if($isCommon)

 {

 break;

 }

 }

 return($i);

 }

 //prints 5

 print(gcd(10, 20, -35));

?>

integer func_num_args()

The func_num_args function returns the number of arguments passed to a

function. See the description of func_get_arg for an example of use.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

Chapter 12. Encoding and Decoding
Topics in This Chapter

Strings

String Comparison

Encoding and Decoding

Compression

Encryption

Hashing

Spell Checking

Regular Expressions

Character Set Encoding

The functions for transforming text can be put into three general

categories: functions that make arbitrary changes to strings,

functions that transform strings according to special rules, and

functions that evaluate strings and return a number or a boolean.

Among the transformative functions are functions for encrypting text

and compressing text. Among the evaluative functions are those for

checking spelling, creating hashes, and pattern matching.

12.1 Strings

For the most part, the string functions create strings from other strings or

report the properties of a string.

array count_chars(string data, integer mode)
 string count_chars(string data, integer mode)

The count_chars function (Listing 12.1) analyzes a string by the characters

present. The mode argument controls the return value as described in Table

12.1. See Figure 12.1.

Table 12.1. count_chars Modes

Mode Description

0 Returns an array indexed by ASCII codes. Each element is set with the

count for that character.

1 Returns an array indexed by ASCII codes. Only characters with positive

counts appear in the array.

2 Returns an array indexed by ASCII codes. Only characters with zero

counts appear in the array.

3 Returns a string containing each character appearing in the input string.

4 Returns a string containing all characters not appearing in the input

string.

Listing 12.1 count_chars

<?php

 //print counts for characters found

 foreach(count_chars("Core PHP", 1) as $key=>$value)

 {

 print("$key: $value\n");

 }

 //print list of characters found

 print("Characters: '" . count_chars("Core PHP", 3) . "'\n");

?>

Figure 12.1 count_chars output.

32: 1

67: 1

72: 1

80: 2

101: 1

111: 1

114: 1

Characters: ' CHPeor'

string sprintf(string format, …)

The sprintf function (Listing 12.2) operates identically to the printf function

except that instead of sending the assembled string to the browser, it returns

the string. See the description of printf for a detailed discussion. This function

offers an easy way to control the representation of numbers. Ordinarily, PHP

may print a double with no fraction; this function allows you to format them

with any number of digits after the decimal point.

Listing 12.2 sprintf

<?php

 $x = 3.00;

 //print $x as PHP default

 print($x . "\n");

 //format value of $x so that

 //it show two decimals after

 //the decimal point

 $s = sprintf("%.2f", $x);

 print($s . "\n");

?>

value sscanf(string text, string format, …)

The sscanf function parses a string in the same way fscanf parses a line of

input from a file. That is, it attempts to break it into variables according to the

format argument. If you give only two arguments, sscanf returns an array.

Otherwise, it attempts to place the values in the supplied list of variable

references.

Chapter 9 contains a description of fscanf, including available format codes.

strchr

This function is an alias to strstr.

integer strcspn(string text, string set)

The strcspn function (Listing 12.3) returns the position of the first character in

the text argument that is part of the set argument. Compare this function to

strspn.

Listing 12.3 strcspn

<?php

 $text = "red cabbage";

 $set = "abc";

 $position = strcspn($text, $set);

 // prints 'red '

 print("'" . substr($text, 0, $position) . "'");

?>

integer stripos(string data, string substring, integer offset)

The stripos function returns the position of the substring argument in the

data argument. It operates like the strpos function described in this chapter

except it ignores letter case.

string stristr(string text, string substring)

The stristr function (Listing 12.4) is a case-insensitive version of strstr,

described in this chapter. A portion of the text argument is returned starting

from the first occurrence of the substring argument to the end.

Listing 12.4 stristr

<?php

 $text = "Although he had help, Leon is the author of this book.";

 print("Looking for 'leon': " . stristr($text, "leon"));

?>

integer strlen(string text)

Use the strlen function (Listing 12.5) to get the length of a string. It is binary-

safe.

Listing 12.5 strlen

<?php

 $text = "a short string";

 print("'$text' is " . strlen($text) . " characters long.");

?>

string str_pad(string text, integer length, string padding,
integer mode)

Use str_pad (Listing 12.6) to expand a string to a certain length. You may set

the optional padding argument with a string used for padding. Otherwise, PHP

pads with spaces. The optional mode argument controls where PHP places

padding. Use STR_PAD_RIGHT to place padding on the right, STR_PAD_LEFT to

place padding on the left, and STR_PAD_BOTH to pad both sides. By default, PHP

pads on the right.

Listing 12.6 str_pad

<?php

 //prints 'abc '

 print("'" . str_pad("abc", 10) . "'\n");

 //prints xyzxyzxabc

 print(str_pad("abc", 10, "xyz", STR_PAD_LEFT) . "\n");

 //print ***Core PHP***

 print(str_pad("Core PHP", 14, "*", STR_PAD_BOTH) . "\n");

?>

integer strpos(string data, string substring, integer offset)

The strpos function (Listing 12.7) returns the position of the substring

argument in the data argument. If the substring argument is not a string, it

will be treated as an ASCII code. If the substring appears more than once,

the position of the first occurrence is returned. If the substring doesn’t exist

at all, then FALSE is returned. The optional offset argument instructs PHP to

begin searching after the specified position. Positions are counted starting with

zero.

This function is a good alternative to ereg when you are searching for a simple

string. It carries none of the overhead involved in parsing regular expressions.

It is safe for use with binary strings. If you wish to search for a string with no

regard to case, use stristr.

Listing 12.7 strpos

<?php

 $text = "Hello, World!";

 //check for a space

 if(strpos($text, 32))

 {

 print("There is a space in '$text'\n");

 }

 //find where in the string World appears

 print("World is at position " . strpos($text, "World") . "\n");

?>

strrchr

This is an alias for strrpos.

string str_repeat(string text, integer count)

The str_repeat function (Listing 12.8) returns a string consisting of the text

argument repeated the number of times specified by the count argument.

Listing 12.8 str_repeat

<?php

 print(str_repeat("PHP!
\n", 10));

?>

integer strripos(string text, string character)

The strripos function returns the last occurrence of the second argument in

the first argument, ignoring case. Compare it to strrpos, which only finds

letters that match case.

integer strrpos(string text, string character)

The strrpos function operates similarly to strpos. It returns the last

occurrence of the second argument in the first argument. However, only the

first character of the second argument is used. This function offers a very neat

way of chopping off the last part of a path, as in Listing 12.9.

Listing 12.9 strrpos

<?php

 //set test string

 $path = "/usr/local/apache";

 //find last slash

 $pos = strrpos($path, "/");

 //print everything after the last slash

 print(substr($path, $pos+1));

?>

integer strspn(string text, string set)

The strspn function (Listing 12.10) returns the position of the first character in

the text argument that is not part of the set of characters in the set

argument. Compare this function to strcspan.

Listing 12.10 strspn

<?php

 $text = "cabbage";

 $set = "abc";

 $position = strspn($text, $set);

 //prints 'cabba'

 print(substr($text, 0, $position));

?>

string strstr(string text, string substring)

The strstr function returns the portion of the text argument from the first

occurrence of the substring argument to the end of the string. If substring is

not a string, it is assumed to be an ASCII code. ASCII codes are listed in

Appendix B.

An empty string is returned when substring is not found in text. You can use

it as a faster alternative to ereg if you test for an empty string, as in Listing

12.11. The stristr function is a case-insensitive version of this function. This

function is binary-safe.

Listing 12.11 strstr

<?php

 $text = "Although this is a string, it's not very long.";

 if(strstr($text, "it") != "")

 {

 print("The string contains 'it'.
\n");

 }

?>

string strtok(string line, string separator)

The strtok function (Listing 12.12) pulls tokens from a string. The line

argument is split up into tokens separated by any of the characters in the

separator string. The first call to strtok must contain two arguments.

Subsequent calls are made with just the separator argument, unless you wish

to begin tokenizing another string. Chapter 16 discusses this function in depth,

including alternatives like ereg.

Listing 12.12 strtok

<?php

 // create a demo string

 $line = "leon\tatkinson\tleon@clearink.com";

 // loop while there are still tokens

 for($token = strtok($line, "\t");

 $token != "";

 $token = strtok("\t"))

 {

 print("token: $token
\n");

 }

?>

integer str_word_count(string text, integer mode)
 array str_word_count(string text, integer mode)

Use str_word_count (Listing 12.13) to count words in a string of text. A word

is defined as being a series of alphabetic characters that may contain ‘ or -

characters. By default, PHP returns an integer. The str_word_count function

returns an array of the words found when mode is 1. When mode is 2, it

returns an associative array in which the words are keys and the values are the

positions of the words in the text. See Figure 12.2.

Listing 12.13 str_word_count

<?php

 $text = "\"That can't be right,\" said the half-elf.";

 print(str_word_count($text) . "\n");

 print_r(str_word_count($text, 1));

 print_r(str_word_count($text, 2));

?>

Figure 12.2 str_word_count output.

7

Array

(

 [0] => That

 [1] => can't

 [2] => be

 [3] => right

 [4] => said

 [5] => the

 [6] => half-elf

)

Array

(

 [1] => That

 [6] => can't

 [12] => be

 [15] => right

 [23] => said

 [28] => the

 [32] => half-elf

)

string substr(string text, integer start, integer length)

Use the substr function (Listing 12.14) to extract a substring from the text

argument. A string is returned that starts with the character identified by the

start argument, counting from zero. If start is negative, counting will begin

at the last character of the text argument instead of the first and work

backward.

The length argument or the end of the string determines the number of

characters returned. If length is negative, the returned string will end as many

characters from the end of the string. In any case, if the combination of start

and length calls for a string of negative length, a single character is returned.

This function is safe for use with binary strings.

Listing 12.14 substr

<?php

 $text = "My dog's name is Angus.";

 //print Angus

 print(substr($text, 17, 5));

?>

integer substr_count(string text, string substring)

The substr_count function (Listing 12.15) returns a count of the substring

argument in the text argument.

Listing 12.15 substr_count

<?php

 $text = 'How much wood would a woodchuck chuck, ' .

 'if a woodchuck could chuck wood?';

 //prints 4

 print(substr_count($text, 'wood'));

?>

array token_get_all(string text)

The token_get_all function (Listing 12.16) parses PHP code and returns an

array with one element for each token. The element may be a string or a two-

element array containing a token identifier and the token itself. You can use

token_name to get a textual name for the token. See Figure 12.3.

Listing 12.16 token_get_all, token_name

<?php

 $code = '<?php$a = 3;?>';

 foreach(token_get_all($code) as $c)

 {

 if(is_array($c))

 {

 print(token_name($c[0]) . ": '" . htmlentities($c[1]) .

 "'
\n");

 }

 else

 {

 print("$c
\n");

 }

 }

?>

Figure 12.3 token_get_all, token_name output.

T_OPEN_TAG: '<?php'

T_VARIABLE: '$a'

T_WHITESPACE: ' '

=

T_WHITESPACE: ' '

T_LNUMBER: '3'

;

T_CLOSE_TAG: '?>'

string token_name(integer token)

The token_name function returns a name for a token identifier as returned by

token_get_all.

string vsprintf(string format, array arguments)

The vsprintf function works exactly like sprintf except that you pass

arguments in an array.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

12.2 String Comparison

These functions compare one string to another. They all return

integers. A negative integer means the first string comes before the

second. Zero means the strings are equal. A positive number means

the first string comes after the second. You may consider the hashing

functions described later in this function for comparing strings.

integer strcasecmp(string first, string second)

The strcasecmp function (Listing 12.17) operates identically to

strcmp except that it treats uppercase and lowercase as identical.

Listing 12.17 strcasecmp

<?php

 $first = "abc";

 $second = "aBc";

 if(strcasecmp($first, $second) == 0)

 {

 print("strings are equal");

 }

 else

 {

 print("strings are not equal");

 }

?>

integer strcmp(string first, string second)

The strcmp function (Listing 12.18) compares the first string to the

second string. Comparisons are made by ASCII values. This function

is safe for comparing binary data.

Listing 12.18 strcmp

<?php

 $first = "abc";

 $second = "xyz";

 if(strcmp($first, $second) == 0)

 {

 print("strings are equal");

 }

 else

 {

 print("strings are not equal");

 }

?>

integer strcoll(string first, string second)

The strcoll function compares two strings as with strcmp except

that it considers the ordering of characters defined by the locale. If

locale is C or POSIX, it duplicates the strcmp function’s output. This

function is not binary safe. That is, if either string contains a NULL

character (ASCII 0), PHP will not compare the entire string.

integer strnatcasecmp(string first, string second)

The strnatcasecmp function compares two strings using the method

used by strnatcmp, described next, except that it ignores case.

integer strnatcmp(string first, string second)

The strnatcmp function compares two strings in a natural order, as

described by Martin Pool on his Web site

<http://www.naturalordersort.org/>. This sorting method pays

attention to numbers embedded in strings and recognizes that abc2

ought to come before abc12. It returns a number less than zero if the

first string is less than the second. It returns zero if they are equal. It

returns a number greater than zero if the first string is greater than

the second string.

integer strncasecmp(string first, string second,
integer length)

Use strncasecmp to compare the first parts of two strings. PHP

compares the strings, character by character, until comparing the

number of characters specified by length or reaching the end of one

of the strings. PHP treats letters of different case as equal. If first

and second are equal, PHP returns zero. If first comes before

second, PHP returns a negative number. If second comes before

first, PHP returns a positive number.

integer strncmp(string first, string second, integer
length)

The strncmp function compares the first parts of two strings. PHP

compares the strings, character by character, until comparing the

number of characters specified by length or reaching the end of one

of the strings. PHP considers order based on ASCII value. If first

http://www.naturalordersort.org/default.htm

and second are equal, PHP returns zero. If first comes before

second, PHP returns a negative number. If second comes before

first, PHP returns a positive number.

string strpbrk(string text, string list)

The strpbrk function returns the substring of the given text after it

finds one of the characters in the given list. This function wraps the C

function of the same name.

12.3 Encoding and Decoding

The functions in this section transform data from one form to another. This

includes stripping certain characters, substituting some characters for others, and

translating data into some encoded form.

string addcslashes(string text, string characters)

The addcslashes function returns the text argument after escaping characters in

the style of the C programming language. Briefly, this means special characters

are replaced with codes, such as \n replacing a newline character, and other

characters outside ASCII 32�126 are replaced with backslash octal codes.

The optional characters argument may contain a list of characters to be escaped,

which overrides the default of escaping all special characters. The characters are

specified with octal notation. You may specify a range using two periods as in

Listing 12.19.

Listing 12.19 addcslashes

<?php

 $s = addcslashes($s, "\0..\37");

?>

string addslashes(string text)

The addslashes function (Listing 12.20) returns the text argument with

backslashes preceding characters that have special meaning in database queries.

These are single quotes (’), double quotes (”), and backslashes themselves (\).

Listing 12.20 addslashes

<?php

 // add slashes to text

 $phrase = addslashes("I don't know");

 // build query

 $Query = "SELECT * ";

 $Query .= "FROM comment ";

 $Query .= "WHERE text like '%$phrase%'";

 print($Query);

?>

string base64_decode(string data)

The base64_decode function (Listing 12.21) translates data from MIME base64

encoding into 8-bit data. Base64 encoding is used for transmitting data across

protocols, such as email, where raw binary data would otherwise be corrupted.

Listing 12.21 base64_decode

<?php

 $data = "VGhpcyBpcyBhIAptdWx0aS1saW5lIG1lc3NhZ2UK";

 print(base64_decode($data));

?>

string base64_encode(string text)

The base64_encode function (Listing 12.22) converts text to a form that will pass

through 7-bit systems uncorrupted, such as email.

Listing 12.22 base64_encode

<?php

 $text = "This is a \nmulti-line message\n";

 print(base64_encode($text));

?>

string basename(string path, string suffix)

The basename function (Listing 12.23) returns only the filename part of a path.

Directories are understood to be strings of numbers and letters separated by slash

characters (/). When running on Windows, backslashes (\) are used as well. If you

supply the optional suffix argument, PHP will remove it from the end of the string

if it appears.

The flip side to this function is dirname, which returns the directory.

Listing 12.23 basename

<?php

 $path="/usr/local/scripts/test.php";

 //test.php

 print(basename($path) . "
\n");

 //test

 print(basename($path, '.php') . "
\n");

?>

string bin2hex(string data)

The bin2hex function (Listing 12.24) returns the data argument with each byte

replaced by its hexadecimal representation. The numbers are returned in little-

endian style. That is, the first digit is most significant.

Listing 12.24 bin2hex

<?php

 //print book title in hex

 //436f7265205048502050726f6772616d6d696e67

 print(bin2hex("Core PHP Programming"));

?>

string chop(string text)

Use chop as an alias for rtrim.

string chr(integer ascii_code)

Use chr to get the character for an ASCII code. This function is helpful for

situations in which you need to use a nonprinting character that has no backslash

code or in which the backslash code is ambiguous. Imagine a script that writes to

a formatted text file. Ordinarily, you would use \n for an end-of-line marker. But

the behavior may be different when your script is moved from Windows to Linux,

because Windows uses a carriage return followed by a linefeed. If you wish to

enforce that each line end with a linefeed only, you can use chr(10), as in (Listing

12.25).

Of course, you may always use a backslash code to specify an ASCII code, as

listed in Appendix A and discussed in Chapter 2. Another alternative to chr is

sprintf. The %c code stands for a single character, and you may specify an ASCII

value for the character. Additionally, some functions, such as ereg_replace,

accept integers that are interpreted as ASCII codes.

If you need the ASCII code for a character, use ord. Appendix B lists ASCII codes.

Listing 12.25 chr

<?php

 //open a test file

 $fp = fopen("data.txt", "w");

 //write a couple of records that have

 //linefeeds for end markers

 fwrite($fp, "data record 1" . chr(10));

 fwrite($fp, "data record 2" . chr(10));

 //close file

 fclose($fp);

?>

string chunk_split(string data, integer length, string marker)

The chunk_split function (Listing 12.26) returns the data argument after

inserting an end-of-line marker at regular intervals. By default, a carriage return

and a linefeed are inserted every 76 characters. Optionally, you may specify a

different length and a different marker string.

Sascha Schumann added this function specifically to break base64 codes up into

76-character chunks. Although ereg_replace can mimic this functionality,

chunk_split is faster. It isn’t appropriate for breaking prose between words. That

is, it isn’t intended for performing a soft wrap.

Listing 12.26 chunk_split

<?php

 $encodedData = chunk_split(base64_encode($rawData));

?>

string convert_cyr_string(string text, string from, string to)

Use convert_cyr_string (Listing 12.27) to convert a string in one Cyrillic

character set to another. The from and to arguments are single-character codes

listed in Table 12.2.

Table 12.2. convert_cyr_string Codes

Code Description

a,d x-cp866

i iso8859-5

k koi8-r

m x-mac-cyrillic

w windows-1251

Listing 12.27 convert_cyr_string

<?php

 $new = convert_cyr_string($old, "a", "w");

?>

string dirname(string path)

The dirname function (Listing 12.28) returns only the directory part of a path. The

trailing slash is not included in the return value. Directories are understood to be

separated by slashes (/). On Windows, backslashes (\) may be used too. If you

need to get the filename part of a path, use basename. If the given path contains

only a filename, this function returns a single period.

Listing 12.28 dirname

<?php

 $path = "/usr/local/bin/ls";

 //prints /usr/local/bin

 print(dirname($path));

?>

string escapeshellarg(string argument)

The escapeshellarg function (Listing 12.29) adds a backslash before any

characters that may cause trouble in a shell command and wraps the entire

argument in single quotes.

Listing 12.29 escapeshellarg

<?php

 $arg = escapeshellarg("potentially; bad text $ ' }");

 print("Trying echo $arg
\n");

 system("echo $arg");

?>

string escapeshellcmd(string command)

The escapeshellcmd function (Listing 12.30) adds a backslash before any

characters that may cause trouble in a shell command. This function should be

used to filter user input before it is used in exec or system. Table 12.3 lists

characters escaped by escapeshellcmd.

Table 12.3. Characters Escaped by escapeshellcmd

Character Description

& Ampersand

; Semicolon

` Left Tick

’ Single Quote

” Double Quote

| Vertical Bar

* Asterisk

? Question Mark

~ Tilde

< Left Angle Bracket

> Right Angle Bracket

^ Caret

(Left Parenthesis

Character Description

) Right Parenthesis

[Left Square Bracket

] Right Square Bracket

{ Left Curly Brace

} Right Curly Brace

$ Dollar Sign

\ Backslash

ASCII 10 Linefeed

ASCII 255

Listing 12.30 escapeshellcmd

<?php

 $cmd = escapeshellcmd("echo 'potentially; bad text'");

 print("Trying $cmd
\n");

 system($cmd);

?>

string hebrev(string text, integer length)

Unlike English, Hebrew text reads right to left, which makes working with strings

inconvenient at times. The hebrev function reverses the orientation of Hebrew text

but leaves English alone. Hebrew characters are assumed to be in the ASCII range

224 through 251, inclusive. The optional length argument specifies a maximum

length per line. Lines that exceed this length are broken.

string hebrevc(string text, integer length)

The hebrevc function operates exactly like hebrev except that br tags are inserted

before end-of-line characters.

string htmlentities(string text, integer quote_style, string
character_set)

The htmlentities function (Listing 12.31) returns the text argument with certain

characters translated into HTML entities.

The optional quote_style argument controls how PHP converts single quotes (’)

and double quotes (”). Use one of the constants described in Table 12.4. It

defaults to ENT_COMPAT. The optional character_set controls the table of entities

used. It defaults to the ISO-8859-1 standard.

Table 12.4. Quote Styles

Constant Description

ENT_COMPAT Convert double quotes only.

ENT_NOQUOTES Do not convert quotes.

ENT_QUOTES Convert both single quotes and double quotes.

The nl2br function is similar: It translates line breaks to br tags. You can use

strip_tags to remove HTML tags altogether.

Listing 12.31 htmlentities

<?php

 $text = "Use <HTML> to begin a document.";

 print(htmlentities($text));

?>

string html_entity_decode(string text, integer quote_style,
string character_set)

The html_entity_decode function performs the reverse operation of the

htmlentities function. It converts entities into single characters. The optional

quote_style argument controls how PHP converts single quotes (’) and double

quotes (”). Use one of the constants described in Table 12.4. It defaults to

ENT_COMPAT. The optional character_set argument controls the table of entities

used. It defaults to the ISO-8859-1 standard.

string htmlspecialchars(string text, integer quote_style, string
character_set)

The htmlspecialchars function works like htmlentities except that a smaller set

of entities is used. They are amp, quot, lt, and gt.

integer ip2long(string address)

The ip2long function takes an IP address and returns an integer. This allows you

to compress a 16-byte string into a 4-byte integer. Use long2ip to reverse the

process.

string long2ip(integer address)

Use long2ip to get the textual representation of an IP address. Use ip2long to

reverse the process.

string ltrim(string text, string strip)

The ltrim function (Listing 12.32) returns the text argument with any leading

whitespace removed. If you wish to remove whitespace on the end of the string,

use rtrim. If you wish to remove whitespace from the beginning and end, use

trim. Whitespace includes spaces, tabs, and other nonprintable characters,

including nulls (ASCII 0).

The optional strip argument overrides the set of whitespace characters with any

list of characters you provide. You may also provide a range of characters using

two periods. For example, a..f would trim all lowercase letters from a to f.

Listing 12.32 ltrim

<?php

 $text = " Leading whitespace";

 print("'" . ltrim($text) . "'");

?>

string money_format(string format, double money)

The money_format function (Listing 12.33) wraps C’s strfmon function. It returns

a monetary value formatted according to the locale and the format argument. The

format string should contain a single code that stands for the number. Other

characters are passed through unchanged. Format codes start with % and end with

n. Between these two characters, you may place one of the flags from Table 12.5.

Table 12.5. money_format Codes

Flag Description

= Use this flag to specify a padding character. For example, =* uses asterisks.

By default, numbers are padded with spaces.

^ This flag disables grouping of digits.

(This flag wraps negative values in parentheses.

+ This flag represents the default behavior of preceding negative values with -

and positive values with nothing.

! This flag suppresses the currency symbol.

- This flag uses left justification instead of right justification.

Immediately following any format codes, you may place an integer for the

minimum width of the entire monetary value, padded out with spaces. Following

that, you may place a # and a left precision. If there are fewer digits than

required, the padding character specified by the = is used. Finally, you may place a

period and a right precision. If there are more digits than requested, they are

rounded.

Listing 12.33 money_format

<?php

 //[**1234.57]

 print(money_format("[%=*15#6.2n]", 1234.567));

?>

string nl2br(string text)

The nl2br function (Listing 12.34) inserts
 before every newline in the text

argument and returns the modified text.

Listing 12.34 nl2br

<?php

 $text = "line1\nline2\nline3\n";

 print(nl2br($text));

?>

string number_format(double value, integer precision, string
decimal, string thousands)

The number_format function (Listing 12.35) returns a formatted representation of

the value argument as a number with commas inserted to separate thousands.

The optional precision argument specifies the number of digits after the decimal

point, which by default is zero. The optional decimal and thousands arguments

must be used together. They override the default use of periods and commas for

decimal points and thousands separators.

Listing 12.35 number_format

<?php

 $test_number = 123456789.123456789;

 //add commas, drop any fraction

 print(number_format($test_number) . "
\n");

 //add commas and limit to two digit precision

 print(number_format($test_number, 2) . "
\n");

 //format for Germans

 print(number_format($test_number, 2, ",", ".") . "
\n");

?>

integer ord(string character)

The ord function (Listing 12.36) returns the ASCII code of the first character in the

character argument. This function allows you to deal with characters by their

ASCII values, which often can be more convenient than using backslash codes,

especially if you wish to take advantage of the order of the ASCII table. Refer to

Appendix B for a complete table of ASCII codes. If you need to find the character

associated with an ASCII code, use the chr function.

Listing 12.36 ord

<?php

 /*

 ** Decompose a string into its ASCII codes.

 ** Test for codes below 32 because these have

 ** special meaning and we may not want to

 ** print them.

 */

 $text = "Line 1\nLine 2\n";

 print("ASCII Codes for '$text'
\n");

 print("<table>\n");

 for($i=0; $i < strlen($text); $i++)

 {

 print("<tr>");

 print("<th>");

 if(ord($text[$i]) > 31)

 {

 print($text[$i]);

 }

 else

 {

 print("(unprintable)");

 }

 print("</th> ");

 print("<td>");

 print(ord($text[$i]));

 print("</td>");

 print("</tr>\n");

 }

 print("</table>\n");

?>

string pack(string format, …)

The pack function (Listing 12.37) takes inspiration from the Perl function of the

same name. It allows you to put data in a compact format that is readable on all

platforms. Format codes in the first argument match with the arguments that

follow it. The codes determine how the values are stored. An optional number,

called the repeat count, may follow the format code. It specifies how many of the

following arguments to use. The repeat count may also be *, which matches the

remaining arguments. Some of the codes use the repeat count differently. Table

12.6 lists all the format codes and how they use the repeat count.

A string with the packed data is returned. Note that it will be in a binary form,

unsuitable for printing. In the example below, I’ve printed out each byte of the

packed data as hexadecimal codes.

Table 12.6. pack Codes

Code
Data

Type
DescriptionCode

Data

Type
Description

a String Repeat count is the number of characters to take from the string. If

there are fewer characters in the string than specified by the repeat

count, spaces are used to pad it out.

A String Repeat count is the number of characters to take from the string. If

there are fewer characters in the string than specified by the repeat

count, nulls (ASCII 0) are used to pad it out.

c Integer The integer will be converted to a signed character.

C Integer The integer will be converted to an unsigned character.

d Double The double will be stored in double-width floating-point format.

Depending on your operating system, this is probably 8 bytes.

f Double The double will be converted to a single-width floating-point format.

Depending on your operating system, this is probably 4 bytes.

h String The ASCII value of each character of the argument will be saved as

two characters representing the ASCII code in hexadecimal, big-

endian. The repeat count denotes the number of characters to take

from the input.

H String The ASCII value of each character of the argument will be saved as

two characters representing the ASCII code in hexadecimal, little-

endian. The repeat count denotes the number of characters to take

from the input.

i Integer The argument will be saved as an unsigned integer. Typically, this is 4

bytes.

I Integer The argument will be saved as a signed integer. Typically, this is 4

bytes, with one bit used for sign.

l Integer The argument is saved as an unsigned long, which is usually 8 bytes.

L Integer The argument is saved as a signed long, which is usually 8 bytes with

one bit used for sign.

n Integer The argument is saved as an unsigned short, which is 2 bytes. The

value is saved in a way that allows for safe unpacking on both little-

endian and big-endian machines.

N Integer The argument is saved as an unsigned long, which is 8 bytes. The

value is saved in a way that allows for safe unpacking on both little-

endian and big-endian machines.

s Integer The argument is saved as an unsigned short, which is usually 2

bytes.

S Integer The argument is saved as a signed short, which is usually 2 bytes

with one bit used for sign.

v Integer The argument is saved as an unsigned short in little-endian order.

V Integer The argument is saved as an unsigned long in little-endian order.

Code
Data

Type
Description

x None This format directive doesn’t match with an argument. It writes a null

byte.

X None This format directive causes the pointer to the packed string to back

up 1 byte.

@ None This format directive moves the pointer to the absolute position

specified by its repeat count. The empty space is padded with null

bytes.

Listing 12.37 pack, unpack

<?php

 //create some packed data

 $packedData = pack("ca10n", 65, "hello", 1970);

 //display ASCII code for each character

 for($i=0; $i<strlen($packedData); $i++)

 {

 print("0x" . dechex(ord($packedData[$i])) . " ");

 }

 print("\n");

 //unpack the data

 $data = unpack("cOne/a10Two/nThree", $packedData);

 //show all elements of the unpacked array

 print_r($data);

?>

parse_str(string query, array fields)

The parse_str function (Listing 12.38) parses the query argument as if it were an

HTTP GET query. Without the optional fields argument, PHP creates a variable in

the current scope for each field in the query. With the fields argument, PHP sets

it with an array of the fields.

You may wish to use this function on the output of parse_url.

Listing 12.38 parse_str

<?php

 $query = "name=Leon&occupation=Web+Engineer";

 parse_str($query, $fields);

 print_r($fields);

?>

array parse_url(string query)

The parse_url function (Listing 12.39) breaks a URL into an associative array with

the following elements: fragment, host, pass, path, port, query, scheme, user.

The query is not evaluated as with the parse_str function. See Figure 12.4.

Listing 12.39 parse_url

<?php

 $query = "http://leon:secret@www.leonatkinson.com:80" .

 "/test/test.php3?" .

 "name=Leon&occupation=Web+Engineer";

 print_r(parse_url($query));

?>

Figure 12.4 parse_url output.

Array

(

 [scheme] => http

 [host] => www.leonatkinson.com

 [port] => 80

 [user] => leon

 [pass] => secret

 [path] => /test/test.php3

 [query] => name=Leon&occupation=Web+Engineer

)

array pathinfo(string path)

The pathinfo function (Listing 12.40) breaks a path into an array with three

parts: basename, dirname, extension. This combines the functionality of

basename and dirname. See Figure 12.5.

Listing 12.40 pathinfo

<?php

 print_r(pathinfo('/usr/local/apache/htdocs/index.php'));

?>

Figure 12.5 pathinfo output.

Array

(

 [dirname] => /usr/local/apache/htdocs

 [basename] => index.php

 [extension] => php

)

string quoted_printable_decode(string text)

The quoted_printable_decode function (Listing 12.41) converts a quoted string

into 8-bit binary form. Quoted-printable is a method of encoding binary strings for

email, as described in RFC 2045. Generally, characters that could be problematic

can be replaced with a = followed by their hexadecimal ASCII code.

This function performs the same function as imap_qprint but does not require the

IMAP extension.

Listing 12.41 quoted_printable_decode

<?php

 $command = "Line 1=0ALine 2=0A";

 print(quoted_printable_decode($command));

?>

string quotemeta(string command_text)

The quotemeta function returns the command_text argument with backslashes

preceding special characters. These characters are listed in Table 12.7. Compare

this function to addslashes and escapeshellcmd. If your intention is to ensure

that user data will cause no harm when placed within a shell command, use

escapeshellcmd.

The quotemeta function may be adequate for assembling PHP code passed to

eval. Notice in (Listing 12.42) how characters with special meaning inside double

quotes are escaped by quotemeta, thus defeating an attempt at displaying the

password variable.

Table 12.7. Meta Characters

Character Description

. Period

\ Backslash

+ Plus

* Asterisk

? Question Mark

[Left Square Bracket

] Right Square Bracket

^ Caret

(Left Parenthesis

) Right Parenthesis

$ Dollar Sign

Listing 12.42 quotemeta

<?php

 //simulate user input

 $input = '$password';

 //assemble safe PHP command

 $cmd = '$text = "' . quotemeta($input) . '";';

 //execute command

 eval($cmd);

 //print new value of $text

 print($text);

?>

string rawurldecode(string url_text)

The rawurldecode function (Listing 12.43) returns the url_text string translated

from URL format into plain text. It reverses the action of rawurlencode. This

function is safe for use with binary data. The urldecode function is not.

Listing 12.43 rawurldecode

<?php

 print(rawurldecode("mail%20leon%40example.com"));

?>

string rawurlencode(string url_text)

The rawurlencode function (Listing 12.44) returns the url_text string translated

into URL format. This format uses percent signs (%) to specify characters by their

ASCII code, as required by the HTTP specification. This allows you to pass

information in a URL that includes characters that have special meaning in URLs,

such as the ampersand (&). This is discussed in detail in RFC 1738.

This function is safe for use with binary data. Compare this to urlencode, which is

not.

Listing 12.44 rawurlencode

<?php

 print(rawurlencode("mail leon@clearink.com"));

?>

string rtrim(string text, string strip)

The rtrim function (Listing 12.45) returns the text argument with any trailing

whitespace removed. If you wish to remove both trailing and leading whitespace,

use the trim function. If you wish to remove leading whitespace only, use ltrim.

Whitespace includes spaces, tabs, and other nonprintable characters, including

nulls (ASCII 0).

The optional strip argument overrides the set of whitespace characters with any

list of characters you provide. You may also provide a range of characters using

two periods. For example, a..f would trim all lowercase letters from a to f.

Listing 12.45 rtrim

<?php

 print("\"" .

 rtrim("This has whitespace ") .

 "\"");

?>

string serialize(value)

Use serialize (Listing 12.46) to transform a value into an ASCII string that later

may be turned back into the same value using the unserialize function. The

serialized value may be stored in a file or a database for retrieval later. In fact, this

function offers a great way to store complex data structures in a database without

writing any special code.

PHP is capable of serializing all data types except resources. When serializing

objects, PHP attempts to execute a method named __sleep if it exists. Use this

method to prepare the object for serialization if necessary.

Listing 12.46 serialize

<?php

 //simulate a shopping basket as

 //a multi-dimensional array

 $Basket = array(

 array("soap", 1.59),

 array("bread", 0.99),

 array("milk", 1.29)

);

 //serialize array

 $data = serialize($Basket);

 //print out the data, just for fun

 print($data . "
\n");

 //unserialize the data

 $recoveredBasket = unserialize($data);

 //show the contents

 print("Unserialized:
\n");

 print_r($recoveredBasket);

?>

string sql_regcase(string regular_expression)

The sql_regcase function (Listing 12.47) translates a case-sensitive regular

expression into a case-insensitive regular expression. This is unnecessary for use

with PHP’s built-in regular expression functions but can be useful when creating

regular expressions for external programs such as databases.

Listing 12.47 sql_regcase

<?php

 //print [Mm][Oo][Zz][Ii][Ll][Ll][Aa]

 print(sql_regcase("Mozilla"));

?>

str_ireplace(string target, string replacement, string text)

The str_ireplace function attempts to replace all occurrences of target in text

with replacement. It operates like str_replace except that it ignores letter case.

string str_replace(string target, string replacement, string
text)

The str_replace function (Listing 12.48) attempts to replace all occurrences of

target in text with replacement. This function is safe for replacing strings in

binary data. It’s also a much faster alternative to ereg_replace. Note that

str_replace is case-sensitive.

The three arguments may also be arrays. When text is an array, PHP replaces

strings in each element and returns an array. When target is an array, PHP

searches for each term in order, making replacements. When using an array of

targets and a string for replacement, the string replaces each match. When using

an array of targets and an array of replacements, elements are matched by

position. PHP uses an empty string for extra elements in target.

Compare this function to str_ireplace.

Listing 12.48 str_replace

<?php

 $text = "Search results with keywords highlighted.";

 print(str_replace("keywords", "keywords", $text) . '
');

?>

string str_rot13(string text)

Use str_rot13 (Listing 12.49) to perform ROT13 encoding, sometimes called

Caesarean code. This encoding method treats the alphabet as a circular list and

replaces each letter with the letter 13 spaces away. This method is extremely weak

from a cryptographic perspective but is common for placing spoilers in plain text.

Listing 12.49 str_rot13

<?php

 $text = "Ybbx sbe n frperg qbbe haqre gur cyngsbez.";

 print(str_rot13($text));

?>

string str_shuffle(string text)

The str_shuffle function (Listing 12.50) randomizes the characters in a string.

Listing 12.50 str_shuffle

<?php

 //prints something like bgvhsdxejnrmoyqatcluzkiwfp

 print(str_shuffle("abcdefghijklmnopqrstuvwxyz"));

?>

array str_split(string text, integer length)

The str_split function converts a string into an array. By default, the elements of

the array hold one character in the given string. You may set the optional length

argument to a number greater than one in order to break the string into larger

chunks.

string strip_tags(string text, string ignore)

The strip_tags function (Listing 12.51) attempts to remove all SGML tags from

the text argument. This includes HTML and PHP tags. The optional ignore

argument may contain tags to be left alone. This function uses the same algorithm

used by fgetss. If you want to preserve tags, you may wish to use htmlentities.

Listing 12.51 strip_tags

<?php

 //create some test text

 $text = "<p>Paragraph One</p><p>Paragraph Two</p>";

 //strip out all tags except paragraph and break

 print(strip_tags($text, "<p>
"));

?>

string stripcslashes(string text)

The stripcslashes function (Listing 12.52) complements addcslashes. It

removes backslash codes that conform to the C style. See addcslashes for more

details.

Listing 12.52 stripcslashes

<?php

 //create some test text

 $text = "Line 1\x0ALine 2\x0A";

 //convert backslashes to actual characters

 print(stripcslashes($text));

?>

string stripslashes(string text)

The stripslashes function (Listing 12.53) returns the text argument with

backslash encoding removed. It complements addslashes.

Listing 12.53 stripslashes

<?php

 $text = "Leon\'s Test String";

 print("Before: $text
\n");

 print("After: " . stripslashes($text) . "
\n");

?>

string strrev(string text)

The strrev function (Listing 12.54) returns the text argument in reverse order.

Listing 12.54 strrev

<?php

 //prints gfedcba

 print(strrev("abcdefg"));

?>

string strtolower(string text)

The strtolower function (Listing 12.55) returns the text argument with all letters

changed to lowercase. Other characters are unaffected. Locale affects which

characters are considered letters, and you may find that letters with accents and

umlauts are being ignored. You may overcome this by using setlocale. Similar

functions are strtoupper, ucfirst, and ucwords.

Listing 12.55 strtolower, strtoupper, ucfirst, ucwords

<?php

 //core php programming

 print(strtolower("coRe pHP prOGraMMing") . "
");

 //CORE PHP PROGRAMMING

 print(strtoupper("coRe pHP prOGraMMing") . "
");

 //CoRe pHP prOGraMMing

 print(ucfirst("coRe pHP prOGraMMing") . "
");

 //CoRe PHP PrOGraMMing

 print(ucwords("coRe pHP prOGraMMing") . "
");

?>

string strtoupper(string text)

The strtoupper function returns the text argument with all letters changed to

uppercase. Other characters are unaffected. Locale affects which characters are

considered letters, and you may find that letters with accents and umlauts are

being ignored. You may overcome this by using setlocale. Similar functions are

strtolower, ucfirst, and ucwords.

string strtr(string text, string original, string translated)
 string strtr(string text, array replacement)

When passed three arguments, the strtr function (Listing 12.56) returns the text

argument with characters matching the second argument changed to those in the

third argument. If original and translated aren’t the same length, the extra

characters are ignored.

When called with two arguments, the second argument must be an associative

array. The indices specify strings to be replaced, and the values specify

replacement text. If a substring matches more than one index, the longer

substring will be used. The process is not iterative. That is, once substrings are

replaced, they are not further matched. This function is safe to use with binary

strings.

Listing 12.56 strtr

<?php

 $text = "Wow! This is neat.";

 $original = "!.";

 $translated = ".?";

 // turn sincerity into sarcasm

 print(strtr($text, $original, $translated));

?>

string substr_replace(string text, string replacement, integer
start, integer length)

Use substr_replace (Listing 12.57) to replace one substring with another. Unlike

str_replace, which searches for matches, substr_replace simply removes a

length of text and inserts the replacement argument. The arguments operate

similarly to substr. The start argument is an index into the text argument with

the first character numbered as zero. If start is negative, counting will begin at

the last character of the text argument instead of the first.

The number of characters replaced is determined by the optional length argument

or the ends of the string. If length is negative, the returned string will end as

many characters from the end of the string. In any case, if the combination of

start and length calls for a string of negative length, a single character is

removed.

Listing 12.57 substr_replace

<?php

 $text = "My dog's name is Angus.";

 //replace Angus with Gus

 print(substr_replace($text, "Gus", 17, 5));

?>

string trim(string text, string strip)

The trim function (Listing 12.58) strips whitespace from both the beginning and

end of a string. Compare this function to ltrim and rtrim. Whitespace includes

spaces, tabs, and other nonprintable characters, including nulls (ASCII 0).

The optional strip argument overrides the set of whitespace characters with any

list of characters you provide. You may also provide a range of characters using

two periods. For example, a..f would trim all lowercase letters from a to f.

Listing 12.58 trim

<?php

 $text = " whitespace ";

 print("\"" . trim($text) . "\"");

?>

string ucfirst(string text)

Use the ucfirst function to capitalize the first character of a string. Similar

functions are strtolower, strtoupper, and ucwords. As with these other

functions, your locale determines which characters are considered letters.

string ucwords(string text)

Use the ucwords function to capitalize every word in a string. Similar functions are

strtolower, strtoupper, and ucfirst. As with these other functions, your locale

determines which characters are considered letters.

array unpack(string format, string data)

The unpack function transforms data created by the pack function into an

associative array. The format argument follows the same rules used for pack

except that each element is separated by a slash to allow them to be named.

These names are used as the keys in the returned associative array. See the pack

example.

value unserialize(string data)

Use unserialize to transform serialized data back into a PHP value. The

description of serialize has an example of the entire process. When unserializing

an object, PHP attempts to call the __wakeup method if it exists.

The unserialize_callback_func directive in php.ini sets a function called when

unserializing an object of an unknown class. This may allow you to define the class

first, perhaps by using include_once. This callback function should take a single

argument, the name of the class.

string urldecode(string url_text)

The urldecode function returns the url_text string translated from URL format

into plain text. It is not safe for binary data.

string urlencode(string url_text)

The urlencode function returns the url_text string translated into URL format.

This format uses percent signs (%) to specify characters by their ASCII code. This

function is not safe for use with binary data.

string wordwrap (string text, integer width, string break,
integer cut)

The wordwrap function (Listing 12.59) wraps text at 75 columns by inserting

linebreaks between words. The optional width argument overrides the default

width. The optional break argument sets the string used for linebreaks.

In the case of words longer than the defined width, PHP allows the line to exceed

the width. This may be overridden by setting the optional cut argument to 1, in

which case PHP inserts a linebreak in the middle of the word.

Listing 12.59 wordwrap

<?php

 $text = "Core PHP Programming";

 //Core PHP

 //Programming

 print(wordwrap($text, 8) . "\n\n");

 //Core PHP

 //Programm

 //ing

 print(wordwrap($text, 8, "\n", 1));

?>

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

12.4 Compression

These functions compress and decompress strings using the bzip2 or gzip

libraries. There are functions described in Chapter 9 for reading and

writing to compressed files.

string bzcompress(string data, integer blocksize,
integer workfactor)

Use bzcompress (Listing 12.60) to compress a string using the bzip2

library. The optional blocksize argument may be set with an integer from

1 to 9, with 9 being the highest compression. By default, blocksize is 4.

The optional workfactor argument influences how bzcompress handles

long strings of repetitive sequences. It should be an integer from 0 to 250.

Listing 12.60 bzcompress, bzdecompress

<?php

 $text = "Core PHP Programming";

 $bzText = bzcompress($text, 9);

 print(bin2hex($bzText) . "
");

 print(bzdecompress($bzText) . "
");

?>

string bzdecompress(string data, boolean small)

Use bzdecompress to uncompress data compressed with the bzip2

algorithm. When the optional small argument is TRUE, PHP uses an

alternative decompression routine that limits the use of memory at the

expense of slower performance.

string gzcompress(string data, integer level)

Use gzcompress (Listing 12.61) to compress a string using the zlib

algorithm. The optional level argument sets the level of compression

from 1 to 9, with 9 being the highest compression. This is not the same as

gzip compression used by gzencode. Use gzuncompress to uncompress

the output of this function.

Listing 12.61 gzcompress, gzuncompress

<?php

 $text = "Core PHP Programming";

 $gzText = gzcompress($text, 9);

 print(bin2hex($gzText) . "
");

 print(gzuncompress($gzText) . "
");

?>

string gzdeflate(string data, integer level)

The gzdeflate function (Listing 12.62) compresses data using the deflate

algorithm. The optional level argument sets the level of compression

from 0 to 9, with 9 being the highest compression. Use gzinflate to

uncompress the data.

Listing 12.62 gzdeflate, gzinflate

<?php

 $text = "Core PHP Programming";

 $gzText = gzdeflate($text, 9);

 print(bin2hex($gzText) . "
");

 //strip first 10 bytes (header) and last 4 bytes (checksum)

 print(gzinflate($gzText) . "
");

?>

string gzencode(string data, integer level, integer mode)

The gzencode function compresses data with the gzip library. The optional

level argument sets the level of compression from 0 to 9, with 9 being

the highest compression. The third argument forces the method for

compression. Use FORCE_GZIP for gzip mode, which is the default. Use

FORCE_DEFLATE for standard zlib mode.

The return value includes the gzip header and a trailing checksum. If you

wish to uncompress the data with gzinflate, you must strip these, as in

Listing 12.63.

Listing 12.63 gzencode

<?php

 $text = "Core PHP Programming";

 $gzText = gzencode($text, 9);

 print(bin2hex($gzText) . "
");

 //strip first 10 bytes (header) and last 4 bytes (checksum)

 print(gzinflate(substr($gzText, 10, -4)) . "
");

?>

string gzinflate(string data, integer length)

Use gzinflate to uncompress data compressed with the deflate

algorithm. The optional length argument sets a maximum length for the

uncompressed data.

string gzuncompress(string data, integer length)

Use gzuncompress to uncompress data compressed with gzcompress. The

optional length argument sets a maximum size for the uncompressed

data.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

12.5 Encryption

Encryption is the process of transforming information to and from an

unreadable format. Some algorithms simply scramble text; others

allow for reversing the process. PHP offers a wrapper to C’s crypt

function plus an extension that wraps the mcrypt library.

The mcrypt functions rely on a library of the same name written by

Nikos Mavroyanopoulos, which provides an advanced system for

encrypting data. The URI for the project is <http://mcrypt.hellug.gr/>.

Sascha Schumann added mycrypt functionality to PHP. Derick Rethans

added support for the new API introduced in mcrypt 2.4.4.

Cryptography is a topic beyond the scope of this text. Some concepts

discussed in this section require familiarity with advanced

cryptographic theories. A great place to start learning about

cryptography is the FAQ file for the sci.crypt Usenet newsgroup. The

URI is <http://www.faqs.org/faqs/cryptography-faq/>. Another

resource is a book Prentice Hall publishes called Cryptography and

Network Security: Principles and Practice by William Stallings.

string crypt(string text, string salt)

The crypt function (Listing 12.64) encrypts a string using C’s crypt

function, which usually uses standard DES encryption but depends on

your operating system. The text argument is returned encrypted. The

salt argument is optional. PHP will create a random salt value if one

is not provided. You may wish to read the man page on crypt to gain

a better understanding.

Note that data encrypted with the crypt function cannot be decrypted.

The function is usually used to encrypt a password that is saved for

when authorization is necessary. At that time, the password is asked

for, encrypted, and compared to the previously encrypted password.

Depending on your operating system, alternatives to DES encryption

may be available. The salt argument is used to determine which

algorithm to use. A two-character salt is used for standard DES

encryption. A nine-character salt specifies extended DES. A 12-

character salt specifies MD5 encryption. And a 16-character salt

specifies the blowfish algorithm.

When PHP is compiled, available algorithms are incorporated. The

following constants will hold TRUE or FALSE values that you can use to

determine the availability of the four algorithms: CRYPT_STD_DES,

CRYPT_EXT_DES, CRYPT_MD5, CRYPT_BLOWFISH.

Listing 12.64 crypt

<?php

 $password = "secret";

 if(CRYPT_MD5)

http://mcrypt.hellug.gr/default.htm
http://www.faqs.org/faqs/cryptography-faq/default.htm

 {

 $salt = "leonatkinson";

 print("Using MD5: ");

 }

 else

 {

 $salt = "cp";

 print("Using Standard DES: ");

 }

 print(crypt($password, $salt));

?>

string mcrypt_create_iv(integer size, integer source)

Use mcrypt_create_iv to create an initialization vector. The size

should match the encryption algorithm and should be set using

mcrypt_get_block_size.

The source argument can be one of three constants.

MCRYPT_DEV_RANDOM uses random numbers from /dev/random.

MCRYPT_DEV_URANDOM uses random numbers from /dev/urandom.

MCRYPT_RAND uses random numbers from the rand function.

string mcrypt_decrypt(string cipher, string key, string
data, string mode, string iv)

Use mcrypt_decrypt (Listing 12.65) to decrypt data. The cipher

argument should be one of the ciphers listed in Table 12.8. The key

argument is a secret key used to decrypt the data argument. The mode

argument should be one of the modes in Table 12.9. The optional iv

argument is an initialization vector necessary for some algorithms and

modes.

Listing 12.65 mcrypt_decrypt

<?php

 //set up test data

 $message = "This message is sensitive.";

 $key = "secret";

 //encrypt message

 $code = @mcrypt_encrypt(MCRYPT_BLOWFISH, $key, $message,

 MCRYPT_MODE_ECB);

 //pring decrypted message

 print(@mcrypt_decrypt(MCRYPT_BLOWFISH, $key, $code,

 MCRYPT_MODE_ECB));

?>

Table 12.8. Encryption Algorithms

Cipher Description

MCRYPT_3DES Triple-DES

MCRYPT_ARCFOUR RC4

MCRYPT_ARCFOUR_IV RC4 with initialization vector

MCRYPT_BLOWFISH Blowfish

MCRYPT_CAST_128 CAST with 128-bit keys

MCRYPT_CAST_256 CAST with 256-bit keys

MCRYPT_CRYPT Algorithm used by crypt

MCRYPT_DES DES

MCRYPT_GOST GOST, the Soviet encryption algorithm

MCRYPT_IDEA IDEA (International Data Encryption Algorithm)

MCRYPT_LOKI97 LOKI97, which uses 128-bit blocks

MCRYPT_MARS IBM’s MARS cipher

MCRYPT_PANAMA Panama

MCRYPT_RC2 RC2

MCRYPT_RC6 RC6

MCRYPT_RIJNDAEL_128Rijndael with 128-bit keys

MCRYPT_RIJNDAEL_192Rijndael with 192-bit keys

MCRYPT_RIJNDAEL_256Rijndael with 256-bit keys

MCRYPT_SAFER128 SAFER (Secure and Fast Encryption Routine)

with 128-bit keys

MCRYPT_SAFER64 SAFER with 64-bit keys

MCRYPT_SAFERPLUS SAFER+

MCRYPT_SERPENT Serpent

MCRYPT_SKIPJACK Skipjack, the cipher used by the Clipper chip

MCRYPT_THREEWAY 3-Way

MCRYPT_TRIPLEDES Triple-DES

Cipher Description

MCRYPT_TWOFISH Twofish

MCRYPT_WAKE WAKE

MCRYPT_XTEA xTEA, the expansion of The Tiny Encryption

Algorithm

Table 12.9. Encryption Modes

Mode Name

MCRYPT_MODE_ECB Electronic codebook

MCRYPT_MODE_CBC Cipher block chaining

MCRYPT_MODE_CFB Cipher feedback

MCRYPT_MODE_OFB Output feedback, 8-bit

MCRYPT_MODE_NOFB Output feedback, variable block size

MCRYPT_MODE_STREAM Stream

string mcrypt_enc_get_algorithms_name(resource
mcrypt)

The mcrypt_enc_get_algorithms_name function returns the name of

the algorithm used by the open resource.

integer mcrypt_enc_get_block_size(resource mcrypt)

Use mcrypt_enc_get_block_size to get the block size used by the

open resource.

integer mcrypt_enc_get_iv_size(resource mcrypt)

Use mcrypt_enc_get_iv_size to get the size of the initialization

vector used by the open resource.

integer mcrypt_enc_get_key_size(resource mcrypt)

Use mcrypt_enc_get_key_size to get the maximum key size allowed

by the open resource.

string mcrypt_enc_get_modes_name(resource
mcrypt)

Use mcrypt_enc_get_modes_name to get the name of the mode used

by the open resource.

array
mcrypt_enc_get_supported_key_sizes(resource
mcrypt)

Use mcrypt_enc_get_supported_key_sizes to get an array of

supported key sizes used by the open resource.

boolean mcrypt_enc_is_block_algorithm(resource
mcrypt)

Use mcrypt_enc_is_block_algorithm to test whether the algorithm

of the open resource is a block cipher.

boolean
mcrypt_enc_is_block_algorithm_mode(resource
mcrypt)

Use mcrypt_enc_is_block_algorithm_mode to test whether the mode

used by the given resource supports block ciphers.

boolean mcrypt_enc_is_block_mode(resource
mcrypt)

Use mcrypt_enc_is_block_mode to test whether the mode used by the

given resource outputs blocks.

boolean mcrypt_enc_self_test(resource mcrypt)

Use mcrypt_enc_self_test to test the algorithm used by the given

resource.

string mcrypt_encrypt(string cipher, string key, string
data, string mode, string iv)

Use mcrypt_encrypt to encrypt data. The cipher argument should be

one of the ciphers listed in Table 12.8. The key argument is a secret

key used to encrypt the data argument. The mode argument should be

one of the modes in Table 12.9. The optional iv argument is an

initialization vector necessary for some algorithms and modes.

string string mcrypt_generic(resource mcrypt, string
data)

Use mcrypt_generic (Listing 12.66) to encrypt data. PHP pads the

data with NULL characters to ensure the data length is a multiple of the

block size. Before using this function, you must initialize the resource

with mcrypt_generic_init.

Listing 12.66 mcrypt_generic

<?php

 $message = "This message is sensitive.";

 //open cipher

 $mcrypt = mcrypt_module_open(MCRYPT_3DES, NULL,

 MCRYPT_MODE_ECB, NULL);

 //make initialization vector

 $iv = mcrypt_create_iv(mcrypt_enc_get_iv_size($mcrypt),

 MCRYPT_DEV_RANDOM);

 //make key, use md5 to make sure key is long enough

 $key = substr(md5('secret'), 0,

 mcrypt_enc_get_key_size($mcrypt));

 //init for encryption

 mcrypt_generic_init($mcrypt, $key, $iv);

 //encrypt

 $code = mcrypt_generic($mcrypt, $message);

 //clean up

 mcrypt_generic_deinit($mcrypt);

 //init for decryption

 mcrypt_generic_init($mcrypt, $key, $iv);

 //decrypt

 print(mdecrypt_generic($mcrypt, $code));

 //clean up

 mcrypt_generic_deinit($mcrypt);

 //close module

 mcrypt_module_close($mcrypt);

?>

boolean mcrypt_generic_deinit(resource mcrypt)

Use mcrypt_generic_deinit to free the memory used by the mcrypt

resource created by mcrypt_generic_init.

integer mcrypt_generic_init(resource mcrypt, string
key, string iv)

Use mcrypt_generic_init to initialize the resource with a key and

initialization vector so you can call mcrypt_generic or

mdecrypt_generic.

integer mcrypt_get_block_size(integer algorithm)

Use mcrypt_get_block_size to find the block size for a given

encryption algorithm. Use one of the constants listed in Table 12.8.

string mcrypt_get_cipher_name(integer algorithm)

Use mcrypt_get_cipher_name to get the name of an encryption

algorithm. Use one of the constants listed in Table 12.8.

integer mcrypt_get_iv_size(resource mcrypt)
 integer mcrypt_get_iv_size(string cipher, string

mode)

Use mcrypt_get_iv_size to get the length of the initialization vector

required by the open module. Alternatively, you may specify a cipher

and mode using the constants described in Table 12.8 and Table 12.9.

integer mcrypt_get_key_size(resource mcrypt)
 integer mcrypt_get_key_size(string cipher, string

mode)

Use mcrypt_get_key_size to find the key size for the open module.

Alternatively, you may specify a cipher and mode using the constants

described in Table 12.8 and Table 12.9.

array mcrypt_list_algorithms(string path)

The mcrypt_list_algorithms function returns an array of ciphers

usable by the mcrypt functions. The optional path argument looks for

modules in a directory other than the default, which is usually

/usr/local/lib/libmcrypt.

array mcrypt_list_modes(string path)

The mcrypt_list_modes function returns an array of modes usable by

the mcrypt functions. The optional path argument looks for modules in

a directory other than the default, which is usually

/usr/local/lib/libmcrypt.

boolean mcrypt_module_close(resource mcrypt)

Use mcrypt_module_close to close a mcrypt resource.

integer mcrypt_module_get_algo_block_size(string
algorithm, string path)

The mcrypt_module_get_algo_block_size function returns the block

size for the given algorithm, specified by one of the constants from

Table 12.8. The optional path argument looks for modules in a

directory other than the default, which is usually

/usr/local/lib/libmcrypt.

integer mcrypt_module_get_algo_key_size(string
algorithm, string path)

The mcrypt_module_get_algo_key_size function returns the

maximum key size for the given algorithm, specified by one of the

constants from Table 12.8. The optional path argument looks for

modules in a directory other than the default, which is usually

/usr/local/lib/libmcrypt.

array
mcrypt_module_get_supported_key_sizes(string
algorithm, string path)

The mcrypt_module_get_supported_key_sizes function returns an

array of valid key sizes for the given algorithm, specified by one of the

constants from Table 12.8. The optional path argument looks for

modules in a directory other than the default, which is usually

/usr/local/lib/libmcrypt.

boolean mcrypt_module_is_block_algorithm(string
algorithm, string path)

The mcrypt_module_is_block_algorithm function returns TRUE if the

given algorithm, specified by one of the constants from Table 12.8, is a

block algorithm. The optional path argument looks for modules in a

directory other than the default, which is usually

/usr/local/lib/libmcrypt.

boolean
mcrypt_module_is_block_algorithm_mode(string
mode, string path)

The mcrypt_module_is_block_algorithm_mode function returns TRUE

if the given mode, specified by one of the constants from Table 12.9,

supports block algorithms. The optional path argument looks for

modules in a directory other than the default, which is usually

/usr/local/lib/libmcrypt.

boolean mcrypt_module_is_block_mode(string
mode, string path)

The mcrypt_module_is_block_mode function returns TRUE if the given

mode, specified by one of the constants from Table 12.9, outputs

blocks. The optional path argument looks for modules in a directory

other than the default, which is usually /usr/local/lib/libmcrypt.

resource mcrypt_module_open(string algorithm,
string algorithm_path, string mode, string
mode_path)

Use mcrypt_module_open to create an mcrypt resource. Set the

algorithm argument with a value from Table 12.8. If you wish to

override the path used for mcrypt cipher modules, set the

algorithm_path argument. Set the mode argument with a value from

Table 12.9. The mode_path argument overrides the path to the mcrypt

mode modules.

boolean mcrypt_module_self_test(string algorithm,
string path)

The mcrypt_module_self_test function tests a cipher module. The

optional path argument looks for modules in a directory other than the

default, which is usually /usr/local/lib/libmcrypt.

string mdecrypt_generic(resource mcrypt, string
data)

Use mdecrypt_generic to decrypt data using an open resource.

12.6 Hashing

Hashing is the process of creating an index for a value using the value

itself. The index is called a hash. Sometimes hashes are unique to values,

but not always. Hashes can be used to make fast lookups, a method that

PHP uses for keeping track of variables. Other times hashes are used like

encryption. If the hashes of two strings match, you can assume the two

strings match, as long as hash values are unique. In this way, you can

check passwords without ever decrypting the original password.

Some of the functions in this section are built into PHP. The others are part

of Sascha Shumann’s Mhash library. This library presents a universal

interface to many hashing algorithms. Visit the home site to learn more

about it <http://schumann.cx/mhash/>.

integer crc32(string data)

The crc32 function (Listing 12.67) returns the 32-bit cyclic redundancy

checksum for the given data. Typically, this hash helps verify that

transmitted data remains unaltered.

Listing 12.67 crc32

<?php

 $message = "Who is John Galt?";

 $crc = 1847359068;

 if(crc32($message) == $crc)

 {

 print("The message is unaltered");

 }

 else

 {

 print("The CRC does not match");

 }

?>

integer ezmlm_hash(string address)

The ezmlm function calculates the hash for an email address used by

EZMLM, which is a mailing list manager.

integer ftok(string path, string project)

The ftok function wraps the C function of the same name. It returns a

hash for a given path and project identifier. The project argument should

be a single character. The return value is a System V IPC key. Keys are the

same regardless of alternate paths if they are to the same file.

http://schumann.cx/mhash/default.htm

Keys returned by this function are appropriate for use with the semaphore

functions described in Chapter 19.

integer levenshtein(string first, string second)
 integer levenshtein(string first, string second, integer

insert, integer replace, integer delete)

Use levenshtein to find the Levenshtein distance between two strings of

255 characters or less. The return value is the minimum number of

changes to the first string needed to transform it into the second. A

change is defined as the addition, removal, or change to a single

character.

The simple version of this function takes two strings. Alternatively, you

may supply costs for performing inserts, replacements, and deletions,

respectively.

You may read more about the Levenshtein distance algorithm at

<http://www.merriampark.com/ld.htm>.

string md5(string text)

The md5 function (Listing 12.68) produces a hash as described by RFC

1321. The function takes a string of any length and returns a 32-character

identifier. It is theorized that the algorithm for the md5 function will

produce unique identifiers for all strings.

Listing 12.68 md5

<?php

 //bebcd5657c9c3d62f9e22f2e0730868a

 print(md5("Who is John Galt?"));

?>

string metaphone(string word)

Use metaphone (Listing 12.69) to produce a string that describes how a

word sounds when spoken. This function is similar to soundex; however, it

knows about how groups of letters are pronounced in English. Therefore, it

is more accurate. Compare this function to soundex and similar_text.

The metaphone algorithm, invented by Lawrence Philips, was first

described in Computer Language magazine. You may find a discussion of

metaphone hosted by the Aspell project at SourceForge

<http://aspell.sourceforge.net/metaphone/>.

Listing 12.69 metaphone

http://www.merriampark.com/ld.htm
http://aspell.sourceforge.net/metaphone/default.htm

<?php

 print("Atkinson encodes as " . metaphone("Atkinson"));

?>

string mhash(integer hash, string data)

Use mhash (Listing 12.70) to get a hash for a string. Hashing algorithms

available at the time of writing are shown in Table 12.10. Refer to the

Mhash documentation for more information about each algorithm.

Table 12.10. Mhash Algorithms

MHASH_ADLER32 MHASH_HAVAL192 MHASH_SHA1

MHASH_CRC32 MHASH_HAVAL224 MHASH_SHA256

MHASH_CRC32B MHASH_HAVAL256 MHASH_TIGER

MHASH_GOST MHASH_MD4 MHASH_TIGER128

MHASH_HAVAL128 MHASH_MD5 MHASH_TIGER160

MHASH_HAVAL160 MHASH_RIPEMD160

Listing 12.70 mhash

<?php

 $hash = array(

 MHASH_ADLER32, MHASH_CRC32, MHASH_CRC32B, MHASH_GOST,

 MHASH_HAVAL128, MHASH_HAVAL160, MHASH_HAVAL192,

 MHASH_HAVAL224, MHASH_HAVAL256, MHASH_MD4, MHASH_MD5,

 MHASH_RIPEMD160, MHASH_SHA1, MHASH_SHA256, MHASH_TIGER,

 MHASH_TIGER128, MHASH_TIGER160);

 //try each hash algorithm

 foreach($hash as $h)

 {

 $name = mhash_get_hash_name($h);

 $size = mhash_get_block_size($h);

 $key = bin2hex(mhash($h, "Who is John Galt?"));

 print("$name ($size): $key
\n");

 }

?>

integer mhash_get_block_size(integer hash)

The mhash_get_block_size function returns the block size used for a

hash algorithm.

string mhash_get_hash_name(integer hash)

The mhash_get_hash_name function returns the name for a particular hash

identifier.

string mhash_keygen_s2k(integer hash, string
password, string salt, integer length)

The mhash_keygen_s2k function generates a key using one of the hash

algorithms from Table 12.10. This complies with the Salted S2K algorithm

described by RFC 2440.

string sha1(string data)

The sha1 function returns the hash according to the U.S. Secure Hash

Algorithm 1, described by RFC 3174.

int similar_text(string left, string right, reference
percentage)

The similar_text function (Listing 12.71) compares two strings and

returns the number of characters they have in common. If present, the

variable specified for the percentage argument will receive the

percentage similarity. Compare this function to metaphone and soundex.

The algorithm used for similar_text is taken from a book by Ian Oliver

called Programming Classics: Implementing the World’s Best Algorithms.

It’s published by Prentice Hall, and you can find out more about it on the

Prentice Hall PTR Web site

<http://www.phptr.com/ptrbooks/ptr_0131004131.html>.

Listing 12.71 similar_text

<?php

 //create two strings

 $left = "Leon Atkinson";

 $right = "Vicky Atkinson";

 //test to see how similar they are

 $i = similar_text($left, $right, $percent);

 //print results

 print($i . " shared characters
\n");

http://www.phptr.com/ptrbooks/ptr_0131004131.html

 print($percent . "% similar
\n");

?>

string soundex(string text)

The soundex function (Listing 12.72) returns an identifier based on how a

word sounds when spoken. Similar-sounding words will have similar or

identical soundex codes. The soundex code is four characters and starts

with a letter. Compare this function to the similar_text and the

metaphone functions.

The soundex algorithm is described by Donald Knuth in Volume 3 of The

Art of Computer Programming.

Listing 12.72 soundex

<?php

 print(soundex("lion") . "
" . soundex("lying"));

?>

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

12.7 Spell Checking

PHP offers spell checking through the Pspell library, which is a replacement for

the older Aspell library.

integer pspell_add_to_personal(integer configuration,
string word)

The pspell_add_to_personal function (Listing 12.73) adds a word to a

personal dictionary. You must supply a configuration link as created by

pspell_new_config.

Listing 12.73 pspell_add_to_personal

<?php

 //create a configuration link

 $config = pspell_config_create("en");

 //set path to personal words

 pspell_config_personal($config, "/tmp/custom.pws");

 //load dictionary

 $new_config = pspell_new_config($config);

 //add word to dictionary

 pspell_add_to_personal($new_config, "Leon");

 //save personal dictionary

 pspell_save_wordlist($new_config);

?>

integer pspell_add_to_session(integer configuration,
string word)

Use pspell_add_to_session to add a word to the session.

boolean pspell_check(integer dictionary, string word)

The pspell_check function (Listing 12.74) checks the spelling of a word.

Listing 12.74 pspell_check

<?php

 //open dictionary

 $dictionary = pspell_new("en");

 if(pspell_check($dictionary, "Leon"))

 {

 print('Yes');

 }

 else

 {

 print('No');

 }

?>

integer pspell_clear_session(integer dictionary)

Use pspell_clear_session to clear the words in the current session.

integer pspell_config_create(string language, string
spelling, string jargon, string encoding)

The pspell_config_create function loads a dictionary and returns an

identifier. You must supply a language in the form of a two-letter code,

optionally followed by an underscore and a two-letter country code.

The spelling argument chooses between options for languages that use

alternate spellings. For example, valid English values are american, british,

and canadian.

The jargon argument chooses among dictionaries containing jargon. For

example, using medical includes jargon used by the medical community.

The encoding argument sets the encoding used for words. These correspond

to .map files in the pspell installation. For example, using iso8859-1 uses the

iso8859-1.map file.

This function allows you to set certain parameters before fully initializing a

spell-checking session. After setting options, you must call

pspell_new_config. Rather than calling these two functions, you may call

pspell_new.

integer pspell_config_ignore(integer configuration, integer
length)

Use pspell_config_ignore and PHP will ignore words that are less than the

given length.

integer pspell_config_mode(integer configuration, integer
mode)

Use pspell_config_mode to set the mode in which pspell operates. The

default is PSPELL_NORMAL mode. In PSPELL_FAST mode, pspell returns fewer

suggestions. In PSPELL_BAD_SPELLERS mode, pspell returns more

suggestions.

integer pspell_config_personal(integer configuration,
string path)

The pspell_config_personal function sets the path to a personal dictionary.

Words are checked from this dictionary in addition to the one defined by

pspell_config_create. You may also add to this dictionary with

pspell_add_to_personal.

integer pspell_config_repl(integer configuration, string
path)

The pspell_config_repl function sets the path to a personal set of

replacement pairs, which help pspell make suggestions for misspelled words.

integer pspell_config_runtogether(integer configuration,
boolean runtogether)

The pspell_config_runtogether function controls whether pspell considers

a word misspelled if it looked like two valid words with no space between

them. For example, pspell considers spellcheck a misspelling unless run-

together words are allowed.

integer pspell_new(string language, string spelling, string
jargon, string encoding, integer mode)

The pspell_new function opens a dictionary and initializes pspell for spell

checking. You are required to supply a language, but may optionally supply

values for the spelling, jargon, and encoding arguments. All four

arguments are as described above with regard to pspell_config_create.

The optional mode argument is as described above with regard to

pspell_config_mode.

integer pspell_new_config(integer configuration)

Use pspell_new_config (Listing 12.75) to initialize pspell after loading a

dictionary and setting configuration options. The configuration option should

be a value returned by pspell_config_create.

Listing 12.75 pspell_new_config

<?php

 $text = "Here's some text to spellcheck. Is abcd a word?";

 //create configuration framework

 $config = pspell_config_create("en", "american", "medical");

 //skip words less than 5 letters long

 pspell_config_ignore($config, 5);

 //activate fast mode

 pspell_config_mode($config, PSPELL_FAST);

 //set path to personal dictionary

 pspell_config_personal($config, "/tmp/personal.pws");

 //set path to personal replacement pairs

 pspell_config_repl ($config, "/tmp/personal.repl");

 //allow run-together words

 pspell_config_runtogether($config, TRUE);

 //initialize session

 $pspell_link = pspell_new_config($config);

 foreach(str_word_count($text, 1) as $word)

 {

 if(!pspell_check($pspell_link, $word))

 {

 print("$word is unrecognized.");

 }

 }

?>

integer pspell_new_personal(string personal, string
language, string spelling, string jargon, string encoding,
integer mode)

The pspell_new_personal function loads a standard dictionary and a

personal dictionary, and then initializes pspell for spell checking. The path to

the personal dictionary and the language are required. The other arguments

are not. Refer to the descriptions of pspell_config_create and

pspell_config_mode for descriptions of the arguments.

integer pspell_save_wordlist(integer dictionary)

Use pspell_save_wordlist to save a personal dictionary. See the description

of pspell_add_to_personal to see an example of use.

integer pspell_store_replacement(integer dictionary, string
misspelling, string correction)

Use pspell_store_replacement to set a replacement pair for an open

dictionary. PHP uses this pair to make suggestions on subsequent checks. If

you use pspell_config_repl, you can save replacements to a file.

array pspell_suggest(integer dictionary, string word)

The pspell_suggest function (Listing 12.76) returns an array of suggestions

for a misspelled word.

Listing 12.76 pspell_suggest

<?php

 $dictionary = pspell_new ("en");

 $word = "instantiayt";

 if(!pspell_check($dictionary, $word))

 {

 foreach(pspell_suggest($dictionary, $word) as $suggestion)

 {

 print("$suggestion
");

 }

 }

?>

12.8 Regular Expressions

Regular expressions offer a powerful way to test strings for the presence

of patterns. They use a language all their own to describe patterns, a

language that consists mostly of symbols. PHP offers two types of

functions for regular expressions: native and Perl-compatible. You may

wish to turn to Chapter 22, which describes regular expressions in detail.

Andrei Zmievski added support to PHP for Perl-compatible regular

expressions. Expressions are surrounded by delimiters, which are usually

/ or | characters, but can be any printable character other than a number,

letter, or backslash. After the second delimiter, you may place one or more

modifiers. These are letters that change the way the regular expression is

interpreted. There are a few very specific differences between PHP’s Perl-

compatible regular expressions and those in Perl 5. They are narrow

enough that you probably won’t run into them, and they may not make

much sense without explaining regular expressions in detail. If you’re

curious, read the excellent notes in the PHP manual available online

<http://www.php.net/manual/html/ref.pcre.html>.

boolean ereg(string pattern, string text, array matches)

The ereg function (Listing 12.77) evaluates the pattern argument as a

regular expression and attempts to find matches in the text argument. If

the optional matches argument is supplied, each match will be added to

the array. TRUE is returned if at least one match is made; otherwise, FALSE

is returned.

The first element in the matches array, with an index of zero, will contain

the match for the entire regular expression. Subsequent elements of

matches will contain the matches for subexpressions. These are the

expressions enclosed in parentheses in the example.

Listing 12.77 ereg

<?php

 //show User Agent

 print("User Agent: {$_SERVER['HTTP_USER_AGENT']}
\n");

 //try to parse User Agent

 if(ereg("^(.+)/([0-9])\.([0-9]+)",

 $_SERVER['HTTP_USER_AGENT'], $matches))

 {

 print("Full match: $matches[0]
\n");

 print("Browser: $matches[1]
\n");

 print("Major Version: $matches[2]
\n");

 print("Minor Version: $matches[3]
\n");

 }

 else

 {

 print("User Agent not recognized");

http://www.php.net/manual/html/ref.pcre.html

 }

?>

string ereg_replace(string pattern, string replacement,
string text)

Use ereg_replace (Listing 12.78) to replace substrings within the text

argument. Each time the pattern matches a substring within the text

argument, it is replaced with the replacement argument. The text

argument is unchanged, but the altered version is returned.

If the pattern contains subexpressions in parentheses, the replacement

argument may contain a special code for specifying which subexpression

to replace. The form is to use two backslashes followed by a single digit,

zero through nine. Zero matches the entire expression; one through nine

each match the first nine subexpressions respectively. Subexpressions are

numbered left to right, which accounts for nested subexpressions.

Listing 12.78 ereg_replace

<?php

 // swap newlines for break tags

 $text = "line1\nline2\nline3\n";

 print(ereg_replace("\n", "
", $text));

 print("<hr>\n");

 //mix up these words

 $text = "one two three four";

 print(ereg_replace("([a-z]+) ([a-z]+) ([a-z]+) ([a-z]+)",

 "\\4 \\2 \\1 \\3", $text));

?>

boolean eregi(string pattern, string text, array matches)

The eregi function operates identically to ereg with the exception that

letters are matched with no regard for uppercase or lowercase.

string eregi_replace(string pattern, string replacement,
string text)

The eregi_replace function operates identically to ereg_replace with

the exception that letters are matched with no regard for uppercase or

lowercase.

array fnmatch(string pattern, string filename, integer
flags)

The fnmatch function (Listing 12.79) checks whether a filename matches

a pattern. The pattern conforms to the patterns accepted by a command

shell for filename patterns.

The optional flags argument changes the behavior of the check.

FNM_NOESCAPE causes PHP to ignore backslash escape codes.

FNM_PATHNAME causes PHP to match slashes literally. That is, they don’t

match wildcards. FNM_PERIOD causes PHP to match leading periods

exactly.

Listing 12.79 fnmatch

<?php

 if(fnmatch('php-[4-5].?.*', "php-5.1.2.tar.gz"))

 {

 print('yes');

 }

 else

 {

 print('no');

 }

?>

array preg_grep(string pattern, array data)

The preg_grep function compares the elements of the data argument that

match the given pattern.

boolean preg_match(string pattern, string text, array
matches, integer flags)

The preg_match function (Listing 12.80) is the Perl-compatible equivalent

of ereg. It evaluates the pattern argument as a regular expression and

attempts to find matches in the text argument. If the optional matches

argument is supplied, each match will be added to the array. TRUE is

returned if at least one match is made, FALSE otherwise.

The first element in the matches array, with an index of zero, will contain

the match for the entire regular expression. Subsequent elements of

matches will contain the matches for subexpressions. These are the

expressions enclosed in parentheses in the example.

You may set the optional flags argument with PREG_OFFSET_CAPTURE to

have preg_match return the offset for every match.

Listing 12.80 preg_match

<?php

 // show User Agent

 print("User Agent: {$_SERVER['HTTP_USER_AGENT']}
\n");

 // try to parse User Agent

 if(preg_match("/^(.+)\/([0-9])\.([0-9]+)/",

 $_SERVER['HTTP_USER_AGENT'], $matches))

 {

 print("Full match: $matches[0]
\n");

 print("Browser: $matches[1]
\n");

 print("Major Version: $matches[2]
\n");

 print("Minor Version: $matches[3]
\n");

 }

 else

 {

 print("User Agent not recognized");

 }

?>

integer preg_match_all (string pattern, string text, array
matches, integer order)

The preg_match_all function (Listing 12.81) operates similarly to

preg_match. A pattern is evaluated against the text argument, but

instead of stopping when a match is found, subsequent matches are

sought. The matches argument is required and will receive a two-

dimensional array. The method for filling this array is determined by the

order argument. It may be set with two constants, either

PREG_PATTERN_ORDER, the default, or PREG_SET_ORDER. You may combine

this flag with PREG_OFFSET_CAPTURE. The number of matches against the

full pattern is returned.

If PREG_PATTERN_ORDER is used, the first element of the matches array will

contain an array of all the matches against the full pattern. The other

elements of the array will contain arrays of matches against subpatterns.

If PREG_SET_ORDER is used, each element of the matches array contains an

array organized like those created by preg_match. The first element is the

entire matching string. Each subsequent element contains the match

against the subpattern for that match.

If PREG_OFFSET_CAPTURE is used, the offset for each match is also

returned.

Listing 12.81 preg_match_all

<?php

 //create test data

 $paragraph = "This is a short paragraph. Some ";

 $paragraph .= "words and some phrases ";

 $paragraph .= "are surround by bold tags. ";

 /*

 ** use PREG_PATTERN_ORDER to find bold words

 */

 preg_match_all("|<[^>]+>(.*)</[^>]+>|", $paragraph,

 $match, PREG_PATTERN_ORDER);

 //print full matches

 print("Subpattern matches:
\n");

 for($i=0; $i < count($match[0]); $i++)

 {

 print(htmlentities($match[0][$i]) . "
\n");

 }

 print("Subpattern matches:
\n");

 for($i=0; $i < count($match[1]); $i++)

 {

 print(htmlentities($match[0][$i]) . "
\n");

 }

 /*

 ** use PREG_SET_ORDER to find bold words

 */

 preg_match_all("|<[^>]+>(.*)</[^>]+>|", $paragraph,

 $match, PREG_SET_ORDER);

 foreach($match as $m)

 {

 print(htmlentities($m[0]));

 for($i=1; $i < count($m); $i++)

 {

 print(" (".htmlentities($m[$i]).")");

 }

 print("
\n");

 }

?>

string preg_quote(string text, string delimiter)

The preg_quote function returns text with backslashes inserted before

characters that have special meaning to the functions in this section. The

special characters are

. \ + * ? [^] $ () { } = ! < > | :

The optional delimiter argument sets the delimiter you are using,

making sure PHP escapes it as well.

string preg_replace(string pattern, string replacement,
string text, integer limit)

The preg_replace function (Listing 12.82) is the Perl-compatible

equivalent to ereg_replace. Each time the pattern matches a substring

within the text argument, it is replaced with the replacement argument.

The text argument is unchanged, but the altered version is returned.

If the pattern contains subexpressions in parentheses, the replacement

argument may contain a special code for specifying which subexpression

to replace. The form is to use two backslashes followed by a single digit,

zero through nine. Zero matches the entire expression; one through nine

each match the first nine subexpressions respectively. Subexpressions are

numbered left to right, which accounts for nested subexpressions.

The optional limit argument sets a maximum number of replacements.

Listing 12.82 preg_replace

<?php

 // swap newlines for break tags

 $text = "line1\nline2\nline3\n";

 print(preg_replace("|\n|", "
", $text));

 print("<hr>\n");

 //mix up these words

 $text = "one two three four";

 print(preg_replace("|([a-z]+) ([a-z]+) ([a-z]+) ([a-z]+)|",

 "\\4 \\2 \\1 \\3", $text));

?>

string preg_replace_callback(string pattern, string
callback, string text, integer limit)

 string preg_replace_callback(string pattern, array
callback, string text, integer limit)

The preg_replace_callback function (Listing 12.83) operates like

preg_replace except that instead of making static replacements, PHP

passes matches to a function that returns an appropriate replacement. If

you wish to use a class method for the callback function, use an array that

contains two elements. The first element should be the name of the class

or an instantiated object. The second element should be the name of the

method.

Listing 12.83 preg_replace_callback

<?php

 function rotateColor($match)

 {

 static $color = 0;

 static $colorList = array(0=>'red','blue','green');

 $text = "" .

 implode($match) .

 "";

 $color++;

 return($text);

 }

 //color each match with rotating colors

 $text = "line1\nline2\nline3\n";

 print(preg_replace_callback("|line[0-9]|", 'rotateColor',

 $text));

?>

array preg_split(string pattern, string text, integer limit,
integer flags)

The preg_split function (Listing 12.84) returns an array of substrings

from the text argument. The pattern argument will be used as a field

delimiter. The optional limit argument sets the maximum number of

elements to return. The optional flags argument changes the behavior of

preg_split. With the PREG_SPLIT_NO_EMPTY flag, only non-empty

matches are returned. With the PREG_SPLIT_DELIM_CAPTURE flag,

subpatterns in parentheses are captured as well instead of being

discarded. With the PREG_SPLIT_OFFSET_CAPTURE flag, the offset of each

match is included in the return value.

This function is equivalent to split.

Listing 12.84 preg_split

<?php

 $paragraph = "This is a short paragraph. Each ";

 $paragraph .= "sentence will be extracted by ";

 $paragraph .= "the preg_split function. As a ";

 $paragraph .= "result, you will be amazed!";

 $sentence = preg_split("/[\.\!\?]/", $paragraph);

 for($index = 0; $index < count($sentence); $index++)

 {

 print("$index. {$sentence[$index]}
\n");

 }

?>

array split(string pattern, string text, integer limit)

The split function (Listing 12.85) returns an array of substrings from the

text argument. The pattern argument will be used as a field delimiter.

The optional limit argument sets the maximum number of elements to

return. There is no case-insensitive version of split.

Compare this function to explode, which uses a simple string to delimit

substrings. Regular expression processing is slower than straight string

matching, so use explode when you can.

Listing 12.85 split

<?php

 $paragraph = "This is a short paragraph. Each ";

 $paragraph .= "sentence will be extracted by ";

 $paragraph .= "the split function. As a ";

 $paragraph .= "result, you will be amazed!";

 $sentence = split("[\.\!\?]", $paragraph);

 for($index = 0; $index < count($sentence); $index++)

 {

 print("$index. {$sentence[$index]}
\n");

 }

?>

array spliti(string pattern, string text, integer limit)

The spliti function is a case-insensitive version of split. It is identical in

all other ways.

12.9 Character Set Encoding

Historically, computers have represented textual data as strings of

characters. Each character is a single byte, which allows for 256 different

characters. This is more than enough for English speakers and was

adapted for people speaking most European languages. Asian languages,

however, do not fit neatly into 256 characters. To cope with a larger

range of characters, we have multibyte encoding. Instead of a single

byte, these encodings use multiple bytes to represent one visual

character.

PHP scripts are written in standard, single-byte ASCII, but it’s possible to

embed strings of multibyte text in a script. Unfortunately, PHP’s text

manipulation functions assume single-byte encoding. A string encoded to

use two bytes per character seems twice as long to strlen than it does

when printed. The solution is the multibyte string extension.

Rui Hirokawa and Tsukada Takuya added multibyte support to PHP.

string iconv(string from, string to, string text)

The iconv function (Listing 12.86) converts a string from one character

set to another. This function becomes available with the iconv extension,

which also includes an output buffer handler described in Chapter 8.

Listing 12.86 iconv

<?php

 print(iconv("ISO-8859-1","ISO-8859-15",

 "Core PHP Programming"));

?>

string mb_convert_case(string text, integer mode,
string encoding)

Use mb_convert_case (Listing 12.87) to change the case of letters in the

given text. Use one of the modes from Table 12.11. The optional

encoding argument overrides the default encoding.

Unlike conventional functions, such as strtolower, this function

understands how to change the case of letters with accents and other

decorations. You can also use mb_strtolower and mb_strtoupper.

Table 12.11. mb_convert_case Modes

Mode Description

Mode Description

MB_CASE_LOWERConvert all letters to lowercase.

MB_CASE_TITLEMake first letter of each word uppercase and all other

letters lowercase.

MB_CASE_UPPERConvert all letters to uppercase.

Listing 12.87 mb_convert_case

<?php

 $text = "Jedes Jahr PHP gewinnt größere Popularität!";

 print(mb_convert_case($text, MB_CASE_LOWER) . '
');

 print(mb_convert_case($text, MB_CASE_TITLE) . '
');

 print(mb_convert_case($text, MB_CASE_UPPER) . '
');

?>

string mb_convert_encoding(string text, string target,
array source)

The mb_convert_encoding function converts a string from one encoding

to another. The optional third argument defaults to PHP’s internal

encoding. Otherwise, you may set it to one or more encoding identifiers

separated by commas. You may use auto as a shortcut for

ASCII,JIS,UTF-8,EUC-JP,and SJIS. You may also specify the source

argument as an array.

string mb_convert_kana(string text, string option,
array encoding)

The mb_convert_kana function translates Japanese text between various

alphabets. The option argument controls the translation. Table 12.12

shows available options. If left out, option defaults to KV. The optional

source argument sets the encoding used for the source text. It defaults

to PHP’s default encoding.

Table 12.12. mb_convert_kana Options

Option Description

a, A Convert zen-kaku alphabets and numbers to han-kaku. Converted

characters include U+0021 through U+007E, excluding U+0022,

U+0027, U+005C, and U+007E.

C Convert zen-kaku hira-gana to zen-kaku kata-kana.

Option Description

c Convert zen-kaku kata-kana to zen-kaku hira-gana.

H Convert han-kaku kata-kana to zen-kaku hira-gana.

h Convert zen-kaku hira-gana to han-kaku kata-kana.

K Convert han-kaku kata-kana to zen-kaku kata-kana.

k Convert zen-kaku kata-kana to han-kaku kata-kana.

N Convert han-kaku numbers to zen-kaku.

n Convert zen-kaku numbers to han-kaku.

R Convert han-kaku letters to zen-kaku.

r Convert zen-kaku letters to han-kaku.

S Convert han-kaku whitespace to zen-kaku (U+0020 through

U+3000).

s Convert zen-kaku whitespace to han-kaku (U+3000 through

U+0020).

V Collapse voiced sound notations and convert them into a

character. Use this option with K or H.

string mb_convert_variables(string target, array
source, …)

The mb_convert_variables function (Listing 12.88) converts the

contents of variables from one encoding to another. The source

argument may be an array of possible encoding identifiers or a comma-

separated list. The function returns the encoding used to convert the

variables. You may supply one or more variables starting with the third

argument. The values of the variables are changed in place.

Listing 12.88 mb_convert_variables

<?php

 $text1 = "Every year PHP wins larger popularity!";

 $text2 = "Jedes Jahr PHP gewinnt größere Popularität!";

 $encoding = mb_convert_variables(

 mb_internal_encoding(),

 "ASCII,UTF-8",

 $text1, $text2);

 print("Text was encoded as $encoding.
");

?>

string mb_decode_mimeheader(string text)

Use mb_decode_mimeheader (Listing 12.89) to convert the text of a MIME

header to the default encoding.

Listing 12.89 mb_decode_mimeheader

<?php

 print(mb_decode_mimeheader(

 '=?UTF-7?Q?Gro+AN=38-er=20Affe?='));

?>

string mb_decode_numericentity(string text, array
conversion, array encoding)

The mb_decode_numericentity function (Listing 12.90) decodes HTML

numeric entity codes. The conversion argument defines a conversion

map. PHP looks for blocks of four elements in this array that have the

following meaning: starting code, ending code, offset, and mask. The

starting and ending codes should match the beginning and ending of a

range of characters. If an entity matches the range, PHP applies the

offset before decoding it. For example, an offset of 1 changes 65 to 66,

or A to B. PHP converts the entity based on a bitwise-AND of the entity

code and the mask. For example, a mask of 0xFF applied to entity 321

results in A because 321 & 0xFF equals 65.

Listing 12.90 mb_decode_numericentity

<?php

 print(mb_decode_numericentity(

 'ABC 123',

 array(0x00, 0xFF, 0x00, 0xFF)));

?>

string mb_detect_encoding(string text, array
encoding)

The mb_detect_encoding function (Listing 12.91) returns the detected

encoding used for the given text. The optional encoding argument may

define a set of encoding methods to try in order. You may specify this

argument as a string of comma-separated encoding identifiers or as an

array.

Listing 12.91 mb_detect_encoding

<?php

 print(mb_detect_encoding('groß',

 array('ASCII','UTF-8','EUC-JP')));

?>

array mb_detect_order(array encoding)

The mb_detect_order function returns an array describing the encoding

methods PHP uses when detecting the encoding used for a string, such

as with the mb_detect_encoding function. You may change this value by

supplying an array or comma-separated list for the encoding argument.

string mb_encode_mimeheader(string text, string
encoding, string method, string linefeed)

Use mb_encode_mimeheader (Listing 12.92) to encode a string for use

with a MIME header. The optional encoding argument sets the encoding

used for the given text. It defaults to ISO-2022-JP. The optional method

argument should be B for base64 or Q for Quoted-Printable. The optional

linefeed argument defaults to a carriage return followed by a linefeed

character.

Listing 12.92 mb_encode_mimeheader

<?php

 print(mb_encode_mimeheader('Großer Affe', 'UTF-7', 'Q') .

 " <corephp@leonatkinson.com>");

?>

string mb_encode_numericentity(string text, array
conversion, string encoding)

Use mb_encode_numericentity (Listing 12.93) to convert a set of

characters to HTML numeric entities. It performs the reverse of the

mb_decode_numericentity. Refer to that function for a description of the

conversion array.

Listing 12.93 mb_encode_numericentity

<?php

 print(mb_encode_numericentity("ABC 123", array(0x00, 0xFF,

 0x00, 0xFF)));

?>

string mb_http_input(string type)

The mb_http_input function returns the encoding used for the given

HTTP input type. Use G for GET, P for POST, or C for cookies. You may

leave out the type to get the encoding for the last type processed. If no

processing occurs, this function returns FALSE.

string mb_http_output(string encoding)

The mb_http_output function operates in two modes. If called without

the encoding argument, it returns the current encoding used for output.

If called with the encoding argument, it attempts to set the output

encoding and returns a boolean. PHP converts all output from the

internal encoding to the output encoding. By default, PHP uses no output

encoding.

string mb_internal_encoding(string encoding)

The mb_internal_encoding function operates in two modes. If called

without the encoding argument, it returns the current encoding used for

internal strings. If called with the encoding argument, it attempts to set

the internal encoding and returns a boolean. By default, PHP uses no

internal encoding.

string mb_language(string language)

Use mb_language to get or set the language assumed by mb_send_mail.

If called with no argument, mb_language returns the current setting.

Otherwise, it sets the language and returns a boolean.

Table 12.13 shows valid languages. You may specify them with the full

name or the abbreviation. The table also shows the character set and

encoding used by mb_send_mail.

Table 12.13. mb_language Languages

Language Abbreviation Character Set Encoding

English En ISO-8859-1 Quoted-Printable

German De ISO-8859-15 Quoted-Printable

Japanese Ja ISO-2022-JP Base64

Korean Ko ISO-2022-KR Base64

neutral UTF-8 Base64

Russian Ru KOI8-R Quoted-Printable

Language Abbreviation Character Set Encoding

Simplified Chinese zh-cn HZ Base64

Traditional Chinese zh-tw BIG-5 Base64

universal Uni UTF-8 Base64

string mb_output_handler(string contents, integer
status)

Use mb_output_handler (Listing 12.94) together with ob_start to

perform encoding conversion on all output. Translation will be made from

the internal encoding to the external encoding if two conditions are met:

if the Content-type header begins with text/ and if you have set the

output encoding to anything other than pass.

Listing 12.94 mb_output_handler

<?php

 //set output encoding

 mb_http_output('sjis-win');

 //begin output buffering

 ob_start('mb_output_handler');

?>

<html>

<head>

<title>mb_output_handler</title>

</head>

<body>

<?php

 print("At this point ");

 print(mb_strlen(ob_get_contents()));

 print(" characters are in the buffer.
\n");

?>

</body>

</html>

<?php

 //send appropriate content type (Shift_JIS)

 header("Content-type: text/html; charset=" .

 mb_preferred_mime_name('sjis-win'));

 //dump the contents

 ob_end_flush();

?>

boolean mb_parse_str(string query, array results)

The mb_parse_str function offers a multibyte alternative to parse_str.

In addition to converting variables in the given query, it also detects the

encoding used and converts the data to the internal encoding.

string mb_preferred_mime_name(string encoding)

Use mb_preferred_mime_name to fetch an appropriate charset value

matching the given encoding for use with a MIME Content-type header.

boolean mb_send_mail(string to, string subject, string
body, string headers, string parameters)

The mb_send_mail function sends mail in the same way the mail

function sends mail except that it encodes the message body and sets

headers accordingly.

string mb_strcut(string text, integer start, integer
length, string encoding)

Use mb_strcut (Listing 12.95) to take a portion of a string. You must

supply a string of text and the number of the first character to include.

Characters are numbered from zero. The optional length argument limits

the number of characters returned instead of returning the rest of the

string, as in the default. The optional encoding argument may specify

the encoding used by the given string, overriding the default internal

encoding.

Listing 12.95 mb_strcut, mb_strimwidth, mb_strlen, mb_strpos,

mb_strrpos

<?php

 $text = "Jedes Jahr PHP gewinnt größere Popularität!";

 print(mb_strcut($text, 23, 7, 'ISO-8859-15') . '
');

 print(mb_strimwidth($text, 23, 7, 'X', 'ISO-8859-15') .

 '
');

 print(mb_strlen($text, 'ISO-8859-15') . '
');

 print(mb_strpos($text, 'PHP', 0, 'ISO-8859-15') . '
');

 print(mb_strrpos($text, ' P', 'ISO-8859-15') . '
');

?>

string mb_strimwidth(string text, integer start, integer
width, string marker, string encoding)

The mb_strimwidth function takes a portion of a string strictly limited to

the given width. The optional marker argument replaces characters at

the end of the string. For example, given a string abcd, a width of four,

and a marker 123, mb_strimwidth returns a123. If the length of marker

exceeds width, PHP returns the entire marker. The optional encoding

argument may specify the encoding used by the given string, overriding

the default internal encoding.

integer mb_strlen(string text, string encoding)

Use mb_strlen to get the number of characters in a multibyte character

string. The optional encoding argument may specify the encoding used

by the given string, overriding the default internal encoding.

integer mb_strpos(string data, string substring, integer
offset, string encoding)

Use mb_strpos as a multibyte alternative to strpos; it returns the

position of the first occurrence of the substring argument in the data

argument. The optional offset argument instructs PHP to begin

searching after the specified position. Counting begins with zero. The

optional encoding argument may specify the encoding used by the given

string, overriding the default internal encoding.

integer mb_strrpos(string data, string substring, string
encoding)

Use mb_strrpos to find the position of the last occurrence of substring

in data, both multibyte strings. Counting begins with zero. The optional

encoding argument may specify the encoding used by the given string,

overriding the default internal encoding.

string mb_strtolower(string text, string encoding)

The mb_strtolower function converts the given string to lowercase with

respect to multibyte character strings. The optional encoding argument

may specify the encoding used by the given string, overriding the default

internal encoding.

Compare this function to mb_convert_case.

string mb_strtoupper(string text, string encoding)

The mb_strtoupper function converts the given string to uppercase with

respect to multibyte character strings. The optional encoding argument

may specify the encoding used by the given string, overriding the default

internal encoding.

Compare this function to mb_convert_case.

integer mb_strwidth(string text, string encoding)

The mb_strwidth function returns the width of a multibyte character

string. This is not the same value returned by mb_strlen. It is a measure

of visual width.

boolean mb_substitute_character(integer character)

Use mb_substitute_character (Listing 12.96) to get or set the

substitution character used when a character in a converted string does

not appear in the target encoding. When called with no argument, this

function returns the integer value of the Unicode character used for

substitutions. When called with an integer value, it sets the substitution

character and returns a boolean. You may also use two special strings for

the character argument. If you use none, PHP removes nonmatching

characters. If you use long, PHP inserts the Unicode representation for

the character, such as U+1234.

Listing 12.96 mb_substitute_character

<?php

 //show default substitution character

 $c = mb_substitute_character();

 printf("0x%X = %c
", $c, $c);

 //set and show substitution character

 mb_substitute_character(0x3013);

 $c = mb_substitute_character();

 printf("0x%X = %c
", $c, $c);

 //test substitution with character value

 mb_substitute_character('long');

 print(mb_convert_encoding('Großer Affe', 'ASCII'));

?>

string mb_substr(string text, integer start, integer
length, string encoding)

Use mb_substr as an alias to mb_strcut.

integer mb_substr_count(string text, string substring,
string encoding)

The mb_substr_count function emulates substr_count for multibyte

strings.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

Chapter 13. Math
Topics in This Chapter

Common Math

Random Numbers

Arbitrary-Precision Numbers

The math functions fall into three categories: common mathematical

operations, random numbers, and special functions for handling

numbers of arbitrary precision.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

13.1 Common Math

The functions in this section offer most of the common mathematical

operations that are part of arithmetic, geometry, and trigonometry.

Most of these functions work on either doubles or integers. The

return type will be the same as the argument. Unless a specific type

is called for, I’ve written “number” to indicate that either an integer

or a double is expected.

number abs(number value)

The abs function (Listing 13.1) returns the absolute value of a

number. This is the number itself if it’s positive or the number

multiplied by negative one (�1) if negative.

Listing 13.1 abs

<?php

 //prints 13

 print(abs(-13));

?>

double acos(double value)

The acos function (Listing 13.2) returns the arc cosine of the value

argument. Trying to find the arc cosine of a value greater than one or

less than negative one is undefined.

Listing 13.2 acos, asin, atan, atanh

<?php

 print("<table border=\"1\">\n");

 print("<tr>" .

 "<th>x</th>" .

 "<th>acos(x)</th>" .

 "<th>asin(x)</th>" .

 "<th>atan(x)</th>" .

 "<th>atanh(x)</th>" .

 "</tr>\n");

 for($index = -1; $index <= 1; $index += 0.25)

 {

 print("<tr>\n" .

 "<td>$index</td>\n" .

 "<td>" . acos($index) . "</td>\n" .

 "<td>" . asin($index) . "</td>\n" .

 "<td>" . atan($index) . "</td>\n" .

 "<td>" . atanh($index) . "</td>\n" .

 "</tr>\n");

 }

 print("</table>\n");

?>

double acosh(double value)

Use acosh (Listing 13.3) to find the inverse hyperbolic cosine of the

given value.

Listing 13.3 acosh, asinh

<?php

 print("<table border=\"1\">\n");

 print("<tr>" .

 "<th>x</th>" .

 "<th>acosh(x)</th>" .

 "<th>asinh(x)</th>".

 "</tr>\n");

 for($index = 1; $index <= 10; $index++)

 {

 print("<tr>\n" .

 "<td>$index</td>\n" .

 "<td>" . acosh($index) . "</td>\n" .

 "<td>" . asinh($index) . "</td>\n" .

 "</tr>\n");

 }

 print("</table>\n");

?>

double asin(double value)

The asin function returns the arc sine of the value argument. Trying

to find the arc sine of a value greater than one or less than negative

one is undefined.

double asinh(double value)

Use asinh to find the inverse hyperbolic sine of the given value.

double atan(double value)

The atan function returns the arc tangent of the value argument.

double atan2(double x, double y)

The atan2 function (Listing 13.4) returns the angle portion in radians

of the polar coordinate specified by the Cartesian coordinates.

Listing 13.4 atan2

<?php

 //print 0.40489178628508

 print(atan2(3, 7));

?>

double atanh(double value)

The atanh function finds the inverse hyperbolic tangent of the given

value.

string base_convert(string value, int base, int
new_base)

The base_convert function (Listing 13.5) converts a number from

one base to another. Some common bases have their own functions.

Listing 13.5 base_convert

<?php

 //convert hex CC to decimal

 print(base_convert("CC", 16, 10));

?>

integer bindec(string binary_number)

The bindec function (Listing 13.6) returns the integer value of a

binary number written as a string. The binary numbers are little-

endian, which means the least significant bit is to the right. PHP

ignores any digits in the input other than 0 and 1.

Listing 13.6 bindec

<?php

 print(bindec("11010010110101001010"));

?>

integer ceil(double value)

The ceil function (Listing 13.7) returns the ceiling of the argument,

which is the smallest integer greater than the argument.

Listing 13.7 ceil

<?php

 //print 14

 print(ceil(13.2));

?>

double cos(double angle)

The cos function (Listing 13.8) returns the cosine of an angle

expressed in radians.

Listing 13.8 cos

<?php

 //prints 1

 print(cos(2 * pi()));

?>

double cosh(double value)

The cosh function (Listing 13.9) returns the hyperbolic cosine of the

given number.

Listing 13.9 cosh, sinh, tanh

<?php

 print("<table border=\"1\">\n");

 print("<tr>" .

 "<th>x</th>" .

 "<th>cosh(x)</th>" .

 "<th>sinh(x)</th>".

 "<th>tanh(x)</th>".

 "</tr>\n");

 for($index = -4; $index <= 4; $index++)

 {

 print("<tr>\n" .

 "<td>$index</td>\n" .

 "<td>" . cosh($index) . "</td>\n" .

 "<td>" . sinh($index) . "</td>\n" .

 "<td>" . tanh($index) . "</td>\n" .

 "</tr>\n");

 }

 print("</table>\n");

?>

string decbin(integer value)

The decbin function (Listing 13.10) returns a binary representation

of an integer as a string.

Listing 13.10 decbin, dechex, decoct

<?php

 //prints 11111111

 print(decbin(255) . "
");

 //prints ff

 print(dechex(255) . "
");

 //prints 377

 print(decoct(255) . "
");

?>

string dechex(integer value)

The dechex function returns the hexadecimal representation of the

value argument as a string.

string decoct(integer value)

The decoct function returns the octal representation of the value

argument as a string.

double deg2rad(double angle)

The deg2rad function (Listing 13.11) returns the radians that

correspond to the angle argument, specified in degrees.

Listing 13.11 deg2rad

<?php

 //prints 1.5707963267949

 print(deg2rad(90));

?>

double exp(double power)

The exp function (Listing 13.12) returns the natural logarithm base

raised to the power of the argument.

Listing 13.12 exp

<?php

 //prints 20.085536923188

 print(exp(3));

?>

double expm1(double power)

The expm1 function (Listing 13.13) returns the natural logarithm base

raised to the power of the argument minus 1. This function calculates

values to a higher precision than exp when the given power is close

to zero.

Listing 13.13 expm1

<?php

 //1.1051709180756

 print(exp(0.1));

 print('
');

 //0.10517091807565

 print(expm1(0.1));

?>

integer floor(double value)

The floor function (Listing 13.14) returns the floor of the argument,

which is the integer part of the argument.

Listing 13.14 floor

<?php

 //prints 13

 print(floor(13.2));

?>

double fmod(double x, double y)

The fmod function (Listing 13.15) returns the floating-point modulo of

x divided by y. This value is defined as x = i * y + r, where i is

the integer result of division and r is the remainder.

Listing 13.15 fmod

<?php

 $x = 9.87;

 $y = 1.24;

 $i = intval($x / $y);

 $r = fmod($x, $y);

 //9.87 = 7 * 1.24 + 1.19

 print("$x = $i * $y + $r");

?>

integer hexdec(string hexadecimal_number)

The hexdec function (Listing 13.16) converts a string that represents

a hexadecimal number into an integer. Preceding the number with

“0x” is optional.

Listing 13.16 hexdec

<?php

 //255

 print(hexdec("FF"));

 print("
\n");

 //32685

 print(hexdec("0x7FAD"));

 print("
\n");

?>

double hypot(double x, double y)

The hypot function (Listing 13.17) returns the length of the

hypotenuse of a right triangle given the two other sides using the

Pythagorean theorem.

Listing 13.17 hypot

<?php

 //sqrt(39*39 + 52*52) == 65

 print(hypot(39,52));

?>

double log(double value, double base)

The log function (Listing 13.18) returns the natural logarithm of the

value argument. The optional base argument allows for logarithms of

other bases.

Listing 13.18 log, log1p, log10

<?php

 //prints 3.0022112396517

 print(log(20.13) . "
");

 //prints 2.732730436951

 print(log(20.13, 3) . "
");

 //prints 0.00099950033308353

 print(log1p(0.001) . "
");

 //prints 3.2494429614426

 print(log10(1776) . "
");

?>

double log1p(double value)

The log1p function returns the natural logarithm of 1 plus the given

value. Like expm1, this function returns values with better accuracy

when given numbers very close to zero.

double log10(double value)

The log10 function returns the decimal logarithm of its argument.

integer octdec(string octal_number)

The octdec function (Listing 13.19) returns the integer value of a

string representing an octal number.

Listing 13.19 octdec

<?php

 //prints 497

 print(octdec("761"));

?>

double pi()

The pi function (Listing 13.20) returns the approximate value of pi.

Alternatively, you may use the M_PI constant.

Listing 13.20 pi

<?php

 //prints 3.1415926535898

 print(pi() . "
");

 //prints 3.1415926535898

 print(M_PI . "
");

?>

double pow(double base, double power)

Use the pow function (Listing 13.21) to raise the base argument to

the power indicated by the second argument.

Listing 13.21 pow

<?php

 //print 32

 print(pow(2, 5));

?>

double rad2deg(double angle)

The rad2deg function (Listing 13.22) returns the degrees that

correspond to the radians specified in the angle argument.

Listing 13.22 rad2deg

<?php

 //print 90.00021045915

 print(rad2deg(1.5708));

?>

double round(double value, integer precision)

The round function (Listing 13.23) returns the argument rounded to

the nearest integer. The optional precision argument allows you to

round to a number of digits to the right of the decimal point.

Listing 13.23 round

<?php

 //prints 1

 print(round(1.4) . "
");

 //prints 1

 print(round(1.5) . "
");

 //prints 2

 print(round(1.6) . "
");

 //prints 1.6

 print(round(1.61, 1) . "
");

?>

double sin(double angle)

The sin function (Listing 13.24) returns the sine of the angle. The

angle is assumed to be in radians.

Listing 13.24 sin

<?php

 //prints 1

 print(sin(0.5 * M_PI));

?>

double sinh(double value)

The sinh function returns the hyperbolic sine of the given value.

double sqrt(double value)

Use sqrt (Listing 13.25) to find the square root of a number.

Listing 13.25 sqrt

<?php

 //prints 9

 print(sqrt(81.0));

?>

double tan(double angle)

The tan function (Listing 13.26) returns the tangent of an angle. The

angle is expected to be expressed in radians.

Listing 13.26 tan

<?php

 //prints 1.5574077246549

 print(tan(1));

?>

double tanh(double value)

The tanh function returns the hyperbolic tangent of the given value.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

13.2 Random Numbers

The following functions help you generate pseudorandom numbers.

There are wrappers for the randomizing functions offered by your

operating system, and there are functions based on the Mersenne

Twister algorithm. The Mersenne Twister functions are faster and

return numbers with a much better distribution suitable for

cryptographic applications. The algorithm was developed by Makoto

Matsumoto and Takuji Nishimura. You can read more about it on their

Web page <http://www.math.keio.ac.jp/~matumoto/emt.html>.

Pedro Melo refactored an implementation by Shawn Cokus in order to

add support to PHP.

Pseudorandom number generators need seeding. Traditionally, the

program seeds the generator itself, but PHP can handle this task. For

the illusion of really random numbers, you should seed with data

from a source that changes often. The microsecond clock is a good

start. PHP does a great job of seeding, so you shouldn’t worry about

it in most cases. A seed will reliably produce the same sequence of

pseudorandom numbers, which can be useful in certain situations.

integer getrandmax()

The getrandmax function (Listing 13.27) returns the maximum

random number that may be returned by the rand function.

Listing 13.27 getrandmax

<?php

 print(getrandmax());

?>

integer mt_getrandmax()

The mt_getrandmax function (Listing 13.28) returns the maximum

random number that may be returned by the mt_rand function.

Listing 13.28 mt_getrandmax

<?php

 print(mt_getrandmax());

?>

double lcg_value()

http://www.math.keio.ac.jp/~matumoto/emt.html

The lcg_value function returns a number between 0 and 1 using an

algorithm called a linear congruential generator, or LCG. This is a

common method for generating pseudorandom numbers. The

generator is seeded with the process identifier.

integer mt_rand(integer min, integer max)

The mt_rand function (Listing 13.29) uses the Mersenne Twister

algorithm to return a number between the two optional arguments,

inclusive. If left out, zero and the integer returned by the

mt_getrandmax function will be used. Use mt_srand to seed the

Mersenne Twister random number generator.

Listing 13.29 mt_rand

<?php

 //get ten random numbers from 1 to 100

 for($index = 0; $index < 10; $index++)

 {

 print(mt_rand(1, 100) . "
");

 }

?>

mt_srand(integer seed)

The mt_srand function seeds the Mersenne Twister random number

generator.

integer rand(integer lowest, integer highest)

The rand function (Listing 13.30) returns a number between the two

optional arguments, inclusive. If you leave out the arguments, zero

and the integer returned by the getrandmax function will be used.

Use the srand function to seed the random number generator.

Listing 13.30 rand

<?php

 //get ten random numbers from -100 to 100

 for($index = 0; $index < 10; $index++)

 {

 print(rand(-100, 100) . "
");

 }

?>

srand(integer seed)

The srand function seeds the random number generator.

string uniqid(string prefix, boolean use_lcg)

The uniqid function (Listing 13.31) joins the prefix argument to a

random series of numbers and letters, which are generated based on

the system clock. The prefix may be up to 114 characters long and

the unique string is always 13 characters long.

If the optional use_lcg argument is TRUE, nine additional characters

will be added to the end of the return string These characters are

generated by the same algorithm used by the lcg_value function: a

period followed by eight digits. Because the lcg_value function seeds

itself with the process ID, turning on this flag may not actually add

much randomness.

Compare this function to tempnam, discussed in Chapter 9.

Listing 13.31 uniqid

<?php

 print(uniqid("data"));

?>

13.3 Arbitrary-Precision Numbers

Doubles are usually sufficiently precise for any numerical analysis you

may wish to perform. However, PHP offers a way to work with

numbers of much higher precision. The functions in this section use

strings to store very long floating-point numbers. They each use a

scale value that is the number of digits to the right of the decimal

point. The scale argument that appears in all of the functions is

optional and will override the default scale. The bcscale function,

described in Chapter 15, sets the default scale.

These functions are part of the bcmath extension. They are part of

the binary distribution for Windows, but they are not activated by

default for other operating systems. If PHP reports these functions as

being unrecognized, you may need to recompile PHP using the —

enable-bcmath option.

PHP also supports an extension for GNU MP, also known as GMP. At

the time of writing, the PHP extension supports only integers. You can

read more about GMP at the home site

<http://www.swox.com/gmp/>.

Listing 13.32 demonstrates the arbitrary-precision number functions.

Listing 13.32 Arbitrary-precision number functions

<?php

 //11.1111111000

 print(bcadd("1.234567890", "9.87654321", 10) . '
');

 //1, that is, the first is larger than the second

 print(bccomp("12345","1.111111111111", 10) . '
');

 //0.1250075946

 print(bcdiv("12345", "98754", 10) . '
');

 //121134

 print(bcmod("66394593", "133347") . '
');

 //8853519792771

 print(bcmul("66394593", "133347", 10) . '
');

 //292683432083423203645857

 print(bcpow("66394593", "3", 10) . '
');

 //35.1364056215

 print(bcsqrt("1234.567", 10) . '
');

 //1146

 print(bcsub("1234.4842", "88.6674") . '
');

?>

string bcadd(string left, string right, integer scale)

http://www.swox.com/gmp/default.htm

The bcadd function adds left to right.

integer bccomp(string left, string right, integer
scale)

The bccomp function compares left to right. If they are equal, zero

is returned. If left is less than right, �1 is returned. If left is

greater than right, 1 is returned.

string bcdiv(string left, string right, integer scale)

Use bcdiv to divide left by right.

string bcmod(string left, string right)

The bcmod function finds the modulus of the division of left by

right.

string bcmul(string left, string right, integer scale)

Use bcmul to multiply the left argument and the right argument.

string bcpow(string value, string exponent, integer
scale)

The bcpow function raises the value argument to the power of the

exponent argument. If the exponent is not an integer, the fractional

part will be chopped off.

string bcpowmod(string value, string exponent,
string mod, integer scale)

The bcpowmod function returns the value of a number raised to the

power of another reduced by a modulus.

string bcsqrt(string value, integer scale)

The bcsqrt function returns the square root of the value argument.

string bcsub(string left, string right, integer scale)

Use the bcsub function to subtract the right argument from the left

argument.

Chapter 14. Time and Date
Topics in This Chapter

Time and Date

Alternative Calendars

The functions in this chapter describe time-related functions. Most of

PHP’s time and date functions are standard for any programming

language. They allow you to get the current date in several formats.

The calendar functions manipulate dates in various calendars,

including ancient and obscure calendars.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

14.1 Time and Date

All the time functions work off the UNIX epoch, which is January 1, 1970.

Dates are expressed as seconds since the epoch. This makes it easy to

refer to dates with integers. When a function calls for seconds since the

epoch, I’ve referred to it as a timestamp.

Windows accepts timestamps from zero to the largest 32-bit integer, which

corresponds to January 19, 2038. UNIX allows for negative timestamps,

which stretch back to December 13, 1901.

boolean checkdate(integer month, integer day, integer
year)

The checkdate function (Listing 14.1) returns TRUE if a date is valid, and

FALSE otherwise. A day is considered valid if the year is between 0 and

32767, the month is between 1 and 12, and the day is within the allowable

days for that month. This function takes leap years into consideration.

Listing 14.1 checkdate

<?php

 if(checkdate(2,18,1970))

 {

 print("It is a good day");

 }

?>

string date(string format, integer timestamp)

The date function (Listing 14.2) returns a string describing the date of the

timestamp according to the format argument. Letters in the format

argument are replaced with parts of the date or time. Any characters not

understood as codes pass unchanged. You can pass any character by

preceding it with a backslash. Format codes are listed in Table 14.1.

Table 14.1. date Format Codes

Code Description

a am or pm

A AM or PM

B Swatch Beat time

Code Description

d Day of the month with leading zeroes

D Day of the week as a three-letter abbreviation

F Name of the month

g Hour from 1 to 12 (no leading zeroes)

G Hour from 0 to 23 (no leading zeroes)

h Hour from 01 to 12

H Hour from 00 to 23

i Minutes

I 1 if daylight savings time

j Day of the month with no leading zeroes

l Day of the week

L 1 if leap year, 0 otherwise

m Month number from 01 to 12

M Abbreviated month name (Jan, Feb, …)

n Month number from 1 to 12 (no leading zeroes)

O Difference in Greenwich Mean Time (+0800)

r RFC822 formatted date

s Seconds 00 to 59

S Ordinal suffix for day of the month (1st, 2nd, 3rd)

t Number of days in the month

T Time zone, dependent on OS

U Seconds since the epoch

w Day of the week from 0 (Sunday) to 6 (Saturday)

W Week number of year using ISO 8601 standard

y Year as two digits

Y Year as four digits

z Day of the year from 0 to 365

Code Description

Z Time zone offset in seconds (-43,200 to 43,200)

The timestamp argument is optional. If left out, the current time will be

used. The timestamp is interpreted as being in local time.

Listing 14.2 date

<?php

 //prints something like

 //04:01 PM Tuesday December 17th, 2002

 print(date("h:i A l F dS, Y"));

?>

integer date_sunrise(integer timestamp, integer format,
double latitude, double longitude, double zenith, double
offset)

The date_sunrise function returns the time of sunrise on the date of the

given timestamp. The optional format argument may be set to

SUNFUNCS_RET_ TIMESTAMP, SUNFUNCS_RET_STRING, or

SUNFUNCS_RET_DOUBLE. The first constant causes PHP to return the number

of seconds after midnight the sun rises. The second constant causes PHP to

return a string with the time on the 24-hour clock. This is the default return

format. The third constant returns the timestamp for sunrise on that day.

You may optionally set the latitude, longitude, zenith, and offset from GMT.

If you do not set these, PHP uses defaults defined in php.ini for the first

three. The configuration directives are date.default_latitude,

date.default_ longitude, and date.sunset_zenith. PHP can figure the

time zone from the operating system.

integer date_sunset(integer timestamp, integer format,
double latitude, double longitude, double zenith, double
offset)

The date_sunset function returns the time of sunset on the date of the

given timestamp. Its arguments match those of date_sunrise.

array getdate(integer timestamp)

The getdate function (Listing 14.3) returns an associative array with

information about the given date. This array is described in Table 14.2. The

timestamp argument is the number of seconds since January 1, 1970. If

left out, the current time is used.

Table 14.2. Elements in getdate Array

Element Description

hours Hour in 24-hour format

mday Day of the month

minutes Minutes for the hour

mon Month as a number

month Full name of the month

seconds Seconds for the minute

wday Day of the week as a number from 0 to 6

weekday Name of the day of the week

yday Day of the year as a number

year Year

0 Timestamp

Listing 14.3 getdate

<?php

 $d = getdate();

 print("Timestamp {$d[0]} is {$d['mon']}-{$d['mday']}-".

 "{$d['year']}");

?>

array gettimeofday()

The gettimeofday function (Listing 14.4) returns an associative array

containing information about the current time. This is a direct interface to

the C function of the same name. The elements of the returned array are

listed in Table 14.3.

Table 14.3. Elements of the Array Returned by gettimeofday

Element Meaning

sec Seconds

usec Microseconds

Element Meaning

minuteswest Minutes West of Greenwich

dsttime Type of DST correction

Listing 14.4 gettimeofday

<?php

 $t = gettimeofday();

 print("{$t['sec']} {$t['usec']} {$t['minuteswest']}".

 "{$t['dsttime']}");

?>

string gmdate(string format, integer timestamp)

The gmdate function (Listing 14.5) operates identically to the date function

except that Greenwich Mean Time is returned instead of the time for the

local time zone.

Listing 14.5 gmdate

<?php

 print("Local: " . date("h:i A l F dS, Y") . "
");

 print("GMT: " . gmdate("h:i A l F dS, Y") . "
");

?>

integer gmmktime(integer hour, integer minute, integer
second, integer month, integer day, integer year)

The gmmktime function operates identically to mktime except that it returns

a timestamp for Greenwich Mean Time rather than the local time zone.

string gmstrftime(string format, integer timestamp)

The gmstrftime function operates identically to strftime except that the

timestamp is considered Greenwich Mean Time. The same format codes

defined in Table 14.5 are used in the format argument.

integer idate(string format, integer timestamp)

The idate function returns the integer value for a format code from Table

14.1. If you don’t supply the optional timestamp argument, PHP uses the

current time.

array localtime(integer timestamp, boolean associative)

The localtime function wraps the C function of the same name. It returns

an array of information about the local time. By default, it returns an array

indexed by integers. If associative is set to TRUE, it uses associative keys.

Table 14.4 shows these keys.

Table 14.4. Elements of the Array Returned by localtime

Integer Key Associative Key Description

0 tm_sec Seconds

1 tm_min Minutes

2 tm_hour Hour

3 tm_mday Day of the month

4 tm_mon Month of the year, January being 0

5 tm_year Years since 1900

6 tm_wday Day of the week

7 tm_yday Day of the year

8 tm_isdst 1 if daylight savings time is in effect

string microtime()

The microtime function (Listing 14.6) returns a string with two numbers

separated by a space. The first number is microseconds on the system

clock. The second is the number of seconds since January 1, 1970.

Listing 14.6 microtime

<?php

 //print microtime

 print("Start: ". microtime() . "
");

 //sleep for a random time

 usleep(rand(100,5000));

 //print microtime

 print("Stop: " . microtime() . "
");

?>

integer mktime(integer hour, integer minute, integer
second, integer month, integer day, integer year, integer
daylight_savings_time)

The mktime function (Listing 14.7) returns a timestamp for a given date,

the number of seconds since January 1, 1970. All the arguments are

optional and, if left out, the appropriate value for the current time will be

used. The daylight_savings_time argument should be 1 (yes), 0 (no) or

�1 (let PHP guess). If an argument is out of range, mktime will account for

the surplus or deficit by modifying the other time units. For example, using

13 for the month argument is equivalent to January of the following year.

This makes mktime an effective tool for adding arbitrary time to a date.

Listing 14.7 mktime

<?php

 print("Fifty Hours from Now: " .

 date("h:i A l F dS, Y", mktime(date("h")+50)) . "
");

?>

sleep(integer seconds)

The sleep function (Listing 14.8) causes execution to pause for the given

number of seconds.

Listing 14.8 sleep

<?php

 print(microtime() . '
');

 sleep(3);

 print(microtime() . '
');

?>

string strftime(string format, integer timestamp)

The strftime function (Listing 14.9) returns a date in a particular format.

If the optional timestamp argument is left out, the current time will be

used. Language-dependent strings will be set according to the current

locale, which may be changed with the setlocale function. The format

string may contain codes that have special meaning and begin with a

percentage sign. Other characters are passed through unchanged. See

Table 14.5 for a list of format codes.

Table 14.5. Codes Used by strftime

Code DescriptionCode Description

%a Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%c Preferred date and time representation

%C Century number

%d Two-digit day of the month with zero-fill

%D Shortcut for %m/%d/%y

%e Day of the month with space-fill

%g The two-digit year corresponding to the ISO 8601:1988 week number

%G The four-digit year corresponding to the ISO 8601:1988 week number

%h Alias to %b

%H Hour on the 24-hour clock with zero-fill

%I Hour on the 12-hour clock

%j Three-digit day of the year with zero-fill

%m Month number from 1 to 12

%M Minutes

%n Newline character

%p Equivalent representation of a.m. or p.m.

%r Time on 12-hour clock

%R Time on 24-hour clock

%S Seconds

%t Tab character

%T Shortcut for %H:%M:%S

%u Weekday number, with 1 being Monday

%U Week number with week one starting with the first Sunday of the year

%V The ISO 8601:1988 week number

Code Description

%W Week number with week one starting with the first Monday of the

year

%w Day of the week as a number with Sunday being 0

%x Date representation preferred by locale

%X Time representation preferred by locale

%y Two-digit year with zero-fill

%Y Four-digit year

%Z Time zone

%% A % character

Listing 14.9 strftime

<?php

 //prints something like

 //Wednesday, Wed Dec 18 09:04:22 2002

 print(strftime("%A, %c"));

?>

integer strtotime(string date, integer now)

The strtotime function (Listing 14.10) attempts to parse a string

containing date and time, returning the timestamp for it. If partial

information is provided in the date argument, the missing information will

be drawn from the now argument. You may leave out the now argument to

use the current time.

Listing 14.10 strtotime

<?php

 //create a reason description

 //of a date

 $time = "Feb 18, 1970 3AM";

 //get its timestamp

 $ts = strtotime($time);

 //print it to verify that it worked

 print(date("h:i A l F dS, Y", $ts));

?>

integer time()

Use time (Listing 14.11) to get the current timestamp.

Listing 14.11 time

<?php

 print(time());

?>

usleep(integer microseconds)

The usleep function (Listing 14.12) causes execution to pause for the given

number of microseconds. There are a million microseconds in a second.

Listing 14.12 usleep

<?php

 print(microtime() . '
');

 usleep(30);

 print(microtime() . '
');

?>

14.2 Alternative Calendars

PHP offers a powerful way to convert dates from one calendar system to

another. In order to do this, you must first convert a date into a Julian Day

Count. You then convert that integer back into a date according to another

calendar.

These functions require the calendar extension. You may load it

dynamically, or compile it into PHP.

integer cal_days_in_month(integer calendar, integer
month, integer year)

The cal_days_in_month function (Listing 14.13) returns the number of

days in a month for a given calendar’s month and year. Use one of the

constants in Table 14.6 to specify the calendar.

Table 14.6. Calendar Type Constants

Constant Description

CAL_FRENCH French Republican Calendar

CAL_GREGORIAN Gregorian Calendar

CAL_JEWISH Jewish Calendar

CAL_JULIAN Julian Calendar

Listing 14.13 cal_days_in_month

<?php

 //prints 30

 print(cal_days_in_month(CAL_FRENCH, 1, 1));

?>

array cal_from_jd(integer julian_day, integer calendar)

The cal_from_jd function returns an array describing a given Julian Day

Count in the given calendar. Use one of the constants in Table 14.6 to

specify the calendar. Table 14.7 describes the elements in the returned

array. Use this function as an alternative to jdtofrench, jdtogregorian,

jdtojewish, and jdtojulian.

Table 14.7. Array Returned by cal_from_jd

Element Description

date Date formatted as MM/DD/YYYY

month Month number

day Day

year Year

dow Day of the week number

abbrevdayname Abbreviated day of the week

dayname Day of the week

abbrevmonth Abbreviated month name

monthname Month name

array cal_info(integer calendar)

The cal_info function returns information about the given calendar,

specified with one of the constants in Table 14.6. Table 14.8 describes the

returned array.

Table 14.8. Array Returned by cal_info

Element Description

months An array of month names indexed by number

abbrevmonths An array of abbreviated month names indexed by number

maxdaysinmonth The maximum number of days in any month

calname The name of the calendar

calsymbol The name of the constant used for the calendar

integer cal_to_jd(integer calendar, integer month, integer
day, integer year)

The cal_to_jd function converts a date for the given calendar to a Julian

Day Count. Use this function as an alternate to frenchtojd,

gregoriantojd, jewishtojd, and juliantojd.

integer easter_date(integer year)

Use easter_date (Listing 14.14) to get the timestamp for midnight on

Easter for a given year. You may leave out the year to find Easter for the

current year.

Listing 14.14 easter_date

<?php

 print(easter_date(2000));

?>

integer easter_days(integer year, integer method)

The easter_days function (Listing 14.15) returns the number of days after

March 21 on which Easter falls for the given year. You may leave out the

year to use the current year. The optional method argument may be set

with the constants in Table 14.9.

Table 14.9. easter_days Methods

CAL_EASTER_DEFAULT

CAL_EASTER_ROMAN

CAL_EASTER_ALWAYS_GREGORIAN

CAL_EASTER_ALWAYS_JULIAN

Listing 14.15 easter_days

<?php

 print(easter_days(2003, CAL_EASTER_DEFAULT) . '
');

 print(easter_days(2003, CAL_EASTER_ROMAN) . '
');

 print(easter_days(2003, CAL_EASTER_ALWAYS_GREGORIAN) .

 '
');

 print(easter_days(2003, CAL_EASTER_ALWAYS_JULIAN) . '
');

?>

integer frenchtojd(integer month, integer day, integer
year)

The frenchtojd function returns the Julian Day Count for the given French

Republican calendar date.

integer gregoriantojd(integer month, integer day, integer
year)

The gregoriantojd function returns the Julian Day Count for the given

Gregorian date.

value jddayofweek(integer julian_day, integer mode)

The jddayofweek function returns either an integer or a string, depending

on the mode. Modes are listed in Table 14.10.

Table 14.10. Calendar Day Modes

Mode Description

0 Returns the day of the week as a number from zero to 6, zero being

Sunday.

1 Returns the day of the week as a name using the English name from

the Gregorian calendar.

2 Returns the abbreviated name of the day of the week using the

English name from the Gregorian calendar.

string jdmonthname(integer julian_day, integer mode)

The jdmonthname function returns the name of the month for a particular

day. The mode argument specifies which calendar to draw month names

from. Modes are listed in Table 14.11.

Table 14.11. jdmonthname Modes

Mode Calendar

0 Gregorian, abbreviated

1 Gregorian, full

2 Julian, abbreviated

3 Julian, full

4 Jewish

5 French Republican

string jdtofrench(integer julian_day)

The jdtofrench function returns the date on the French Republican

calendar for a Julian Day Count.

string jdtogregorian(integer julian_day)

Use the jdtogregorian function to convert a Julian Day Count to a

Gregorian date.

string jdtojewish(integer julian_day)

The jdtojewish function returns the Jewish calendar date for the given

Julian Day Count.

string jdtojulian(integer julian_day)

Use the jdtojulian function to get the Julian date for a Julian Day Count.

integer jdtounix(integer julian_day)

The jdtounix function returns a timestamp for the given Julian Day Count

if the date falls within dates in the UNIX epoch. It returns FALSE, otherwise.

integer jewishtojd(integer month, integer day, integer
year)

The jewishtojd function returns a Julian Day Count for the given Jewish

calendar date.

integer juliantojd(integer month, integer day, integer
year)

Use the juliantojd function to get the Julian Day Count for a Julian

calendar date.

integer unixtojd(integer timestamp)

The unixtojd function returns the Julian Day Count given a UNIX

timestamp.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

Chapter 15. Configuration
Topics in This Chapter

Configuration Directives

Configuration

This chapter describes method for configuring the behavior of PHP.

You may accomplish this by setting configuration directives or by

executing functions. Configuration directives are set in php.ini,

Apache .htaccess files or with the set_ini function. Chapter 1

discusses configuration basics.

15.1 Configuration Directives

Configuration directives change the behavior of PHP. PHP looks for these directives in php.ini. PHP looks

for this file in three locations, in the following order: the current directory, the path set in the PHPRC

environment variable, or in a standard path compiled into PHP. On UNIX, this path is /usr/local/lib. On

Windows, it’s the main system directory, usually C:\WINDOWS or C:\WINNT. A typical installation uses a

single php.ini file, kept in this last path.

If you use the Apache Web server, you may override php.ini settings with .htaccess and httpd.conf

files. You may use one of four Apache commands to set a PHP directive. Write the Apache command

followed by the PHP directive name followed by the appropriate value. Use space to separate the three

parts. For a PHP directive that may be on or off, use either php_admin_flag or php_flag. For a PHP

directive that expects an arbitrary value, use php_admin_value or php_value. The two admin commands

may appear only in httpd.conf and may not be overridden in an .htaccess file.

The set_ini function allows you to change most directives within a script. Because this function executes

after PHP’s initialization, some directives have no meaning in the context of a script. A description of

set_ini appears later in this chapter.

Table 15.1 describes configuration directives available in a typical PHP installation. Extensions can add

directives, so your list may not match this list exactly. Setting a directive that PHP doesn’t recognize is not

an error. It’s just ignored.

You may set any directive in php.ini. Some will have no effect if set during runtime with ini_set.

Table 15.1. Configuration Directives

Directive Type Default Value ini_set .htaccess httpd.conf

allow_call_time_pass_reference Flag On No Yes Yes

allow_url_fopen Flag On Yes Yes Yes

allow_webdav_methods Flag NULL No Yes Yes

always_populate_raw_post_data Flag Off Yes Yes Yes

arg_separator.input Value & No Yes Yes

arg_separator.output Value & Yes Yes Yes

asp_tags Flag Off No Yes Yes

assert.active Flag On Yes Yes Yes

assert.bail Flag Off Yes Yes Yes

assert.callback Value NULL Yes Yes Yes

assert.quiet_eval Flag Off Yes Yes Yes

assert.warning Flag On Yes Yes Yes

auto_append_file Value NULL No Yes Yes

auto_detect_line_endings Flag Off Yes Yes Yes

auto_prepend_file Value NULL No Yes Yes

browscap Value NULL No No Yes

child_terminate Flag Off Yes Yes Yes

com.allow_dcom Flag Off No No Yes

com.autoregister_casesensitive Flag On No No Yes

com.autoregister_typelib Flag Off No No Yes

com.autoregister_verbose Flag Off No No Yes

com.typelib_file Value NULL No No Yes

Directive Type Default Value ini_set .htaccess httpd.conf

crack.default_dictionary Value NULL No No Yes

dbx.colnames_case Value unchanged No No No

default_charset Value SAPI_DEFAULT_CHARSET Yes Yes Yes

default_mimetype Value SAPI_DEFAULT_MIMETYPE Yes Yes Yes

default_socket_timeout Value 60 Yes Yes Yes

define_syslog_variables Flag Off Yes Yes Yes

disable_functions Value NULL No No Yes

display_errors Flag On Yes Yes Yes

display_startup_errors Flag Off Yes Yes Yes

doc_root Value NULL No No Yes

docref_ext Value NULL Yes Yes Yes

docref_root Value http://www.php.net/ Yes Yes Yes

enable_dl Flag On No No Yes

engine Flag On Yes Yes Yes

error_append_string Value NULL Yes Yes Yes

error_log Value NULL Yes Yes Yes

error_prepend_string Value NULL Yes Yes Yes

error_reporting Value NULL Yes Yes Yes

exif.decode_jis_intel Value JIS Yes Yes Yes

exif.decode_jis_motorola Value JIS Yes Yes Yes

exif.decode_unicode_intel Value UCS-2LE Yes Yes Yes

exif.decode_unicode_motorola Value UCS-2BE Yes Yes Yes

exif.encode_jis Value NULL Yes Yes Yes

exif.encode_unicode Value ISO-8859-15 Yes Yes Yes

expose_php Flag On No No Yes

extension Value NULL No No Yes

extension_dir Value usr/local/lib/php/extensions/no-

debug-non-zts-20020429 on UNIX or

c:\php4\extensions on Windows

No No Yes

extname.global_string Value foobar Yes Yes Yes

extname.global_value Value 42 Yes Yes Yes

file_uploads Flag On No No Yes

gpc_order Value GPC Yes Yes Yes

highlight.bg Value HL_BG_COLOR Yes Yes Yes

highlight.comment Value HL_COMMENT_COLOR Yes Yes Yes

highlight.default Value HL_DEFAULT_COLOR Yes Yes Yes

highlight.html Value HL_HTML_COLOR Yes Yes Yes

highlight.keyword Value HL_KEYWORD_COLOR Yes Yes Yes

http://www.php.net/default.htm

Directive Type Default Value ini_set .htaccess httpd.conf

highlight.string Value HL_STRING_COLOR Yes Yes Yes

html_errors Flag On No No Yes

iconv.input_encoding Value ICONV_INPUT_ENCODING Yes Yes Yes

iconv.internal_encoding Value ICONV_INTERNAL_ENCODING Yes Yes Yes

iconv.output_encoding Value ICONV_OUTPUT_ENCODING Yes Yes Yes

ignore_repeated_errors Flag Off Yes Yes Yes

ignore_repeated_source Flag Off Yes Yes Yes

ignore_user_abort Flag Off Yes Yes Yes

implicit_flush Flag Off No Yes Yes

include_path Value PHP_INCLUDE_PATH Yes Yes Yes

java.class.path Value NULL Yes Yes Yes

java.home Value NULL Yes Yes Yes

java.library Value jvm.dll Yes Yes Yes

java.library.path Value NULL Yes Yes Yes

last_modified Flag Off Yes Yes Yes

ldap.max_links Value -1 No No Yes

log_errors Flag Off Yes Yes Yes

log_errors_max_len Value 1024 Yes Yes Yes

magic_quotes_gpc Flag On No Yes Yes

magic_quotes_runtime Flag Off Yes Yes Yes

magic_quotes_sybase Flag Off Yes Yes Yes

max_execution_time Value 30 Yes Yes Yes

max_input_time Value -1 No Yes Yes

mbstring.detect_order Value NULL Yes Yes Yes

mbstring.encoding_translation Flag Off No Yes Yes

mbstring.func_overload Flag Off No No Yes

mbstring.http_input Value NULL Yes Yes Yes

mbstring.http_output Value NULL Yes Yes Yes

mbstring.internal_encoding Value NULL Yes Yes Yes

mbstring.language Value neutral No Yes Yes

mbstring.substitute_character Value NULL Yes Yes Yes

mcrypt.algorithms_dir Value NULL Yes Yes Yes

mcrypt.modes_dir Value NULL Yes Yes Yes

memory_limit Value 8M Yes Yes Yes

mime_magic.magicfile Value /usr/share/misc/magic.mime No No Yes

mssql.allow_persistent Flag On No No Yes

mssql.batchsize Flag Off Yes Yes Yes

Directive Type Default Value ini_set .htaccess httpd.conf

mssql.connect_timeout Value 5 Yes Yes Yes

mssql.datetimeconvert Flag On Yes Yes Yes

mssql.max_links Value -1 No No Yes

mssql.max_persistent Value -1 No No Yes

mssql.max_procs Value 25 Yes Yes Yes

mssql.min_error_severity Value 10 Yes Yes Yes

mssql.min_message_severity Value 10 Yes Yes Yes

mssql.textlimit Value -1 Yes Yes Yes

mssql.textsize Value -1 Yes Yes Yes

mssql.timeout Value 60 Yes Yes Yes

mysql.allow_persistent Flag On No No Yes

mysql.connect_timeout Value -1 No No No

mysql.default_host Value NULL Yes Yes Yes

mysql.default_password Value NULL Yes Yes Yes

mysql.default_port Value NULL Yes Yes Yes

mysql.default_socket Value NULL Yes Yes Yes

mysql.default_user Value NULL Yes Yes Yes

mysql.max_links Value -1 No No Yes

mysql.max_persistent Value -1 No No Yes

mysql.trace_mode Flag Off Yes Yes Yes

odbc.allow_persistent Flag On No No Yes

odbc.check_persistent Flag On No No Yes

odbc.defaultbinmode Flag On Yes Yes Yes

odbc.defaultlrl Value 4096 Yes Yes Yes

odbc.max_links Value -1 No No Yes

odbc.max_persistent Value -1 No No Yes

open_basedir Value NULL No No Yes

output_buffering Flag Off No Yes Yes

output_handler Value NULL No Yes Yes

pfpro.defaulthost Value test-payflow.verisign.com Yes Yes Yes

pfpro.defaultport Value 443 Yes Yes Yes

pfpro.defaulttimeout Value 30 Yes Yes Yes

pfpro.proxyaddress Value NULL Yes Yes Yes

pfpro.proxylogon Value NULL Yes Yes Yes

pfpro.proxypassword Value NULL Yes Yes Yes

pfpro.proxyport Value NULL Yes Yes Yes

pgsql.allow_persistent Flag On No No Yes

Directive Type Default Value ini_set .htaccess httpd.conf

pgsql.auto_reset_persistent Flag Off No No Yes

pgsql.ignore_notice Flag Off Yes Yes Yes

pgsql.log_notice Flag Off Yes Yes Yes

pgsql.max_links Value -1 No No Yes

pgsql.max_persistent Value -1 No No Yes

post_max_size Value 8M No No Yes

precision Value 14 Yes Yes Yes

register_argc_argv Flag On No Yes Yes

register_globals Flag Off No Yes Yes

report_memleaks Flag On Yes Yes Yes

report_zend_debug Flag On Yes Yes Yes

safe_mode Flag Off No No Yes

safe_mode_allowed_env_vars Value PHP_ No No Yes

safe_mode_exec_dir Flag On No No Yes

safe_mode_gid Flag Off No No Yes

safe_mode_include_dir Value NULL No No Yes

safe_mode_protected_env_vars Value LD_LIBRARY_PATH No No Yes

sendmail_from Value NULL Yes Yes Yes

sendmail_path Value sendmail -t -i No No Yes

session.auto_start Flag Off Yes Yes Yes

session.bug_compat_42 Flag On Yes Yes Yes

session.bug_compat_warn Flag On Yes Yes Yes

session.cache_expire Value 180 Yes Yes Yes

session.cache_limiter Value nocache Yes Yes Yes

session.cookie_domain Value NULL Yes Yes Yes

session.cookie_lifetime Flag Off Yes Yes Yes

session.cookie_path Value / Yes Yes Yes

session.cookie_secure Value NULL Yes Yes Yes

session.entropy_file Value NULL Yes Yes Yes

session.entropy_length Flag Off Yes Yes Yes

session.gc_dividend Value 100 Yes Yes Yes

session.gc_maxlifetime Value 1440 Yes Yes Yes

session.gc_probability Flag On Yes Yes Yes

session.name Value PHPSESSID Yes Yes Yes

session.referer_check Value NULL Yes Yes Yes

session.save_handler Value files Yes Yes Yes

session.save_path Value /tmp Yes Yes Yes

Directive Type Default Value ini_set .htaccess httpd.conf

session.serialize_handler Value php Yes Yes Yes

session.use_cookies Flag On Yes Yes Yes

session.use_only_cookies Flag Off Yes Yes Yes

session.use_trans_sid Flag On No Yes Yes

short_open_tag Value DEFAULT_SHORT_OPEN_TAG No Yes Yes

SMTP Value localhost Yes Yes Yes

smtp_port Value 25 Yes Yes Yes

sql.safe_mode Flag Off No No Yes

sybct.allow_persistent Flag On No No Yes

sybct.hostname Value NULL Yes Yes Yes

sybct.max_links Value -1 No No Yes

sybct.max_persistent Value -1 No No Yes

sybct.min_client_severity Value 10 Yes Yes Yes

sybct.min_server_severity Value 10 Yes Yes Yes

sysvshm.init_mem Value 10000 No Yes Yes

track_errors Flag Off Yes Yes Yes

unserialize_callback_func Value NULL Yes Yes Yes

upload_max_filesize Value 2M No No Yes

upload_tmp_dir Value NULL No No Yes

url_rewriter.tags Value
a=href,area=href,

frame=src,

form=fakeentry

Yes Yes Yes

User_agent Value NULL Yes Yes Yes

user_dir Value NULL No No Yes

variables_order Value NULL Yes Yes Yes

Xbithack Flag Off Yes Yes Yes

xmlrpc_error_number Flag Off Yes Yes Yes

xmlrpc_errors Flag Off No No Yes

y2k_compliance Flag Off Yes Yes Yes

zlib.output_compression Flag Off No Yes Yes

zlib.output_compression_level Value -1 Yes Yes Yes

zlib.output_handler Value NULL Yes Yes Yes

allow_call_time_pass_reference

Historically, PHP supported passing variable references to functions by prepending an ampersand (&) in the

call. This behavior was abandoned for using ampersands in function definitions. If this directive is on, PHP

issues a warning when you force a reference in a function call. If off, PHP issues an error.

allow_url_fopen

This directive activates the use of URLs in fopen calls and similar functions.

allow_webdav_methods

When activated, this directive causes PHP to process WebDAV requests. If you wish to process the contents

of the request, be sure to turn on always_populate_raw_post_data.

always_populate_raw_post_data

PHP sets a global variable named HTTP_RAW_POST_DATA when this directive is on and the request includes

Post method data.

arg_separator.input

This directive sets the characters used by PHP to separate fields in an HTTP request. For example, x = 1 &

y = 2 uses ampersands, as is the usual case. PHP uses each character you supply to this directive as a

possible field separator.

arg_separator.output

When PHP generates URLs, it uses the value of this directive to separate field values.

asp_tags

This directive controls whether PHP allows <% and %> for surrounding code.

assert.active

This controls whether you may use the assert function. Common wisdom suggests that if you use

assertions, you keep this value on while developing a site and off when the application runs in production.

assert.bail

This controls whether PHP stops executing a script if an assertion fails.

assert.callback

Set this directive to the name of a user-defined function to be called when an assertion fails.

assert.quiet_eval

If this directive is on, PHP turns off error reporting before testing an assertion, then restores error

reporting afterwards.

assert.warning

If this directive is on, PHP creates a warning for every failed assertion.

auto_append_file

Set this directive with the path to a PHP script that PHP executes when a requested script finished unless

the script ends in error or by the exit function.

auto_detect_line_endings

If this directive is on, PHP will automatically detect appropriate line endings of a file read with fgets or

file.

auto_prepend_file

Set this directive with the path to a PHP script that PHP executes before a requested script.

browscap

Set this directive with the path to a browscap.ini file.

child_terminate

This directive is for Apache on UNIX only. If turned on, PHP will terminate Apache’s child process after

finishing the request. This may be useful for PHP scripts that use large amounts of memory that won’t

return to the operating system until the child process ends.

com.allow_dcom

If this directive is turned on, PHP allows calls to distributed COM objects in the COM extension.

com.autoregister_casesensitive

If this directive is turned on, PHP constants registered in the COM extension are case-sensitive.

com.autoregister_typelib

If this directive is turned on, PHP automatically registers constants when you call com_load.

com.autoregister_verbose

If this directive is turned on, PHP shows warnings when registering COM constants with duplicate names.

com.typelib_file

Set this directive with the path to a file containing GUIDs, IIDs, or filenames of files with TypeLibs used by

the COM extension.

crack.default_dictionary

Use this directive to set the path to a default dictionary used by the crack extension.

dbx.colnames_case

This directive controls how the DBX extension changes column names returned by queries. The value

should be unchanged, lowercase, or uppercase. Respectively, these make PHP leave the column names

unchanged, convert to all lowercase, or convert to all uppercase.

default_charset

Use this directive to set the character set sent in the HTTP Content-type header.

default_mimetype

Use this directive to set the MIME type sent in the HTTP Content-type header.

default_socket_timeout

Set this directive to the number of seconds to wait before a socket stream aborts.

define_syslog_variables

If this directive is turned on, PHP automatically creates the syslog variables you can create manually with

define_syslog_variables.

disable_functions

Set this directive with a comma-separated list of functions to disable.

display_errors

If this directive is turned on, PHP sends error messages to the browser. Common wisdom suggests that

error messages be on during development and off after a site goes live.

display_startup_errors

If turned on, PHP sends errors encountered during startup to the browser.

doc_root

Use this directive to force a document root. This is recommended when running PHP as a CGI.

docref_ext

If the html_errors directive is on, PHP error messages contain references to the online PHP manual. PHP

constructs the links by adding an extension to the function name. This directive sets the extension.

docref_root

This directive sets the path to the PHP manual used when html_errors is on.

enable_dl

When this directive is turned on, PHP allows loading extensions with dl.

engine

This directive allows you to turn off the PHP engine in Apache.

error_append_string

Use this directive to append a string to the end of every error message PHP generates. You can use it to

decorate error messages with HTML.

error_log

Set this directive with a path to which PHP will write all error messages. You must turn on error logging

with log_errors.

error_prepend_string

Use this directive to print a string before every error message.

error_reporting

Use this directive to set which errors are reported by PHP when display_errors is on. Use the constants

in Table 15.2 to set the types of errors PHP reports. You may use bitwise operators to combine these

constants, if you wish. For example, you may activate all errors messages except for notices by using

E_ALL & ~E_NOTICE & ~E_USER_NOTICE.

Constants are not available in httpd.conf and .htaccess. If you wish to change error reporting in these

files, use the numeric values and do the math by hand.

Table 15.2. Error Levels

Constant Numeric Value Description

E_ALL 2047 All errors and warnings

E_COMPILE_ERROR 64 Fatal compile-time errors

E_COMPILE_WARNING 128 Compile-time warnings

E_CORE_ERROR 16 Fatal initialization errors

E_CORE_WARNING 32 Initialization warnings

E_ERROR 1 Fatal runtime errors

E_NOTICE 8 Runtime notices

E_PARSE 4 Parse errors

E_USER_ERROR 256 User-generated error

E_USER_NOTICE 1024 User-generated notice

E_USER_WARNING 512 User-generated warning

E_WARNING 2 Runtime warnings

exif.decode_jis_intel

Use this directive to set the character set used to decode exif messages for Intel byte-order JIS messages.

exif.decode_jis_motorola

Use this directive to set the character set used to decode exif messages for Motorola byte-order JIS

messages.

exif.decode_unicode_intel

Use this directive to set the character set used to decode exif messages for Intel byte-order UNICODE

messages.

exif.decode_unicode_motorola

Use this directive to set the character set used to decode exif messages for Motorola byte-order UNICODE

messages.

exif.encode_jis

Use this directive to set the character set used to encode JIS exif messages.

exif.encode_unicode

Use this directive to set the character set used to encode UNICODE exif messages.

expose_php

Use this directive to control whether PHP adds its signature to the Server header. For example, Apache

might identify itself as Apache/1.3.26 (Unix) PHP/5.0.0 mod_ssl/2.8.10 OpenSSL/0.9.6b. Letting

people know you have PHP installed is not a security issue, but it is a way to help promote PHP. One way to

judge the popularity of a Web technology is by counting responses by Web servers.

extension

Use this directive to load an extension. Repeat this directive to load multiple extensions.

extension_dir

Use this directive to set the path where PHP looks for extensions. Paths are relative to the location of the

PHP executable. For example, using ./ on a typical Windows install would cause PHP to look for extensions

in the directory where you installed php.exe. It’s better to use an absolute path, such as

C:\php5\extensions.

file_uploads

Use this directive to control whether PHP scripts can accept HTTP uploads.

highlight.bg

This directive allows you to set the background color used for syntax highlighting.

highlight.comment

This directive allows you to set the color used for comments for syntax highlighting.

highlight.default

This directive allows you to set the default code color used for syntax highlighting.

highlight.html

This directive allows you to set the color used for HTML for syntax highlighting.

highlight.keyword

This directive allows you to set the color used for PHP keywords for syntax highlighting.

highlight.string

This directive allows you to set the color used for string literals for syntax highlighting.

html_errors

Use this directive to control whether PHP decorates error messages with HTML and links to the online

manual or not.

iconv.input_encoding

Use this directive to set the input encoding used by the iconv extension.

iconv.internal_encoding

Use this directive to set the internal encoding used by the iconv extension.

iconv.output_encoding

Use this directive to set the output encoding used by the iconv extension.

ignore_repeated_errors

When this directive is on, PHP ignores duplicate errors generated by the same line of source. For example,

a bug inside a loop will often generate a page full of the same error message. This directive helps keep the

page short.

ignore_repeated_source

This directive has meaning only when ignore_repeated_errors is on. It forces PHP to ignore any error

message that matches a previous error message, regardless of file or line number.

ignore_user_abort

When this directive is on, PHP continues to execute a script after a client aborts the connection.

implicit_flush

Use this directive to force PHP to flush the output buffer with every print operation. This includes blocks of

HTML outside of PHP tags. For performance reasons, it’s best to leave this directive off during production.

include_path

Use this directive to set the directories in which PHP looks for files when you use include and similar

statements. For UNIX, separate any number of paths with colons, such as

.:/usr/local/lib/php/myincludes. For Windows, use semicolons, such as .;C:\php\includes.

java.class.path

Use this directive to set the path containing your compiled classes, including PHP’s php_java.jar. On

Windows, this could be C:\php5\extensions\php_java.jar, depending on where you installed PHP.

java.home

Set this directive to the JDK binaries path. On Windows, this could be C:\j2sdk1.4.1_01\jre\bin,

depending on where you installed Java.

java.library

Set this directive with the path to the JVM library. On Windows, this could be

C:\j2sdk1.4.1_01\jre\bin\client\jvm.dll, depending on where you installed Java.

java.library.path

Set this directive with the path to the Java extension. On Windows, this could be C:\PHP4\extensions,

depending on where you installed PHP.

last_modified

If this directive is on, PHP uses the modification time of the requested script in the HTTP Last-modified

header. Otherwise, the header is not sent.

ldap.max_links

Use this directive to set the maximum number of links the LDAP extension follows. Setting it to �1

imposes no limit.

log_errors

Use this directive to make PHP write errors to a file. Set the path to the error log with error_log.

log_errors_max_len

This directive sets a maximum length for error messages written to a file. Use a value of 0 to impose no

limit.

magic_quotes_gpc

When this directive is on, PHP adds backslashes to quote characters in user input.

magic_quotes_runtime

When this directive is on, PHP adds backslashes to quote characters data from external sources, such as

databases.

magic_quotes_sybase

When this directive is on, PHP uses ” instead of ' when escaping single quotes.

max_execution_time

This directive controls how many seconds PHP allows a script to execute before halting it.

max_input_time

This directive controls how many seconds PHP spends parsing input data before halting.

mbstring.detect_order

This directive sets the order in which the mbstring extension detects character sets.

mbstring.encoding_translation

When this directive is turned on, PHP detects input encoding and translates text into internal encoding.

mbstring.func_overload

This directive expects a bitfield that controls whether the mbstring extension overloads any of three groups

of functions with its own set. Use 1 for overloading mail. Use 2 for overloading string functions. Use 4 to

overload regular expression functions. Add numbers together to overload more than one group.

mbstring.http_input

Set this directive with the encoding for user input.

mbstring.http_output

Set this directive with the encoding for text sent to the browser.

mbstring.internal_encoding

Set this directive with the encoding used internally.

mbstring.language

Use this directive to set the default language used by the mbstring extension. This directive also sets the

appropriate internal encoding.

mbstring.substitute_character

Use this directive to set the character used to substitute for characters that can’t be translated.

mcrypt.algorithms_dir

Set this directive with the path to mcrypt algorithms, such as /usr/local/lib/libmcrypt.

mcrypt.modes_dir

Set this directive with the path to mcrypt modes.

memory_limit

Use this directive to set the maximum amount of memory PHP allocates before halting. You can specify the

value in bytes, suffix the value with K for kilobytes, or suffix the value with M for megabytes.

mime_magic.magicfile

Use this directive to set the path to the file used for detecting the MIME type of a file.

mssql.allow_persistent

When this directive is on, PHP uses persistent connections for MS SQL Server.

mssql.batchsize

This directive allows you to limit the number of records fetched in an MS SQL Server query.

mssql.connect_timeout

Set this directive with the number of seconds to wait to establish a connection to MS SQL Server.

mssql.datetimeconvert

If this directive is on, PHP converts MS SQL Server datetime columns into a regular format: Year-Month-

Day Hour:Minute:Second.

mssql.max_links

This directive sets the maximum number of connections to MS SQL Servers.

mssql.max_persistent

This directive sets the maximum number of persistent connections to MS SQL Servers.

mssql.max_procs

This directive sets the maximum number of processes for MS SQL Server connections.

mssql.min_error_severity

This directive sets the minimum severity of error generated by MS SQL Server connections.

mssql.min_message_severity

This directive sets the minimum severity of messages generated by MS SQL Server connections.

mssql.textlimit

This directive sets the maximum value for MS SQL Server’s SET TEXTSIZE statement or the

mssql.textsize directive.

mssql.textsize

This directive sets the maximum length of a field returned in a MS SQL Server query.

mssql.timeout

This directive set the maximum number of seconds PHP waits for a MS SQL Server query to finish.

mysql.allow_persistent

When this directive is on, PHP uses persistent connections for MySQL.

mysql.connect_timeout

This directive sets the maximum number of seconds PHP waits to make a connection to MySQL.

mysql.default_host

This directive sets the default MySQL host.

mysql.default_password

This directive sets the default MySQL password.

mysql.default_port

This directive sets the default MySQL port.

mysql.default_socket

This directive sets the default MySQL socket path.

mysql.default_user

This directive sets the default MySQL user.

mysql.max_links

This directive sets the maximum number of connections to MySQL.

mysql.max_persistent

This directive sets the maximum number of persistent connections to MySQL.

mysql.trace_mode

This directive activates warnings generated by MySQL.

odbc.allow_persistent

When this directive is on, PHP uses persistent connections for ODBC.

odbc.check_persistent

When this directive is on, PHP checks that a persistent connection is still good.

odbc.defaultbinmode

When this directive is set to 0, PHP sends binary data straight to the browser. When it’s 1, it returns binary

data unchanged. When it’s 2, PHP returns a string of hexadecimal numbers.

odbc.defaultlrl

This directive sets a limit on the number of bytes returned from a longvarbinary column. If you set it to

0, PHP sends the entire column directly to the browser.

odbc.max_links

Use this directive to set the maximum number of connections to an ODBC database. Use �1 to set no

limit.

odbc.max_persistent

Use this directive to set the maximum number of persistent connections to an ODBC database.

open_basedir

The open_basedir directive sets a top-level directory for PHP. Scripts cannot access directives above this

base directory.

output_buffering

The output_buffering directive may be set to on or off, or you may set it with a buffer size.

output_handler

Use this directive to set the output buffering handler.

pfpro.defaulthost

Use this directive to set the default host for PayFlow connections.

pfpro.defaultport

Use this directive to set the default port for PayFlow connections.

pfpro.defaulttimeout

Use this directive to set the maximum number of seconds to wait for a PayFlow connection.

pfpro.proxyaddress

Use this directive to set the proxy address for PayFlow connections.

pfpro.proxylogon

Use this directive to set the logon identifier for the PayFlow proxy.

pfpro.proxypassword

Use this directive to set the password for the PayFlow proxy.

pfpro.proxyport

Use this directive to set the PayFlow proxy port number.

pgsql.allow_persistent

When this directive is on, PHP uses persistent connections for PostgreSQL.

pgsql.auto_reset_persistent

When this directive is on, PHP checks that a persistent connection is still good.

pgsql.ignore_notice

When turned on, this directive tells PHP to ignore notices from the PostgreSQL server.

pgsql.log_notice

When turned on, this directive tells PHP to log notices from the PostgreSQL server.

pgsql.max_links

Use this directive to set the maximum number of connections to a PostgreSQL database. Use �1 to set no

limit.

pgsql.max_persistent

Use this directive to set the maximum number of persistent connections to a PostgreSQL database.

post_max_size

Use this directive to set a maximum size for data send via the POST method.

precision

Use this directive to set the number of significant digits shown for floating-point numbers.

register_argc_argv

When on, this directive instructs PHP to create the argc and argv variables.

register_globals

When register_globals is on, PHP creates a global variable for every form field and cookie. Generally,

this is considered a security risk because users can send variables that override other global variables. Use

the $_REQUEST array instead.

report_memleaks

When compiled in debug mode, PHP displays warnings about memory leaks when this directive is on.

report_zend_debug

When compiled in debug mode, PHP displays debug information about the Zend Engine when this directive

is on.

safe_mode

This directive controls whether or not PHP operates in safe mode.

safe_mode_allowed_env_vars

When safe mode is active, this directive restricts access to environment variables that begin with a given

set of prefixes. Set this directive with any number of prefixes separated with commas.

safe_mode_exec_dir

When safe mode is active, PHP scripts may only execute shell commands that are in the given path.

safe_mode_gid

In safe mode, PHP allows access to files owned by the user running the script. When safe_mode_gid is on,

PHP only requires the group to match.

safe_mode_include_dir

In safe mode, PHP scripts may bypass UID or GID restrictions if including files from the path given by this

directive.

safe_mode_protected_env_vars

Set this directive with a list of environment variables that may not be set when in safe mode.

sendmail_from

For Win32 systems, this directive sets the value of the From header sent with the mail function.

sendmail_path

For UNIX systems, this directive sets the path to the sendmail executable. You may include parameters

too.

session.auto_start

When this directive is on, PHP starts a session for every request.

session.bug_compat_42

This directive controls whether PHP allows the bug that appeared in PHP 4.2 and earlier that allowed

creating variables in the global scope even when register_globals is off.

session.bug_compat_warn

When this directive is on, PHP issues a warning if a script exploits the bug from PHP 4.2 and earlier that

allows creation of global variables when register_globals is off.

session.cache_expire

Use this directive to set the lifetime for document.

session.cache_limiter

This directive may be blank or set to one of the following strings: nocache, private, private_no_expire,

public. This controls how the session handler attempts to control caching of pages. See Chapter 8‘s

discussion of session_cache_limiter for a description of these options.

session.cookie_domain

Use this directive to set the domain for the session identifier cookie.

session.cookie_lifetime

Use this directive to set the lifetime of the session identifier cookie.

session.cookie_path

Use this directive to set the path of the session identifier cookie.

session.cookie_secure

Use this directive to set whether the session identifier cookie requires a secure connection.

session.entropy_file

Set this directive with the path to a file for providing extra randomness to the process of creating a session

identifier. Typically, this would be /dev/random or /dev/urandom.

session.entropy_length

Set this directive with the number of bytes to read from the file specified by session.entropy_file.

session.gc_dividend

Use this directive with session.gc_probability to set the chance that PHP performs garbage collection on

sessions. PHP calculates the chance as session.gc_probability / session.gc_dividend.

session.gc_maxlifetime

If a session records no activity for the given number of seconds, PHP nominates it for garbage collection.

When using the files handler, this directive may not work on Win32 or when using subdirectories.

session.gc_probability

Use this directive with session.gc_dividend to set the chance that PHP performs garbage collection on

sessions.

session.name

Use this directive to set the name of the cookie or form field used for the session identifier.

session.referer_check

Set this directive with a substring that must appear in the Referer header.

session.save_handler

This directive sets the handler for sessions.

session.save_path

This directive sets the path used by the session handler. For the files handler, this is a path in the file

system for keeping session files. In this case, you may prefix the path with an integer and a semicolon.

This causes PHP to split sessions between subdirectories. You must create these subdirectories yourself.

session.serialize_handler

Use this directive to set the handler PHP uses to serialize session data.

session.use_cookies

When this directive is on, PHP uses cookies to pass the session identifier between client and server.

session.use_only_cookies

When this directive is on, PHP uses cookies exclusively to pass the session identifier.

session.use_trans_sid

When turned on, this directive causes PHP to alter URLs in your documents to include the session identifier.

short_open_tag

Use this directive to control whether PHP recognizes the short opening tag, (<?).

SMTP

For Win32 systems only, this directive points to the host that accepts outgoing mail.

smtp_port

This directive allows you to change the port used for outgoing SMTP mail on Win32 systems.

sql.safe_mode

When sql.safe_mode is on, PHP does not allow scripts to set the host, username, or password for MySQL

connections.

sybct.allow_persistent

When this directive is on, PHP uses persistent connections for Sybase.

sybct.hostname

Set this directive to the default Sybase database server host.

sybct.max_links

Use this directive to set the maximum number of connections to a Sybase database. Use �1 to set no

limit.

sybct.max_persistent

Use this directive to set the maximum number of persistent connections to a Sybase database.

sybct.min_client_severity

Use this directive to set the minimum severity for client messages reported as PHP warnings.

sybct.min_server_severity

Use this directive to set the minimum severity for server messages reported as PHP warnings.

sysvshm.init_mem

Use this directive to set the default number of bytes allocated by shm_attach.

track_errors

If this directive is on, PHP stores the last error message in the global variable php_errormsg.

unserialize_callback_func

Use this directive to set a function PHP calls when unserializing an object of a class it doesn’t recognize.

The function accepts a single argument, the name of the class. This allows you to define the class just in

time.

upload_max_filesize

This directive allows you to set the maximum size for uploaded files.

upload_tmp_dir

Use this directive to set the path used to store uploaded files.

url_rewriter.tags

This directive sets the tags and attributes that PHP alters to include session identifiers. Set it with a

comma-separated list of tag/attribute pairs. Separate the tag from the attribute with an equal sign (=).

user_agent

When making HTTP connections with fopen wrappers, PHP uses this directive for the User-agent header.

user_dir

When a script uses a path like /~username, PHP uses this directive to find the appropriate directory.

variables_order

Use this directive to set the order in which PHP creates entries in _REQUEST and variables in the global

scope when register_globals is on. The value should be letters EGPCS, which stand for environment,

GET, POST, Cookie, and System respectively. Data sources are processed from left to right, with duplicate

names overwriting previous values.

xbithack

This directive applies to Apache only. When it’s on and a text/html file has its execute bit set, the file is

parsed as a PHP script.

xmlrpc_error_number

Set this directive with the value for faultCode passed in XML-RPC error messages when xmlrpc_errors is

on.

xmlrpc_errors

When this directive is on, PHP returns error messages as valid XML-RPC.

y2k_compliance

This directive controls whether dates sent in HTTP headers are Y2K-compliant.

zlib.output_compression

This directive allows you to turn on transparent output compression. In addition to being on or off, you can

set this directive with a buffer size.

zlib.output_compression_level

This directive sets the compression level used by the zlib compression library.

zlib.output_handler

This directive allows you to specify additional output handlers that run before output passes through zlib

compression.

15.2 Configuration

The following functions affect the operation of PHP. Some of them alter

configuration variables. Others cause a script to stop executing for a period.

boolean bcscale(integer scale)

The bcscale function (Listing 15.1) sets the default scale for the functions

that perform math on arbitrary-precision numbers. The scale is the number

of digits after the decimal point. See the section on arbitrary-precision

numbers in Chapter 13.

Listing 15.1 bcscale

<?php

 //use ten digits

 bcscale(10);

?>

clearstatcache()

Calling C’s stat function (Listing 15.2) may take a considerable amount of

time. To increase performance, PHP caches the results of each call. When

you use a function that relies on stat, the information from the cache is

returned. If information about a file changes often, you may need to clear

the stat cache.

The functions that use the stat cache are fileatime, filectime, filegroup,

fileinode, filemtime, fileowner, fileperms, filesize, filetype,

file_exists, is_dir, is_executable, is_file, is_link, is_readable,

is_writable, lstat, stat.

Listing 15.2 clearstatcache

<?php

 //make sure info isn't cached

 clearstatcache();

 //get size of this file

 print(filesize(__FILE__));

?>

define_syslog_variables()

The define_syslog_variables function (Listing 15.3) emulates the

configuration directive of the same name. It causes the constants for use

with the system log to be created as variables. The functions that interact

with the system log are closelog, openlog, and syslog.

Listing 15.3 define_syslog_variables

<?php

 define_syslog_variables();

?>

boolean dl(string extension)

Use the dl function to load a dynamic extension module. The function

returns FALSE if the module could not be loaded. The path to these modules

is set in php.ini, so you need type only the name of the module file. On

UNIX, these end in .so. On Windows, they end in .dll.

The dl function does not function when PHP executes as a module to a

multithreaded Web server such as Apache2. If you use loadable extensions,

it’s best to load them inside php.ini with the extension directive.

integer error_reporting(integer level)

The error_reporting function (Listing 15.4) sets the level of error reporting

and returns the previous value. The level argument is a bitfield. Use the

bitwise-OR operator (|) to put together the type of error reporting you would

like. This function mirrors the directive of the same name. Refer to Table

15.2 for error level codes.

Listing 15.4 error_reporting

<?php

 //start with all but notices

 error_reporting(E_ALL & ~E_NOTICE);

 //empty variable, but no notice

 print($empty_variable);

 //add notices to current setting

 error_reporting(error_reporting() | E_NOTICE);

 //empty variable, notice message

 print($empty_variable);

?>

string get_include_path()

The get_include_path function returns the current setting for the

include_path directive.

boolean iconv_set_encoding(string type, string
character_set)

Use the iconv_set_encoding function to set encoding used by the iconv

extension for one of three types: input_encoding, internal_encoding,

output_encoding. You can get the current character set with

iconv_get_encoding.

boolean ignore_user_abort(boolean ignore)

Calling ignore_user_abort (Listing 15.5) with a TRUE value for the ignore

argument will cause PHP to continue executing even when the remote client

abruptly closes the connection. The previous setting is returned. You may

call ignore_user_abort with no argument, in which case no change is

made.

Listing 15.5 ignore_user_abort

<?php

 function fakeProcess($name)

 {

 print("Start of fake process.
");

 flush();

 sleep(10);

 print("End of fake process.
");

 //write message to log

 $statusMessage = date("Y-m-d H:i:s") .

 " Fake process $name completed\n";

 error_log($statusMessage, 3, "/tmp/status.log");

 }

 //finish script even if user

 //aborts execution

 ignore_user_abort(TRUE);

 fakeProcess("one");

 //allow aborts again

 ignore_user_abort(FALSE);

 fakeProcess("two");

?>

ini_alter

This is an alias to ini_set.

string ini_get(string directive)

The ini_get function (Listing 15.6) returns the value of one of the directives

described earlier in this chapter.

Listing 15.6 ini_get

<?php

 //see what SMTP is now

 print(ini_get("SMTP") . "
");

 //change to bogus value

 ini_alter("SMTP", "mail.corephp.com");

 print(ini_get("SMTP") . "
");

 //return to original

 ini_restore("SMTP");

 print(ini_get("SMTP") . "
");

?>

array ini_get_all(string extension)

The ini_get_all function (Listing 15.7) returns an array listing the current

settings for configuration directives. The optional extension argument limits

the list to directives for a single extension. The returned array contains one

element for each directive. The element values are arrays themselves with

three entries: access, global_value, local_value. The access level is a

bitfield. The first bit is set if you can set the directive in a script. The second

bit (2) is set if you can set the directive in .htaccess files. The third bit (4)

is set if you can set the directive in httpd.conf. You can always set a

directive in php.ini.

Listing 15.7 ini_get_all

<table>

<tr>

<td>Directive</td>

<td>Global</td>

<td>Local</td>

<td>Changeable Here</td>

</tr>

<?php

 foreach(ini_get_all('mysql') as $directive=>$setting)

 {

 print("<tr>");

 print("<td>$directive</td>");

 print("<td>{$setting['global_value']}</td>");

 print("<td>{$setting['local_value']}</td>");

 print("<td>");

 if($setting['access'] & 1)

 {

 print("Yes");

 }

 else

 {

 print("No");

 }

 print("</td>");

 print("</tr>\n");

 }

?>

</table>

ini_restore(string directive)

The ini_restore function returns the named directive to the value in the

php.ini file. See ini_get for an example of use.

string ini_set(string directive, string value)

Use ini_set to override the value of one of the directives described earlier

in this chapter. The setting is for your script only. The file itself is not

changed. Keep in mind that some directives may not be set at the script

level.

restore_include_path()

The restore_include_path function sets the include_path directive to its

original value after you’ve changed it with set_include_path or ini_set.

register_shutdown_function(string function)

Use register_shutdown_function (Listing 15.8) to cause PHP to execute a

function after it has parsed the entire script, including anything outside PHP

tags. The shutdown function will also be executed in the event of an error,

timeout, or user abort.

Keep in mind that the shutdown function may be called after the connection

to the browser has been shut down, in which case using print makes little

sense. In other words, this isn’t a good way to debug.

You may register more than one shutdown function. PHP executes each

shutdown function in the order you register them.

Listing 15.8 register_shutdown_function

<?php

 function shutdown()

 {

 error_log('Script terminated', 3, "/tmp/status.log");

 }

 register_shutdown_function("shutdown");

?>

restore_error_handler()

After changing the error handler with set_error_handler, the

restore_error_handler restores the previous error handler.

restore_exception_handler()

After changing the exception handler with set_exception_handler, the

restore_exception_handler restores the previous error handler.

string set_error_handler(string function)
 string set_error_handler(array function)

The set_error_handler function (Listing 15.9) sets a function that PHP calls

when an error occurs and returns the name of the previous error handler, if

one existed. PHP calls the error handler with five arguments: error number,

description, file path, line number, and context. This last argument is a copy

of the GLOBALS array. Alternatively, you may supply a class or object method

for the error handler. In this case, use an array with two elements. The first

element must be the name of a class or an object. The second element

should be the name of the method.

When you set a custom error handler, PHP ignores the error_reporting

directive and calls your function for every error, warning or notice. If you

wish to ignore classes of errors, you must check the value returned by

error_reporting and react accordingly.

If you wish to restore the default error handler, you can use

restore_error_handler or you can call set_error_handler with NULL.

Listing 15.9 set_error_handler

<?php

 function handleError($error, $description, $file, $line,

 $context)

 {

 switch($error)

 {

 case E_USER_ERROR:

 $type = "Error";

 $color = "red";

 break;

 case E_WARNING:

 case E_USER_WARNING:

 $type = "Warning";

 $color = "yellow";

 break;

 case E_NOTICE:

 case E_USER_NOTICE:

 $type = "Notice";

 $color = "blue";

 break;

 default:

 $type = "Other Error";

 }

 print("<table border=\"1\"><tr><td bgcolor=\"$color\">" .

 "$type: $description in $file on line $line " .

 "({$context["_SERVER"]["REMOTE_ADDR"]})
" .

 "</tr></td></table>");

 }

 //switch to our custom handler

 set_error_handler('handleError');

 trigger_error("Custom error handler", E_USER_WARNING);

 //show PHP's default handler

 restore_error_handler();

 trigger_error("PHP's default error handler", E_USER_WARNING);

?>

set_exception_handler(string function)
 set_exception_handler(array function)

The set_exception_handler function sets a function that PHP calls when an

exception occurs and returns the name of the previous exception handler.

Alternatively, you may supply a class or object method for the error handler.

In this case, use an array with two elements. The first element must be the

name of a class or an object. The second element should be the name of the

method.

boolean set_include_path(string path)

The set_include_path function (Listing 15.10) sets the include_path

directive. You can also set this directive with ini_set.

Listing 15.10 set_include_path

<?php

 //prints something like .:/usr/local/lib/php

 print(get_include_path() . "
");

 set_include_path("/home/leon/library");

 print(get_include_path() . "
");

 restore_include_path();

 print(get_include_path() . "
");

?>

integer set_magic_quotes_runtime(boolean setting)

Use set_magic_quotes_runtime (Listing 15.11) to change whether quotes

are escaped in data pulled from a database. The original value is returned.

Listing 15.11 set_magic_quotes_runtime

<?php

 //turn off magic_quotes_runtime

 set_magic_quotes_runtime(0);

?>

string setlocale(string category, string locale, …)

The setlocale function (Listing 15.12) modifies the locale information for

PHP and returns the new locale specification. FALSE is returned if an error

occurs. The locale determines things such as whether to use a comma or a

period in floating-point numbers. Locale does not affect how you write PHP

scripts, only the output of some functions.

Listing 15.12 set_locale

<?php

 print("Changing to Russian: ");

 print(setlocale(LC_ALL, "russian", "ru_RU.cp1251",

 "ru_RU.koi8r"));

 print("
\nDos vedanya!");

?>

If the category argument is an empty string, the values for the categories

will be set from environment variables. If the category argument is zero, the

current setting will be returned. Otherwise, choose a category from Table

15.3.

Table 15.3. Categories for setlocale

Category Description

LC_ALL All aspects of locale

LC_COLLATE Comparison of strings

LC_CTYPE Conversion and classification of characters

Category Description

LC_MONETARY Monetary formatting

LC_NUMERIC Number separation

LC_TIME Time formatting

Location codes differ with operation systems. In general, they take the form

of language_country�that is, a language code followed by an optional

underscore and a country code. If you are using Windows, Visual C’s help file

lists all the languages and countries. You may list multiple location codes to

allow PHP to choose the preferred locale.

set_time_limit(integer seconds)

Use set_time_limit (Listing 15.13) to override the default time a script is

allowed to run, which is usually set to 30 seconds inside php.ini. If this limit

is reached, an error occurs and the script stops executing. Setting the

seconds argument to zero causes the time limit to be disabled. Each time the

set_time_limit function is called, the counter is reset to zero. This means

that calling set_time_limit(30) gives you a fresh 30 seconds of execution

time.

Seconds PHP spends waiting during a call to sleep or system do not count

towards the limit.

Listing 15.13 set_time_limit

<?php

 // allow this script to run forever

 set_time_limit(0);

?>

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

Chapter 16. Images and Graphics
Topics in This Chapter

Analyzing Images

Creating Images

Most of the functions described in this chapter require the gd

extension or the exif extension. The functions from the gd extension

begin with image, have no underscores, and require the GD library.

The exif functions begin with exif_.

Other functions in this chapter require the GD library plus one or

more additional supporting libraries. For example, in order to read

and write JPEG images, you need the JPEG library. Consequently,

these functions may not be available to you, depending on how PHP

was compiled.

The GD library was created at Boutell.com, a company that has

contributed several Open Source tools to the Web community. The

library historically supported GIF image creation, but in 1999 this

functionality was pulled in favor of PNG format files. The compression

algorithm used in GIF creation is patented, which means permission

must be granted to software authors who use it. PNG, on the other

hand, is an open specification. It also happens to be technically

superior to GIF. Support for PNG was added to the fourth generations

of the two most popular browsers, Netscape Navigator and Microsoft

Internet Explorer, so using PNG is feasible. In early 2000 support for

JPEG and WBMP images was added to GD.

In 2002, the GD library lacked attention, while interest from the PHP

community continued. In order to keep fixes and improvements

flowing, the PHP developers decided to branch the GD library and

include it in the PHP project. Although some development occurs in

the original GD project, PHP’s version includes more functionality. You

have the option of not using the built-in version of GD, but there’s

little reason to do so at the time of writing.

The GD library’s home on the Web is <http://www.boutell.com/gd/>.

The URL for PNG’s home page is <http://www.libpng.org/pub/png/>.

Chapter 25 makes use of the functions in this chapter to explore

some practical applications.

http://www.boutell.com/gd/default.htm
http://www.libpng.org/pub/png/default.htm
file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

16.1 Analyzing Images

These functions read information from images.

integer exif_imagetype(string file)

The exif_imagetype function reads the first few bytes of an image file and

returns the type as an integer. Table 16.1 lists image types recognized. If PHP

cannot determine the type, it returns FALSE.

Table 16.1. Image Types

Constant Description
File

Extension

IMAGETYPE_BMP Windows Bitmap .bmp

IMAGETYPE_GIF Graphic Interchange Format .gif

IMAGETYPE_IFF Interchange Format Files .iff

IMAGETYPE_JB2 Joint Bi-level Image Experts Group .jb2

IMAGETYPE_JP2 JPEG 2000 .jp2

IMAGETYPE_JPC JPEG 2000 .jpc

IMAGETYPE_JPEG Joint Photographic Experts Group .jpg

IMAGETYPE_JPX JPEG 2000 .jpx

IMAGETYPE_PNG Portable Network Graphics .png

IMAGETYPE_PSD Adobe Photoshop .psd

IMAGETYPE_SWC MacroMedia Flash .swc

IMAGETYPE_SWF MacroMedia Flash .swf

IMAGETYPE_TIFF_IITagged Image File Format (Intel byte order) .tff

IMAGETYPE_TIFF_MMTagged Image File Format (Motorola byte

order)

.tff

array exif_read_data(string file, string sections, boolean
create_arrays, boolean read_thumbnail)

The exif_read_data function (Listing 16.1) reads EXIF headers from a JPEG

or TIFF image file and returns an array that uses the header names for keys.

The optional sections argument may be a comma-delimited list of sections

that must be present in the file. Table 16.2 lists them. The optional

create_arrays argument controls whether PHP organizes header values into

subarrays named after sections. The optional read_thumbnail argument

controls where PHP reads the thumbnail.

Table 16.2. EXIF Sections

Section Description

ANY_TAG Include any information that has a tag.

COMMENT Include comment headers.

COMPUTED Include computed sizes.

EXIF Include extra information within the IFD0 section provided by

some digital cameras.

FILE Include filename, size, creation date, SectionsFound.

IFD0 Include all IFD0 tags.

THUMBNAIL Include the thumbnail.

Listing 16.1 exif_read_data

<?php

 $file = 'waterfall.jpg';

 if(exif_imagetype($file) == IMAGETYPE_JPEG)

 {

 $exif = exif_read_data($file, "COMPUTED,IFD0", TRUE);

 print("<img src=\"$file\" " .

 "{$exif['COMPUTED']['html']} " .

 "border=\"0\">
" .

 "Picture taken {$exif['IFD0']['DateTime']} " .

 "with a {$exif['IFD0']['Make']} " .

 "{$exif['IFD0']['Model']}
");

 }

 else

 {

 print('Incorrect image type');

 }

?>

string exif_thumbnail(string file, reference width, reference
height, reference type)

The exif_thumbnail function (Listing 16.2) extracts the thumbnail from a

JPEG or TIFF file if it exists. The optional width and height arguments receive

integers for the width and height respectively. The optional type argument

receives one of the image types from Table 16.1.

Listing 16.2 exif_thumbnail

<?php

 $file = 'waterfall.jpg';

 $thumbnail = exif_thumbnail($file, $width, $height, $type);

 if($thumbnail !== FALSE)

 {

 header("Content-type: " . image_type_to_mime_type($type));

 print($image);

 }

?>

array getimagesize(string file, array image_info)

The getimagesize function (Listing 16.3) returns a four-element array that

tells you the image size of the given filename. The contents of this array are

listed in Table 16.3. Image type corresponds to the types shown in Table 16.1.

Table 16.3. Array Elements for getimagesize

Element Description

0 Width in pixels

1 Height in pixels

2 Image Type

3 String like height=150 width=200, usable in img tag

bits Bits per sample for jpegs

channels Samples per pixel for jpegs

mime MIME type

The optional image_info argument will be set with additional information

from the file. At the time of this writing, this array is set with APP markers

0�15 from JPEG files. One of the most common is APP13, which is an

International Press Telecommunications Council (IPTC) block. These blocks

are used to communicate information about electronic media released to news

agencies. They are stored in binary form, so to decode them, you must use

the iptcparse function. You can find out more about the IPTC at their Web

site: <http://www.iptc.org/>.

http://www.iptc.org/default.htm

Listing 16.3 getimagesize

<?php

 $file = "php.jpg";

 $size = getimagesize($file, $info);

 $iptc = iptcparse($info['APP13']);

 //show headline from IPTC headers

 print("<h1>{$iptc['2#105'][0]}</h1>");

 //show image, use IPTC caption for alt text

 print("<img src=\"$file\" {$size[3]} alt=".

 "\"{$iptc['2#120'][0]}\">
\n");

?>

string iptcembed(string iptc, string file, integer spool)

The iptcembed function adds IPTC blocks to JPEG files. By default, the blocks

are added to the file, and the modified file is returned. The spool argument

allows you to change this behavior. If the spool flag is 1 or 2, then the

modified JPEG will be sent directly to the browser. If the spool flag is 2, the

JPEG will not be returned as a string.

array iptcparse(string iptc_block)

The iptcparse function takes an IPTC block and returns an array containing

all the tags in the block.

array image_type_to_mime_type(int imagetype)

The image_type_to_mime_type function returns a MIME type suitable for a

Content-type header based on one of the image type constants in Table

16.1.

read_exif_data

You may use read_exif_data as an alias to exif_read_data.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

16.2 Creating Images

All the functions in this section require the GD library. If you haven’t compiled

it as part of your PHP module, either load it automatically by editing php3.ini

or use the dl function. Some of these functions also require other libraries,

which allow you to use font files.

To get started, you can use either imagecreate to start with a blank graphic

or a function such as imagecreatefrompng to load a PNG from a file.

Coordinates in these functions treat (0, 0) as the top left corner and refer to

pixels. Likewise, any size arguments refer to pixels.

When creating images with these functions, you can’t simply decide to output

an image in the middle of a script that outputs HTML. You must create a

separate script that sends a Content-type header. All the examples illustrate

this idea.

For functions that use fonts, there are five built-in fonts numbered 1, 2, 3, 4,

and 5. You may also load fonts, which will always have identifiers greater than

five.

The image functions use colors that must be allocated first with one of the

color allocation functions, such as imagecolorallocate. These functions give

you an index into the palette. In addition, you can use a few constants if you

wish to paint with brushes or tiles. See the descriptions of imagesetbrush,

imagesetstyle, and imagesettile for more information.

array gd_info()

The gd_info function returns an array describing which parts of the GD

library are available. Table 16.4 describes the elements of the array.

Table 16.4. Information Returned by gd_info

Element Description

GD Version Text describing the GD library used

FreeType Support Boolean for whether FreeType functions are active

FreeType Linkage Text describing how FreeType functions were activated

T1Lib Support Boolean for whether Type 1 font functions are active

GIF Read Support Boolean for whether imagecreatefromgif is active

GIF Create Support Boolean for whether imagegif is active

JPG Support Boolean for whether JPEG functions are active

PNG Support Boolean for whether PNG functions are active

Element Description

WBMP Support Boolean for whether Wireless Bitmap functions are active

XBM Support Boolean for whether XBM functions are active

image2wbmp(resource image, string file, integer
threshold)

The image2wbmp function outputs an image in Wireless Bitmap format to the

browser. If the optional file argument is set, the file is saved to a file instead.

The optional threshold argument sets the threshold for when a pixel is

converted to black or white. Keep in mind that WBMP files are monochrome.

Use the imagewmp function as an alternative.

boolean imagealphablending(resource image, boolean
blending_mode)

This imagealphablending function controls whether or not drawing in true

color images occurs in blending mode. In blending mode pixels drawn on an

image are blended with existing pixels. Alpha blending works only for true

color images.

boolean imagearc(resource image, integer center_x,
integer center_y, integer width, integer height, integer
start, integer end, integer color)

Use imagearc (Listing 16.4) to draw a section of an ellipse. The first

argument specifies a valid image. The ellipse is centered at center_x and

center_y. The height and width are set by the respective arguments in pixels.

The start and end points of the curve are given in degrees. Zero degrees is at

3 o’clock and proceeds counterclockwise. Figure 16.1 shows the output of

Listing 16.4.

Listing 16.4 imagearc

<?php

 /*

 ** cut out a circular view of an image

 */

 //attempt to open image, suppress error messages

 if(!($image = @imagecreatefrompng("leonatkinson.png")))

 {

 //error, so create an error image and exit

 $image = imagecreate(200,200);

 $colorWhite = imagecolorallocate($image, 255, 255, 255);

 $colorBlack = imagecolorallocate($image, 0, 0, 0);

 imagefill($image, 0, 0, $colorWhite);

 imagestring($image, 4, 10, 10, "Couldn't load image!",

 $colorBlack);

 header("Content-type: image/png");

 imagepng($image);

 exit();

 }

 //make sure we're in palette mode so that transparency works

 imagetruecolortopalette($image, FALSE, 32);

 //create a color to be transparent, hopefully

 //not already in the image

 $colorMagenta = imagecolorallocate($image, 255, 0, 255);

 //draw a circle

 imagearc($image,

 70, 140,

 120, 120,

 0, 360,

 $colorMagenta);

 //fill outside of circle with Magenta

 imagefilltoborder($image, 0, 0, $colorMagenta, $colorMagenta);

 //turn magenta transparent

 imagecolortransparent($image, $colorMagenta);

 //send image to browser

 header("Content-type: image/png");

 imagepng($image);

?>

Figure 16.1. imagearc output.

imageantialias(resource image, boolean antialias)

The imageantialias function (Listing 16.5) controls a flag on images that

tells PHP whether to apply antialiasing when drawing. Your image should be in

true color mode, although you can later convert the image to palette mode

with imagetruecolortopalette. Output is shown in Figure 16.2.

Listing 16.5 imageantialias

<?php

 $image = imagecreatetruecolor(200,200);

 $colorWhite = imagecolorallocate($image, 255, 255, 255);

 $colorRed = imagecolorallocate($image, 255, 0, 0);

 $colorBlue = imagecolorallocate($image, 0, 0, 255);

 imagefill($image, 0, 0, $colorWhite);

 //make antialiased red line

 imageantialias($image, TRUE);

 imageline($image, 10, 10, 150, 130, $colorRed);

 //make non-antialiased blue line

 imageantialias($image, FALSE);

 imageline($image, 20, 10, 160, 130, $colorBlue);

 header("Content-type: image/png");

 imagepng($image);

?>

Figure 16.2. imageantialias output.

boolean imagechar(resource image, integer font, integer x,
integer y, string character, integer color)

The imagechar function (Listing 16.6) draws a single character at the given

pixel. The font argument can be a loaded font or one of the five built-in fonts.

The character will be oriented horizontally�that is, left to right. The x and y

coordinates refer to the top left corner of the letter. Output is shown in Figure

16.3.

Listing 16.6 imagechar, imagecharup

<?php

 //create white rectangle

 $image = imagecreate(125,100);

 $colorBlack = imagecolorallocate($image, 0, 0, 0);

 $colorWhite = imagecolorallocate($image, 255,255,255);

 imagefill($image, 0, 0, $colorWhite);

 //draw a horizontal C in each built-in font

 imagechar($image, 1, 0, 0, "C", $colorBlack);

 imagechar($image, 2, 20, 20, "C", $colorBlack);

 imagechar($image, 3, 40, 40, "C", $colorBlack);

 imagechar($image, 4, 60, 60, "C", $colorBlack);

 imagechar($image, 5, 80, 80, "C", $colorBlack);

 //draw a vertical M in each built-in font

 imagecharup($image, 1, 10, 10, "M", $colorBlack);

 imagecharup($image, 2, 30, 30, "M", $colorBlack);

 imagecharup($image, 3, 50, 50, "M", $colorBlack);

 imagecharup($image, 4, 70, 70, "M", $colorBlack);

 imagecharup($image, 5, 90, 90, "M", $colorBlack);

 //send image

 header("Content-type: image/png");

 imagepng($image);

?>

Figure 16.3. imagechar, imagecharup output.

boolean imagecharup(resource image, integer font,
integer x, integer y, string character, integer color)

The imagecharup function operates identically to imagechar except that the

character is oriented vertically, bottom to top.

integer imagecolorallocate(resource image, integer red,
integer green, integer blue)

The imagecolorallocate function (Listing 16.7) allocates a color in the given

image. The color is specified by the amount of red, green, and blue. An

identifier is returned for referring to this color in other functions. Figure 16.4

shows the output of Listing 16.7.

Listing 16.7 imagecolorallocate

<?php

 //create white square

 $image = imagecreate(200,200);

 $colorWhite = imagecolorallocate($image, 255,255,255);

 $colorRed = imagecolorallocate($image, 255, 0, 0);

 $colorGreen = imagecolorallocate($image, 0, 255, 0);

 $colorBlue = imagecolorallocate($image, 0, 0, 255);

 imagefill($image, 0, 0, $colorWhite);

 //make red circle

 imagearc($image, 50, 50, 100, 100, 0, 360, $colorRed);

 imagefilltoborder($image, 50, 50, $colorRed, $colorRed);

 //make green circle

 imagearc($image, 100, 50, 100, 100, 0, 360, $colorGreen);

 imagefilltoborder($image, 100, 50, $colorGreen, $colorGreen);

 //make blue circle

 imagearc($image, 75, 75, 100, 100, 0, 360, $colorBlue);

 imagefilltoborder($image, 75, 75, $colorBlue, $colorBlue);

 //send image

 header("Content-type: image/png");

 imagepng($image);

?>

Figure 16.4. imagecolorallocate output.

integer imagecolorallocatealpha (resource image, integer
red, integer green, integer blue, integer alpha)

The imagecolorallocatealpha function operates like imagecolorallocate

except that it allows you to set the alpha level as well.

integer imagecolorat(resource image, integer x, integer y)

The imagecolorat function (Listing 16.8) returns the index of the color at the

specified pixel. Palette-based images have a palette of arbitrary colors

referred to by integers.

Listing 16.8 imagecolorat

<?php

 //attempt to open image, suppress error messages

 if(!($image = @imagecreatefrompng("leonatkinson.png")))

 {

 //error, so create an error image and exit

 $image = imagecreate(200,200);

 $colorWhite = imagecolorallocate($image, 255, 255, 255);

 $colorBlack = imagecolorallocate($image, 0, 0, 0);

 imagefill($image, 0, 0, $colorWhite);

 imagestring($image, 4, 10, 10, "Couldn't load image!",

 $colorBlack);

 header("Content-type: image/png");

 imagepng($image);

 exit();

 }

 //get RGB value of color at (50,50)

 $rgb = imagecolorat($image, 50, 50);

 $rgb = strtoupper(

 dechex(($rgb >> 0xF) & 0xFF) .

 dechex(($rgb >> 0x8) & 0xFF) .

 dechex($rgb & 0xFF));

 //write the RGB value into image

 $colorBlack = imagecolorallocate($image, 0, 0, 0);;

 imagestring($image, 5, 10, 10, "#$rgb", $colorBlack);

 //switch to palette mode

 imagetruecolortopalette($image, FALSE, 16);

 //get index of the color at (50,50)

 $colorIndex = imagecolorat($image, 50, 50);

 //change that color to red

 imagecolorset($image, $colorIndex, 255, 0, 0);

 //send image

 header("Content-type: image/png");

 imagepng($image);

?>

integer imagecolorclosest(resource image, integer red,
integer green, integer blue)

The imagecolorclosest function (Listing 16.9) returns the index of the color

in the given image closest to the given color. Colors are treated as three-

dimensional coordinates, and closeness is defined as the distance between

two points.

Listing 16.9 imagecolorclosest, imagecolorexact, imagecolorresolve,

imagecolorsforindex

<?php

 /*

 ** Compare closest color to real color

 */

 //attempt to open image, suppress error messages

 if(!($image = @imagecreatefromjpeg("waterfall.jpg")))

 {

 //error, so create an error image and exit

 $image = imagecreate(200,200);

 $colorWhite = imagecolorallocate($image, 255, 255, 255);

 $colorBlack = imagecolorallocate($image, 0, 0, 0);

 imagefill($image, 0, 0, $colorWhite);

 imagestring($image, 4, 10, 10, "Couldn't load image!",

 $colorBlack);

 header("Content-type: image/png");

 imagepng($image);

 exit();

 }

 //convert true color to 128 color palette

 imagetruecolortopalette($image, FALSE, 128);

 //move up to a 256 color palette

 //so we have room for allocation

 imagetruecolortopalette($image, FALSE, 256);

 //find index of color closest to pure green

 $closestColor = imagecolorclosest($image, 0, 255, 0);

 //draw block of color

 imagefilledrectangle($image, 0, 0, 199, 99, $closestColor);

 //allocate inverse so we can print RGB values

 $rgb = imagecolorsforindex($image, $closestColor);

 $inverseColor = imagecolorallocate($image,

 ~$rgb['red'], ~$rgb['green'], ~$rgb['blue']);

 imagestring($image, 4, 10, 10,

 "{$rgb['red']}, {$rgb['green']}, {$rgb['blue']}",

 $inverseColor);

 //try to get exactly pure green

 $exactColor = imagecolorexact($image, 0, 255, 0);

 if($exactColor == -1)

 {

 //if not found, use black

 $exactColor = imagecolorallocate($image, 0, 0, 0);

 }

 //draw block of color

 imagefilledrectangle($image, 0, 100, 199, 199, $exactColor);

 //if pure green doesn't exist, allocate it

 $resolveColor = imagecolorresolve($image, 0, 255, 0);

 //draw block of color

 imagefilledrectangle($image, 0, 200, 199, 299, $resolveColor);

 //send image

 header("Content-type: image/png");

 imagepng($image);

?>

integer imagecolorclosestalpha(resource image, integer
red, integer green, integer blue, integer alpha)

The imagecolorclosestalpha function operates identically to

imagecolorclosest except that it also accounts for the alpha channel.

integer imagecolorclosesthwb(resource image, integer
hue, integer white, integer black)

The imagecolorclosesthwb function finds the color in the image closest to

the color given by hue, white level, and black level, otherwise known as HWB.

Do not confuse this with the so-called HSV (Hue-Saturation-Value) method for

describing colors. The HWB method was first described by Alvy Ray Smith and

Eric Ray Lyons in “HWB�A More Intuitive Hue-Based Color Model,” an article

that appeared in the Journal of Graphics Tools in 1996.

imagecolordeallocate(resource image, integer color)

The imagecolordeallocate deallocates a color in an image. It does not

change the pixels of that color in the image; it merely removes the color from

the list available to you for drawing.

resource imagecolorexact(resource image, integer red,
integer green, integer blue)

Use the imagecolorexact function to find the index of the color in the given

image that matches the given color exactly. If the color doesn’t exist,

negative one (�1) is returned.

integer imagecolorexactalpha(resource image, integer red,
integer green, integer blue, integer alpha)

The imagecolorexactalpha function operates identically to imagecolorexact

except that it also accounts for the alpha channel.

boolean imagecolormatch(resource truecolor_image,
resource palette_image)

The imagecolormatch function adjusts the palette for the given palette image

argument to match colors used in the true color version. This function can

improve the quality of an image converted to a small palette with

imagetruecolortopalette.

integer imagecolorresolve(resource image, integer red,
integer green, integer blue)

The imagecolorresolve function returns a color identifier based on a

specified color. If the color does not exist in the image’s palette, it will be

added. In the event that the color cannot be added, an identifier for the

closest color will be returned.

integer imagecolorresolvealpha(resource image, integer
red, integer green, integer blue, integer alpha)

The imagecolorresolvealpha function operates identically to

imagecolorresolve except that it also accounts for the alpha channel.

boolean imagecolorset(resource image, integer index,
integer red, integer green, integer blue)

The imagecolorset function sets the color at the given index to the specified

color. This function works only for palette images. See Listing 16.8 for an

example of use.

array imagecolorsforindex(resource image, integer index)

The imagecolorsforindex function returns an associative array with the red,

green, and blue elements of the color for the specified color index. See

Listing 16.9 for an example of use.

resource imagecolorstotal(resource image)

The imagecolorstotal function (Listing 16.10) returns the number of colors

in the given image.

Listing 16.10 imagecolorstotal, imageistruecolor

<?php

 //attempt to open image, suppress error messages

 if(!($image = @imagecreatefrompng("leonatkinson.png")))

 {

 //error, so print error message

 print("Couldn't load image!");

 }

 if(imageistruecolor($image))

 {

 print("This image is true color.");

 }

 else

 {

 print("Total Colors: " . imagecolorstotal($image));

 }

?>

resource imagecolortransparent(resource image, integer
color)

The imagecolortransparent function (Listing 16.11) sets the given color as

transparent. The color argument is as returned by the imagecolorallocate

functions. The image must be in palette mode. You may call this function

without the second argument to fetch the transparent color.

Listing 16.11 imagecolortransparent

<?php

 //create red square

 $image = imagecreate(200,200);

 $colorRed = imagecolorallocate($image, 255, 0, 0);

 $colorBlue = imagecolorallocate($image, 0, 0, 255);

 imagefill($image, 0, 0, $colorRed);

 //draw a smaller blue square

 imagefilledrectangle($image, 30, 30, 70, 70, $colorBlue);

 //make blue transparent

 imagecolortransparent($image, $colorBlue);

 //send image

 header("Content-type: image/png");

 imagepng($image);

?>

boolean imagecopy(resource destination, resource
source, integer destination_x, integer destination_y,
integer source_x, integer source_y, integer src_width,
integer src_height)

The imagecopy function (Listing 16.12) copies a portion of a source image

into a destination image. This function does not respect transparency when

the source image is in true color mode. Use imagecopymerge instead. Output

is shown in Figure 16.5.

Listing 16.12 imagecopy

<?php

 $picture = "leonatkinson.png";

 //create yellow rectangle 20 pixels bigger than picture

 $size = getimagesize($picture);

 $image = imagecreatetruecolor($size[0] + 20, $size[1] + 20);

 $colorYellow = imagecolorallocate($image, 255, 255, 128);

 imagefill($image, 0, 0, $colorYellow);

 //attempt to open picture, suppress error messages

 if(!($image2 = @imagecreatefrompng($picture)))

 {

 //error, so create an error image and exit

 $image = imagecreate(200,200);

 $colorWhite = imagecolorallocate($image, 255, 255, 255);

 $colorBlack = imagecolorallocate($image, 0, 0, 0);

 imagefill($image, 0, 0, $colorWhite);

 imagestring($image, 4, 10, 10, "Couldn't load image!",

 $colorBlack);

 header("Content-type: image/png");

 imagepng($image);

 exit();

 }

 //drop picture into yellow rectangle

 imagecopy($image, $image2, 10, 10, 0, 0, $size[0], $size[1]);

 //send image

 header("Content-type: image/png");

 imagepng($image);

?>

Figure 16.5. imagecopy output.

boolean imagecopymerge(resource destination, resource
source, integer destination_x, integer destination_y,
integer source_x, integer source_y, integer src_width,
integer src_height, integer opacity)

The imagecopymerge function (Listing 16.13) copies one image into another

and allows you to set how opaque the copied image is during the copy. The

opacity should be between 0, where the copied image doesn’t show, and 100,

which duplicates the functionality of imagecopy. Output is shown in Figure

16.6.

Figure 16.6. imagecopymerge output.

This function respects transparency for true color and palette images. If you

wish to layer an image with transparent pixels over another image without

any blending, use this function with opacity set to 100.

Listing 16.13 imagecopymerge

<?php

 $picture = "leonatkinson.png";

 //create yellow rectangle 20 pixels bigger than picture

 $size = getimagesize($picture);

 $image = imagecreatetruecolor($size[0] + 20, $size[1] + 20);

 $colorYellow = imagecolorallocate($image, 255, 255, 128);

 imagefill($image, 0, 0, $colorYellow);

 //attempt to open picture, suppress error messages

 if(!($image2 = @imagecreatefrompng($picture)))

 {

 //error, so create an error image and exit

 $image = imagecreate(200,200);

 $colorWhite = imagecolorallocate($image, 255, 255, 255);

 $colorBlack = imagecolorallocate($image, 0, 0, 0);

 imagefill($image, 0, 0, $colorWhite);

 imagestring($image, 4, 10, 10, "Couldn't load image!",

 $colorBlack);

 header("Content-type: image/png");

 imagepng($image);

 exit();

 }

 //drop picture into yellow rectangle at 50% opacity

 imagecopymerge($image, $image2, 10, 10, 0, 0, $size[0],

 $size[1], 50);

 //send image

 header("Content-type: image/png");

 imagepng($image);

?>

boolean imagecopymergegray(resource destination,
resource source, integer destination_x, integer
destination_y, integer source_x, integer source_y, integer
src_width, integer src_height, integer opacity)

The imagecopymergegray function operates identically to imagecopymerge

except that PHP first converts the source image to grayscale. This preserves

the hue information in the destination image.

boolean imagecopyresampled(resource destination,
resource source, integer destination_x, integer
destination_y, integer source_x, integer source_y, integer
destination_width, integer destination_height, integer
source_width, integer source_height)

The imagecopyresampled function (Listing 16.14) copies a portion of an

image into another image, optionally resizing it and resampling for better

clarity. Compare the output of this function with that of imagecopyresized.

Listing 16.14 imagecopyresample

<?php

 function makeThumbnail($source, $destination, $width, $height)

 {

 //load source image

 if(!($sourceImage = @imagecreatefromjpeg($source)))

 {

 //error, so create an error image and exit

 $image = imagecreate($width, $height);

 $colorWhite = imagecolorallocate($image,

 255, 255, 255);

 $colorBlack = imagecolorallocate($image, 0, 0, 0);

 imagefill($image, 0, 0, $colorWhite);

 imagestring($image, 1, 1, 10, "Failed!", $colorBlack);

 imagepng($image, $destination);

 return(FALSE);

 }

 //make destination

 $destinationImage = imagecreatetruecolor($width, $height);

 //copy source into destination,

 //resampling and possibly distorting

 imagecopyresampled($destinationImage, $sourceImage,

 0, 0, 0, 0, $width, $height,

 imagesx($sourceImage), imagesy($sourceImage));

 //save image

 imagepng($destinationImage, $destination);

 }

 makeThumbnail("waterfall.jpg", "waterfall_thumb.jpg", 64, 64);

?>

<h1>Original</h1>

<h1>Thumbnail</h1>

resource imagecopyresized(integer destination, integer
source, integer destination_x, integer destination_y,
integer source_x, integer source_y, integer
destination_width, integer destination_height, integer
source_width, integer source_height)

The imagecopyresized function (Listing 16.15) copies a portion of the source

image into the destination image. If the destination width and height are

different than the source width and height, the clip will be stretched or

shrunk. It is possible to copy and paste into the same image, but if the

destination and source overlap, there will be unpredictable results. Output is

shown in Figure 16.7.

Listing 16.15 imagecopyresized

<?php

 //create yellow square

 $image = imagecreatetruecolor(200,200);

 $colorYellow = imagecolorallocate($image, 255, 255, 128);

 imagefill($image, 0, 0, $colorYellow);

 //attempt to open image, suppress error messages

 if(!($image2 = @imagecreatefrompng("leonatkinson.png")))

 {

 //error, so create an error image and exit

 $image = imagecreate(200,200);

 $colorWhite = imagecolorallocate($image, 255, 255, 255);

 $colorBlack = imagecolorallocate($image, 0, 0, 0);

 imagefill($image, 0, 0, $colorWhite);

 imagestring($image, 4, 10, 10, "Couldn't load image!",

 $colorBlack);

 header("Content-type: image/png");

 imagepng($image);

 exit();

 }

 //drop image2 into image, and stretch or squash it

 imagecopyresized($image, $image2, 10, 10, 0, 0,

 180, 180, imagesx($image2), imagesy($image2));

 //send image

 header("Content-type: image/png");

 imagepng($image);

?>

Figure 16.7. imagecopyresized output.

resource imagecreate(integer width, integer height)

The imagecreate function returns an image identifier of the specified width

and height. The image will be in palette mode.

resource imagecreatefromgd(string file)

Use this function to create an image resource from a GD image file.

resource imagecreatefromgd2(string file)

Use this function to create an image resource from a GD image file stored in

GD2 format.

resource imagecreatefromgd2part(string file, integer x,
integer y, integer width, integer height)

The imagecreatefromgd2part function creates an image resource from a

rectangular section of a GD2 image file.

resource imagecreatefromgif(string file)

The imagecreatefromgif function returns an image resource from a GIF

image file.

resource imagecreatefromjpeg(string file)

Use imagecreatefromjpeg to load a JPEG image from a file.

resource imagecreatefrompng(string file)

Use imagecreatefrompng to load a PNG image from a file.

resource imagecreatefromstring(string file)

The imagecreatefromstring function (Listing 16.16) creates an image

resource from a string. The string should contain the equivalent of the

contents from an image file. PHP detects the image format.

Listing 16.16 imagecreatefromstring

<?php

 //open JPEG

 $image = imagecreatefromstring(file_get_contents

 ("waterfall.jpg"));

 //send PNG image

 header("Content-type: image/png");

 imagepng($image);

?>

resource imagecreatefromwbmp(string file)

Use imagecreatefromwbmp to load a Wireless Bitmap image from a file.

resource imagecreatefromxbm(string file)

Use imagecreatefromxbm to load an XBM image from a file.

resource imagecreatefromxpm(string file)

Use imagecreatefromxpm to load an XPM image from a file.

resource imagecreatetruecolor(integer width, integer
height)

The imagecreatetruecolor function creates an image in true color mode.

boolean imagedestroy(resource image)

Use the imagedestroy function to clear memory associated with the specified

image. Most of the time you will not need this function. PHP will clean up

when your script ends.

imageellipse(resource image, integer center_x, integer
center_y, integer width, integer height, integer color)

The imageellipse function (Listing 16.17) draws an ellipse into the given

image. The ellipse is centered at center_x and center_y. To create a circle,

set the width and height arguments equal to each other. The color must be

an index returned by one of the color allocation functions. Output is shown in

Figure 16.8.

Listing 16.17 imagearc, imageellipse, imagefilledarc,

imagefilledellipse

<?php

 $image = imagecreatetruecolor(175,50);

 $colorWhite = imagecolorallocate($image, 255, 255, 255);

 $colorRed = imagecolorallocate($image, 255, 0, 0);

 $colorBlue = imagecolorallocate($image, 0, 0, 255);

 imagefill($image, 0, 0, $colorWhite);

 imagearc($image, 25, 25, 30, 30, 90, 270, $colorRed);

 imageellipse($image, 60, 25, 40, 20, $colorBlue);

 imagefilledarc($image, 105, 25, 30, 30, 90, 270,

 $colorRed, IMG_ARC_PIE);

 imagefilledellipse($image, 145, 25, 40, 20, $colorBlue);

 header("Content-type: image/png");

 imagepng($image);

?>

Figure 16.8. imagearc, imageellipse, imagefilledarc,

imagefilledellipse output.

boolean imagefill(resource image, integer x, integer y,
integer color)

The imagefill function performs a flood fill at the given point with the given

color. The color argument must be as returned by imagecolorallocate.

Starting at the given point, pixels are changed to the specified color. The

coloring spreads out, continuing until a color different from the one at the

specified point is encountered. See the description of imagearc for an

example of use. See imagefilltoborder for an alternative.

boolean imagefilledarc(resource image, integer center_x,
integer center_y, integer width, integer height, integer
start, integer end, integer color, integer style)

Use imagefilledarc (Listing 16.18) to draw a section of an ellipse and fill it

with the given color. The first argument specifies a valid image. The ellipse is

centered at center_x and center_y. The start and end points of the curve

are given in degrees. Zero degrees is at 3 o’clock and proceeds

counterclockwise.

The style argument is a bitfield that controls which part of the arc PHP

draws. See Table 16.5.

Table 16.5. Filled Arc Styles

Style Description

IMG_ARC_CHORD Draw the straight line connecting the ends of the arc

IMG_ARC_EDGED Draw the edge of the arc

IMG_ARC_NOFILL Do not fill the arc

IMG_ARC_PIE Fill the arc

Listing 16.18 imagefilledarc

<?php

 $image = imagecreatetruecolor(140,50);

 $colorWhite = imagecolorallocate($image, 255, 255, 255);

 $colorRed = imagecolorallocate($image, 255, 0, 0);

 $colorBlue = imagecolorallocate($image, 0, 0, 255);

 imagefill($image, 0, 0, $colorWhite);

 //draw solid half-circle

 imagefilledarc($image, 20, 25, 30, 30, 90, 270,

 $colorRed, IMG_ARC_PIE);

 //draw outlined half-circle

 imagefilledarc($image, 60, 25, 30, 30, 90, 270,

 $colorBlue, IMG_ARC_EDGED | IMG_ARC_NOFILL);

 //draw just the line connecting the two ends of the arc

 imagefilledarc($image, 100, 25, 30, 30, 90, 180,

 $colorRed, IMG_ARC_CHORD | IMG_ARC_NOFILL);

 header("Content-type: image/png");

 imagepng($image);

?>

boolean imagefilledellipse(resource image, integer
center_x, integer center_y, integer width, integer height,
integer color)

The imagefilledellipse function operates identically to imageellipse

except that it fills the ellipse with the given color.

boolean imagefilledpolygon(resource image, array points,
integer number, integer color)

The imagefilledpolygon function (Listing 16.19) creates a polygon with its

inside filled with the specified color. The points argument is an array of x and

y values for each point: Each point uses two array elements. The number

argument reports how many points to use from the array. Output is shown in

Figure 16.9.

Listing 16.19 imagefilledpolygon

<?php

 //create red square

 $image = imagecreate(100,100);

 $colorRed = imagecolorallocate($image, 255, 0, 0);

 $colorBlack = imagecolorallocate($image, 0, 0, 0);

 imagefill($image, 0, 0, $colorRed);

 //set up three points of the triangle

 $points = array(50, 10, 10, 90, 90, 90);

 //draw triangle

 imagefilledpolygon($image,

 $points, count($points)/2,

 $colorBlack);

 //send image

 header("Content-type: image/png");

 imagepng($image);

?>

Figure 16.9. imagefilledpolygon output.

boolean imagefilledrectangle(resource image, integer
top_left_x, integer top_left_y, integer bottom_right_x,

integer bottom_right_y, integer color)

The imagefilledrectangle function (Listing 16.20) draws a filled rectangle

based on the top left and bottom right corners. Output is shown in Figure

16.10.

Listing 16.20 imagefilledrectangle

<?php

 //create green square

 $image = imagecreate(200,200);

 $colorGreen = imagecolorallocate($image, 128, 255, 128);

 $colorBlack = imagecolorallocate($image, 0, 0, 0);

 imagefill($image, 0, 0, $colorGreen);

 //draw a black rectangle

 imagefilledrectangle($image,

 10, 10, 90, 90,

 $colorBlack);

 //send image

 header("Content-type: image/png");

 imagepng($image);

?>

Figure 16.10. imagefilledrectangle output.

boolean imagefilltoborder(resource image, integer x,
integer y, integer border_color, integer color)

The imagefilltoborder function will flood-fill an area bounded by the

border_color argument. The flood fill will begin at the given coordinate. See

Listing 16.4 for an example.

boolean imagefilter(resource image, integer filter, …)

The imagefilter function (Listing 16.21) applies a filter to a given image.

Use one of the filters shown in Table 16.6. Some filters require extra

arguments, as described in the table. The exact nature of these filters is

beyond the scope of this text. You may find more information in discussions

about digital image filtering, especially those about Adobe PhotoShop or GIMP.

Table 16.6. Filters

Filter Description

IMG_FILTER_BRIGHTNESS This filter allows you to adjust the brightness

up or down. It expects an argument that should

range from �255 to 255.

IMG_FILTER_COLORIZE The colorize filter adds or subtracts color from

every pixel of the image. It expects three

arguments for red, green, and blue. These

values should range from �255 to 255, with

negative value subtracting color. For example,

using �255 for the first argument removes all

red from every pixel.

IMG_FILTER_CONTRAST This filter adjusts the contrast of the image. It

expects an argument that should range from

�255 to 255. Negative values reduce contrast.

IMG_FILTER_EDGEDETECT This filter detects edges and sets other areas to

gray.

IMG_FILTER_EMBOSS This filter attempts to make the image look as if

it’s embossed.

IMG_FILTER_GAUSSIAN_BLUR This filter applies a Gaussian blur.

IMG_FILTER_GRAYSCALE The grayscale filter converts the image to

monochrome.

IMG_FILTER_MEAN_REMOVAL The mean removal filter attempts to remove

anomalies in the image.

IMG_FILTER_NEGATE The negate filter changes the image to the

negative.

IMG_FILTER_SELECTIVE_BLURThis filter offers an alternative blurring

technique to Gaussian blur.

IMG_FILTER_SMOOTH This filter smoothes differences in adjacent

pixels.

Listing 16.21 imagefilter

<?php

 $picture = "leonatkinson.png";

 //shows the effect of the filter

 function showPicture(&$image, $file, $title)

 {

 //write filter name into image

 $colorBlack = imagecolorallocate($image, 0, 0, 0);

 imagestring($image, 5, 10, 10, $title, $colorBlack);

 //write image to a file

 imagepng($image, $file);

 //clean up memory

 imagedestroy($image);

 //print image tag

 print("");

 }

 //Reduce Brightness

 $image = imagecreatefrompng($picture);

 imagefilter($image, IMG_FILTER_BRIGHTNESS, -128);

 showPicture($image, "brightness_$picture", "Brightness");

 //Colorize

 $image = imagecreatefrompng($picture);

 imagefilter($image, IMG_FILTER_COLORIZE, 100, 128, -64);

 showPicture($image, "colorize_$picture", "Colorize");

 //Increase contrast

 $image = imagecreatefrompng($picture);

 imagefilter($image, IMG_FILTER_CONTRAST, 60);

 showPicture($image, "contrast_$picture", "Contrast");

 //Edge

 $image = imagecreatefrompng($picture);

 $outputFile = "edge_$picture";

 imagefilter($image, IMG_FILTER_EDGEDETECT);

 showPicture($image, "edge_$picture", "Detect Edges");

 //Emboss

 $image = imagecreatefrompng($picture);

 imagefilter($image, IMG_FILTER_EMBOSS);

 showPicture($image, "emboss_$picture", "Emboss");

 //Blur

 $image = imagecreatefrompng($picture);

 imagefilter($image, IMG_FILTER_GAUSSIAN_BLUR);

 showPicture($image, "blur_$picture", "Gaussian Blur");

 //Convert to grayscale

 $image = imagecreatefrompng($picture);

 imagefilter($image, IMG_FILTER_GRAYSCALE);

 showPicture($image, "grayscale_$picture", "Grayscale");

 //Mean Removal

 $image = imagecreatefrompng($picture);

 imagefilter($image, IMG_FILTER_MEAN_REMOVAL);

 showPicture($image, "mean_$picture", "Mean Removal");

 //Get negative

 $image = imagecreatefrompng($picture);

 imagefilter($image, IMG_FILTER_NEGATE);

 showPicture($image, "negate_$picture", "Negative");

 //Selective blur

 $image = imagecreatefrompng($picture);

 imagefilter($image, IMG_FILTER_SELECTIVE_BLUR);

 showPicture($image, "selective_$picture", "Selective blur");

 //Smooth

 $image = imagecreatefrompng($picture);

 imagefilter($image, IMG_FILTER_SMOOTH, 123);

 showPicture($image, "smooth_$picture", "Smooth");

?>

resource imagefontheight(integer font)

The imagefontheight function (Listing 16.22) returns the height in pixels of

the specified font, which may be a built-in font (1�5) or a font loaded with

imagefontload.

Listing 16.22 imagefontheight, imagefontwidth

<?php

 $Text = "Core PHP Programming";

 $Font = 5;

 $Width = imagefontwidth($Font) * strlen($Text);

 $Height = imagefontheight($Font);

 //create green square

 $image = imagecreate($Width, $Height);

 $colorGreen = imagecolorallocate($image, 128, 255, 128);

 $colorBlack = imagecolorallocate($image, 0, 0, 0);

 imagefill($image, 0, 0, $colorGreen);

 //add text in black

 imagestring($image, $Font, 0, 0, $Text, $colorBlack);

 //send image

 header("Content-type: image/jpeg");

 imagejpeg($image);

?>

resource imagefontwidth(integer font)

The imagefontwidth function returns the width in pixels of the specified font,

which may be a built-in font (1�5) or a font loaded with imagefontload. See

imagefontheight for an example.

array imageftbbox(integer size, integer angle, string font,
string text, array extra)

The imageftbbox function returns an array describing the bounding box

produced by imagefttext. It operates like imagettfbbox except that it uses

FreeType 2 library.

imagefttext(resource image, integer point_size, integer
angle, integer x, integer y, integer color, string fontfile,
string text, array extra)

The imagefttext function uses the FreeType 2 library to draw text with a

TrueType font. It operates exactly like imagettftext.

boolean imagegammacorrect(resource image, double
original, double new)

The imagegammacorrect function (Listing 16.23) changes the gamma for an

image. Video display hardware is given a gamma rating that describes

relatively how bright images appear. Identical images appear lighter on

Macintosh hardware than on the typical Windows machine. PHP adjusts each

color in the palette of the image to the new gamma.

Listing 16.23 imagegammacorrect

<?php

 //attempt to open image, suppress error messages

 if(!($image = @imagecreatefromjpeg("waterfall.jpg")))

 {

 //error, so create an error image and exit

 $image = imagecreate(200,200);

 $colorWhite = imagecolorallocate($image, 255, 255, 255);

 $colorBlack = imagecolorallocate($image, 0, 0, 0);

 imagefill($image, 0, 0, $colorWhite);

 imagestring($image, 4, 10, 10, "Couldn't load image!",

 $colorBlack);

 header("Content-type: image/jpeg");

 imagejpeg($image);

 exit();

 }

 //adjust gamma, display

 imagegammacorrect($image, 2.2, 1.571);

 //send image

 header("Content-type: image/jpeg");

 imagejpeg($image);

?>

boolean imagegd(resource image, string file)

The imagegd function either sends an image to the browser or writes it to a

file in GD format. This format is unique to the GD library. It is not compressed

and not recognized by browsers. It may be helpful to keep images in GD

format if you use them often to construct larger images.

boolean imagegd2(resource image, string file)

The imagegd2 function either sends an image to the browser or writes it to a

file in GD2 format. This format is special to the GD library. The contents are

compressed but organized for random access, which means you can keep a

large amalgamated image on disk and retrieve smaller parts with the

imagecreatefromgd2 function.

boolean imagegif(resource image, string file)

This function allows for creating GIF files, but it’s only available with very old

versions of the GD library.

boolean imageinterlace(resource image, boolean on)

Use imageinterlace to set an image as interlaced or not. If the change is

successful, TRUE is returned.

Interlaced images are stored so that they appear progressively rather than all

at once. JPEGs marked as interlaced are called progressive JPEGs. When

viewing an image over a slow connection, a progressive JPEG will appear to

slowly come into focus. An interlaced PNG will show alternating lines first in

the same situation.

boolean imageistruecolor(resource image)

The imageistruecolor function returns TRUE if the given image is in true

color mode.

boolean imagejpeg(resource image, string file, integer
quality)

The imagejpeg function either sends an image to the browser or writes it to a

file. If a filename is provided, a JPEG file is created. Otherwise, the image is

sent directly to the browser. The optional quality argument determines the

compression level used in the image and should range from 0 (lowest quality)

to 10 (highest quality).

imagelayereffect(resource image, integer effect)

This function sets the method used when copying images. Use this function as

an alternative to imagealphablending. Table 16.7 lists valid values for the

effect argument.

Table 16.7. Layer Effects

Effect Description

IMG_EFFECT_ALPHABLENDThis mode works like calling

imagealphablending(TRUE).

IMG_EFFECT_NORMAL This mode works like alpha blending but can handle

transparent backgrounds.

IMG_EFFECT_OVERLAY This mode works like an overlay method available in

most graphics programs.

IMG_EFFECT_REPLACE This mode works like calling

imagealphablending(FALSE).

boolean imageline(resource image, integer start_x, integer
start_y, integer end_x, integer end_y, integer color)

The imageline function draws a line from the starting point to the ending

point. By default, PHP creates a solid line. You may draw a dashed line by

setting the line style with imagesetstyle and the special color

IMG_COLOR_STYLED. You can draw lines with brushes with imagesetstyle and

IMG_COLOR_STYLEDBRUSH. Listing 16.24 demonstrates these techniques, and

output is shown in Figure 16.11.

Listing 16.24 imageline

<?php

 /*

 ** create cyan square canvas

 */

 $image = imagecreate(200,200);

 $colorCyan = imagecolorallocate($image, 128, 255, 255);

 $colorBlack = imagecolorallocate($image, 0, 0, 0);

 imagefill($image, 0, 0, $colorCyan);

 /*

 ** draw solid line

 */

 imageline($image, 50, 0, 200, 150, $colorBlack);

 /*

 ** draw dashed line

 */

 $styleDashed = array_merge(array_fill(0, 4, $colorBlack),

 array_fill(0, 4, IMG_COLOR_TRANSPARENT));

 imagesetstyle($image, $styleDashed);

 imageline($image, 0, 0, 200, 200, IMG_COLOR_STYLED);

 /*

 ** draw dotted line using brush

 */

 //make a dot brush

 $dot = imagecreate(10, 10);

 $dotColorBlack = imagecolorallocate($dot, 0, 0, 0);

 $dotColorTransparent = imagecolorallocate($dot, 255, 0, 255);

 imagecolortransparent($dot, $dotColorTransparent);

 imagefill($dot, 0, 0, $dotColorTransparent);

 imagefilledellipse($dot, 4, 4, 5, 5, $dotColorBlack);

 imagesetbrush($image, $dot);

 //set line style

 $styleDotted = array_merge(array_fill(0, 1, $colorBlack),

 array_fill(0, 9, IMG_COLOR_TRANSPARENT));

 imagesetstyle($image, $styleDotted);

 //draw dotted line

 imageline($image, 0, 50, 150, 200, IMG_COLOR_STYLEDBRUSHED);

 /*

 ** show image

 */

 header("Content-type: image/png");

 imagepng($image);

?>

Figure 16.11. imageline output.

resource imageloadfont(string file)

The imageloadfont function loads a font and returns a font identifier that

may be used with the other font functions. The fonts are stored as bitmaps in

a special, architecture-dependent format. Table 16.8 shows the structure of a

font file for systems that use 32-bit integers.

Keep in mind your ability to use TrueType and PostScript fonts, which offer

much better quality. The five built-in fonts are convenient, but these other

popular font formats offer better quality.

Table 16.8. Font File Format

Position Length Description

0 4 Number of characters in the font.

4 4 ASCII value of first character.

8 4 Width in pixels for each character.

12 4 Height in pixels for each character.

16 variableEach pixel uses 1 byte, so this field should be the product of

the number of characters, the width, and the height.

boolean imagepalettecopy(resource destination, resource
source)

The imagepalettecopy function replaces the palette in the destination image

with the palette of the source image.

boolean imagepng(resource image, string file)

The imagepng function either sends an image to the browser or writes it to a

file. If a filename is provided, a PNG file is created. Otherwise, the image is

sent directly to the browser. This latter method is used in most of the

examples in this section.

boolean imagepolygon(resource image, array points,
integer number, integer color)

The imagepolygon function (Listing 16.25) behaves identically to the

imagefilledpolygon function with the exception that the polygon is not

filled. The points argument is an array of integers, two for each point of the

polygon. A line will be drawn from each point in succession and from the last

point to the first point. Output is shown in Figure 16.12.

Listing 16.25 imagepolygon

<?php

 //create red square

 $image = imagecreate(100,100);

 $colorPink = imagecolorallocate($image, 0xFF, 0xCC, 0xCC);

 $colorBlack = imagecolorallocate($image, 0, 0, 0);

 imagefill($image, 0, 0, $colorPink);

 //set up three points of the triangle

 $points = array(50, 10, 10, 90, 90, 90);

 //draw triangle

 imagepolygon($image,

 $points, count($points)/2,

 $colorBlack);

 //send image

 header("Content-type: image/png");

 imagepng($image);

?>

Figure 16.12. imagepolygon output.

array imagepsbbox(string text, integer font_identifier,
integer size, integer spacing, integer leading, double
angle)

The imagepsbbox function returns an array containing a pair of coordinates

that specify a bounding box that would surround a theoretical string of text.

The first two numbers are the x and y values of the lower-left corner. The

second pair of numbers specify the upper-right corner.

The font_identifier is an integer returned by imagepsloadfont. The size

argument is in pixels. The spacing argument controls vertical spacing

between lines of text. The leading argument controls horizontal spacing

between characters. Both are expressed in units of 1/1000th of an em-square

and are added to the default spacing or leading for a font. They may be

positive or negative. The angle argument specifies a number of degrees to

rotate from normal left-to-right orientation.

imagepsencodefont(string file)

Use imagepsencodefont to change the encoding vector used to match ASCII

characters to PostScript font images. By default, PostScript fonts only have

characters for the first 127 ASCII values.

imagepsextendfont(integer font_identifier, double
extension_factor)

The imagepsextendfont function (Listing 16.26) stretches or compresses a

PostScript font. The normal width of the font will be multiplied by the

extension_factor. See imagepscopyfont for an example. Multiple calls to

this function are not cumulative; they just change the extension. If you want

to set the font back to normal width, use a factor of one. Output is shown in

Figure 16.13.

Listing 16.26 imagepsextendfont, imagepsslantfont

<?php

 //set parameters for text

 $font_file = "/usr/share/fonts/default/Type1/n019003l.pfb";

 $size = 20;

 $angle = 0;

 $text = "PHP";

 $antialias_steps = 16;

 $spacing = 0;

 $leading = 0;

 //create red square

 $image = imagecreate(100, $size*3);

 $colorYellow = imagecolorallocate($image, 0xFF, 0xFF, 0xCC);

 $colorBlack = imagecolorallocate($image, 0, 0, 0);

 imagefill($image, 10, 10, $colorYellow);

 //Load font

 if(!($myFont = imagepsloadfont($font_file)))

 {

 print("Unable to load font!");

 exit();

 }

 //write normal text

 imagepstext($image, $text, $myFont, $size,

 $colorBlack, $colorYellow,

 0, $size-1, $spacing, $leading,

 $angle, $antialias_steps);

 //make extended font

 $myFontExtended = imagepsloadfont($font_file);

 imagepsextendfont($myFontExtended, 1.5);

 //write extended text

 imagepstext($image, $text, $myFontExtended, $size,

 $colorBlack, $colorYellow,

 0, ($size*2)-1, $spacing, $leading,

 $angle, $antialias_steps);

 //make slanted font

 $myFontSlanted = imagepsloadfont($font_file);

 imagepsslantfont($myFontSlanted, 1.5);

 //write slanted text

 imagepstext($image, $text, $myFontSlanted, $size,

 $colorBlack, $colorYellow,

 0, ($size*3)-1, $spacing, $leading,

 $angle, $antialias_steps);

 //unload fonts

 imagepsfreefont($myFont);

 imagepsfreefont($myFontExtended);

 imagepsfreefont($myFontSlanted);

 //send image

 header("Content-type: image/png");

 imagepng($image);

?>

Figure 16.13. imagepsextendfont, imagepsslantfont output.

imagepsfreefont(integer font_identifier)

The imagepsfreefont function removes a PostScript font from memory.

Generally, you do not need to do this. PHP will unload fonts when your script

ends.

resource imagepsloadfont(string file)

Use imagepsloadfont to load a PostScript font. A font identifier will be

returned for use with the other PostScript functions. If the load fails, FALSE is

returned.

imagepsslantfont(integer font_identifier, double
slant_factor)

Use imagepsslantfont to pitch the font forward or backwards. Sometimes

this is referred to as italics. The font_identifier is an integer returned by

imagepsloadfont. The slant_factor operates similarly to the

extension_factor in the imagepsextendfont function. Values greater than

one will cause the top of the font to pitch to the right. Values less than one

will cause the top of the font to pitch to the left.

array imagepstext(resource image, string text, integer
font_identifier, integer size, integer foreground, integer
back ground, integer x, integer y, integer spacing, integer
leading, double angle, integer antialias_steps)

The imagepstext function (Listing 16.27) draws a string of text into an image

using a PostScript font. The image argument is an integer as returned by

imagecreate, imagecreatefrompng, or a similar function. The

font_identifier argument is a value returned by the imagepsloadfont

function. The size argument specifies the height in number of pixels. The

foreground and background arguments are color identifiers. The background

color is used for antialiasing. The bounding box is not flooded with this color.

The x and y arguments specify the bottom left corner from where to begin

drawing. The spacing argument controls vertical spacing between lines of

text. The leading argument controls horizontal spacing between characters.

Both are expressed in units of 1/1000th of an em-square and are added to

the default spacing or leading for a font. They may be positive or negative.

The angle argument specifies a number of degrees to rotate from normal left-

to-right orientation. The antialias_steps argument specifies how many

colors to use when antialiasing, or smoothing. Two values are valid: 4 and 16.

The last four arguments are optional.

The returned array contains two pairs of coordinates specifying the lower-left

corner and upper-right corner of the bounding box, respectively.

Listing 16.27 imagepstext

<?php

 /*

 ** Draw text over a photograph using a PostScript font

 */

 //set parameters for text

 $image = "waterfall.jpg";

 $font_file = "/usr/share/fonts/default/Type1/n019003l.pfb";

 $size = 100;

 $angle = 0;

 $text = "Waterfall";

 $antialias_steps = 16;

 $spacing = 0;

 $leading = 0;

 //Load font

 if(!($myFont = imagepsloadfont($font_file)))

 {

 print("Unable to load font!");

 exit();

 }

 //get bounding box

 $Box = imagepsbbox($text, $myFont, $size, $spacing, $leading,

 $angle);

 //load photograph

 $image = imagecreatefromjpeg($image);

 //set up text color

 $colorText = imagecolorallocate($image, 0x00, 0xFF, 0x00);

 $colorClearText = imagecolorresolvealpha($image, 0x00, 0xFF,

 0x00, 0xFF);

 $colorShadow = imagecolorresolvealpha($image, 0x00, 0x00,

 0x00, 0x50);

 $colorClearShadow = imagecolorresolvealpha($image, 0x00, 0x00,

 0x00, 0xFF);

 imagelayereffect($image, IMG_EFFECT_NORMAL);

 //make soft drop shadow

 imagepstext($image, $text, $myFont, $size,

 $colorShadow, $colorClearShadow,

 55, $Box[3]+55, $spacing, $leading,

 $angle, $antialias_steps);

 //write the text

 imagepstext($image, $text, $myFont, $size,

 $colorText, $colorClearText,

 50, $Box[3]+50, $spacing, $leading,

 $angle, $antialias_steps);

 //unload font

 imagepsfreefont($myFont);

 //send image

 header("Content-type: image/png");

 imagepng($image);

?>

imagerectangle(resource image, integer top_left_x, integer
top_left_y, integer bottom_right_x, integer bottom_right_y,
integer color)

The imagerectangle function (Listing 16.28) draws a rectangle based on the

top left and bottom right corners. The inside of the rectangle will not be filled

as it is with the imagefilledrectangle function. Output is shown in Figure

16.14.

Listing 16.28 imagerectangle

<?php

 //create green square

 $image = imagecreate(200,200);

 $colorGreen = imagecolorallocate($image, 128, 255, 128);

 $colorBlack = imagecolorallocate($image, 0, 0, 0);

 imagefill($image, 0, 0, $colorGreen);

 //draw a black rectangle

 imagerectangle($image,

 10, 10, 90, 90,

 $colorBlack);

 //send image

 header("Content-type: image/png");

 imagepng($image);

?>

Figure 16.14. imagerectangle output.

resource imagerotate(resource image, double angle,
integer background)

The imagerotate function (Listing 16.29) returns a new image with the

source image rotated by the given angle. Positive values for the angle

argument rotate the image counterclockwise. The background argument

specifies a color used for filling in areas uncovered when you rotate by angles

that aren’t multiples of 90. Output is shown in Figure 16.15.

Listing 16.29 imagerotate

<?php

 //create green square

 $image = imagecreatetruecolor(200,200);

 $colorGreen = imagecolorallocate($image, 128, 255, 128);

 $colorBlack = imagecolorallocate($image, 0, 0, 0);

 imagefill($image, 0, 0, $colorGreen);

 //draw a black rectangle

 imagerectangle($image,

 10, 10, 90, 90,

 $colorBlack);

 //rotate 35 degrees and replace

 $image = imagerotate($image, 35, $colorBlack);

 //show image

 header("Content-type: image/png");

 imagepng($image);

?>

Figure 16.15. imagerotate output.

imagesavealpha(resource image, boolean on)

The imagesavealpha function sets whether PHP saves alpha levels when it

writes an image to disk.

boolean imagesetbrush(resource image, resource brush)

Use imagesetbrush (Listing 16.30) to set the brush used for drawing. The

brush is an image itself. To draw with it, use IMG_COLOR_BRUSHED or

IMG_COLOR_STYLEDBRUSHED instead of an allocated color. The former constant

paints the brush for each pixel. The latter constant paints according to a style

you set with imagesetstyle. Output is shown in Figure 16.16.

Listing 16.30 imagesetbrush

<?php

 //create black canvas

 $image = imagecreate(100,100);

 $colorBlack = imagecolorallocate($image, 0, 0, 0);

 imagefill($image, 0, 0, $colorBlack);

 //make a brush with transparent background

 $brush = imagecreate(20, 20);

 $brushColorTransparent = imagecolorallocate($brush, 255, 0,

 255);

 imagecolortransparent($brush, $brushColorTransparent);

 imagefill($brush, 0, 0, $brushColorTransparent);

 //draw three diagonal dots

 $brushColorRed = imagecolorallocate($brush, 255, 0, 0);

 $brushColorYellow = imagecolorallocate($brush, 255, 255, 0);

 $brushColorBlue = imagecolorallocate($brush, 0, 0, 255);

 imagefilledellipse($brush, 5, 5, 5, 5, $brushColorRed);

 imagefilledellipse($brush, 10, 10, 5, 5, $brushColorYellow);

 imagefilledellipse($brush, 15, 15, 5, 5, $brushColorBlue);

 //set the brush

 imagesetbrush($image, $brush);

 //draw triangle with brush

 $points = array(50, 10, 10, 90, 90, 90);

 imagepolygon($image,

 $points, count($points)/2,

 IMG_COLOR_BRUSHED);

 //show image

 header("Content-type: image/png");

 imagepng($image);

?>

Figure 16.16. imagesetbrush output.

boolean imagesetpixel(resource image, integer x, integer
y, integer color)

The imagesetpixel function (Listing 16.31) sets a single pixel to the specified

color.

Listing 16.31 imagesetpixel

<?php

 //create black canvas

 $image = imagecreate(100, 100);

 $colorBlack = imagecolorallocate($image, 0, 0, 0);

 imagefill($image, 0, 0, $colorBlack);

 $dotColor = array(

 imagecolorallocate($image, 255, 0, 0),

 imagecolorallocate($image, 0, 255, 0),

 imagecolorallocate($image, 255, 255, 0),

 imagecolorallocate($image, 0, 0, 255),

 imagecolorallocate($image, 0, 255, 255),

 imagecolorallocate($image, 255, 0, 255)

);

 $lastColor = count($dotColor) - 1;

 //draw 10000 random black dots

 srand(time());

 for($i=0; $i < 10000; $i++)

 {

 $color = $dotColor[rand(0, $lastColor)];

 imagesetpixel($image, rand(0, 99), rand(0, 99), $color);

 }

 //send image

 header("Content-type: image/png");

 imagepng($image);

?>

boolean imagesetstyle(resource image, array style)

The imagesetstyle function sets a pattern PHP uses to draw lines. The style

array should be an array of colors, each element representing a single pixel.

You may use the IMG_COLOR_TRANSPARENT constant to represent a pixel not to

be drawn. This constant applies only to styles.

After defining the line style, you may draw with the style by using the

IMG_COLOR_STYLED and IMG_COLOR_STYLEDBRUSHED constants. The latter

draws with a brush instead of single pixels.

boolean imagesetthickness(resource image, integer
pixels)

Use imagesetthickness (Listing 16.32) to set the width of lines. PHP paints

the lines with a line of pixels of the given width and one pixel high, rotating

the line to be perpendicular to the current angle. This produces good results

for straight lines. Curved lines may appear jagged because it’s hard to

produce exact angles with digital images. Figure 16.17 demonstrates this

effect. You may avoid this by painting with a round brush.

Listing 16.32 imagesetthickness

<?php

 //create red square

 $image = imagecreate(300,100);

 $colorPink = imagecolorallocate($image, 0xFF, 0xCC, 0xCC);

 $colorBlack = imagecolorallocate($image, 0, 0, 0);

 imagefill($image, 0, 0, $colorPink);

 imagesetthickness($image, 10);

 //set up three points of the triangle

 $points = array(50, 10, 10, 90, 90, 90);

 //draw triangle

 imagepolygon($image,

 $points, count($points)/2,

 $colorBlack);

 //draw ellipse

 imageellipse($image, 150, 50, 80, 50, $colorBlack);

 //draw rectangle

 imagerectangle($image,

 210, 10, 290, 90,

 $colorBlack);

 //send image

 header("Content-type: image/png");

 imagepng($image);

?>

Figure 16.17. imagesetthickness output.

boolean imagesettile(resource image, resource tile)

The imagesettile function (Listing 16.33) sets a tile instead of a solid color

used for filling areas. The tile argument should be an image resource as

returned by one of the image creation functions. After setting the tile, use the

IMG_COLOR_TILED instead of an allocated color. Transparent colors in the tile

will allow anything behind the fill pattern to show through.

Listing 16.33 imagesettile

<?php

 $image = imagecreatetruecolor(200,200);

 $colorYellow = imagecolorresolve($image, 255, 255, 128);

 imagefill($image, 0, 0, $colorYellow);

 //load a tile

 $tile = imagecreatefromjpeg("woodtile.jpg");

 imagesettile($image, $tile);

 //set up three points of the triangle

 $points = array(100, 10, 10, 190, 190, 190);

 //draw triangle

 imagefilledpolygon($image,

 $points, count($points)/2,

 IMG_COLOR_TILED);

 //create a grid tile

 $grid = imagecreate(32, 32);

 $gridColorBlack = imagecolorallocate($grid, 0x00, 0x00, 0x00);

 $gridColorTransparent = imagecolorallocate($grid,

 0xFF, 0x00, 0xFF);

 imagecolortransparent($grid, $gridColorTransparent);

 imagefill($grid, 0, 0, $gridColorTransparent);

 imagesetthickness($grid, 5);

 imageline($grid, 0, 0, 31, 0, $gridColorBlack);

 imageline($grid, 0, 0, 0, 31, $gridColorBlack);

 imagesettile($image, $grid);

 //paint grid over entire image

 imagefilledrectangle($image, 0, 0, 199, 199, IMG_COLOR_TILED);

 //send image

 header("Content-type: image/png");

 imagepng($image);

?>

boolean imagestring(resource image, integer font, integer
x, integer y, string text, integer color)

The imagestring function (Listing 16.34) draws the given text at the

specified point. The top left part of the string will be at the specified point.

The font argument may be a built-in font or one loaded by imageloadfont.

The good thing about this function is that it’s always available. It’s handy for

debugging. The imagepstext and imagettftext function produce better-

looking text.

Listing 16.34 imagestring, imagestringup

<?php

 //create yellow square

 $image = imagecreate(150, 150);

 $colorYellow = imagecolorallocate($image, 255, 255, 128);

 $colorBlack = imagecolorallocate($image, 0, 0, 0);

 imagefill($image, 0, 0, $colorYellow);

 //draw text horizontally

 imagestring($image, 5, 10, 10, "Hello World!", $colorBlack);

 //draw text vertically

 imagestringup($image, 5, 10, 140, "Hello World!",

 $colorBlack);

 //send image

 header("Content-type: image/png");

 imagepng($image);

?>

boolean imagestringup(resource image, integer font,
integer x, integer y, string text, integer color)

The imagestringup function draws a string oriented vertically instead of

horizontally. Otherwise, it works identically to imagestring.

resource imagesx(resource image)

The imagesx function (Listing 16.35) returns the width in pixels of the

specified image.

Listing 16.35 imagesx, imagesy

<?php

 /*

 ** Put a rectangle in the center of any image

 */

 //attempt to open image, suppress error messages

 if(!($image = @imagecreatefromjpeg("waterfall.jpg")))

 {

 //error, so create an error image and exit

 $image = imagecreate(200,200);

 $colorWhite = imagecolorallocate($image, 255, 255, 255);

 $colorBlack = imagecolorallocate($image, 0, 0, 0);

 imagefill($image, 0, 0, $colorWhite);

 imagestring($image, 4, 10, 10, "Couldn't load image!",

 $colorBlack);

 header("Content-type: image/jpeg");

 imagejpeg($image);

 }

 //find center

 $centerX = intval(imagesx($image)/2);

 $centerY = intval(imagesy($image)/2);

 $colorGreen = imagecolorallocate($image, 0, 255, 0);

 //draw a green rectangle in center

 imagefilledrectangle($image,

 ($centerX-15), ($centerY-15),

 ($centerX+15), ($centerY+15),

 $colorGreen);

 //send image

 header("Content-type: image/png");

 imagepng($image);

?>

resource imagesy(resource image)

The imagesy function returns the height in pixels of the specified image.

boolean imagetruecolortopalette(resource image, boolean
dither, integer colors)

The imagetruecolortopalette function converts a true color image to one

that uses a set number of colors. The dither argument specifies whether PHP

should use dithering to approximate colors. The colors argument sets the

maximum number of colors in the palette.

array imagettfbbox(integer point_size, integer angle, string
font, string text)

The imagettfbbox function returns an array of points that describe a

bounding box around text to be drawn by the imagettftext function. The

points are relative to the leftmost point on the baseline. The array elements

correspond to the lower-left, lower-right, upper-right, and upper-left corners,

in that order, as shown in Table 16.9.

This function may not be available, depending on the libraries available when

PHP was compiled.

Table 16.9. Array Returned by imagettfbbox

Array Pair Corner

0, 1 Lower-Left

2, 3 Lower-Right

4, 5 Upper-Right

6, 7 Upper-Left

boolean imagettftext(resource image, integer point_size,
integer angle, integer x, integer y, integer color, string font,
string text)

The imagettftext function (Listing 16.36) uses a TrueType font to draw a

string of text. The x and y arguments refer to the leftmost position of the

baseline. The text will radiate from that point at the given angle, which should

be from 0 to 360. An angle of zero represents normal right-to-left text. The

font argument is the full path to a .ttf file. Output is shown in Figure 16.18.

Figure 16.18. imagettfbbox, imagettftext output.

This function may not be available, depending on the libraries available when

PHP was compiled.

Listing 16.36 imagettfbbox, imagettftext

<?php

 /*

 ** Draw text using a TrueType font

 ** Also, draw a box behind the text.

 */

 //set parameters for text

 $size = 40;

 $angle = 45;

 $startX = 30;

 $startY = 90;

 $font = "c:\windows\fonts\comic.ttf";

 //create red square

 $image = imagecreate(100, 100);

 $colorYellow = imagecolorallocate($image, 0xFF, 0xFF, 0x99);

 $colorGray = imagecolorallocate($image, 0xCC, 0xCC, 0xCC);

 $colorBlack = imagecolorallocate($image, 0, 0, 0);

 imagefill($image, 10, 10, $colorYellow);

 //get bounding box

 $Box = imagettfbbox($size, $angle, $font, "PHP");

 //move bounding box to starting point (100,100)

 for($index = 0; $index < count($Box); $index += 2)

 {

 $Box[$index] += $startX;

 $Box[$index+1] += $startY;

 }

 //draw bounding box

 imagefilledpolygon($image, $Box, count($Box)/2, $colorGray);

 //write the text

 $Box = imagettftext($image, $size, $angle,

 $startX, $startY, $colorBlack,

 $font, "PHP");

 //send image

 header("Content-type: image/png");

 imagepng($image);

?>

integer imagetypes()

The imagetypes function (Listing 16.37) returns a bitfield set with the types

of images supported by the version of PHP executing the script. Use the

constants shown in Table 16.10 to test for the availability of an image file

format.

Table 16.10. Image Type Constants

IMG_GIF IMG_PNG

IMG_JPEG IMG_WBMP

IMG_JPG IMG_XPM

Listing 16.37 imagetypes

<?php

 $types = imagetypes();

 print("Supported Output Image Types:
");

 if($types & IMG_GIF)

 {

 print('GIF
');

 }

 if($types & IMG_JPEG)

 {

 print('JPEG
');

 }

 if($types & IMG_PNG)

 {

 print('PNG
');

 }

 if($types & IMG_WBMP)

 {

 print('WBMP
');

 }

 if($types & IMG_XPM)

 {

 print('XPM
');

 }

?>

boolean imagewbmp(resource image, string file, integer
foreground)

The imagewbmp function either sends an image to the browser or writes it to a

file. If a filename is provided, a WAP (Wireless Application Protocol) bitmap

file is created. Otherwise, the image is sent directly to the browser. The

optional foreground argument should be set with the index for a color to be

considered the foreground color in WBMP files.

jpeg2wbmp(string jpeg_file, string wbmp_file, integer
height, integer width, integer threshold)

The jpeg2wbmp function reads a JPEG file and writes a WBMP file. The optional

threshold argument sets the threshold for when a pixel is converted to black

or white. Keep in mind that WBMP files are monochrome.

png2wbmp(string png_file, string wbmp_file, integer
height, integer width, integer threshold)

The jpeg2wbmp function reads a PNG file and writes a WBMP file. The optional

threshold argument sets the threshold for when a pixel is converted to black

or white. Keep in mind that WBMP files are monochrome.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

Chapter 17. Database
Topics in This Chapter

DBM-Style Database Abstraction

DBX

LDAP

MySQL

ODBC

Oracle

Postgres

Sybase and Microsoft SQL Server

PHP offers support for many databases. Open Source relational

databases are well represented, as are many commercial products. If

native support for a database doesn’t exist, it’s likely you may use

ODBC with an appropriate driver. Chapter 23 discusses strategies for

using databases with PHP-powered sites.

Most of the functions in this section rely on an extension module.

These may be loaded either in the php.ini file or the dl function but

most likely are compiled into PHP.

While this chapter describes the PHP functions that communicate with

various systems, it does not pursue introducing the intricacies of all

the systems. I can’t possibly include a full tutorial on SQL within this

book. If you have chosen a database for integration with PHP, I

assume you will take the time to learn about that database. I am a

big fan of MySQL and wrote a book about it in 2001: Core MySQL.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

17.1 DBM-Style Database Abstraction

The DBA functions abstract communications with databases that

conform to the style of Berkeley DB database systems. Rather than

storing relational records, a DBM database simply stores key/value

pairs. This is similar to an associative array.

The functions in this section replace a set of functions that allow just

one type of DBM database. These new functions allow for choosing the

underlying system from within your PHP code rather than compiling PHP

for a single DBM implementation. You choose a type of database when

you open a connection, and the rest of the functions perform

accordingly. Sascha Schumann added these functions to PHP.

dba_close(resource connection)

The dba_close function closes a link to a database. The connection

argument is an integer returned by the dba_open or dba_popen

functions. If you choose not to close a database connection, PHP will

close it for you.

boolean dba_delete(string key, resource connection)

The dba_delete function (Listing 17.1) removes an entry from a

database. You must supply both the key and a valid connection to a

database, as supplied by dba_open or dba_popen. The success of the

deletion is returned as a boolean.

Listing 17.1 Interfacing with a DBM-style database

<?php

 // open database in write mode

 if(($db = dba_popen('inventory', 'w', 'gdbm')) === FALSE)

 {

 print('Could not open database!');

 exit();

 }

 if(dba_exists('3', $db))

 {

 //item 3 exists, set inventory to 150

 dba_replace('3', '150', $db);

 print("Replaced inventory for item 3
");

 }

 else

 {

 //item 3 doesn't exists, insert it

 dba_insert('3', '150', $db);

 print("Inserted inventory for item 3
");

 }

 if(dba_exists('4', $db))

 {

 // remove item 4

 dba_delete('4', $db);

 print("Removed item 4
");

 }

 else

 {

 dba_insert('4', '500', $db);

 print("Inserted inventory for item 4
");

 }

 //sync database

 dba_sync($db);

 //get all the records

 for($key = dba_firstkey($db);

 $key !== FALSE;

 $key = dba_nextkey($db))

 {

 print("$key = " . dba_fetch($key, $db) . "
");

 }

 // close database

 dba_close($db);

?>

boolean dba_exists(string key, resource connection)

The dba_exists function tests for the presence of a key. The

connection argument must be an integer returned by the dba_open or

dba_popen functions. The description of dba_delete has an example of

using dba_exists.

string dba_fetch(string key, resource connection)
 string dba_fetch(string key, integer skip, resource

connection)

Use the dba_fetch function to retrieve a record given its key. Only CDB

databases support the second form that includes the optional skip

argument; it specifies the number of duplicate records to skip. The

connection argument should be a resource returned by dba_open or

dba_popen.

string dba_firstkey(resource connection)

The dba_firstkey function returns the first key in the database. If the

database is empty, FALSE will be returned. As the example for

dba_delete shows, dba_firstkey and dba_nextkey may be used to

traverse the entire database.

array dba_handlers()

The dba_handlers function returns the list of database types supported.

boolean dba_insert(string key, string value, resource
connection)

Use dba_insert to add a record to the database. The success of the

insert is returned. Trying to insert a record that already exists is not

allowed. If you need to update a record, use dba_replace.

array dba_list()

The dba_list function returns an array of open DBA databases. The

keys of the array are unique integers that represent the resources, but

they aren’t usable as resources themselves.

string dba_nextkey(resource connection)

The dba_nextkey function returns the next key from the database.

When there are no keys left, FALSE is returned.

resource dba_open(string filename, string mode,
string type, …)

Use dba_open to establish a connection to a DBM-style database. A

positive integer is returned if the open is successful; FALSE is returned if

it fails. The filename argument is simply the path to a database. The

mode argument can be one of four characters that control input and

output of data. Table 17.1 lists the four modes.

The type argument chooses the underlying database engine. Table 17.2

describes the four types. You may also supply any number of optional

arguments that will be passed directly to the underlying engine.

Generally, the second character controls locking. A lowercase l instructs

the engine to implement locking using a .lck file. A d instructs the

engine to lock the database file itself. A hyphen (-) suspends locking.

Locking is cooperative, which means all scripts must specify the same

locking method. You may also add a t as the third argument to test.

When your script finishes executing, the database connection closes

automatically. You may choose to close it sooner with dba_close, and

this may save some small amount of memory. Contrast this function to

dba_popen, which attempts to reuse links.

boolean dba_optimize(resource connection)

Use dba_optimize to optimize a database, which usually consists of

eliminating gaps between records created by deletes. This function

returns TRUE on success. Some underlying engines do not support

optimizations, in which case this function will have no effect.

Table 17.1. DBA Open Modes

Mode Description

c If the database doesn’t exist, it will be created. Reads and writes

may be performed.

n If the database doesn’t exist, it will be created. If it does exist, all

records will be deleted. Reads and writes may be performed.

r Only reads may be performed.

w Reads and writes may be performed. If the file does not exist, an

error occurs.

Table 17.2. DBA Database Engine Codes

Code Description

cdb

cdb_make

CDB is a package for creating constant databases�that is,

databases that are created and read from only. This offers a

performance advantage with the tradeoff that none of the

writing functions work. To download the software, visit

<http://cr.yp.to/cdb.html>. PHP includes a bundled version of

CDB, which allows inserting rows, but not updating.

db2

db3

db4

These codes stand for a database package developed by

Sleepycat Software, which is based on the original Berkeley

source code. In fact, the founders wrote the original DBM at

Berkeley. You can get more information and download

software at their Web site: <http://www.sleepycat.com/>.

Dbm This code represents the original style of DBM database as

developed at Berkeley.

flatfileThis code allows reading from files created with PHP’s

deprecated DBM functions.

gdbm The GNU Database Manager is the result of a project by GNU.

You can download gdbm from the GNU FTP server

<ftp://ftp.gnu.org/gnu/gdbm>.

http://cr.yp.to/cdb.html
http://www.sleepycat.com/default.htm
ftp://ftp.gnu.org/gnu/gdbm

Code Description

ndbm This code stands for a newer version of the DBM standard

with fewer restrictions than DBM.

resource dba_popen(string filename, string mode,
string type, …)

The dba_popen function behaves identically to dba_open with one

difference: Connections are not closed. They remain with the process

until the process ends. When you call dba_popen, it first tries to find an

existing connection. Failing that, it will create a new connection. You

never call dba_close on a connection returned by dba_popen.

Since the links are pooled on a per-process basis, this functionality

offers no benefit when using PHP as a standalone executable. When

using PHP as an Apache module, there may be some small performance

benefit due to the way Apache uses child processes.

boolean dba_replace(string key, string value,
resource connection)

Use dba_replace to update the value of an existing record. As with the

other DBA functions, a valid link as returned by dba_open or dba_popen

should be used for the connection argument. See the description of

dba_insert for an example using dba_replace.

boolean dba_sync(resource connection)

The dba_sync function will synchronize the view of the database in

memory and its image on the disk. As you insert records, they may be

cached in memory by the underlying engine. Other processes reading

from the database will not see these new records until synchronization.

17.2 DBX

The DBX extension provides a simple, universal interface to several

relational databases. This disallows some special features of each

database with the benefit of easily switching database servers. Of

course, differences in the SQL the database server understands must

be addressed in your scripts. There are alternatives to this extension

written in PHP, including the one in PEAR. Listing 17.2 demonstrates

the use of the DBX functions.

Marc Boeren added the DBX extension to PHP.

Listing 17.2 Using DBX

<?php

 function myDBX_Order($a, $b)

 {

 return(dbx_compare($a, $b, "ID", DBX_CMP_ASC |

 DBX_CMP_NUMBER));

 }

 //connect to MySQL server

 if(!($db = dbx_connect(

 DBX_MYSQL,

 'localhost',

 'ft3',

 'freetrade', '',

 DBX_PERSISTENT)))

 {

 print("Unable to connect to database");

 exit();

 }

 //select from item table

 $result = dbx_query($db,

 'SELECT ID, Name from item',

 DBX_RESULT_ASSOC | DBX_COLNAMES_UNCHANGED);

 if($result == FALSE)

 {

 print("Error: " . dbx_error($db));

 exit();

 }

 //sort result set

 dbx_sort($result, 'myDBX_Order');

 print('<table border="1">');

 print('<tr>');

 for($c=0; $c < $result->cols; $c++)

 {

 print("<th>{$result->info['name'][$c]}</th>");

 }

 print('</tr>');

 for($r=0; $r < $result->rows; $r++)

 {

 print('<tr>');

 for($c=0; $c < $result->cols; $c++)

 {

 print("<td>{$result->data[$r][$c]}</td>");

 }

 print('</tr>');

 }

 print('</table>');

?>

boolean dbx_close(object link)

The dbx_close closes a connection to a database. The link

argument should be an object returned by dbx_connect.

integer dbx_compare(array left, array right, string
key, integer flags)

The dbx_compare function compares two rows, mostly for the benefit

of the dbx_sort function. If the rows are equal, it returns 0. If the

left argument comes after the right argument, it returns 1.

Otherwise, it returns �1. The left and right arguments should be

row arrays created by dbx_query. The key argument names the

column used for comparison.

Optionally, you may set the flags argument in order to control the

direction of the comparison and type of comparison. Combine the

flags shown in Table 17.3 with a bitwise-OR operator. By default,

comparisons are made with the native types in ascending order.

Table 17.3. DBX Comparison Flags

Flag Description

DBX_CMP_ASC Ascending order

DBX_CMP_DESC Descending order

DBX_CMP_NATIVE Use native types

DBX_CMP_NUMBER Convert and compare as numbers

DBX_CMP_TEXT Compare as strings

object dbx_connect(string module, string host,
string database, string user, string password,
integer persistent)

The dbx_connect function connects to a database server and returns

an object used by the other DBX functions. The first argument

specifies the database server type. Set it with one of the constants or

strings from Table 17.4. The host argument typically specifies an

Internet host that runs the database server. The database argument

specifies the name of the database, similar to SQL’s USE statement.

The user and password arguments set login parameters. The optional

persistent argument may be set with DBX_PERSISTENT, in which

case PHP attempts to reuse connections between script executions.

The returned object contains three properties. The handle property is

a resource for the connection. The module property matches the

module specified in the first argument to dbx_connect. The database

property matches the database argument to dbx_connect.

Table 17.4. DBX Connection Constants

Database Constant String

Frontbase DBX_FBSQL fbsql

Microsoft SQL Server DBX_MSSQL mssql

MySQL DBX_MYSQL mysql

Oracle OCI8 DBX_OCI8 oci8

ODBC DBX_ODBC odbc

PostgreSQL DBX_PGSQL pgsql

Sybase CT DBX_SYBASECT sybase_ct

string dbx_error(object link)

The dbx_error function returns a string describing the last error

produced by the database module used by the given connection.

string dbx_escape_string(object link, string text)

The dbx_escape_string function escapes special characters in the

given text according to the capabilities of the database module,

preparing the text for placement inside an SQL statement as a string

literal.

object dbx_query(object link, string query, integer
flags)

The dbx_query function executes a query on an open connection,

returning an object containing the result set. The result set object will

contain four or five properties. The optional flags argument allows

you to control aspects of the result set. Available options are shown

in Table 17.5.

The result set’s handle property is a connection resource, the same

contained in the object returned by dbx_connect. The info property

contains two arrays, name and type. These are arrays that give the

name and type, respectively, of columns in the result set. The data

property is an array of rows in the result set. Each element of this

array is an array of the column values. An integer references each

column value. Optionally, the column name may reference the value

as well. The rows and cols properties contain counts for rows and

columns in the result set.

By default, dbx_query includes all information and leaves column

names unchanged. Specifying DBX_RESULT_INDEX removes both

column information and column names. Specifying

DBX_RESULT_ASSOC automatically activates DBX_RESULT_INFO.

Table 17.5. DBX Query Flags

Flag Description

DBX_COLNAMES_LOWERCASEConvert column names to lowercase.

DBX_COLNAMES_UNCHANGED Leave column names unchanged.

DBX_COLNAMES_UPPERCASEConvert column names to uppercase.

DBX_RESULT_ASSOC Reference column values with column

names.

DBX_RESULT_INDEX Reference column values with column

numbers.

DBX_RESULT_INFO Include information about column in the

info property.

boolean dbx_sort(object result, string
comparison_function)

The dbx_sort function sorts a result set returned by dbx_query using

the function named by comparison_function. Typical use of this

function involves defining your own wrapper of dbx_compare, as

shown in Listing 17.2.

Sorting results within the SQL statement is faster, so use this

functionality only when necessary.

17.3 LDAP

LDAP is an acronym for Lightweight Directory Access Protocol. It is a universal

method of storing directory information and is a partial implementation of the

X.500 standard. LDAP was first described in RFC 1777 and RFC 1778.

Through TCP/IP, clients can access a centralized address book containing

contact information, public encryption keys, and similar information. Many

servers are live on the Internet. Dante, a nonprofit organization, maintains a

list of LDAP servers organized by country at

<http://www.dante.net/np/pdi.html>. A full discussion of LDAP is beyond the

scope of this book, but abundant information can be found on the Web. A

good starting point is the OpenLDAP project at <http://www.openldap.org/>.

The functions in this section require either compiling LDAP support into the

PHP module or loading an extension module with dl. The LDAP module is the

result of collaboration by Amitay Isaacs, Rasmus Lerdorf, Gerrit Thomson, and

Eric Warnke.

boolean ldap_add(resource connection, string dn, array
entry)

The ldap_add function (Listing 17.3) adds entries to the specified DN

(distinguished name) at the object level. The entry argument is an array of

the attribute values. If an attribute can have multiple values, the array

element should be an array itself. See the mail attribute in Listing 17.3. If you

wish to add attributes at the attribute level, use ldap_mod_add.

Listing 17.3 ldap_add

<?php

 //connect to LDAP server

 if(!($ldap=ldap_connect("localhost")))

 {

 die("Could not connect to LDAP server!");

 }

 //set login DN

 $dn="cn=Manager,dc=leonatkinson,dc=com";

 //attempt to bind to DN using password

 if(!ldap_bind($ldap, $dn, "secret"))

 {

 die("Unable to bind to '$dn'!");

 }

 // create entry

 $entry["cn"]="Barry Bat";

 $entry["objectClass"]="inetOrgPerson";

 $entry["sn"]="Barry";

 $entry["mail"][0] = "barry@example.com";

 $entry["mail"][1] = "bat@example.com";

 $entry["initials"]="BB";

http://www.dante.net/np/pdi.html
http://www.openldap.org/default.htm

 $entry["homePhone"]="123-123-1234";

 $entry["mobile"]="123-123-1234";

 //create new entry's DN

 $dn = "cn=Barry Bat,dc=leonatkinson,dc=com";

 //add entry

 if(ldap_add($ldap, $dn, $entry))

 {

 print("Entry Added!");

 }

 else

 {

 print("Add failed!");

 }

 //close connection

 ldap_close($ldap);

?>

boolean ldap_bind(resource connection, string dn, string
password)

Use ldap_bind to bind to a directory. Use the optional dn and password

arguments to identify yourself. Servers typically require authentication for any

commands that change the contents of the directory.

boolean ldap_close(resource connection)

The ldap_close function closes the connection to the directory server.

boolean ldap_compare(resource connection, string dn,
string attribute, string value)

The ldap_compare function compares an entry to the given value.

integer ldap_connect(string host, integer port)

The ldap_connect function returns an LDAP connection identifier, or FALSE

when there is an error. Both arguments are optional. With no arguments,

ldap_connect returns the identifier of the current open connection. If the

port argument is omitted, port 389 is assumed.

integer ldap_count_entries(resource connection, integer
result)

The ldap_count_entries function returns the number of entries in the

specified result set. The result argument is a result identifier returned by

ldap_read.

boolean ldap_delete(resource connection, string dn)

The ldap_delete function (Listing 17.4) removes an entry from the directory.

Listing 17.4 ldap_delete

<?php

 // connect to LDAP server

 if(!($ldap=ldap_connect("localhost")))

 {

 die("Unable to connect to LDAP server!");

 }

 //set login DN

 $dn="cn=Manager,dc=leonatkinson,dc=com";

 //attempt to bind to DN using password

 if(!ldap_bind($ldap, $dn, "secret"))

 {

 die("Unable to bind to '$dn'!");

 }

 //delete entry from directory

 $dn="cn=Barbara J Jensen,dc=leonatkinson,dc=com";

 if(ldap_delete($ldap, $dn))

 {

 print("Entry Deleted!");

 }

 else

 {

 print("Delete failed!");

 }

 //close connection

 ldap_close($ldap);

?>

string ldap_dn2ufn(string dn)

The ldap_dn2ufn translates a DN into a more user-friendly form, with type

specifiers stripped.

integer ldap_errno(resource connection)

The ldap_errno function returns the error number for the last error on a

connection.

string ldap_error(resource connection)

The ldap_error function returns a description of the last error on a

connection.

string ldap_err2str(integer error)

Use ldap_err2str to convert an error number to a textual description.

array ldap_explode_dn(string dn, boolean attributes)

The ldap_explode_dn function (Listing 17.5) splits a DN returned by

ldap_get_dn into an array. Each element is a relative distinguished name, or

RDN. The array contains an element indexed by count that is the number of

RDNs. The attributes argument specifies whether values are returned with

their attribute codes.

Listing 17.5 ldap_explode_dn

<?php

 //set test DN

 $dn = "cn=Leon Atkinson, o=PHP Community, c=US";

 $rdn = ldap_explode_dn($dn, FALSE);

 for($index = 0; $index < $rdn["count"]; $index++)

 {

 print("$rdn[$index]
\n");

 }

?>

string ldap_first_attribute(resource connection, integer
result, integer pointer)

The ldap_first_attribute function returns the first attribute for a given

entry. The pointer argument must be passed as a reference. This variable

stores a pointer in the list of attributes. The ldap_get_attributes function is

probably more convenient.

resource ldap_first_entry(resource connection, integer
result)

The ldap_first_entry function returns an entry identifier for the first entry

in the result set. This integer is used in the ldap_next_entry function. Use

ldap_get_entries to retrieve all entries in an array.

resource ldap_first_reference(resource connection,
resource result)

The ldap_first_reference function returns the first reference from a result

set.

boolean ldap_free_result(integer result)

Use ldap_free_result to clear any memory used for a result returned by

ldap_read or ldap_search.

array ldap_get_attributes(resource connection, resource
result)

Use ldap_get_attributes to get a multidimensional array of all the

attributes and their values for the specified result identifier. Attributes may be

referenced by their names or by a number. The count element specifies the

number of elements. Multivalue attributes have a count element as well, and

each element is referenced by number. This function allows you to browse a

directory, discovering attributes you may not have known existed.

string ldap_get_dn(integer ldap, resource result)

The ldap_get_dn function returns the DN for the specified result.

array ldap_get_entries(resource connection, resource
result)

The ldap_get_entries function returns a three-dimensional array containing

every entry in the result set. An associative element, count, returns the

number of entries in the array. Each entry is numbered from zero. Each entry

has a count element and a dn element. The attributes for the entry may be

referenced by name or by number. Each attribute has its own count element

and a numbered set of values.

boolean ldap_get_option(resource connection, integer
option, reference value)

The ldap_get_option function sets the value argument with the value of the

option specified by the option argument.Use one of the options from Table

17.6. Use ldap_set_option to change the value of an option.

Table 17.6. LDAP Options

Option Description

LDAP_OPT_CLIENT_CONTROLS The list of default controls for the client.

LDAP_OPT_DEREF Dereference mode, set with a constant from

Table 17.7.

LDAP_OPT_ERROR_NUMBER Error number.

LDAP_OPT_ERROR_STRING Error message.

LDAP_OPT_HOST_NAME Host name.

LDAP_OPT_MATCHED_DN The matched DN.

LDAP_OPT_PROTOCOL_VERSIONThe protocol version used for communication

with the server.

LDAP_OPT_REFERRALS Automatically follow referrals.

LDAP_OPT_RESTART Restart automatically if a query aborts.

LDAP_OPT_SERVER_CONTROLS The list of default controls for the server.

LDAP_OPT_SIZELIMIT Maximum number of entries returned in a

search, list or read.

LDAP_OPT_TIMELIMIT Maximum number of seconds spent querying

the server.

array ldap_get_values(resource connection, resource
entry, string attribute)

The ldap_get_values function (Listing 17.6) returns an array of every value

for a given attribute. The values will be treated as strings. Use

ldap_get_values_len if you need to get binary data.

Listing 17.6 ldap_get_values

<?php

 //connect to LDAP server

 if(!($ldap=ldap_connect("localhost")))

 {

 die("Could not connect to LDAP server!");

 }

 //set up search criteria

 $dn = "cn=Barry Bat,dc=leonatkinson,dc=com";

 $filter = "sn=*";

 $attributes = array("mail");

 //perform search

 if(!($result = ldap_read($ldap, $dn, $filter, $attributes)))

 {

 die("Nothing Found!");

 }

 $entry = ldap_first_entry($ldap, $result);

 $values = ldap_get_values($ldap, $entry, "mail");

 print($values["count"] . " Values:\n");

 for($index=0; $index < $values["count"]; $index++)

 {

 print("{$values[$index]}\n");

 }

 print("\n");

 ldap_free_result($result);

?>

integer ldap_get_values_len(resource connection,
resource_entry, string attribute)

This function operates identically to ldap_get_values except that it works

with binary entries.

integer ldap_list(resource connection, string dn, string
filter, array attributes, boolean attributes_only, integer
size_limit, integer time_limit, integer dereference)

The ldap_list function (Listing 17.7) returns all objects at the level of the

given DN. The attributes argument is optional. If given, it limits results to

objects containing the specified attributes.

The optional attributes_only argument causes ldap_list to return only

attributes. The optional size_limit and time_limit limit, respectively, the

number of entries returned or the number of seconds spent fetching results.

The optional dereference argument controls how references are resolved.

Use a constant from Table 17.7 for this argument.

Table 17.7. LDAP Options

Dereference Mode Description

LDAP_DEREF_ALWAYS Always dereference.

LDAP_DEREF_FINDING Dereference when locating the base DN but not

otherwise.

LDAP_DEREF_NEVER Never dereference, which is the default.

Dereference Mode Description

LDAP_DEREF_SEARCHINGDereference while searching but not otherwise.

Listing 17.7 ldap_list

<?php

 /*

 ** ldap_list example

 ** This script explores the organizational units at

 ** the University of Michigan. Links are created

 ** to explore units within units.

 */

 $self = $_SERVER['PHP_SELF'];

 $dn = $_REQUEST['dn'];

 if(!isset($_REQUEST['dn']))

 {

 $dn = "o=University of Michigan, c=US";

 }

 print("Search DN: $dn
\n");

 //connect to LDAP server

 if(!($ldap=ldap_connect("ldap.itd.umich.edu")))

 {

 die("Could not connect to LDAP server!");

 }

 $filter = "objectClass=*";

 $attributes = array("ou", "cn");

 //perform search

 if(!($result = ldap_list($ldap, $dn, $filter, $attributes)))

 {

 die("Nothing Found!");

 }

 $entries = ldap_get_entries($ldap, $result);

 for($index = 0; $index < $entries["count"]; $index++)

 {

 if(isset($entries[$index]["ou"]))

 {

 print("<a href=\"$self?dn=" .

 $entries[$index]["dn"]."\">");

 print($entries[$index]["ou"][0]);

 print("");

 }

 else

 {

 print($entries[$index]["cn"][0]);

 }

 print("
\n");

 }

 ldap_free_result($result);

 // close connection

 ldap_close($ldap);

?>

boolean ldap_mod_add(resource connection, string dn,
array entry)

The ldap_mod_add function adds attributes to a DN at the attribute level.

Compare this to ldap_add, which adds attributes at the object level.

boolean ldap_mod_del(resource connection, string dn,
array entry)

Use ldap_mod_del to remove attributes from a DN at the attribute level.

Compare this to ldap_delete, which removes attributes at the object level.

boolean ldap_mod_replace(resource connection, string
dn, array entry)

The ldap_mod_replace function replaces entries for a DN at the attribute

level. Compare this to ldap_modify, which replaces attributes at the object

level.

boolean ldap_modify(resource connection, string dn,
array entry)

The ldap_modify function modifies an entry. Otherwise, it behaves identically

to ldap_add.

string ldap_next_attribute(resource connection, integer
entry, reference pointer)

The ldap_next_attribute function (Listing 17.8) is used to traverse the list

of attributes for an entry.

Listing 17.8 ldap_next_attribute

<?php

 //connect to LDAP server

 if(!($ldap=ldap_connect("ldap.itd.umich.edu")))

 {

 die("Could not connect to LDAP server!");

 }

 // list organizations in the US

 $dn = "o=University of Michigan, c=US";

 $filter = "objectClass=*";

 //perform search

 if(!($result = ldap_list($ldap, $dn, $filter)))

 {

 die("Nothing Found!");

 }

 // get all attributes for first entry

 $entry = ldap_first_entry($ldap, $result);

 $attribute = ldap_first_attribute($ldap, $entry, $pointer);

 while($attribute)

 {

 print("$attribute
\n");

 $attribute = ldap_next_attribute($ldap, $entry, $pointer);

 }

 ldap_free_result($result);

?>

integer ldap_next_entry(resource connection, resource
entry)

The ldap_next_entry function (Listing 17.9) returns the next entry in a

result set. Use ldap_first_entry to get the first entry in a result set.

Listing 17.9 ldap_next_entry

<?php

 //connect to LDAP server

 if(!($ldap=ldap_connect("ldap.itd.umich.edu")))

 {

 die("Could not connect to LDAP server!");

 }

 // list organizations in the US

 $dn = "o=University of Michigan, c=US";

 $filter = "objectClass=*";

 //perform search

 if(!($result = ldap_list($ldap, $dn, $filter)))

 {

 die("Nothing Found!");

 }

 //get each entry

 $entry = ldap_first_entry($ldap, $result);

 do

 {

 //dump all attributes for each entry

 $attribute = ldap_get_attributes($ldap, $entry);

 print("<pre>");

 print_r($attribute);

 print("</pre>\n");

 print("<hr>\n");

 }

 while($entry = ldap_next_entry($ldap, $entry));

 ldap_free_result($result);

?>

resource ldap_next_reference(resource connection,
resource entry)

The ldap_next_reference function returns the next entry in a result set.

boolean ldap_parse_reference(resource connection,
resource entry, reference referrals)

The ldap_parse_reference function fills the referrals array with the

references for the given entry.

boolean ldap_parse_result(resource connection, resource
result, reference error_number, reference dn, reference
error_message, reference referrals)

The ldap_parse_result function fetches information about the given result.

The error_number argument receives the error number generated. The

optional dn argument receives the matched DN. The optional error_message

argument receives a textual error message. The optional referrals

argument is set with an array of referrals.

integer ldap_read(resource connection, string dn, string
filter, array attributes, boolean attributes_only, integer
size_limit, integer time_limit, integer dereference)

The ldap_read function functions similarly to ldap_list and ldap_search.

Arguments are used in the same manner, but ldap_read searches only in the

base DN. The optional attributes_only argument causes ldap_list to

return only attributes. The optional size_limit and time_limit limit,

respectively, the number of entries returned or the number of seconds spent

fetching results. The optional dereference argument controls how references

are resolved. Use a constant from Table 17.7 for this argument.

boolean ldap_rename(resource connection, string dn,
string new_dn, string parent, boolean delete)

The ldap_rename function renames an existing entry identified by the dn

argument. You must also specify the new parent with the parent argument.

Setting the delete argument to TRUE causes PHP to delete the original DN.

integer ldap_search(resource connection, string dn, string
filter, array attributes, boolean attributes_only, integer
size_limit, integer time_limit, integer dereference)

The ldap_search function (Listing 17.10) behaves similarly to ldap_list and

ldap_read. The difference is that it finds matches from the current directory

down into every subtree. The attributes argument is optional and specifies

a set of attributes that all matched entries must contain.

The optional attributes_only argument causes ldap_search to return only

attributes. The optional size_limit and time_limit limit, respectively, the

number of entries returned or the number of seconds spent fetching results.

The optional dereference argument controls how references are resolved.

Use a constant from Table 17.7 for this argument.

Listing 17.10 ldap_search

<?php

 /*

 ** Function: compareEntry

 ** This function compares two entries for

 ** the purpose of sorting.

 */

 function compareEntry($left, $right)

 {

 $ln = strcmp($left["last"], $right["last"]);

 if($ln == 0)

 {

 return(strcmp($left["full"],

 $right["full"]));

 }

 else

 {

 return($ln);

 }

 }

 //connect to LDAP server

 if(!($ldap=ldap_connect("ldap.itd.umich.edu")))

 {

 die("Could not connect to LDAP server!");

 }

 //set up search criteria

 $dn = "ou=People, o=University of Michigan, c=US";

 $filter = "sn=Atkinson*";

 $attributes = array("cn", "sn");

 //perform search

 if(!($result = ldap_search($ldap, $dn, $filter, $attributes)))

 {

 die("Nothing Found!");

 }

 //get all the entries

 $entry = ldap_get_entries($ldap, $result);

 print("There are " . $entry["count"] . " people.
\n");

 //pull names out into array so we can sort them

 $person = array();

 for($i=0; $i < $entry["count"]; $i++)

 {

 $person[$i]["full"] = $entry[$i]["cn"][0];

 $person[$i]["last"] = $entry[$i]["sn"][0];

 }

 //sort by last name, then first name using

 //compareEntry (defined above)

 usort($person, "compareEntry");

 //loop over each entry

 for($i=0; $i < $entry["count"]; $i++)

 {

 print("{$person[$i]["last"]} ".

 "({$person[$i]["full"]})
\n");

 }

 //free memory used by search

 ldap_free_result($result);

?>

boolean ldap_set_option(resource connection, integer
option, value)

The ldap_set_option sets the value of an LDAP option. Use one of the

constants from Table 17.6.

boolean ldap_sort(resource connection, resource result,
string filter)

The ldap_sort function sorts a result set according to the order of the

attributes given in the filter, then by the values of those attributes.

boolean ldap_start_tls(resource connection)

The ldap_start_tls function starts Transport Security Layer (TSL)

communication with the server.

boolean ldap_unbind(resource connection)

The ldap_unbind function is an alias for ldap_close.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

17.4 MySQL

MySQL is a relational database with a license that allows you to use it cost-free

for most noncommercial purposes. It shares many features with mSQL because

it was originally conceived as a faster, more flexible replacement. Indeed,

MySQL has delivered on these goals. It easily outperforms even commercial

databases. Not surprisingly, MySQL is the database of choice for many PHP

developers.

To find out more about MySQL as well as obtain source code and binaries, visit

the Web site at <http://www.mysql.com/>. There are plenty of mirrors to aid

your download speed. If you’re looking for a printed text on MySQL, please

consider Core MySQL.

The MySQL extension was written by Zeev Suraski.

integer mysql_affected_rows(resource connection)

The mysql_affected_rows function (Listing 17.11) returns the number of rows

affected by the last query made to the specified database connection link. If the

connection argument is omitted, the last opened connection is assumed. If the

last query was an unconditional DELETE, zero will be returned. If you want to

know how many rows a SELECT statement returns, use mysql_num_rows.

Listing 17.11 mysql_affected_rows

<?php

 //connect to server as freetrade user, no password

 $db = mysql_connect("localhost", "freetrade", "");

 //select the 'ft3' database

 mysql_select_db("ft3", $db);

 //update some invoices

 $Query = "UPDATE invoice " .

 "SET Active = 'Y' " .

 "WHERE ID < 100 ";

 $dbResult = mysql_query($Query, $db);

 //let user know how many rows were updated

 $AffectedRows = mysql_affected_rows($db);

 print("$AffectedRows rows updated.
");

 //close connection

 mysql_close($db);

?>

string mysql_client_encoding(resource connection)

The mysql_client_encoding function returns the character set used by the

connection. If you omit the connection resource, PHP returns the character set

used by the last used connection.

http://www.mysql.com/default.htm

boolean mysql_close(resource connection)

Use mysql_close to close the connection to a database created with

mysql_connect. Use of this function is not strictly necessary, as all

nonpersistent links are closed automatically when the script finishes. The

connection argument is optional, and when it’s left out, the connection last

opened is closed.

resource mysql_connect(string host, string user, string
password, boolean new_link, integer flags)

The mysql_connect function begins a connection to a MySQL database at the

specified host. If the database is on a different port, follow the hostname with a

colon and a port number. You may alternatively supply a colon and the path to a

socket if connecting to localhost. This might be written as :/tmp/mysql.sock.

All the arguments are optional and will default to localhost, the name of the user

executing the script, an empty string, no new link, and no flags respectively. The

user executing the script is typically nobody, the Web server.

Connections are automatically closed when a script finishes execution, though

they may be closed earlier with mysql_close. If you attempt to open a

connection that is already open, a second connection will not be made. The

identifier of the previously open connection will be returned. If you wish to force

a new connection, set the new_link argument to TRUE.

The flags argument may be a combination of the constants shown in Table

17.8.

If PHP cannot establish a connection, this function returns FALSE.

Table 17.8. MySQL Connection Options

Option Description

MYSQL_CLIENT_COMPRESS Compress communication between client and

server.

MYSQL_CLIENT_IGNORE_SPACEThis instructs the MySQL server to ignore spaces

after function names.

MYSQL_CLIENT_INTERACTIVE Use the interactive timeout instead of the normal

timeout.

MYSQL_CLIENT_SSL Encrypt communication between client and server

using SSL.

boolean mysql_data_seek(resource result, integer row)

The mysql_data_seek function (Listing 17.12) moves the internal row pointer of

a result set to the specified row, with rows counting from zero. Use this function

with mysql_fetch_row to jump to a specific row. The result argument must

have been returned from mysql_query or a similar function.

Listing 17.12 mysql_data_seek

<?php

 //connect to server as freetrade user, no password

 $dbLink = mysql_pconnect("localhost", "freetrade", "");

 //select the 'ft3' database

 mysql_select_db("ft3", $dbLink);

 //get states from tax table

 $Query = "SELECT State FROM tax ";

 $dbResult = mysql_query($Query, $dbLink);

 //jump to fifth row

 mysql_data_seek($dbResult, 4);

 //get row

 $row = mysql_fetch_row($dbResult);

 //print state name

 print($row[0]);

?>

string mysql_db_name(integer result, integer row, string
field)

This function is intended to pull results from a call to mysql_db_list. Instead,

execute a SHOW DATABASES statement with mysql_query.

integer mysql_errno(resource connection)

The mysql_errno function (Listing 17.13) returns the error number of the last

database action. If the optional connection identifier is left out, the last

connection you used will be assumed.

Listing 17.13 mysql_errno, mysql_error

<?php

 //connect to server as freetrade user, no password

 $dbLink = mysql_connect("localhost", "freetrade", "");

 //select the 'ft3' database

 mysql_select_db("ft3", $dbLink);

 //try to execute a bad query (missing fields)

 $Query = "SELECT FROM tax ";

 if(!($dbResult = mysql_query($Query, $dbLink)))

 {

 // get error and error number

 $errno = mysql_errno($dbLink);

 $error = mysql_error($dbLink);

 print("ERROR $errno: $error
\n");

 }

?>

string mysql_error(resource connection)

Use mysql_error to get the textual description of the error for the last database

action. If the optional link identifier is left out, the last connection will be

assumed.

string mysql_escape_string(string text)

The mysql_escape_string function escapes special characters in a text string,

making it ready for placement inside single quotes. Compare this function to

mysql_real_escape_string, which pays attention to the encoding character

set.

array mysql_fetch_array(resource result, integer type)

The mysql_fetch_array function (Listing 17.14) returns an array that

represents all the fields for a row in the result set. Each call produces the next

row until no rows are left, in which case FALSE is returned. By default, each field

value is stored twice: once indexed by offset starting at zero and once indexed

by the name of the field. This behavior can be controlled with the type

argument. If the MYSQL_NUM constant is used, PHP indexes elements by field

numbers only. If the MYSQL_ASSOC constant is used, PHP indexes elements by

field names only. You can also use MYSQL_BOTH to force the default.

Compare this function to mysql_fetch_object and mysql_fetch_row.

Listing 17.14 mysql_fetch_array

<?php

 //connect to server as freetrade user, no password

 $dbLink = mysql_connect("localhost", "freetrade", "");

 //select the 'ft3' database

 mysql_select_db("ft3", $dbLink);

 //get rates from tax table

 $Query = "SELECT State, Rate " .

 "FROM tax " .

 "LIMIT 10";

 $dbResult = mysql_query($Query, $dbLink);

 // get each row

 while($row = mysql_fetch_array($dbResult, MYSQL_ASSOC))

 {

 // print state and rate

 print("{$row["State"]} = {$row["Rate"]}
\n");

 }

?>

array mysql_fetch_assoc(resource result)

The mysql_fetch_assoc is equivalent to calling mysql_fetch_array with the

MYSQL_ASSOC type.

object mysql_fetch_field(resource result, integer field)

Use the mysql_fetch_field function (Listing 17.15) to get information about a

field in a result set. Fields are numbered starting with zero. The return value is

an object with properties described in Table 17.9.

If the field argument is left out, the next field in the set will be returned. This

behavior allows you to loop through each field easily.

Table 17.9. Properties of mysql_fetch_field Object

Property Description

blob TRUE if the column is a blob

max_length Maximum length

multiple_key TRUE if the column is a nonunique key

name Name of the column

not_null TRUE if the column cannot be null

numeric TRUE if the column is numeric

primary_key TRUE if the column is a primary key

table Name of the table or alias used

type Type of the column

unique_key TRUE if the column is a unique key

unsigned TRUE if the column is unsigned

zerofill TRUE if the column is zero-filled

Listing 17.15 mysql_fetch_field

<?php

 //connect to server as freetrade user, no password

 $dbLink = mysql_connect("localhost", "freetrade", "");

 //select the 'ft3' database

 mysql_select_db("ft3", $dbLink);

 //get everything from address table

 $Query = "SELECT * " .

 "FROM address a, user u " .

 "WHERE u.Address = a.ID ";

 $dbResult = mysql_query($Query, $dbLink);

 // get description of each field

 while($Field = mysql_fetch_field($dbResult))

 {

 print("$Field->table, $Field->name, $Field->type
\n");

 }

?>

array mysql_fetch_lengths(resource result)

Use mysql_fetch_lengths to get an array of the lengths for each of the fields in

the last row fetched. This can be helpful if columns contain binary data since

embedded NULL characters will break strlen.

object mysql_fetch_object(resource result)

The mysql_fetch_object function (Listing 17.16) is similar to

mysql_fetch_array and mysql_fetch_row. Instead of an array, it returns an

object. Each field in the result set is a property in the returned object. Each call

to mysql_fetch_object returns the next row, or FALSE if there are no rows

remaining. This allows you to call mysql_fetch_object in the test condition of a

while loop to get every row.

Listing 17.16 mysql_fetch_object

<?php

 //connect to server as freetrade user, no password

 $dbLink = mysql_connect("localhost", "freetrade", "");

 //select the 'ft3' database

 mysql_select_db("ft3", $dbLink);

 //get unique cities from address table

 $Query = "SELECT DISTINCT City, StateProv " .

 "FROM address ";

 $dbResult = mysql_query($Query, $dbLink);

 // get each row

 while($row = mysql_fetch_object($dbResult))

 {

 // print name

 print("$row->City, $row->StateProv
");

 }

?>

array mysql_fetch_row(resource result)

The mysql_fetch_row function (Listing 17.17) returns an array that represents

all the fields for a row in the result set. Each call produces the next row until no

rows are left, in which case FALSE is returned. Each field value is indexed

numerically, starting with zero. Compare this function to mysql_fetch_array

and mysql_fetch_object. There isn’t much difference in performance between

these three functions.

Listing 17.17 mysql_fetch_row

<?php

 //connect to server as freetrade user, no password

 $dbLink = mysql_connect("localhost", "freetrade", "");

 //select the 'ft3' database

 mysql_select_db("ft3", $dbLink);

 //get unique cities from address table

 $Query = "SELECT City, StateProv " .

 "FROM address ";

 $dbResult = mysql_query($Query, $dbLink);

 //get each row

 while($row = mysql_fetch_row($dbResult))

 {

 // print city, state

 print("$row[0], $row[1]
");

 }

?>

string mysql_field_flags(resource result, integer field)

Use mysql_field_flags to get a description of the flags on the specified field.

The flags are returned in a string and separated by spaces. The flags you can

expect are auto_increment, binary, blob, enum, multiple_key, not_null,

primary_key, timestamp, unique_key, unsigned, and zerofill. Some of these

flags may be available only in the newest versions of MySQL.

integer mysql_field_len(resource result, integer field)

Use mysql_field_len to get the maximum number of characters to expect from

a field. The fields are numbered from zero.

string mysql_field_name(resource result, integer field)

Use mysql_field_name to get the name of a column. The field argument is an

offset numbered from zero.

boolean mysql_field_seek(resource result, integer field)

The mysql_field_seek function (Listing 17.18) moves the internal field pointer

to the specified field. PHP numbers fields starting with zero. The next call to

mysql_fetch_field will get information from this field.

Listing 17.18 mysql_field_seek

<?php

 //connect to server as freetrade user, no password

 $dbLink = mysql_connect("localhost", "freetrade", "");

 //select the 'ft3' database

 mysql_select_db("ft3", $dbLink);

 // get everything from address table

 $Query = "SELECT * " .

 "FROM address ";

 $dbResult = mysql_query($Query, $dbLink);

 //skip to second field

 mysql_field_seek($dbResult, 1);

 //get description of each field

 while($Field = mysql_fetch_field($dbResult))

 {

 print("$Field->table, $Field->name, $Field->type
");

 }

?>

string mysql_field_table(resource result, integer field)

The mysql_field_table function returns the name of the table for the specified

field. PHP numbers fields starting with zero. If an alias is used, the alias is

returned.

string mysql_field_type(resource result, integer field)

Use mysql_field_type to get the type of a particular field in the result set.

boolean mysql_free_result(resource result)

Use mysql_free_result to free any memory associated with the specified result

set. This is not strictly necessary, as this memory is automatically freed when a

script finishes executing.

string mysql_get_client_info()

The mysql_get_client_info function returns a string describing the version of

the client library compiled into PHP.

string mysql_get_host_info(resource connection)

The mysql_get_host_info function returns a string describing the type of

connection, in the form localhost via UNIX socket.

integer mysql_get_proto_info(resource connection)

This function returns the protocol version used for the given connection.

string mysql_get_server_info(resource connection)

This function returns the version of MySQL running on the server.

string mysql_info(resource connection)

The mysql_info function returns a string describing the results of certain

statements: ALTER TABLE, INSERT, LOAD DATA INFILE, UPDATE. For other

statements, this function returns an empty string. Call this function immediately

after mysql_query.

integer mysql_insert_id(resource connection)

After inserting into a table with an auto_increment field, the mysql_insert_id

function (Listing 17.19) returns the ID assigned to the inserted row. If the

connection argument is left out, the most recent connection will be used.

You can also get this value with MySQL’s LAST_INSERT_ID function. This may be

necessary in the situation where an auto_increment column exceeds the

maximum value of a PHP integer.

Listing 17.19 mysql_insert_id

<?php

 //connect to server as freetrade user, no password

 $dbLink = mysql_connect("localhost", "freetrade", "");

 //select the 'ft3' database

 mysql_select_db("ft3", $dbLink);

 //insert a row

 $Query = "INSERT INTO user (Login, Password) " .

 "VALUES('leon', 'secret') ";

 $dbResult = mysql_query($Query, $dbLink);

 //get id

 print("ID is " . mysql_insert_id($dbLink));

?>

integer mysql_list_dbs(resource connection)

The mysql_list_dbs function queries the server for a list of databases. It

returns a result pointer that may be used with mysql_fetch_row and similar

functions. Instead of using this function, use a SHOW DATABASES statement with

mysql_query.

integer mysql_list_fields(string database, string table,
resource connection)

The mysql_list_fields function (Listing 17.20) returns a result pointer to a

query on the list of fields for a specified table. The result pointer may be used

with any of the functions that get information about columns in a result set:

mysql_field_flags, mysql_field_len, mysql_field_name,

mysql_field_type. The connection argument is optional.

Listing 17.20 mysql_list_fields

<?php

 //connect to server

 $dbLink = mysql_connect("localhost", "freetrade", "");

 //get list of fields

 $dbResult = mysql_list_fields("ft3", "invoice", $dbLink);

 //start HTML table

 print("<table>\n");

 print("<tr>\n");

 print("<th>Name</th>\n");

 print("<th>Type</th>\n");

 print("<th>Length</th>\n");

 print("<th>Flags</th>\n");

 print("</tr>\n");

 //loop over each field

 for($i = 0; $i < mysql_num_fields($dbResult); $i++)

 {

 print("<tr>\n");

 print("<td>" . mysql_field_name($dbResult, $i) . "</td>\n");

 print("<td>" . mysql_field_type($dbResult, $i) . "</td>\n");

 print("<td>" . mysql_field_len($dbResult, $i) . "</td>\n");

 print("<td>" . mysql_field_flags($dbResult, $i) .

 "</td>\n");

 print("</tr>\n");

 }

 //close HTML table

 print("</table>\n");

?>

resource mysql_list_processes(resource connection)

This function returns a result identifier for a query of processes on the server.

Instead, use a SHOW PROCESSLIST statement with mysql_query.

integer mysql_list_tables(string database, resource
connection)

Use mysql_list_tables to get a result pointer to a list of tables for a specified

database. Instead, use a SHOW TABLES statement with mysql_query.

integer mysql_num_fields(resource result)

The mysql_num_fields function returns the number of fields in a result set.

integer mysql_num_rows(resource result)

The mysql_num_rows function returns the number of rows in a result set.

integer mysql_pconnect(string host, string user, string
password, integer flags)

The mysql_pconnect function operates like mysql_connect except that the

connection will be persistent. That is, it won’t be closed when the script ends.

The connection will last as long as the server process lasts, so that if a

connection is attempted later from the same process, the overhead of opening a

new connection will be avoided. The flags argument may be a combination of

the constants shown in Table 17.8.

A link identifier is returned. This identifier is used in many of the other functions

in this section.

boolean mysql_ping(resource connection)

The mysql_ping function returns TRUE if the connection with the server remains

open. Use this function in scripts that run for a long time without using an open

connection. You can test whether the server shut down the connection for

inactivity and reconnect if necessary.

resource mysql_query(string query, resource connection,
nteger result_mode)

Use mysql_query to execute a query. If the connection argument is omitted,

the last connection made is used. If there has been no previous connection, PHP

will connect to the local host. The optional result_mode argument controls

whether PHP buffers the result set, which is the default. Use

MYSQL_STORE_RESULT to emphasize the default. Use MYSQL_USE_RESULT to fetch

rows in unbuffered mode. See mysql_unbuffered_query.

If the query performs an insert, delete, or update, a boolean value will be

returned, indicating success or failure. Select queries return a result identifier.

string mysql_real_escape_string(string text, resource
connection)

The mysql_real_escape_string function escapes a string, making it ready for

placement inside single quotes in an SQL statement. This function

accommodates the character encoding used on the server.

string mysql_result(resource result, integer row, string field)

The mysql_result function returns the value of the specified field in the

specified row. The field argument may be a number, in which case it is

considered a field offset. It may also be the name of a column, either with the

table name or without. It could also be an alias. In general, this function is very

slow. It’s better to use mysql_fetch_row or a similar function.

boolean mysql_select_db(string database, resource
connection)

Use mysql_select_db to select the default database. You may also use an SQL

USE statement to select the default database.

array mysql_stat(resource connection)

The mysql_stat function returns an array with information about the server

status. Instead, use a SHOW STATUS statement with mysql_query.

integer mysql_thread_id(resource connection)

This function returns the thread ID used for the given connection.

resource mysql_unbuffered_query(string query, resource
connection, integer result_mode)

The mysql_unbuffered_query function executes a query exactly as

mysql_query does except that it defaults to unbuffered mode. In unbuffered

mode, PHP reads from the result set only as necessary instead of reading the

entire result set into memory. The downside to this mode is that if you execute

another query on the same connection, the remainder of the result set is lost.

However, it definitely conserves memory. This may be helpful with queries that

return huge result sets, but keep in mind that you can limit the number of rows

in a result set with the LIMIT clause.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

17.5 ODBC

Open Database Connectivity (ODBC) has become an industry standard for

communicating with a database. The model is simple. Client software is

designed to use an ODBC API. Vendors write drivers that implement this API

on the client side and talk natively to their database on the server side. This

allows application developers to write one application that can communicate

with many different databases simply by changing the driver, which is an

external file.

ODBC uses SQL as its language for communicating with any database, even

when the database isn’t relational. Microsoft offers drivers that allow you to

query text files and Excel workbooks. A good place to start learning more

about ODBC is Microsoft’s Developer’s Network site:

<http://msdn.microsoft.com/>.

Microsoft has offered free ODBC drivers for some time, but only for its

operating systems. ODBC drivers for UNIX are harder to come by. Most

database manufacturers offer drivers, and there are third parties, like

Intersolv, that sell optimized drivers for both Windows and UNIX platforms.

Most of the databases with native support in PHP can also be accessed via

ODBC. There are also numerous databases that can be accessed only via

ODBC by PHP, such as Solid and Empress.

Stig Bakken, Andreas Karajannis, and Frank Kromann have contributed to the

creation of the ODBC extension.

boolean odbc_autocommit(resource connection, boolean
on)

The odbc_autocommit function (Listing 17.21) sets whether queries are

automatically committed when executed. By default, it is on. The connection

argument is an integer returned by the odbc_connect or odbc_pconnect

functions. This function has to be used intelligently, as not all ODBC drivers

support commits and rollbacks.

Listing 17.21 odbc_autocommit

<?php

 //connect to database

 $Link = odbc_connect("inventory", "guest", "guest");

 //turn off auto-commit

 odbc_autocommit($Link, FALSE);

?>

boolean odbc_binmode(resource result, integer mode)

Use odbc_binmode (Listing 17.22) to set the way binary columns return data

for a result set. When binary data are returned by the driver, each byte is

http://msdn.microsoft.com/default.htm

represented by hexadecimal codes. By default, PHP will convert these codes

into raw binary data. If you have to use the odbc_longreadlen function to set

the maximum length of long data to anything other than zero, then the

modes in Table 17.10 apply. If the maximum read length is zero, the data are

always converted to raw binary data.

Table 17.10. Binary Column Modes

Mode Description

ODBC_BINMODE_PASSTHRU Pass through as binary data.

ODBC_BINMODE_RETURN Return as hexadecimal codes.

ODBC_BINMODE_CONVERT Return with data converted to a string.

Listing 17.22 odbc_binmode

<?php

 //get a GIF from a database and send it to browser

 //connect to database

 $Connection = odbc_connect("inventory", "admin", "secret");

 //execute query

 $Query = "SELECT Data " .

 "FROM Picture " .

 "WHERE ID=2 ";

 $Result = odbc_do($Connection, $Query);

 //make sure binmode is set for binary pass through

 odbc_binmode($Result, ODBC_BINMODE_PASSTHRU);

 //make sure longreadlen mode

 //is set for echo to browser

 odbc_longreadlen($Result, 0);

 //get the first row, ignore the rest

 odbc_fetch_row($Result);

 //send header so browser knows it's a gif

 header("Content-type: image/gif");

 //get the picture

 odbc_result($Result, 1);

?>

odbc_close(resource connection)

Use odbc_close (Listing 17.23) to close a connection to a database. If there

are open transactions for the connection, an error will be returned and the

connection will not be closed.

Listing 17.23 odbc_close

<?php

 //connect to database

 $Link = odbc_connect("inventory", "guest", "guest");

 // execute query

 $Query = "SELECT CategoryName, Room, Description,

 PurchasePrice ";

 $Query .= "FROM [Household Inventory] ";

 $Result = odbc_do($Link, $Query);

 //loop over results

 while(odbc_fetch_row($Result))

 {

 print(odbc_result($Result, 1) . ", ");

 print(odbc_result($Result, 2) . ", ");

 print(odbc_result($Result, 3) . ", ");

 print(odbc_result($Result, 4) . "
");

 }

 //close connection

 odbc_close($Link);

?>

odbc_close_all()

The odbc_close_all function (Listing 17.24) closes every connection you

have open to ODBC data sources. Like odbc_close, it will report an error if

you have an open transaction on one of the connections.

Listing 17.24 odbc_close_all

<?php

 //connect to database three times

 $Connection1 = odbc_connect("inventory", "guest", "guest");

 $Connection2 = odbc_connect("inventory", "guest", "guest");

 $Connection3 = odbc_connect("inventory", "guest", "guest");

 //close all the connections

 odbc_close_all();

?>

resource odbc_columnprivileges(resource connection,
string catalog, string schema, string table, string column)

The odbc_columnprivileges function (Listing 17.25) returns information

about a table’s columns and privileges. Use the return value with any of the

row-fetching functions. ODBC drivers are not required to implement the C API

call behind this function, SQLColumnPrivileges. So, calling this function with

a nonsupporting driver may generate an error or simply return no results.

The catalog and schema arguments have different meanings depending on

the driver. The column argument may contain % and _ wildcards. Use % alone

to get the entire list. The other arguments may not contain wildcards.

The returned result set contains the following columns: TABLE_QUALIFIER,

TABLE_OWNER, TABLE_NAME, GRANTOR, GRANTEE, PRIVILEGE,

IS_GRANTABLE.

Listing 17.25 odbc_columnprivileges

<?php

 //connect to database

 $Link = odbc_connect("SQLServer-Local", "dbo", "secret");

 $Result = odbc_columnprivileges($Link, "Store", "dbo",

 "Items","%");

 //print results

 odbc_result_all($Result);

 //close connection

 odbc_close($Link);

?>

resource odbc_columns(resource connection, string
catalog, string schema, string table, string column)

The odbc_columns function (Listing 17.26) returns a result set describing the

columns in a table. Use the return value with any of the row-fetching

functions. The catalog and schema arguments have different meanings

depending on the driver. The schema, table, and column arguments may

contain % and _ wildcards. The catalog argument may not contain wildcards.

The returned result set contains the following columns: TABLE_CAT,

TABLE_SCHEM, TABLE_NAME, COLUMN_NAME, DATA_TYPE, TYPE_NAME,

COLUMN_SIZE, BUFFER_LENGTH, DECIMAL_DIGITS, NUM_PREC_RADIX, NULLABLE,

REMARKS, COLUMN_DEF, SQL_DATA_TYPE, SQL_DATTIME_SUB,

CHAR_OCTET_LENGTH, ORDINAL_POSITION, IS_NULLABLE.

Listing 17.26 ODBC functions returning metadata

<?php

 /*

 ** This script tests the functions that return meta data.

 ** Note the slightly tricky use of the ternary operator.

 */

 $catalog = "ft3";

 $schema = "";

 //connect to database

 $Link = odbc_connect("mysql-galt", "leon", "");

 print("<h1>odbc_columns</h1>");

 $Result = @odbc_columns($Link, "", "", "item");

 $Result ? odbc_result_all($Result) : print('Unsupported');

 print("<h1>odbc_foreignkeys</h1>");

 $Result = @odbc_foreignkeys($Link, $catalog, $schema, "user");

 $Result ? odbc_result_all($Result) : print('Unsupported');

 print("<h1>odbc_gettypeinfo</h1>");

 $Result = @odbc_gettypeinfo($Link);

 $Result ? odbc_result_all($Result) : print('Unsupported');

 print("<h1>odbc_primarykeys</h1>");

 $Result = @odbc_primarykeys(Link, $catalog, $schema, "user");

 $Result ? odbc_result_all($Result) : print('Unsupported');

 print("<h1>odbc_procedurecolumns</h1>");

 $Result = @odbc_procedurecolumns($Link);

 $Result ? odbc_result_all($Result) : print('Unsupported');

 print("<h1>odbc_procedures</h1>");

 $Result = @odbc_procedures($Link);

 $Result ? odbc_result_all($Result) : print('Unsupported');

 print("<h1>odbc_specialcolumns</h1>");

 $Result = @odbc_specialcolumns($Link, $catalog, $schema,

 "user", SQL_SCOPE_SESSION, SQL_NULLABLE);

 $Result ? odbc_result_all($Result) : print('Unsupported');

 print("<h1>odbc_statistics</h1>");

 $Result = @odbc_statistics($Link, $catalog, $schema,

 "user", SQL_INDEX_ALL, SQL_QUICK);

 $Result ? odbc_result_all($Result) : print('Unsupported');

 print("<h1>odbc_tableprivileges</h1>");

 $Result = @odbc_tableprivileges($Link, $catalog, $schema,

 "%");

 $Result ? odbc_result_all($Result) : print('Unsupported');

 print("<h1>odbc_tables</h1>");

 $Result = @odbc_tables($Link, $catalog, $schema, "%");

 $Result ? odbc_result_all($Result) : print('Unsupported');

 //close connection

 odbc_close($Link);

?>

boolean odbc_commit(resource connection)

Use odbc_commit to commit all pending actions for the specified connection.

If automatic commit is turned on, as is default, this function has no effect.

Also, make sure your driver supports transactions before using this function.

resource odbc_connect(string dsn, string user, string
password, integer cursor_type)

Use odbc_connect to connect to an ODBC data source. A connection identifier

is returned, which is used by most of the other functions in this section. The

user and password arguments are required, so if your driver does not require

them, pass empty strings.

The optional cursor_type argument forces the use of a particular cursor so

that you may avoid problems with some ODBC drivers. For example, using

the SQL_CUR_USE_ODBC constant for cursor type may avoid problems with

calling stored procedures or getting row numbers. Use one of the following

constants for cursor_type: SQL_CUR_DEFAULT, SQL_CUR_USE_DRIVER,

SQL_CUR_USE_IF_NEEDED, SQL_CUR_USE_ODBC.

string odbc_cursor(resource result)

Use odbc_cursor to fetch the name of a cursor for a result set.

array odbc_data_source(resource connection, integer
type)

Use the odbc_data_source function (Listing 17.27) to get a list of available

ODBC data sources. First, open a connection with a valid data source, then

call odbc_data_source with the type argument set to SQL_FETCH_FIRST.

Follow that with calls with type set to SQL_FETCH_NEXT until the function

returns FALSE.

The returned array has two elements: server and description. The first

element is the name of the data source, otherwise known as a DSN.

Some drivers return a warning when fetching after the last entry. Prefix the

function call with an at symbol (@) to suppress these from showing in the

browser.

Listing 17.27 odbc_data_source

<?php

 //connect to database

 $Link = odbc_connect("mysql-galt", "leon", "");

 //get list of data sources

 $d = @odbc_data_source($Link, SQL_FETCH_FIRST);

 while($d !== FALSE)

 {

 print("{$d['server']}: {$d['description']}
\n");

 $d = @odbc_data_source($Link, SQL_FETCH_NEXT);

 }

 //close connection

 odbc_close($Link);

?>

integer odbc_do(resource connection, string query)

Use odbc_do as an alias to odbc_exec.

string odbc_error(resource connection)

The odbc_error function returns a six-digit number describing the current

error state for the last active database link. You may optionally specify an

open link.

string odbc_errormsg(resource connection)

The odbc_errormsg function returns a message describing the current error

state for the last active database link. You may optionally specify an open

link.

integer odbc_exec(resource connection, string query)

Use odbc_exec to execute a query on a connection. A result identifier is

returned and is used in many of the other functions for fetching result data.

integer odbc_execute(resource result, array parameters)

The odbc_execute function executes a prepared statement. The result

argument is an identifier returned by odbc_prepare. The parameters

argument is an array passed by reference and will be set with the value of the

result columns. PHP considers parameters wrapped in single quotes as paths

to files. In this case, PHP reads from or writes to the files. See odbc_prepare

for an example of use.

integer odbc_fetch_into(resource result, array fields,
integer row)

The odbc_fetch_into function (Listing 17.28) fetches a row from a result set

and places it in the fields argument. It returns the number of columns in the

row. The row argument may be omitted, in which case the next row in the set

is returned.

Listing 17.28 odbc_fetch_into

<?php

 //connect to database

 $Link = odbc_connect("mysql-galt", "leon", "");

 //switch to freetrade database

 odbc_do($Link, "USE ft3");

 // execute query

 $Query = "SELECT Name, SalePrice " .

 $Query .= "FROM sku ";

 $Result = odbc_do($Link, $Query);

 while(odbc_fetch_into($Result, $field))

 {

 print($field[0] . ": $" .

 number_format($field[1], 2) . "
");

 }

 odbc_close($Link);

?>

boolean odbc_fetch_row(resource result, integer row)

Use odbc_fetch_row to get a row of data from a result set. The data for the

row is stored in internal memory, ready to be retrieved with the odbc_result

function. The row argument is optional and, if left out, the next available row

will be returned. FALSE will be returned when there are no more rows in the

result set. See the odbc_result function for an example of use.

integer odbc_field_len(resource result, integer field)

Use odbc_field_len (Listing 17.29) to get the length of a field in a result set.

Fields are numbered starting with 1.

Listing 17.29 odbc_field_len

<?php

 //connect to database

 $Link = odbc_connect("mysql-galt", "leon", "");

 //switch to freetrade database

 odbc_do($Link, "USE ft3");

 // execute query

 $Query = "SELECT * " .

 $Query .= "FROM sku ";

 $Result = odbc_do($Link, $Query);

 print("<table border=\"1\">\n");

 print("<tr>\n");

 print("<th>Number</th>");

 print("<th>Name</th>");

 print("<th>Type</th>");

 print("<th>Length</th>");

 print("<th>Precision</th>");

 print("<th>Scale</th>");

 print("</tr>\n");

 $cols = odbc_num_fields($Result);

 for($c=1; $c <= $cols; $c++)

 {

 print("<tr>\n");

 print("<td>$c</td>");

 print("<td>".odbc_field_name($Result, $c)."</td>");

 print("<td>".odbc_field_type($Result, $c)."</td>");

 print("<td>".odbc_field_len($Result, $c)."</td>");

 print("<td>".odbc_field_precision($Result, $c)."</td>");

 print("<td>".odbc_field_scale($Result, $c)."</td>");

 print("</tr>\n");

 }

 print("</table>\n");

 //close connection

 odbc_close($Link);

?>

string odbc_field_name(resource result, integer field)

Use odbc_field_name to get the name of a field in a result set. Fields are

numbered starting with 1.

integer odbc_field_num(resource result, string name)

The odbc_field_num function returns the number of the named column in the

result set.

string odbc_field_precision(resource result, integer field)

Use odbc_field_precision to get the precision of a field in a result set.

Fields are numbered starting with 1.

string odbc_field_scale(resource result, integer field)

Use odbc_field_scale to get the scale of a field in a result set. Fields are

numbered starting with 1.

string odbc_field_type(resource result, integer field)

Use odbc_field_type to get the type of a field in a result set. Fields are

numbered starting with 1.

resource odbc_foreignkeys(resource connection, string
primary_catalog, string primary_schema, string

primary_table, string foreign_catalog, string
foreign_schema, string foreign_table)

The odbc_foreignkeys function returns a result set describing foreign keys if

the database server supports them. PHP requires all arguments, but you may

supply empty strings. Some drivers do not use the catalog and schema

values.

The values returned by this function depend on whether you provide a value

for primary_table or foreign_table. If you give only a value for

primary_table, the result set contains that primary key for that table and

any foreign keys that point to it. If you give only a value for foreign_table,

the result set contains all the foreign keys in that table and the primary keys

to which they point. If you specify both primary_table and foreign_table,

the result set contains only the foreign key in the foreign table that points to

the primary key in the primary table.

The result set contains the following columns: DELETE_RULE, FKCOLUMN_NAME,

FKTABLE_CAT, FKTABLE_NAME, FKTABLE_SCHEM, FK_NAME, KEY_SEQ,

PKCOLUMN_NAME, PKTABLE_CAT, PKTABLE_NAME, PKTABLE_SCHEM,

PK_NAME_DEFERABILITY, UPDATE_RULE.

boolean odbc_free_result(resource result)

Use odbc_free_result to free the memory associated with the result set.

This is not strictly necessary, but it’s a good idea if you are worried about

running out of memory. If autocommit is disabled and you free a result set

before calling odbc_commit, the database driver performs a transaction

rollback.

resource odbc_gettypeinfo(resource connection)

The odbc_gettypeinfo function returns a result set describing the types

supported by the data source. The result set contains the following columns:

TYPE_NAME, DATA_TYPE, COLUMN_SIZE, LITERAL_PREFIX, LITERAL_SUFFIX,

CREATE_PARAMS, NULLABLE, CASE_SENSITIVE, SEARCHABLE,

UNSIGNED_ATTRIBUTE, FIXED_PREC_SCALE, AUTO_UNIQUE_VALUE,

LOCAL_TYPE_NAME, MINIMUM_SCALE, MAXIMUM_SCALE, SQL_DATATYPE,

SQL_DATETIME_SUB, NUM_PREC_RADIX, INTERVAL_PRECISION.

boolean odbc_longreadlen(resource result, integer length)

Use odbc_longreadlen to set the maximum length for values of any columns

of type long. This includes binary columns such as longvarbinary. By

default, the maximum length is zero, which has the special meaning of

causing fetched columns to be echoed to the browser. Any other positive

number will cause returned values to be truncated to the specified length.

Note that it is not always apparent that a field is considered to be a long by

the ODBC driver. For example, a memo column in Microsoft Access is a long.

Column contents appearing in the wrong place in an HTML page is a sign of

fetching a long where you didn’t expect it. One strategy to avoid these

problems is to always call longreadlen.

boolean odbc_next_result(resource result)

The odbc_next_result function advances the row pointer in the result set.

integer odbc_num_fields(resource result)

Use odbc_num_fields to find the number of fields in the result set.

integer odbc_num_rows(resource result)

The odbc_num_rows function returns the number of rows in the result set or

the number of rows affected by a DELETE or INSERT if the driver supports it.

Some drivers do not support returning the number of rows in a result set and

return �1 instead.

resource odbc_pconnect(string dsn, string user, string
password)

The odbc_pconnect function operates similarly to odbc_connect. A

connection is attempted to the specified Data Source Name (DSN) and a

connection identifier is returned. The connection should not be closed with

odbc_close. It will persist as long as the Web server process. The next time a

script executes odbc_pconnect, PHP will first check for existing connections.

integer odbc_prepare(resource connection, string query)

The odbc_prepare function (Listing 17.30) parses a query and prepares it for

execution. A result identifier that may be passed to odbc_execute is returned.

Preparing statements can be more efficient than making the driver reparse

statements. This is usually the case where you have many rows to insert into

the same table. To specify a value to be filled in later, use a question mark.

Listing 17.30 odbc_execute, odbc_prepare

<?php

 //connect to database

 $Link = odbc_connect("mysql-galt", "leon", "");

 //use the freetrade database

 odbc_do($Link, "USE ft3");

 //prepare query for inserting new SKUs for item 1

 $Query = "INSERT INTO sku (Item, Name, SalePrice) ";

 $Query .= "VALUES(1, ?, ?) ";

 $Result = odbc_prepare($Link, $Query);

 //insert these rows

 //2003 Calendar, 20.00

 //2004 Calendar, 20.50

 //2005 Calendar, 21.00

 for($index = 2003; $index <= 2005; $index++)

 {

 $values[0] = "$index Calendar";

 $values[1] = 20.00 + (0.50 * ($index-2000));

 odbc_execute($Result, $values);

 }

 //dump all SKUs for item 1

 $Query = "Select ID, Name, SalePrice " .

 "FROM sku " .

 "WHERE Item = 1";

 $Result = odbc_do($Link, $Query);

 odbc_result_all($Result, 'border="1"');

 //close connection

 odbc_close($Link);

?>

resource odbc_primarykeys(resource connection, string
catalog, string schema, string table)

Use this function to get a result set describing the columns that make up the

primary key of the given table. Not all ODBC drivers support the catalog and

schema arguments, in which case you may pass an empty string. The result

set contains the following columns: TABLE_QUALIFIER, TABLE_OWNER,

TABLE_NAME, COLUMN_NAME, KEY_SEQ, PK_NAME.

resource odbc_procedurecolumns(resource connection,
string catalog, string schema, string table, string column)

Use this function to get a result set describing stored procedures. Not all

ODBC drivers support the catalog and schema arguments, in which case you

may pass an empty string. Other than the database link, all arguments are

optional. The result set contains the following columns:

PROCEDURE_QUALIFIER, PROCEDURE_OWNER, PROCEDURE_NAME, COLUMN_NAME,

COLUMN_TYPE, DATA_TYPE, TYPE_NAME, PRECISION, LENGTH, SCALE, RADIX,

NULLABLE, REMARKS.

resource odbc_procedures(resource connection, string
catalog, string schema, string procedure)

Use this function to get a result set describing stored procedures. Not all

ODBC drivers support the catalog and schema arguments, in which case you

may pass an empty string. Other than the database link, all arguments are

optional. The result set contains the following columns:

PROCEDURE_QUALIFIER, PROCEDURE_OWNER, PROCEDURE_NAME,

NUM_INPUT_PARAMS, NUM_OUTPUT_PARAMS, NUM_RESULT_SETS, REMARKS,

PROCEDURE_TYPE.

string odbc_result(resource result, string field)

Use odbc_result (Listing 17.31) to get the value of a field for the current

row. Fields may be referenced by number or name. If using numbers, start

counting fields with 1. If you specify a field by name, do not include the table

name.

This function is affected by the settings controlled by odbc_binmode and

odbc_longreadlen. An important fact to keep in mind is that while in most

cases the value of the field will be returned, fields that contain long data will

be echoed to the browser instead by default. Use odbc_longreadlen to

change this behavior.

Listing 17.31 odbc_result

<?php

 //connect to database

 $Link = odbc_connect("mysql-galt", "leon", "");

 //switch to ft3 database

 odbc_do($Link, "USE ft3");

 //dump all SKUs

 $Query = "Select Name, SalePrice " .

 "FROM sku ";

 $Result = odbc_do($Link, $Query);

 while(odbc_fetch_row($Result))

 {

 $name = odbc_result($Result, 1);

 $price = odbc_result($Result, 2);

 print("$name: $price
\n");

 }

 //close connection

 odbc_close($Link);

?>

integer odbc_result_all(resource result, string format)

The odbc_result_all function will dump all the rows for a result set to the

browser. The number of rows is returned. The dumped rows are formatted in

a table. The fields are printed in a header row with TH tags. The optional

format argument will be inserted inside the initial table tag so that you may

set table attributes.

boolean odbc_rollback(resource connection)

Use odbc_rollback to abandon all pending transactions. By default all

queries are automatically committed, but this behavior may be modified with

odbc_autocommit. Not all databases support transactions.

integer odbc_setoption(integer id, integer function, integer
option, integer parameter)

The odbc_setoption function changes the configuration of the ODBC driver

for an entire connection or a single result set. Its purpose is to allow access to

any ODBC setting in order to avoid problems with buggy ODBC drivers. To use

this function, you ought to understand ODBC in greater detail than the

average user does. You will need to know the values of the various options

available to you.

The id argument is either a connection identifier or a result set identifier.

Since odbc_setoption wraps two C API functions, SQLSetConnectOption and

SQLSetStmtOption, you must specify which to use with the function

argument. The option argument is an integer that identifies one of the many

options available on the ODBC driver. The parameter argument is the value to

use with the option.

resource odbc_specialcolumns(resource connection,
integer type, string catalog, string schema, string table,
integer scope, integer nullable)

The odbc_specialcolumns function has two modes, one that returns the set

of columns that uniquely identifies a row and one that returns the set of

columns that update automatically with updates to other columns in the table.

You may choose between these rows by setting the type argument to

SQL_BEST_ROWID for the first mode or to SQL_ROWVER for the second. Not all

ODBC drivers support the catalog and schema arguments, in which case you

may pass an empty string.

The scope argument controls the scope of the query and may be set with any

of three constants. SQL_SCOPE_CURROW specifies that the result is good for the

current row only. SQL_SCOPE_SESSION specifies that the result is good for the

entire session. SQL_SCOPE_TRANSACTION specifies that the results are good for

the current transaction only.

The nullable argument specifies whether to return rows that allow NULL

values. Use SQL_NULLABLE to allow them or SQL_NO_NULLS to disallow them.

The result set contains the following columns: SCOPE, COLUMN_NAME,

DATA_TYPE, TYPE_NAME, PRECISION, LENGTH, SCALE, PSEUDO_COLUMN.

resource odbc_statistics (resource connection, string
catalog, string schema, string table, integer unique,
integer reserved)

The odbc_statistics function returns a result set containing statistics about

a table and its indexes. Not all ODBC drivers support the catalog and schema

arguments, in which case you may pass an empty string. The unique

argument controls the type of indexes to include. Only unique indexes are

included if you set unique to SQL_INDEX_UNIQUE. PHP includes all indexes if

you set unique to SQL_INDEX_ALL.

The reserved argument controls fetching of the CARDINALITY and PAGES

columns in the result set. Set reserved to SQL_ENSURE to fetch the statistics

unconditionally. Set reserved to SQL_QUICK to fetch these values only if the

server has them ready to send. Some ODBC drivers are capable of returning

data using the SQL_QUICK mode only.

The result set contains the following columns: TABLE_QUALIFIER,

TABLE_OWNER, TABLE_NAME, NON_UNIQUE, INDEX_QUALIFIER, INDEX_NAME,

TYPE, SEQ_IN_INDEX, COLUMN_NAME, COLLATION, CARDINALITY, PAGES,

FILTER_CONDITION.

resource odbc_tableprivileges(resource connection,
string catalog, string schema, string table)

The odbc_tableprivileges function returns a result set describing tables

and their privileges. Not all ODBC drivers support the catalog and schema

arguments, in which case you may pass an empty string. The table argument

is a pattern matching table names in the database. Use the % and _ wildcard

characters.

The result contains the following columns: TABLE_QUALIFIER, TABLE_OWNER,

TABLE_NAME, GRANTOR, GRANTEE, PRIVILEGE, IS_GRANTABLE.

resource odbc_tables(resource connection, string catalog,
string schema, string table, string types)

The odbc_tables function returns a result set describing tables in the given

catalog. Not all ODBC drivers support the catalog and schema arguments, in

which case you may pass an empty string. The catalog and table arguments

are patterns that allow you to use the % and _ wildcard characters. Set the

types argument with one of the following strings: ALIAS, GLOBAL TEMPORARY,

LOCAL TEMPORARY, SYNONYM, SYSTEM TABLE, TABLE, VIEW.

The result contains the following columns: TABLE_CAT, TABLE_SCHEM,

TABLE_NAME, TABLE_TYPE REMARKS.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

17.6 Oracle

Oracle is one of the most popular relational databases in the world. It is an

industrial-strength engine preferred by large corporations using databases of

exceeding complexity. Oracle database administrators are scarce and command

high salaries. A full explanation of working with Oracle is far beyond the scope

of this text. Fortunately, you will find many books about Oracle for sale as well

as free documentation on the Oracle Web site. Try the following URL

<http://otn.oracle.com/documentation/oracle9i.html>.

PHP supports two generations of Oracle libraries, Version 7 and Version 8. The

functions that use Oracle 7 begin with ora_, such as ora_logon. The functions

that work with Oracle 8 begin with oci, such as ocilogon. The Oracle 8 library

supports connecting to older Oracle databases. In previous editions, I’ve

included descriptions of the older functions, but enough time has passed that it

seems unlikely many people are still forced to use the older library.

Thies Arntzen, Stig Bakken, Mitch Golden, Andreas Karajannis, and Rasmus

Lerdorf contributed to the Oracle 7 extension. Oracle 8 support was added to

PHP by Thies Arntzen and Stig Bakken.

Oracle provides the option of installing a sample database. The login is scott

and the password is tiger. The examples in this section take advantage of this

feature.

boolean ocibindbyname (resource statement, string
placeholder, reference variable, integer length, integer type)

The ocibindbyname function (Listing 17.32) binds an Oracle placeholder to a

PHP variable. You must supply a valid statement identifier as created by

ociparse, the name of the placeholder, a reference to a PHP variable, and the

maximum length of the bind data. You may use a value of �1 to use the length

of the variable passed as the variable argument.

The optional type argument specifies a data type and is necessary if you wish

to bind to an abstract data type. Use one of the following constants to set the

data type: OCI_B_BLOB, OCI_B_CFILE, OCI_B_CLOB, OCI_B_FILE, OCI_B_ROWID.

Make sure you use ocinewdescriptor before binding to an abstract data type.

You also need to use �1 for the length argument.

Listing 17.33 and Listing 17.34 demonstrate using ocibindbyname with a

stored procedure.

Listing 17.32 ocibindbyname

<?php

 //set-up data to insert

 $NewEmployee = array(

 array(8001, 'Smith', 'Clerk', 30),

 array(8002, 'Jones', 'Analyst', 20),

 array(8003, 'Atkinson', 'President', 40)

);

 //connect to database

http://otn.oracle.com/documentation/oracle9i.html

 $Link = ocilogon("scott", "tiger");

 //assemble query

 $Query = "INSERT INTO emp " .

 "(EMPNO, ENAME, JOB, HIREDATE, DEPTNO) " .

 "VALUES (:empno, :ename, :job, SYSDATE, :deptno) ";

 //parse query

 $Statement = ociparse($Link, $Query);

 //create descriptor the abstract data type

 $RowID = ocinewdescriptor($Link, OCI_D_ROWID);

 //bind input and output variables

 ocibindbyname($Statement, ":empno", $EmployeeNumber, 32);

 ocibindbyname($Statement, ":ename", $EmployeeName, 32);

 ocibindbyname($Statement, ":job", $Job, 32);

 ocibindbyname($Statement, ":deptno", $DeptNo, 32);

 //loop over each new employee

 foreach($NewEmployee as $e)

 {

 //set column values

 $EmployeeNumber = $e[0];

 $EmployeeName = $e[1];

 $Job = $e[2];

 $DeptNo = $e[3];

 //execute query, do not automatically commit

 ociexecute($Statement, OCI_DEFAULT);

 }

 //free the statement

 //ocifreestatement($Statement);

 //assemble query for getting contents

 $Query = "SELECT EmpNo, EName, Job, HireDate, DName " .

 "FROM emp JOIN dept ON (emp.DeptNo = dept.DeptNo)";

 //parse query

 $Statement = ociparse($Link, $Query);

 //execute query, make sure keep autocommit off

 ociexecute($Statement, OCI_DEFAULT);

 //fetch each row

 while(ocifetchinto($Statement, $Columns,

 OCI_NUM | OCI_RETURN_NULLS | OCI_RETURN_LOBS))

 {

 print(implode(",", $Columns) . "
\n");

 }

 //free the statement

 ocifreestatement($Statement);

 //undo the inserts

 //Normally, you won't do this, if we undo the inserts

 //each time, we can run the example over and over

 ocirollback($Link);

 //close connection

 ocilogoff($Link);

?>

Listing 17.33 Procedure for fetching employee name

CREATE OR REPLACE PROCEDURE get_emp_name (

 emp_number IN emp.Empno%TYPE,

 emp_name OUT emp.Ename%TYPE) AS

BEGIN

 SELECT Ename

 INTO emp_name

 FROM emp

 WHERE Empno = emp_number;

END;

Listing 17.34 ocibindbyname and stored procedures

<?php

 //open connection

 $Connection = ocilogon("scott", "tiger");

 //create statement that calls a stored procedure

 $Query = "BEGIN get_emp_name(7499, :emp_name); END;";

 $Statement = ociparse($Connection, $Query);

 //bind placeholder to name

 ocibindbyname($Statement, ":emp_name", $EmployeeName, 32);

 //execute statement

 ociexecute($Statement);

 print($EmployeeName);

 //free memory for statement

 ocifreestatement($Statement);

 //close connection

 ocilogoff($Connection);

?>

boolean ocicancel(resource statement)

Use the ocicancel function if you wish to stop reading from a cursor.

boolean ocicollappend(object collection, string value)

The ocicollappend function adds a value to a collection.

boolean ocicollassign(object collection, object collection2)

The ocicollassign function assigns a collection from another collection.

boolean ocicollassignelem(object collection, integer index,
string value)

The ocicollassignelem function assigns the given value to the collection at

the given index.

string ocicollgetelem(object collection, integer index)

The ocicollgetelem function returns the value of the collection entry at the

given index.

integer ocicollmax(object collection)

Use the ocicollmax function to get the maximum value of a collection. For

arrays, this value is the maximum length.

integer ocicollsize(object collection)

Use ocicollsize to get the size of the collection.

boolean ocicolltrim(object collection, integer number)

The ocicolltrim function removes the given number of elements from the end

of the collection.

boolean ocicolumnisnull(resource statement, value
column)

Use ocicolumnisnull to test whether a column is null. You may specify

columns by number, in which case columns are numbered starting with 1.

Alternatively, you may specify columns by name.

string ocicolumnname(resource statement, integer column)

The ocicolumnname function returns the name of a column given the column

number. You may specify columns by number, in which case columns are

numbered starting with 1, or you may specify columns by name.

integer ocicolumnprecision(resource statement, value
column)

Use ocicolumnprecision to get the precision of the given column. You may

specify columns by number, in which case columns are numbered starting with

1, or you may specify columns by name.

integer ocicolumnscale(resource statement, value column)

Use ocicolumnscale to get the precision of the given column. You may specify

columns by number, in which case columns are numbered starting with 1, or

you may specify columns by name.

integer ocicolumnsize(resource statement, value column)

The ocicolumnsize function returns the size of a column. You may specify

columns by number, in which case columns are numbered starting with 1, or

you may specify columns by name.

string ocicolumntype(resource statement, value column)

Use ocicolumntype to get the type of the specified column. You may specify

columns by number, in which case columns are numbered starting with 1, or

you may specify columns by name. The name of the type will be returned if it

is one of the following: BFILE, BLOB, CHAR, CLOB, DATE, LONG RAW, LONG,

NUMBER, RAW, REFCURSOR, ROWID, VARCHAR. Otherwise, an integer code

representing the data type will be returned.

integer ocicolumntyperaw(resource statement, value
column)

The ocicolumtyperaw function returns the raw Oracle type number for the

given column. You may specify the column by name or number. If by number,

keep in mind that columns are numbered beginning with 1.

boolean ocicommit(resource connection)

The ocicommit function commits all previous statements executed on the

connection. By default, statements are committed when executed. You can

override this functionality when you call ociexecute with OCI_DEFAULT.

boolean ocidefinebyname(resource statement, string
column, reference variable, integer type)

The ocidefinebyname function (Listing 17.35) associates a column with a PHP

variable. When the statement is executed, the value of the column will be

copied into the variable. The statement argument must be an integer returned

by ociparse. The column name must be written in uppercase; otherwise,

Oracle will not recognize it. Unrecognized column names do not produce errors.

The type argument appears to be necessary only if you are attaching to an

abstract data type, such as a ROWID. Abstract data types require

ocinewdescriptor be used prior to ocidefinebyname. If the type argument is

left out, the variable will be set as a null-terminated string.

Listing 17.35 ocidefinebyname

<?php

 //connect to database

 $Link = ocilogon("scott", "tiger");

 //assemble query

 $Query = "SELECT ENAME, HIREDATE " .

 "FROM emp " .

 "WHERE JOB='CLERK' ";

 //parse query

 $Statement = ociparse($Link, $Query);

 //associate two columns with variables

 ocidefinebyname($Statement, "ENAME", $EmployeeName);

 ocidefinebyname($Statement, "HIREDATE", $HireDate);

 //execute query

 ociexecute($Statement);

 //fetch each row

 while(ocifetch($Statement))

 {

 print("$EmployeeName was hired $HireDate
\n");

 }

 //free the statement

 ocifreestatement($Statement);

 //close connection

 ocilogoff($Link);

?>

array ocierror(resource identifier)

The ocierror function returns an associative array describing the last error

generated by Oracle. You may set the optional identifier argument with a

statement resource or a connection resource to get an error from a particular

step in the query execution process.

If no error has occurred, this function returns FALSE. Otherwise, the returned

array contains two elements: code and message.

boolean ociexecute(resource statement, integer mode)

Use ociexecute to execute a statement. The mode argument is optional. It

controls whether the statement will be committed after execution. By default,

OCI_COMMIT_ON_EXECUTE is used. If you do not wish to commit the transaction

immediately, use OCI_DEFAULT. Every time you call ociexecute, PHP sets the

autocommit flag. If you have a series of statements you wish to execute

without committing, be sure to use OCI_DEFAULT for each of them.

boolean ocifetch(resource statement)

The ocifetch function (Listing 17.36) prepares the next row of data to be read

with ociresult. When no rows remain, FALSE is returned.

Listing 17.36 ocifetch

<?php

 //connect to database

 $Link = ocilogon("scott", "tiger");

 //check that we made the connection

 if($Error = ocierror())

 {

 die('<p style="color: red">Connection Failed--' .

 $Error["message"] . "</p>");

 }

 //assemble query

 $Query = "SELECT * FROM emp ";

 //parse query

 $Statement = ociparse($Link, $Query);

 //execute query

 ociexecute($Statement);

 //check that the query executed successfully

 if($Error = ocierror($Statement))

 {

 die('<p style="color: red">Execution Failed--' .

 $Error["message"] .

 "</p>");

 }

 //start HTML table

 print("<table border=\"1\">\n");

 //build headers from column information

 print("<tr>\n");

 for($i=1; $i <= ocinumcols($Statement); $i++)

 {

 print("<th>" .

 ocicolumnname($Statement, $i) . "
" .

 ocicolumntype($Statement, $i) .

 "(" . ocicolumnsize($Statement, $i) . ")
" .

 ocicolumnprecision($Statement, $i) . "
 " .

 ocicolumnscale($Statement, $i) .

 "</th>\n");

 }

 print("</tr>\n");

 //fetch each row

 while(ocifetch($Statement))

 {

 print("<tr>\n");

 //loop over each column

 for($i=1; $i <= ocinumcols($Statement); $i++)

 {

 //print a line like "<td>SMITH</td>"

 print("<td>");

 if(ocicolumnisnull($Statement, $i))

 {

 print("(null)");

 }

 else

 {

 print(ociresult($Statement, $i));

 }

 print("</td>\n");

 }

 print("</tr>\n");

 }

 //close table

 print("</table>\n");

 //free the statement

 ocifreestatement($Statement);

 //close connection

 ocilogoff($Link);

?>

boolean ocifetchinto(resource statement, reference data,
integer mode)

Use ocifetchinto (Listing 17.37) to get the next row of data from an

executed statement and place it in an array. The data argument will contain an

array that by default will be indexed by integers starting with 1. The optional

mode argument controls how PHP indexes the array. You may add the constants

listed in Table 17.11 to get the features you desire.

Table 17.11. Constants for Use with ocifetchinto

Constant Description

OCI_ASSOC Return columns indexed by name.

OCI_NUM Return columns indexed by number.

OCI_RETURN_LOBS Return values of LOBs instead of descriptors.

OCI_RETURN_NULLS Create elements for null columns.

Listing 17.37 ocifetchinto

<?php

 //connect to database

 $Link = ocilogon("scott", "tiger");

 //assemble query

 $Query = "SELECT * " .

 "FROM emp ";

 //parse query

 $Statement = ociparse($Link, $Query);

 //execute query

 ociexecute($Statement);

 //start HTML table

 print('<table border="1">');

 //fetch each row

 while(ocifetchinto($Statement, $Column,

 OCI_NUM | OCI_RETURN_NULLS | OCI_RETURN_LOBS))

 {

 print("<tr><td>" .

 implode('</td><td>', $Column) .

 "</td></tr>\n");

 }

 //close table

 print("</table>\n");

 //free the statement

 ocifreestatement($Statement);

 //close connection

 ocilogoff($Link);

?>

integer ocifetchstatement(resource statement, reference
data)

The ocifetchstatement function (Listing 17.38) places an array with all the

result data in the data argument and returns the number of rows. The data

array is indexed by the names of the columns. Each element is an array itself,

indexed by integers starting with zero. Each element in this subarray

corresponds to a row.

Listing 17.38 ocifetchstatement

<?php

 //connect to database

 $Link = ocilogon("scott", "tiger");

 //assemble query

 $Query = "SELECT * " .

 "FROM emp ";

 //parse query

 $Statement = ociparse($Link, $Query);

 //execute query

 ociexecute($Statement);

 print('<table border="1">');

 //fetch all rows into array

 $RowCount = ocifetchstatement($Statement, $Data);

 print("$RowCount Rows
");

 foreach($Data as $Column)

 {

 print("<tr><td>" .

 implode('</td><td>', $Column) .

 "</td></tr>\n");

 }

 print("</table>\n");

 //free the statement

 ocifreestatement($Statement);

 //close connection

 ocilogoff($Link);

?>

boolean ocifreecollection(object collection)

The ocifreecollection function frees the memory reserved by a collection.

boolean ocifreecursor(integer cursor)

Use ocifreecursor to free the memory associated with a cursor you created

with ocinewcursor.

boolean ocifreedesc(object lob)

The ocifreedesc function frees the memory reserved by a large object

descriptor.

boolean ocifreestatement(resource statement)

Use ocifreestatement to free the memory associated with a statement. The

statement argument is an integer returned by ociparse.

ociinternaldebug(boolean on)

The ociinternaldebug function controls whether debugging information is

generated. The debugging output will be sent to the browser. It is off by

default, of course.

string ociloadlob(object lob)

The ociloadlob function returns the contents of a large object.

boolean ocilogoff(integer link)

Use ocilogoff to close a connection.

integer ocilogon(string user, string password, string sid)

The ocilogon function establishes a connection to an Oracle database. The

identifier it returns is used to create statements, cursors, and descriptors. The

user and password arguments are required. The optional sid argument

specifies the server; if it is left out, the ORACLE_SID environment variable will

be used.

If you attempt to create a second connection to the same database, you will

not really get another connection. This means that commits or rollbacks affect

all statements created by your script. If you want a separate connection, use

ocinlogon instead.

boolean ocinewcollection(resource connection, string tdo,
string schema)

The ocinewcollection function creates a new collection. You must supply a

TDO (type descriptor object). Optionally, you may specify a schema.

integer ocinewcursor(integer link)

Use ocinewcursor to create a cursor. The cursor identifier that is returned is

similar to a statement identifier. Use ocifreecursor to free the memory

associated with a cursor. You can use a cursor to get the data returned by a

stored procedure, as shown in Listing 17.40. Listing 17.39 is the package used

in Listing 17.40.

To use a cursor, first create it with ocinewcursor. Parse a query that contains a

placeholder, and bind the placeholder to the cursor. Execute the statement,

then execute the cursor. Now you may read from the cursor in the same way

you read from an executed statement.

Listing 17.39 Oracle package using reference cursors

CREATE OR REPLACE PACKAGE emp_data AS

 TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;

 PROCEDURE open_emp_cv (

 emp_number IN emp.empno%TYPE,

 emp_cv IN OUT EmpCurTyp);

END emp_data;

CREATE OR REPLACE PACKAGE BODY emp_data AS

 PROCEDURE open_emp_cv (

 emp_number IN emp.empno%TYPE,

 emp_cv IN OUT EmpCurTyp) IS

 BEGIN

 OPEN emp_cv FOR SELECT *

 FROM emp

 WHERE empno = emp_number;

 END open_emp_cv;

END emp_data;

Listing 17.40 ocinewcursor

<?php

 //open connection

 $Connection = ocilogon("scott", "tiger");

 //create cursor

 $Cursor = ocinewcursor($Connection);

 //create statement that calls a stored procedure

 $Query = "BEGIN emp_data.open_emp_cv(7902, :myrow); END;";

 $Statement = ociparse($Connection, $Query);

 //bind placeholder to cursor

 ocibindbyname($Statement, ":myrow", $Cursor, -1, OCI_B_CURSOR);

 //execute statement

 ociexecute($Statement);

 //execute cursor

 ociexecute($Cursor);

 //get row from cursor

 while(ocifetchinto($Cursor, $Column,

 OCI_NUM | OCI_RETURN_NULLS))

 {

 print(implode(',', $Column) . "
\n");

 }

 //free memory for statement

 ocifreestatement($Statement);

 //free row

 ocifreecursor($Cursor);

 //close connection

 ocilogoff($Connection);

?>

string ocinewdescriptor(resource connection, integer type)

The ocinewdescriptor function allocates memory for descriptors and LOB

locators. The type defaults to being a file, but you may specify OCI_D_FILE,

OCI_D_LOB, or OCI_D_ROWID. See ocibindbyname for an example of use.

integer ocinlogon(string user, string password, string sid)

The ocinlogon function establishes a unique connection to an Oracle database.

The identifier it returns is used to create statements, cursors, and descriptors.

The user and password arguments are required. The optional sid argument

specifies the server, and if left out, the ORACLE_SID environment variable will

be used.

Compare this function to ocilogon and ociplogon.

integer ocinumcols(resource statement)

The ocinumcols function returns the number of columns in a statement.

integer ociparse(resource connection, string query)

The ociparse function creates a statement from a query. It requires a valid

connection identifier.

integer ociplogon(string user, string password, string sid)

The ociplogon function establishes a persistent connection to an Oracle

database. These connections exist as long as the server process. When you

request a persistent connection, you may get a connection that already exists,

thus saving the overhead of establishing a connection.

The returned identifier is used to create statements, cursors, and descriptors.

The user and password arguments are required. The optional sid argument

specifies the server, and if left out, the ORACLE_SID environment variable will

be used.

Compare this function to ocilogon and ocinlogon.

string ociresult(resource statement, value column)

Use ociresult to get the value of a column on the current row. The column

may be identified by number or name. Columns are numbered starting with 1.

Results are returned as strings, except in the case of LOBs, ROWIDs, and

FILEs. See ocifetch for an example of use.

boolean ocirollback(resource connection)

Use ocirollback to issue a rollback operation on the given connection. By

default, calls to ociexecute are committed automatically, so be sure to

override this functionality if you wish to use ocirollback.

Keep in mind that if you used ocilogon or ociplogon to get more than one

connection, they may not be unique. Therefore, issuing a rollback will affect all

statements. To avoid this situation, use ocinlogon instead.

integer ocirowcount(resource statement)

The ocirowcount function returns the number of rows affected by an update,

insert, or delete.

boolean ocisavelob(object lob)

The ocisavelob function writes the PHP instance of a large object into the

database.

boolean ocisavelobfile(object lob)

The ocisavelobfile function saves a large object file.

string ociserverversion(resource connection)

Use ociserverversion to get a string describing the version of the server for a

connection.

integer ocisetprefetch(resource statement, integer size)

The ocisetprefetch function sets the size of a buffer that Oracle uses to

prefetch results into. The size argument will be multiplied by 1024 to set the

actual number of bytes.

string ocistatementtype(resource statement)

Use ocistatementtype to get a string that describes the type of the

statement. The types you can expect are ALTER, BEGIN, CREATE, DECLARE,

DELETE, DROP, INSERT, SELECT, UNKNOWN, and UPDATE.

boolean ociwritelobtofile(object lob, string filename, integer
start, integer length)

The ociwritelobtofile function writes a large object to a file in the file

system. The optional start and length arguments cause PHP to write only a

portion of the large object.

17.7 Postgres

Postgres was originally developed at the University of California, Berkeley.

It introduced many of the advanced object-relational concepts becoming

popular in commercial databases. PostgreSQL is the most current

incarnation of Postgres. It implements almost all of the SQL specification.

Best of all, it’s free.

As with other sections in this chapter, the descriptions of the functions can’t

stand alone. You will have to study PostgreSQL to fully understand how it

works. More information may be found at the official PostgreSQL Web site

at <http://www.postgresql.org/>.

Zeev Suraski wrote the original PostgreSQL extension. Jouni Ahto added

support for large objects.

integer pg_affected_rows(resource result)

The pg_affected_rows function (Listing 17.41) returns the number of

instances affected by the last query. This includes DELETE, INSERT, and

UPDATE statements, but not SELECT statements.

Listing 17.41 pg_affected_rows

<?php

 //connect to database

 $Link = pg_connect("host=localhost " .

 "dbname=freetrade " .

 "user=freetrade " .

 "password=freetrade");

 //discount prices by 5%

 $Query = "UPDATE sku " .

 "SET SalePrice = ListPrice * 0.95 " .

 "WHERE ListPrice > 30.00 ";

 //execute query

 if(!($Result = pg_query($Link, $Query)))

 {

 print("Failed: " . pg_last_error($Link));

 }

 //tell user how many rows were inserted

 print(pg_affected_rows($Result) . " rows updated.
");

 //close connection

 pg_close($Link);

?>

boolean pg_cancel_query(resource connection)

http://www.postgresql.org/default.htm

The pg_cancel_query stops an asynchronous query created with

pg_send_query.

string pg_client_encoding (resource connection)

The pg_client_encoding function returns a string representing the

encoding used on the client.

boolean pg_close(resource connection)

Use pg_close to close a connection to a PostgreSQL database created with

pg_connect. Using this function is not strictly necessary, as PHP closes

open connections when a script ends.

resource pg_connect(string options)

The pg_connect function returns a connection identifier to a PostgreSQL

database. The options string follows a format defined by PostgreSQL. This

string should be option=value pairs separated by spaces. Available options

include dbname, host, options, password, port, tty, and user. If you set

the host option, PHP will connect to the database using TCP/IP. Otherwise,

it connects via a socket.

If you attempt to connect a second time with the same set of options, PHP

will return the same connection resource instead of creating a new

connection. If you wish to use persistent connections, use pg_pconnect

instead.

boolean pg_connection_busy(resource connection)

Use pg_connection_busy to check whether an asynchronous query has

finished. It returns TRUE until the query finishes. Use pg_send_query to

begin an asynchronous query.

boolean pg_connection_reset(resource connection)

The pg_connection_reset function resets a connection, which may be

necessary after an error.

integer pg_connection_status(resource connection)

The pg_connection_status tests the status of a connection. The return

value matches PGSQL_CONNECTION_OK or PGSQL_CONNECTION_BAD.

array pg_convert(resource connection, string table,
array row, integer option)

The pg_convert function checks and prepares a row of data for insertion

into the named table. The data array must be an associative array with

keys matching columns in the table. PHP checks that the values can convert

to the types defined in the table. The option argument may be set with the

following constants: PGSQL_CONV_FORCE_NULL,

PGSQL_CONV_IGNORE_DEFAULT, PGSQL_CONV_IGNORE_NOT_NULL.

This function returns the converted array, or FALSE if the conversion fails.

boolean pg_copy_from(resource connection, string
table, array rows, string delimiter, string null_as)

The pg_copy_from function (Listing 17.42) executes a COPY statement to

insert the given set of rows into the named table. The SQL statement

appears as COPY “…” FROM STDIN DELIMITERS ‘[tab]‘ WITH NULL AS ”.

PHP formats the given rows into a string suitable for the statement.

Optionally, you may override the defaults for delimiters (tab) and nulls

(empty string). The rows array should consist of strings representing rows

with fields separated by the delimiter character.

Listing 17.42 pg_copy_from, pg_copy_to

<?php

 //connect to database

 $Link = pg_connect(" " .

 "dbname=freetrade " .

 "user=freetrade " .

 "password=freetrade");

 //get contents of the fee table

 $rows = pg_copy_to($Link, 'fee');

 //make new set of rows based on the old ones

 $count = count($rows);

 for($r=0; $r < $count; $r++)

 {

 $columns = explode("\t", $rows[$r]);

 //add 100 to the ID

 //(naively assuming no key problems)

 $columns[0] += 100;

 //add "New" to the name

 $columns[1] = "New " . $columns[1];

 $rows[$r] = implode("\t", $columns);

 }

 //show the new rows going in

 print_r($rows);

 //insert new rows

 pg_copy_from($Link, 'fee', $rows);

?>

array pg_copy_to(resource connection, string table,
string delimiter, string null_as)

The pg_copy_to function returns the contents of the named table by

executing a COPY statement. The SQL statement appears as COPY “…” FROM

STDOUT DELIMITERS ‘[tab]‘ WITH NULL AS ”. The returned array consists

of formatted strings. Optionally, you may override the defaults for

delimiters (tab) and nulls (empty string).

string pg_dbname(resource connection)

Use pg_dbname to get the name of the current database.

integer pg_delete(resource connection, string table,
array conditions, integer options)

The pg_delete function (Listing 17.43) assembles and executes a DELETE

statement against the given table. The conditions argument should be a

set of column=value pairs for use in the WHERE clause. PHP does not require

the options argument. If you set options, PHP passes the conditions

through the pg_convert function using the given options.

Listing 17.43 pg_delete

<?php

 $c = pg_delete($Link, 'fee', array('id'=>'101'));

 print("$c rows deleted");

?>

boolean pg_end_copy(resource connection)

Use the pg_end_copy function with pg_put_line to signal your finishing of

an inserted record.

string pg_escape_bytea(string text)

The pg_escape_bytea function returns binary data prepared for use in a

query for a BYTEA column by escaping special characters.

string pg_escape_string(string text)

The pg_escape_string function returns binary data prepared for use in a

query by escaping special characters. You may use this function instead of

addslashes.

array pg_fetch_all(resource result)

The pg_fetch_all function (Listing 17.44) returns the entire result set.

PHP indexes each row with an integer, starting with zero. Each element is

an array indexed by column name.

Listing 17.44 pg_fetch_all

<?php

 //connect to database

 $Link = pg_connect(" " .

 "dbname=freetrade " .

 "user=freetrade " .

 "password=freetrade");

 //get all SKUs

 $Query = "SELECT ID, Name " .

 "FROM sku ";

 //execute the query

 $Result = pg_query($Link, $Query);

 //get the entire result set

 $Row = pg_fetch_all($Result);

 print_r($Row);

?>

array pg_fetch_array(resource result, integer row,
integer type)

The pg_fetch_array function (Listing 17.45) returns an array containing

every field value for the given row. Optionally, you may leave out the row

number to fetch the next row.

PHP indexes the values by number, starting with zero, and by column

name. Each call to pg_fetch_array returns the next row, or FALSE when

no rows remain. You may control the returned array by setting the optional

type argument with one of the following constants: PGSQL_ASSOC,

PGSQL_BOTH, PGSQL_NUM. With PGSQL_ASSOC, PHP indexes with column

names only. With PGSQL_NUM, PHP indexes with numbers only.

Compare this function to pg_fetch_assoc and pg_fetch_row.

Listing 17.45 pg_fetch_array

<?php

 //connect to database

 $Link = pg_connect(" " .

 "dbname=freetrade " .

 "user=freetrade " .

 "password=freetrade");

 //get all SKUs

 $Query = "SELECT ID, Name " .

 "FROM item ";

 //execute the query

 $Result = pg_query($Link, $Query);

 //loop over each row

 while($Row = pg_fetch_array($Result))

 {

 print("{$Row['id']} = {$Row['name']}
\n");

 }

?>

array pg_fetch_assoc(resource result, integer row)

The pg_fetch_assoc function returns an array containing every field value

for the given row. Optionally, you may leave out the row number to fetch

the next row. PHP indexes the values by column name.

Compare this function to pg_fetch_array and pg_fetch_row.

object pg_fetch_object(resource result, integer row)

The pg_fetch_object function (Listing 17.46) returns an object with a

property for every field. Each property is named after the field name. Each

call to pg_fetch_object returns the next row, or FALSE when no rows

remain.

Compare this function to pg_fetch_array.

Listing 17.46 pg_fetch_object

<?php

 //connect to database

 $Link = pg_connect(" " .

 "dbname=freetrade " .

 "user=freetrade " .

 "password=freetrade");

 //get all SKUs

 $Query = "SELECT ID, Name " .

 "FROM item ";

 //execute the query

 $Result = pg_query($Link, $Query);

 //loop over each row

 while($Row = pg_fetch_object($Result))

 {

 print("$Row->id = $Row->name
\n");

 }

?>

string pg_fetch_result(resource result, integer row, value
field)

Use pg_fetch_result (Listing 17.47) to get the value of a specific field in a

result set. Rows and fields are numbered from zero, but fields may also be

specified by name.

Listing 17.47 pg_fetch_result

<?php

 //connect to database

 $Link = pg_connect(" " .

 "dbname=freetrade " .

 "user=freetrade " .

 "password=freetrade");

 //print information about connection

 print("Connection established
\n");

 print("Host: " . pg_host($Link) . "
\n");

 print("Port: " . pg_port($Link) . "
\n");

 print("Database: " . pg_dbname($Link) . "
\n");

 print("Options: " . pg_options($Link) . "
\n");

 print("
\n");

 //create query

 $Query = "SELECT * " .

 "FROM session ";

 //execute query

 if(!($Result = pg_query($Link, $Query)))

 {

 print("Could not execute query: ");

 print(pg_last_error($Link));

 print("
\n");

 exit;

 }

 // print each row in a table

 print("<table border=\"1\">\n");

 // print header row

 print("<tr>\n");

 for($Field=0; $Field < pg_num_fields($Result); $Field++)

 {

 print("<th>");

 print(pg_field_name($Result, $Field) . "
");

 print(pg_field_type($Result, $Field));

 print("(" . pg_field_size($Result, $Field) . ")");

 print("</th>\n");

 }

 print("</tr>\n");

 //loop through rows

 for($Row=0; $Row < pg_num_rows($Result); $Row++)

 {

 print("<tr>\n");

 for($Field=0; $Field < pg_num_fields($Result); $Field++)

 {

 print("<td>");

 if(pg_field_is_null($Result, $Row, $Field))

 {

 print("NULL");

 }

 else

 {

 print(pg_fetch_result($Result, $Row, $Field));

 }

 print("</td>\n");

 }

 print("</tr>\n");

 }

 print("</table>\n");

 // free the result and close the connection

 pg_freeresult($Result);

 pg_close($Link);

?>

array pg_fetch_row(resource result, integer row)

The pg_fetch_row function returns the values of all the fields in a row. The

fields are indexed by their field number, starting with zero. Each call to

pg_fetch_row returns the next row, or FALSE when no rows remain.

Compare this function to pg_fetch_array and pg_fetch_assoc.

boolean pg_field_is_null(resource result, integer row,
value field)

The pg_field_is_null function returns TRUE if the specified field is NULL.

Fields are counted from zero.

string pg_field_name(resource result, integer field)

The pg_field_name function returns the name of the field in the result set

specified by the field number, which starts counting at zero.

integer pg_field_num(resource result, string field)

The pg_field_num function returns the number of the field given its name.

Numbering begins with 0. If an error occurs, negative one (�1) is returned.

integer pg_field_prtlen(resource result, integer row,
value field)

The pg_field_prtlen function returns the printed length of a particular

field value. You may specify the field either by number, starting at zero, or

by name.

integer pg_field_size(resource result, value field)

The pg_field_size function returns the size of the field, which may be

specified by name or number. Fields are numbered from zero.

string pg_field_type(resource result, value field)

The pg_field_type function returns the type of the specified field. The

field argument may be a number or a name. Fields are numbered starting

with zero.

boolean pg_free_result(resource result)

The pg_free_result function frees any memory associated with the result

set. Ordinarily, it is not necessary to call this function, as all memory will be

cleared when the script ends.

array pg_get_notify(resource connection, integer type)

The pg_get_notify function (Listing 17.48) returns an array describing the

first notification in the queue. You must execute a LISTEN statement on the

connection to receive notifications. This function returns FALSE when there

are no notifications.

The returned array contains two associative keys: message and pid. The

first contains the name used for the notification. The second contains the

process ID of the client that created the notification. You can use

pg_get_pid to compare this process ID with your own process ID, allowing

you to skip messages you generate yourself.

Listing 17.48 pg_get_notify, pg_get_pid

<?php

 //connect to database

 $Link = pg_connect(" " .

 "dbname=freetrade " .

 "user=freetrade " .

 "password=freetrade");

 //listen for notifications

 $Query = "LISTEN corephp";

 pg_query($Link, $Query);

 //generate two notifications

 $Query = "NOTIFY corephp";

 pg_query($Link, $Query);

 pg_query($Link, $Query);

 while($n = pg_get_notify($Link))

 {

 print("Message: {$n['message']}
");

 if($n['pid'] == pg_get_pid($Link))

 {

 print("(This script created the notification)
");

 }

 }

?>

pg_get_pid(resource connection)

Use pg_get_pid to get the process ID of the current script.

resource pg_get_result(resource connection)

The pg_get_result function returns a result resource for an asynchronous

query executed with pg_send_query.

string pg_host(resource connection)

The pg_host function returns the name of the host for the connection.

boolean pg_insert(resource connection, string table,
array data, integer options)

The pg_insert function assembles and executes an INSERT statement for

the given table. The data argument should be an array of column values

indexed by column name. PHP does not require the options argument. If

you set options, PHP passes the conditions through the pg_convert

function using the given options.

string pg_last_error(resource connection)

The pg_last_error function returns a description of the last error

generated by the given connection. If you leave out the connection

resource, PHP uses the last connection. Compare this function to

pg_result_error. To test a connection, use pg_connection_status.

string pg_last_notice(resource connection)

The pg_last_notice function gets the last notice returned by the

PostgreSQL server. Notices are not the same as messages generated by

NOTIFY statements.

integer pg_last_oid(resource result)

The pg_last_oid function (Listing 17.49) returns the object ID (OID) of

the last row inserted into a table if the last call to pg_query was an INSERT

statement. The OID is an internal identifier unique to every row in the

database, not the table’s primary key. You can identify the new row with

the OID, however, as shown in Listing 17.49. Negative one (�1) is returned

if there is an error.

Listing 17.49 pg_last_oid

<?php

 //connect to database

 $Link = pg_connect(" " .

 "dbname=freetrade " .

 "user=freetrade " .

 "password=freetrade");

 //insert a row into a table using a sequence

 $Query = "INSERT INTO fee (name) " .

 "VALUES ('Gift Wrap')";

 $Result = pg_query($Link, $Query);

 if(!$Result)

 {

 print("Insert failed");

 exit();

 }

 $oid = pg_last_oid($Result);

 print("Row inserted as OID $oid
");

 //get the primary key value

 $Query = "SELECT id FROM fee WHERE OID=$oid ";

 $Result = pg_query($Link, $Query);

 $Rows = pg_fetch_all($Result);

 $id = $Rows[0]['id'];

 print("ID column set to $id
");

?>

boolean pg_lo_close(resource lob)

The pg_lo_close function closes a large object. The lob argument is a

resource returned by pg_lo_open.

integer pg_lo_create(resource connection)

The pg_lo_create function (Listing 17.51) creates a LOB and returns the

OID.Listing 17.50 is the SQL for creating a table for storing images.

PostgreSQL creates the object with both read and write access.

Listing 17.50 Table for uploaded images

CREATE TABLE image (

 name VARCHAR(255),

 mime VARCHAR(255),

 object_id OID NOT NULL,

 PRIMARY KEY(name)

);

Listing 17.51 Using PostgreSQL large objects

<?php

 //connect to database

 $Link = pg_connect(" " .

 "dbname=freetrade " .

 "user=freetrade " .

 "password=freetrade");

 /*

 ** Insert an image as a lob

 */

 //start transaction

 pg_query($Link, "BEGIN");

 //create the large object

 $oid = pg_lo_create($Link);

 //create new row in image table

 $Query = "INSERT INTO image (name, mime, object_id) " .

 "VALUES ('leonatkinson.png', 'image/png', $oid)";

 pg_query($Link, $Query);

 //read the image and write it into the lob

 $image = file_get_contents("leonatkinson.png");

 $lob = pg_lo_open($Link, $oid, "w");

 pg_lo_write($lob, $image);

 pg_lo_close($lob);

 pg_query($Link, "COMMIT");

 /*

 ** get lob image

 */

 //start transaction

 pg_query($Link, "BEGIN");

 //get OID and MIME type

 $Query = "SELECT object_id, mime " .

 "FROM image " .

 "WHERE name = 'leonatkinson.png' ";

 $Result = pg_query($Link, $Query);

 $oid = pg_fetch_result($Result, 0, 0);

 $mime = pg_fetch_result($Result, 0, 1);

 //send image to browser

 $lob = pg_lo_open($Link, $oid, "w");

 header("Content-type: $mime");

 pg_lo_read_all($lob);

 pg_lo_close($lob);

 pg_query($Link, "COMMIT");

?>

boolean pg_lo_export(resource lob, string path,
resource connection)

The pg_lo_export function writes a large object to a file specified by path.

The optional connection argument defaults to the last connection used by

the script.

resource pg_lo_import(resource connection, string path)

The pg_lo_import function creates a large object from a file. This function

returns a resource for the large object.

integer pg_lo_open(resource connection, resource lob,
string mode)

The pg_lo_open function opens a large object. The object argument is a

valid large OID, and the mode may be one of r, w, rw. A file identifier is

returned. You must close the large object with pg_lo_close.

string pg_lo_read(resource lob, integer length)

The pg_lo_read function returns the large object as a string. The length

argument specifies a maximum length to return.

pg_lo_read_all(resource lob)

The pg_lo_read_all function reads an entire large object and sends it

directly to the browser.

boolean pg_lo_seek(resource lob, integer offset, integer
start)

The pg_lo_seek function moves the internal pointer to the large object,

just as fseek moves a normal file pointer. Use PGSQL_SEEK_CUR,

PGSQL_SEEK_END, or PGSQL_SEEK_SET for the optional start argument.

integer pg_lo_tell(resource lob)

The pg_lo_tell function returns the position of the internal pointer to the

open large object, just as ftell returns the pointer to a normal file.

pg_lo_unlink(resource lob, resource object)

Use pg_lo_unlink to delete a large object.

pg_lo_write(resource lob, string buffer)

The pg_lo_write function writes the named buffer to the large object.

array pg_meta_data(resource connection, string table)

The pg_meta_data function returns an array describing the named table by

executing a query from the pg_attribute, pg_class, and pg_type tables.

The returned array contains an array of column definitions indexed by

column name. The column definitions are arrays containing the following

keys: num, type, len, not_null, has_default.

integer pg_num_fields(resource result)

The pg_num_fields function returns the number of fields in the result set.

integer pg_num_rows(resource result)

Use pg_num_rows to get the number of rows in the result set.

string pg_options(resource connection)

The pg_options function returns the options used when the connection was

opened.

integer pg_pconnect(string host, string port, string
options, string tty, string database)

The pg_pconnect function operates identically to pg_connect except that a

persistent connection is created. This connection will last as long as the

server process does, so it may be recycled. This saves the overhead time of

opening a connection.

boolean pg_ping(resource connection)

The pg_ping function returns TRUE if a connection to a database server is

still valid. This may be necessary for scripts that run for a long time.

integer pg_port(resource connection)

The pg_port function returns the port number used in the pg_connect

function.

boolean pg_put_line(resource connection, string data)

The pg_put_line function (Listing 17.52) writes a record to the server

after you execute a COPY statement. After sending one or more records,

use this function to send . to signal the end of the data. Then, call

pg_end_copy. Compare this function to pg_copy_from.

Listing 17.52 pg_put_line

<?php

 //connect to database

 $Link = pg_connect(" " .

 "dbname=freetrade " .

 "user=freetrade " .

 "password=freetrade");

 $data = array(

 "1001\tPackaging\n",

 "1002\tHandling\n",

 "1003\tGift Wrap\n");

 //begin the copy

 pg_query($Link, "COPY fee FROM stdin");

 //insert each row

 foreach($data as $r)

 {

 pg_put_line($Link, $r);

 }

 //end the copy with a \.

 pg_put_line($Link, "\\.\n");

 pg_end_copy($Link);

?>

resource pg_query(resource connection, string query)

The pg_query function executes a query on the given connection and

returns a result identifier.

string pg_result_error(resource result)

The pg_result_error function returns a description of the last error for the

given result set.

array pg_result_seek(resource connection, integer
offset)

The pg_result_seek function moves the internal row pointer to a specified

row and returns it.

integer pg_result_status(resource result)

The pg_result_status function returns the status of a result set. The

return value will match one of the constants in Table 17.12.

Table 17.12. Constants for Use with pg_result_status

PGSQL_BAD_RESPONSE PGSQL_EMPTY_QUERY

PGSQL_COMMAND_OK PGSQL_FATAL_ERROR

PGSQL_COPY_FROM PGSQL_NONFATAL_ERROR

PGSQL_COPY_TO PGSQL_TUPLES_OK

array pg_select(resource connection, string table, array
conditions, integer option)

The pg_select function executes a SELECT statement and returns matching

rows. The conditions argument should be a set of column=value pairs for

use in the WHERE clause. PHP does not require the options argument. If

you set options, PHP passes the conditions through the pg_convert

function using the given options.

boolean pg_send_query(resource connection, string
query)

The pg_send_query function starts an asynchronous query. Your script may

continue executing while the server completes the operation. To fetch the

results, use pg_get_result, but first you must check that the query has

finished by getting a FALSE return value from pg_connection_busy.

integer pg_set_client_encoding(resource connection,
string encoding)

Use pg_set_client_encoding to set the encoding used by the client.

Choose one of the encoding strings described in the PostgreSQL manual.

The return value will be zero for success or negative one (-1) for failure.

boolean pg_trace(string path, string mode, resource
connection)

The pg_trace function causes communication between your client script

and the PostgreSQL server to be logged to a file. The mode argument should

match the modes used by fopen and similar functions.

string pg_tty(resource connection)

The pg_tty function returns the tty name used for debugging and supplied

with the pg_connect function.

string pg_unescape_bytea(string text)

The pg_unescape_bytea function decodes the output received when

selecting a BYTEA column.

boolean pg_untrace(resource connection)

Use pg_untrace to halt logging started with pg_trace.

long pg_update(resource connection, string table, array
conditions, array data, integer option)

The pg_update function assembles and executes an UPDATE statement for

the given table. The conditions argument should be a set of

column=value pairs for use in the WHERE clause. The data argument should

be an array of column values indexed by column name. PHP does not

require the options argument. If you set options, PHP passes the

conditions through the pg_convert function using the given options.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

17.8 Sybase and Microsoft SQL Server

Sybase offers an industrial-strength database that stands out among other big

competitors such as Oracle, Informix, and IBM’s DB2. Unlike these other

databases, Sybase is more available to developers with small budgets because of

partnerships with application vendors.

Microsoft’s SQL Server is a dressed-up version of Sybase. In fact, PHP’s Sybase

functions are able to connect to SQL Server databases. For the sake of code

readability, there are function aliases for all the Sybase functions that start with

mssql_ instead of sybase_, but I’ve left them out of the reference to save

space.Table 17.13 lists all mssql_ aliases.

Table 17.13. MSSQL Functions

mssql_affected_rows mssql_get_last_message

mssql_close mssql_min_client_severity

mssql_connect mssql_min_server_severity

mssql_data_seek mssql_num_fields

mssql_deadlock_retry_count mssql_num_rows

mssql_fetch_array mssql_pconnect

mssql_fetch_assoc mssql_query

mssql_fetch_field mssql_result

mssql_fetch_object mssql_select_db

mssql_fetch_row mssql_set_message_handler

mssql_field_seek mssql_unbuffered_query

mssql_free_result

When support for Sybase is compiled for PHP, one of two libraries may be used.

One is the older DB-Library. The other is its replacement, Client-Library. These

two libraries are not compatible with each other, so PHP has special code to adapt

either of them into a single set of functions. Consequently, some of these

functions are present when using DB-Library and not when using Client-Library.

Also, it is possible to compile PHP for Windows using an MSSQL library. This

library is really just the DB-Library, but the PHP extension creates only mssql_

functions. It also contains three functions unavailable in the Sybase extension:

mssql_field_length, mssql_field_name, and mssql_field_type.

Sybase’s home page is <http://www.sybase.com/>. If you want to learn more

about the two libraries, check out the online documentation

<http://www.sybase.com/support/manuals/>.

Tom May and Zeev Suraski both contributed to the Sybase extensions.

http://www.sybase.com/default.htm
http://www.sybase.com/support/manuals/default.htm

integer sybase_affected_rows(resource connection)

Use sybase_affected_rows (Listing 17.53) to get the number of rows affected

by the last DELETE, INSERT, or UPDATE statement on a given connection. If the

optional connection argument is left out, the most recently opened connection

will be used. Note that this function is not useful for determining the number of

rows returned by a SELECT statement.

Listing 17.53 sybase_affected_rows

<?php

 //connect

 $Link = @sybase_connect('falcon', 'leon', 'corephp');

 //use the "sample" database

 @sybase_select_db("sample", $Link);

 //update some rows

 $Query = "UPDATE item " .

 "SET Price = Price * 0.90 " .

 "WHERE Price > 1.00 ";

 $Result = sybase_query($Query, $Link);

 //get number of rows changed

 $RowsChanged = sybase_affected_rows($Link);

 print("$RowsChanged prices updated.
\n");

 //close connection

 sybase_close($Link);

?>

boolean sybase_close(resource connection)

The sybase_close function closes a connection to a database. Its use is not

strictly necessary, since PHP will close connections for you when your script ends.

You can leave out the connection argument, and the last connection to be

opened will be closed.

integer sybase_connect(string server, string user, string
password, string character_set)

The sybase_connect function returns a connection identifier based on the

server, user, and password arguments. The server must be a valid server name

as defined in the interfaces file. Connections created with sybase_connect will be

closed automatically when your script completes. Compare this function with

sybase_pconnect.

The optional character_set argument sets the character set.

boolean sybase_data_seek(integer result, integer row)

The sybase_data_seek function (Listing 17.54) moves the internal row pointer

for a result to the specified row. Rows are numbered starting with zero. Use this

function with sybase_fetch_array, sybase_fetch_object, or

sybase_fetch_row to move arbitrarily among the result set.

Listing 17.54 sybase_data_seek, sybase_fetch_row

<?php

 //connect

 $Link = @sybase_connect('falcon', 'leon', 'corephp');

 //use the "sample" database

 @sybase_select_db("sample", $Link);

 //get all items

 $Query = "SELECT ID, Name, Price " .

 "FROM item ";

 $Result = sybase_query($Query, $Link);

 //jump to third row

 sybase_data_seek($Result, 2);

 print("<table border=\"1\">\n");

 //get rows

 while($Row = sybase_fetch_row($Result))

 {

 print("<tr>\n");

 print("<td>" . $Row[0] . "</td>\n");

 print("<td>" . $Row[1] . "</td>\n");

 print("<td>" . $Row[2] . "</td>\n");

 print("</tr>\n");

 }

 print("</table>\n");

 //close connection

 sybase_close($Link);

?>

sybase_deadlock_retry_count(integer retries)

The sybase_deadlock_retry_count function sets the number of retries when

encountering a deadlock. By default, PHP retries on deadlock forever. You can

specify this behavior by setting retries to -1. Setting it to zero tells PHP never

to retry.

You may also set this value in php.ini.

array sybase_fetch_array(integer result)

The sybase_fetch_array function returns an array that contains the values of all

the fields for the next row. Each call to sybase_fetch_array gets the next row in

the result set, or returns FALSE if no rows remain.

Each field is returned in two elements. One is indexed by the field number,

starting with zero. The other is indexed by the name of the field. Compare this

function to sybase_fetch_assoc and sybase_fetch_row.

array sybase_fetch_assoc(integer result)

The sybase_fetch_assoc function (Listing 17.55) returns an array that contains

the values of all the fields for the next row. Each call to sybase_fetch_assoc

gets the next row in the result set, or returns FALSE if no rows remain.

Each field is returned indexed by the name of the field. If a result contains more

than one column with the same name, PHP adds a number to the end of the

index. For example, if you have three columns named Price, the returned row

contains Price, Price1, and Price2.

Compare this function to sybase_fetch_array and sybase_fetch_row.

Listing 17.55 sybase_fetch_assoc, sybase_fetch_field

<?php

 //connect

 $Link = @sybase_connect('falcon', 'leon', 'corephp');

 //use the "sample" database

 @sybase_select_db("sample", $Link);

 //get all items

 $Query = "SELECT ID, Name, Price " .

 "FROM item ";

 $Result = sybase_query($Query, $Link);

 print("<table border=\"1\">\n");

 print("<tr>\n");

 while($Field = sybase_fetch_field($Result))

 {

 print("<th>" .

 "$Field->name $Field->type($Field->max_length)
" .

 "Numeric: " . ($Field->numeric ? 'YES' : 'NO') . "
" .

 "Source: $Field->column_source" .

 "</th>\n");

 }

 print("</tr>\n");

 //get rows

 while($Row = sybase_fetch_assoc($Result))

 {

 print("<tr>" .

 "<td>{$Row['ID']}</td>" .

 "<td>{$Row['Name']}</td>" .

 "<td>{$Row['Price']}</td>" .

 "</tr>\n");

 }

 print("</table>\n");

 //close connection

 sybase_close($Link);

?>

object sybase_fetch_field(integer result, integer field)

The sybase_fetch_field function returns an object that describes a field in the

result set. The field argument is optional. If left out, the next field is returned.

The object contains the properties described in Table 17.14.

Table 17.14. sybase_fetch_field Object Properties

Property Description

column_source The name of the table the column belongs to.

max_length The maximum size of the field.

name Name of the column.

numeric If the column is numeric, this property will be 1.

type An approximate description of the type.

object sybase_fetch_object(integer result)

The sybase_fetch_object function (Listing 17.56) returns an object with a

property for each of the fields in the next row. Each call to sybase_fetch_

object gets the next row in the result set, or returns FALSE if no rows remain.

Compare this function to sybase_fetch_array.

Listing 17.56 sybase_fetch_object

<?php

 //connect

 $Link = @sybase_connect('falcon', 'leon', 'corephp');

 //use the "sample" database

 @sybase_select_db("sample", $Link);

 //get all items

 $Query = "SELECT ID, Name, Price " .

 "FROM item ";

 $Result = sybase_query($Query, $Link);

 print("<table border=\"1\">\n");

 //get rows

 while($Row = sybase_fetch_object($Result))

 {

 print("<tr>" .

 "<td>$Row->ID</td>" .

 "<td>$Row->Name</td>" .

 "<td>$Row->Price</td>" .

 "</tr>\n");

 }

 print("</table>\n");

 //close connection

 sybase_close($Link);

?>

array sybase_fetch_row(integer result)

The sybase_fetch_row function returns an array of all the field values for the

next row. The fields are indexed by integers starting with zero. Each call to

sybase_fetch_row gets the next row in the result set, or returns FALSE if no

rows remain. Compare this function to sybase_fetch_array and

sybase_fetch_assoc.

boolean sybase_field_seek(integer result, integer field)

The sybase_field_seek function moves the internal field pointer to the specified

field. Fields are numbered starting with zero. If you leave out the field

argument, the internal pointer will be moved to the next field. This is the same

internal pointer used by sybase_fetch_field.

boolean sybase_free_result(integer result)

The sybase_free_result function frees memory associated with a result set. It

is not strictly necessary to call this function. All memory is freed when a script

finishes executing.

string sybase_get_last_message()

The sybase_get_last_message function returns the last message from the

Sybase database. This function is not available if you’re using Client-Library.

sybase_min_client_severity(integer severity)

This function is available only when using Client-Library. It sets the minimum

severity for messages sent from the client interface to be turned into PHP error

messages.

sybase_min_error_severity(integer severity)

Use sybase_min_error_severity to set the minimum severity level for errors to

be turned into PHP error messages. This function is available only when using DB-

Library.

sybase_min_message_severity(integer severity)

Use sybase_min_message_severity to set the minimum severity level for

messages to be turned into PHP error messages. This function is available only

when using DB-Library.

sybase_min_server_severity(integer severity)

This function is available only when using Client-Library. It sets the minimum

level for messages from the server interface to cause PHP error messages to be

generated.

integer sybase_num_fields(integer result)

The sybase_num_fields function returns the number of fields in the given result

set.

integer sybase_num_rows(integer result)

The sybase_num_rows function returns the number of rows in a result set.

integer sybase_pconnect(string server, string username,
string password)

The sybase_pconnect function is identical to sybase_connect except that

connections created with this function persist after the script ends. The

connection lasts as long as the server process does, so if the process executes

another PHP script, the connection will be reused. Connections created with

sybase_pconnect should not be closed with sybase_close.

integer sybase_query(string query, resource connection)

The sybase_query function (Listing 17.58) executes a query on the given

connection and returns a result identifier. This is used by many of the other

functions in this section. If the connection argument is left out, the last opened

connection is used.

Aside from ordinary queries, you may invoke stored procedures just as you would

from the isql command shell. Access the result set in the same way you would

get a result set from a SELECT statement. Unfortunately, PHP’s interface allows

for only one result set. If you call a stored procedure that returns multiple

results, you have access to the last result set only.

Listing 17.57 shows a simple stored procedured used by Listing 17.58.

Listing 17.57 Simple Sybase stored procedure

CREATE PROCEDURE dbo.add_numbers (@a int, @b int)

AS

BEGIN

 SELECT @a + @b

END

Listing 17.58 Calling a Sybase stored procedure

<?php

 //connect

 $Link = @sybase_connect('falcon', 'leon', 'corephp');

 //use the "sample" database

 @sybase_select_db("sample", $Link);

 //execute the add_numbers stored procedure

 $Query = "exec add_numbers 2, 3";

 $Result = sybase_query($Query, $Link);

 //get result, which we assume is the

 //first column in the first row

 print(sybase_result($Result, 0, 0));

 //close connection

 sybase_close($Link);

?>

string sybase_result(integer result, integer row, value field)

The sybase_result function returns the value of a particular field, identified by

row and field. The field argument may be an integer or the name of a field.

Fields and rows are numbered starting with zero. If performance is an issue,

considering using sybase_fetch_row, which is much faster.

boolean sybase_select_db(string database, resource
connection)

The sybase_select_db function selects the database to use on the database

server. If the connection argument is omitted, the last connection created will be

used. See sybase_fetch_array for an example.

boolean sybase_set_message_handler(string function)
 boolean sybase_set_message_handler(array method)

Use sybase_set_message_handler (Listing 17.59) to intercept messages

generated by the server. You may set the handler by naming a function or an

object method. In the latter case, you may specify the method of an instantiated

object or the static method of a class by providing an array with two elements.

The first element is the instance or class name. The second element is the

method name.

The handler receives five arguments in the following order: message number,

severity, state, line number, and description. The first four are integers.

The last is a string. If the function returns FALSE, PHP generates an ordinary error

message.

Listing 17.59 sybase_set_message_handler

<?php

 function handleSybaseError($message, $severity, $state, $line,

 $text)

 {

 //report bad table names

 if($message == 208)

 {

 return(FALSE);

 }

 //silently log the error

 error_log("Sybase Error $message " .

 "Severity:$severity State:$state Line:$line $text",

 3, "C:/tmp/sybase_error.log");

 return(TRUE);

 }

 //register the handler

 sybase_set_message_handler("handleSybaseError");

 //connect

 $Link = @sybase_connect('falcon', 'leon', 'corephp');

 //use the "sample" database

 @sybase_select_db("sample", $Link);

 //try a bad query just so we can see

 //what happens when an error occurs

 $Query = "SELECT FROM item ";

 if(!($Result = sybase_query($Query, $Link)))

 {

 print("The query failed!");

 }

 //close connection

 sybase_close($Link);

?>

resource sybase_unbuffered_query(string query, resource
connection)

The sybase_unbuffered_query function executes a query and returns a result

resource. Unlike sybase_query, this function does not pull the entire result set

into memory. Instead, it reads one row at a time. This allows for handling huge

result sets without huge amounts of dedicated memory. The downside is that you

may not execute another query on the connection until you finish reading from

the result set or you free the result set with sybase_free_result. You also can’t

get a true reading of the number of rows until you’ve fetched them all.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

Chapter 18. Object Layers
Topics in This Chapter

COM

CORBA

Java

The functions in this chapter allow you to interface with external

object layers. Generally, PHP instantiates an object from another

environment and thereafter treats it as a native object. COM and

CORBA are two competing standards for packaging reusable

functionality into objects that any programming language may use.

Java is a programming language, but to PHP it appears as another

system with external objects.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

18.1 COM

The component object model (COM) is a framework that allows

sharing of executable modules without recompiling. If you have used

Windows for any time at all, you are aware of dynamic-link libraries

(DLLs), collections of functions a program can load on demand. Many

programs can share a DLL. Unfortunately, DLLs that work well with

some programming languages don’t work at all with others. COM

seeks to solve this problem. COM objects are accessible by C++,

Visual Basic, PHP, and many other programming languages.

A tutorial on COM is beyond the scope of this text, of course.

Microsoft’s list of “noteworthy” books about COM is relatively long

<http://www.microsoft.com/com/tech/com.asp>. However, you could

keep busy just reading the articles online. You might read Dr. GUI’s

Gentle Guide to COM first

<http://www.microsoft.com/com/news/drgui.asp>.

You have two options for using a COM object in PHP. In the first

method, you load it with com_load. After that, you can invoke

methods with com_invoke, and you can get and set properties with

com_propget and com_propset. This method has limitations. In the

second method, you instantiate the object with new COM. You then

treat the object as any other PHP object.

Zeev Suraski added COM support to PHP.

object COM::COM(string module, string server,
integer code_page)

Use the COM class (Listing 18.1) to create a COM object in your

script. The constructor requires the name of the COM module only,

which should use the ProgID. Optionally, you may load a remote

object by specifying the Internet address of the COM module with the

optional server argument. In that case, remember to activate DCOM

in php.ini. The optional code_page argument may be set with one of

the following constants: CP_ACP, CP_MACCP, CP_OEMCP, CP_SYMBOL,

CP_THREAD_ACP, CP_UTF7, CP_UTF8.

Listing 18.1 COM::COM

<?php

 //create ADO object

 $adodb = new COM("ADODB.Connection");

 //connect to same MS Access file

 $adodb->Open("PROVIDER=MSDASQL; " .

 "DRIVER={Microsoft Access Driver (*.mdb)}; " .

 "DBQ=C:\Program Files\Microsoft Office" .

 "\Office\Samples\inventry.mdb");

http://www.microsoft.com/com/tech/com.asp
http://www.microsoft.com/com/news/drgui.asp

 //execute a Query

 $recordset = $adodb->Execute(

 "SELECT * FROM [Household Inventory]");

 //get the number of columns

 $columns = $recordset->Fields->Count();

 //print table headers

 print('<table border="1"><tr>');

 for($c=0; $c < $columns; $c++)

 {

 $f = $recordset->Fields($c);

 print("<th>$f->Name</th>");

 }

 print("</tr>\n");

 //print each row

 while(!$recordset->EOF)

 {

 print("<tr>");

 for($c=0; $c < $columns; $c++)

 {

 $f = $recordset->Fields($c);

 print("<td>$f->Value</td>");

 }

 print("\n");

 $recordset->MoveNext();

 print("</tr>\n");

 }

 print("</table>\n");

 //clean up

 $recordset->Close();

 $adodb->Close();

 $recordset->Release();

 $adodb->Release();

 $recordset = null;

 $adodb = null;

?>

integer com_addref(object com)

The com_addref function increments the reference counter and

returns the new count.

boolean com_event_sink(object com, object
sink_object, string interface)

The com_event_sink function (Listing 18.2) connects COM events to

a PHP handler object. The optional interface argument sets the

event interface used.

Listing 18.2 com_event_sink, com_message_pump

<?php

 class MSIE_EventHandler

 {

 var $quit = FALSE;

 function NavigateComplete2($d, $url)

 {

 print(date("H:i:s") .

 " NavigateComplete2 $url\n");

 }

 function OnQuit()

 {

 $this->quit = TRUE;

 }

 }

 //allow this to run forever

 set_time_limit(0);

 //open MS Internet Explorer

 $msie = new COM("internetexplorer.application");

 //create event handler

 $sink = new MSIE_EventHandler();

 //register sink

 com_event_sink($msie, $sink, "DWebBrowserEvents2");

 //show the browser

 $msie->Visible = true;

 while(!$sink->quit)

 {

 //get messages once per second

 com_message_pump(1000);

 }

 $msie = null;

?>

value com_get(resource com, string property)

The com_get function returns the value of a property on a COM

object.

value com_invoke(object com, string method,
argument, argument, …)

The com_invoke function invokes a method on a COM object. You

must specify a valid COM resource and the name of a method. If the

method takes arguments, you list them after the method name.

boolean com_isenum(object com)

The com_isenum function returns TRUE if the given COM object has an

IEnumVariant interface.

object com_load(string module, string server,
integer code_page)

The com_load function (Listing 18.3) loads the named COM object

and returns a resource identifier to be used by the other COM

functions. The module is named by its ProgID. The optional server

argument allows you to specify a remote server by Internet address.

The optional code_page argument may be set with one of the

following constants: CP_ACP, CP_MACCP, CP_OEMCP, CP_SYMBOL,

CP_THREAD_ACP, CP_UTF7, CP_UTF8.

FALSE is returned if the load fails.

Listing 18.3 com_load

<?php

 //open Word

 $word = com_load("word.application");

 //if it's not visible, make it visible

 $visible = com_get($word, "Visible");

 if(!$visible)

 {

 //make it visible

 com_set($word, "Visible", 1);

 }

 //wait a couple of seconds just so we can see it

 sleep(2);

 //increment the reference counter

 print("Ref: " . com_addref($word) . "
");

 //close Word

 com_invoke($word, "Quit");

 //release and free memory

 com_release($word);

 $word = NULL;

?>

boolean com_load_typelib(string typelib_name,
integer case_insensitive)

Use com_load_typelib to load a type library. The case_insensitive

argument is optional.

boolean com_message_pump(integer milliseconds)

The com_message_pump function processes COM events. Use it

together with com_event_sink. In most contexts, it’s best to set the

number of milliseconds PHP waits between polling for new messages

with the optional milliseconds argument. It defaults to zero. If you

check for messages in a busy loop, be sure to pick a reasonable time

to wait between polling, or your script will consume large amounts of

CPU time just looping.

boolean com_print_typeinfo(object com, string
dispinterface, boolean want_sink)

boolean com_print_typeinfo(string typelib, string
dispinterface, boolean want_sink)

The com_print_typeinfo function (Listing 18.4) prints a skeleton

class for handling the events of a given COM object and interface.

Listing 18.4 com_print_typeinfo

<?php

 $msie = new COM("internetexplorer.application");

 com_print_typeinfo($msie, "DWebBrowserEvents2", TRUE);

?>

com_propget

Use com_propget as an alias for com_get.

com_propput

Use com_propput as an alias for com_set.

com_propset

Use com_propset as an alias for com_set.

integer com_release(object com)

The com_release function decrements the reference counter for the

given COM object.

boolean com_set(object com, string property, value
data)

The com_set function changes the value of a property.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

18.2 CORBA

The Common Object Request Broker Architecture (CORBA) is a standard by

the Object Management Group that allows applications on disparate

platforms to communicate. The best place to start learning about CORBA is

<http://www.corba.org/>.

Support for CORBA in PHP was originally contained in an extension named

Satellite. You can still get this implementation from the PECL repository, but

its use is discouraged in favor of a new extension named Universe. At the

time of writing, Universe is not part of the PHP distribution, but you can

download it from <http://universe-phpext.sourceforge.net/>. Universe

relies on the MICO implementation on Linux <http://www.mico.org/>,

another free project.

The relative newness of this extension at the time of writing makes it hard

to describe its operation. Existing functions may change or disappear.

Certainly, new functions will appear.

David Eriksson wrote the Universe extension.

UniverseObject::UniverseObject(string ior)

The essence of the Universe extension (Listing 18.5) is the UniverseObject

class. This class allows you to instantiate a CORBA object in a PHP script. In

order to create a CORBA object, you must know its Interoperable Object

Reference (IOR). This long string uniquely identifies the object stored on a

remote server. After creating the instance of UniverseObject, you may

access properties and methods as you do with any other object.

Listing 18.5 Using Universe

<?php

 //define IOR

 $ior = "IOR:000000000000000f49444c3a" .

 "52616e646f6d3a312e30000000000001" .

 "00000000000000500001000000000016" .

 "706c616e7874792e6473672e63732e74" .

 "63642e69650006220000002c3a5c706c" .

 "616e7874792e6473672e63732e746364" .

 "2e69653a52616e646f6d3a303a3a4952" .

 "3a52616e646f6d00";

 //instantiate object

 $corba = new UniverseObject($ior);

 //get a random number

 $value = $obj->lrand48();

 print("Random number: $value
");

 //get IOR

http://www.corba.org/default.htm
http://universe-phpext.sourceforge.net/default.htm
http://www.mico.org/default.htm

 print("IOR: " . universe_object_to_string($corba) . "
");

?>

string universe_object_to_string(object corba)

Use this function to fetch the IOR for a given CORBA object.

18.3 Java

In 1999 Sam Ruby added support to allow PHP to use Java objects.

Java is Sun Microsystem’s object-oriented language intended to be

platform-independent. Java is very popular, and you won’t have any

trouble finding books, Web sites, and free source code. Perhaps the

best place to get information about Java used on Web servers is the

Java Apache Project <http://java.apache.org/>.

The Java extension creates a class called Java. You can use the new

operator to instantiate any Java class in your class path. An object is

returned that can be treated like any other PHP object. Its properties

and methods match the Java class.

object Java::Java(string class, …)

To create a Java object, call this constructor with the name of a class.

If the constructor allows for arguments, add them after the class

name. See Listing 18.6.

Listing 18.6 Using Java

<?php

 /*

 ** Adapted from Sam Ruby's example

 */

 //get version of Java

 $system = new Java("java.lang.System");

 print("Java version: " .

 $system->getProperty("java.version") .

 "
\n");

 //print formatted date

 $formatter = new Java("java.text.SimpleDateFormat",

 "EEEE, MMMM dd, yyyy 'at' h:mm:ss a zzzz");

 print($formatter->format(new Java("java.util.Date")) .

 "
\n");

?>

java_last_exception_clear()

The java_last_exception_clear function clears the last exception.

object java_last_exception_get()

The java_last_exception_get function (Listing 18.7) returns a Java

exception object for the last exception generated.

http://java.apache.org/default.htm

Listing 18.7 java_last_exception_clear,

java_last_exception_get

<?php

 $a = new Java('java.lang.String', 'PHP');

 //show contents of the String

 print($a->toString() . "
");

 //let an exception pass through

 $b = $a->substring(5, 6);

 //hide warning and capture exception

 $b = @$a->substring(5, 6);

 $e = java_last_exception_get();

 if($e)

 {

 print("Caught Exception: " .

 $e->toString() . "
");

 }

 java_last_exception_clear();

?>

Chapter 19. Miscellaneous
Topics in This Chapter

Apache

IMAP

MnoGoSearch

OpenSSL

System V Messages

System V Semaphores

System V Shared Memory

The functions in this section do not fit neatly into any other section of

the functional reference. They are not available by default when

compiling PHP, and most of them require extra libraries. While none

are essential to building PHP scripts, some are quite useful in the

right context. Because you may not be familiar with all the

technologies in this chapter, I’ve attempted to give a brief synopsis

and links to Web sites where you can learn more.

19.1 Apache

The functions in this section are available only when PHP is compiled

as a module for the Apache Web server.

boolean apache_child_terminate()

The apache_child_terminate function instructs Apache to terminate

the child process executing the PHP script when the request finishes.

This applies only when Apache runs in multiprocess mode, which is

normal behavior for Apache 1.3.x and optional for Apache 2.x.

Ordinarily, Apache terminates child processes after a set number of

requests, but you may wish to terminate early when your PHP script

uses a large amount of memory. Processes allocate heap space as

necessary but do not release it until shutdown. Terminating the

processes early returns the memory to the pool immediately. This

may improve performance.

The child_terminate directive controls whether you may call this

function.

array apache_get_modules()

The apache_get_modules function returns an array of modules

compiled into Apache. PHP indexes the modules by integers starting

with zero.

string apache_get_version()

The apache_get_version function returns the header that Apache

sends in the response header in order to identify itself. This includes

the version of Apache and some modules.

object apache_lookup_uri(string uri)

The apache_lookup_uri function evaluates a URI, or Universal

Resource Identifier, and returns an object containing properties

describing the URI. This function is a wrapper for a function that’s

part of the Apache Web server’s API: sub_req_lookup_uri. The

exact meaning of the returned object’s properties is beyond this text.

They mirror the properties of Apache’s request_rec structure. The

sub_req_lookup_uri function is contained in Apache’s

http_request.c source file, and the comments there may satisfy the

truly curious. Table 19.1 lists the properties of the returned object.

Table 19.1. Properties of the Object Returned by

apache_lookup_uri

allowed filename request_time

args handler send_bodyct

boundary method status

byterange no_cache status_line

bytes_sent no_local_copy the_request

clength path_info uri

content_type

string apache_note(string name, string value)

The apache_note function allows you to fetch and set values in

Apache’s note table. The current value of the named entry is

returned. If the optional value argument is present, then the value of

the entry will be changed to the supplied value. The notes table

exists for the duration of the request made to the Apache Web Server

and is available to any modules activated during the request. This

function allows you to communicate with other Apache modules.

One possible use of this functionality is the passing of information to

the logging module. For example, you could write a session identifier

to a note and then add that note to a log generated by Apache. This

would allow identifying each request with a specific session.

This function is a wrapper for the table_get and table_set functions

that are part of the Apache API.

array apache_request_headers()

The apache_request_headers function returns every header sent by

the browser, indexed by name. Some of these are turned into

environment variables, which are then made available as variables

inside your PHP script. Since this function relies on the Apache API, it

is available only when you run PHP as an Apache module.

array apache_response_headers()

The apache_response_headers function returns every header sent

by the server, indexed by name.

boolean apache_setenv(string variable, string value,
boolean walk_to_top)

The apache_setenv function sets the value of an Apache subprocess

environment variable. If you set the optional walk_to_top to TRUE,

PHP walks to the top of the request records first. This may be helpful

if you’ve arrived at the script through a redirect.

array getallheaders()

This is an alias to apache_request_headers.

boolean virtual(string filename)

The virtual function is equivalent to writing <!— #include virtual

filename—>, which is an Apache subrequest. You may wish to refer to

the Apache documentation to learn more.

If you need to execute an external PHP script, use the include or

require statements instead.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

19.2 IMAP

IMAP is the Internet Message Access Protocol. It was developed in 1986 at

Stanford University; however, it has been overshadowed by less

sophisticated mail protocols, such as POP (Post Office Protocol). IMAP allows

the user to manipulate mail on the server as if it existed locally.

PHP implements IMAP 4, the latest incarnation described in RFC 1730. More

information may be obtained at <http://www.imap.org/>, the IMAP

Connection.

string imap_8bit(string text)

The imap_8bit function converts an 8-bit string into a quote-printable

string.

array imap_alerts()

The imap_alerts function returns all the alerts generated by IMAP functions

as an array and clears the stack of alerts.

integer imap_append(resource imap, string mailbox,
string message, string flags)

The imap_append function (Listing 19.1) appends a message to a mailbox

using IMAP’s APPEND command. The imap argument is a resource returned

by imap_open. The flags argument is optional. See Section 2.3.2 of RFC

2060 for a discussion of flags.

This function may be useful for copying messages from one server to

another or for keeping sent messages in a folder. You can move messages

between folders with imap_mail_copy.

Listing 19.1 imap_append

<?php

 $imap = imap_open("{clearink.com}INBOX", "jsmith", "secret");

 if(!$imap)

 {

 print("Connection to IMAP server failed!");

 }

 //append a test message to in-box

 imap_append($imap, "{localhost}INBOX",

 "From: jsmith@example.com\r\n" .

 "To: jsmith@example.com \r\n" .

 "Subject: Appending a message\r\n\r\n" .

http://www.imap.org/default.htm

 "This message is now appended.\r\n");

 //close connection

 imap_close($imap);

?>

string imap_base64(string text)

Use imap_base64 to decode base64 text. This routine is part of the IMAP

extension; base64_decode is a built-in PHP function that offers the same

functionality.

string imap_binary(string text)

Use imap_binary to convert an 8-bit string into a base64 string.

string imap_body(resource imap, integer message,
integer flags)

The imap_body function (Listing 19.2) returns the body of the specified

message. The optional flags argument is a bit field that accepts the

constants listed in Table 19.2. You can use the | operator to combine them.

Table 19.2. imap_body Flags

Constant Description

FT_INTERNAL Return the body using local line-end characters instead of

CRLF.

FT_NOT Do not fetch header lines.

FT_PEEK Do not mark this message being read.

FT_PREFETCHTEXT Fetch the text when getting the header.

FT_UID The message argument is a UID.

Listing 19.2 imap_body

<?php

 //connect to IMAP server

 $imap = imap_open("{example.com}INBOX", "leon", "secret");

 if(!$imap)

 {

 print("Connection to IMAP server failed!");

 }

 //get the number of messages in the INBOX

 $check = imap_check($imap);

 print("$check->Nmsgs messages
\n");

 for($n=1; $n <= $check->Nmsgs; $n++)

 {

 $body = imap_body($imap, $n, FT_INTERNAL | FT_PEEK);

 print("<hr>\n$body\n");

 }

 //close connection

 imap_close($imap);

?>

object imap_bodystruct(resource imap, integer message,
integer section)

The imap_bodystruct function returns an object describing the structure of

a body section. The object will contain the following properties: bytes,

description, disposition, dparameters, encoding, id, ifdescription,

ifdisposition, ifdparameters, ifid, ifparameters, ifsubtype, lines,

parameters, subtype, type. The elements such as ifsubtype that begin

with if are booleans that signal whether the similarly named elements are

present.

object imap_check(resource imap)

The imap_check function (Listing 19.3) returns information about the current

mailbox in the form of an object. Table 19.3 lists the properties of the object.

If the connection has timed out, FALSE is returned.

Table 19.3. Return Elements for imap_check

Property Description

Date Date of the most recent message

Driver Driver being used

Mailbox Name of the mailbox

Nmsgs Number of messages

Recent Number of recent messages

Listing 19.3 imap_check

<?php

 //connect to IMAP server

 $imap = imap_open("{example.com}INBOX", "leon", "secret");

 if(!$imap)

 {

 print("Connection to IMAP server failed!");

 }

 //get the number of messages in the INBOX

 $check = imap_check($imap);

 print("$check->Nmsgs messages
\n");

 print("$check->Recent new messages
\n");

 print("Most Recent Message: $check->Date
\n");

 for($n=1; $n <= $check->Nmsgs; $n++)

 {

 $header = imap_headerinfo($imap, $n);

 $body = imap_body($imap, $n, FT_INTERNAL | FT_PEEK);

 print("<hr>\n");

 $to = array();

 foreach($header->to as $t)

 {

 $to[] = "$t->personal <$t->mailbox@$t->host>";

 }

 $to = implode(",", $to);

 $from = array();

 foreach($header->from as $f)

 {

 $from[] = "$f->personal <$f->mailbox@$f->host>";

 }

 $from = implode(",", $from);

 print(

 "Date: $header->date
\n" .

 "To: " . htmlentities($to) . "
" .

 "From: " . htmlentities($from) . "
\n" .

 "Subject: $header->subject
\n" .

 "
\n" .

 nl2br(htmlentities($body)) . "
\n");

 }

 //close connection

 imap_close($imap);

?>

string imap_clearflag_full(resource imap, string
sequence, string flag, integer options)

The imap_clearflag_full function (Listing 19.4) deletes a flag on a

sequence of messages. The options argument, if supplied, may be set to

ST_UID, which signals that the sequence argument contains UIDs instead of

message numbers.

Listing 19.4 imap_clearflag_full

<?php

 //connect to IMAP server

 $imap = imap_open("{news.example.com/nntp:119}alt.fan.devo",

 "leon@example.com", "secret");

 if(!$imap)

 {

 print("Connection to NNTP server failed!");

 }

 //set first 3 messages as unread

 imap_clearflag_full($imap, "1,2,3", "\\Seen");

 //close connection

 imap_close($imap);

?>

boolean imap_close(resource imap, integer flags)

Use imap_close to close a connection to a mailbox. The imap argument is an

integer returned by imap_open. The optional flags argument may be set to

CL_EXPUNGE, which will delete all messages marked for deletion.

boolean imap_createmailbox(resource imap, string
mailbox)

Use imap_createmailbox (Listing 19.5) to create a mailbox.

Listing 19.5 imap_createmailbox, imap_deletemailbox

<?php

 //connect to IMAP server

 $imap = imap_open("{mail.example.com}INBOX", "leon",

 "secret");

 if(!$imap)

 {

 print("Connection to IMAP server failed!
");

 foreach(imap_errors() as $e)

 {

 print_r("$e
");

 }

 exit();

 }

 //create mailbox

 imap_createmailbox($imap, "PHP List");

 //delete mailbox

 imap_deletemailbox($imap, "PHP List");

 //close connection

 imap_close($imap);

?>

boolean imap_delete(resource imap, integer message)

The imap_delete function (Listing 19.6) marks a message for deletion. Use

imap_expunge to cause the message to be permanently deleted.

Alternatively, you can use the CL_EXPUNGE flag when you call imap_close.

Listing 19.6 imap_delete

<?php

 // delete message number 3

 $imap = imap_open("{mail.example.com}INBOX",

 "leon", "password");

 imap_delete($imap, 3);

 imap_close($imap);

?>

boolean imap_deletemailbox(resource imap, string
mailbox)

The imap_deletemailbox function deletes the named mailbox.

array imap_errors()

Use imap_errors to get an array of all errors generated by IMAP functions,

removing them from an internal stack. You can use imap_last_error to get

just the last error.

boolean imap_expunge(resource imap)

Use imap_expunge to remove all messages marked for deletion.

string imap_fetchbody(resource imap, integer message,
integer part, integer flags)

The imap_fetchbody function gets a specific part of a multipart message. If

the part is encoded with base64 or is quoted-printable, you must decode it in

your script. The optional flags argument accepts the flags described in Table

19.2. It may be easier to use imap_fetchstructure.

string imap_fetchheader(resource imap, integer message,
integer flags)

Use imap_fetchheader to get the complete RFC 822 header text for a

message. The optional flags argument accepts the flags described in Table

19.2.

array imap_fetch_overview(resource imap, string
sequence, integer options)

The imap_fetch_overview function returns an array of objects for the given

sequence of messages. Each object describes the headers for one of the

messages.

object imap_fetchstructure(resource imap, integer
message, integer flags)

The imap_fetchstructure returns an object with information about the

specified message. Table 19.4 lists the properties of this object. The optional

flags argument accepts the FT_UID constant described in Table 19.2.

Table 19.4. imap_fetchstructure Properties

Property Description

Type The type, matching one of the following:

TYPETEXT

TYPEMULTIPART

TYPEMESSAGE

TYPEAPPLICATION

TYPEAUDIO

TYPEIMAGE

TYPEVIDEO

TYPEOTHER

Encoding The encoding, matching one of the following:

ENC7BIT

ENC8BIT

ENCBINARY

ENCBASE64

ENCQUOTEDPRINTABLE

ENCOTHER

ifsubtype TRUE if subtype is set

Property Description

subtype MIME subtype

ifdescription TRUE if description is set

description Description header

ifid TRUE if id is set

lines Number of lines

bytes Total bytes

ifdisposition TRUE if disposition is set

disposition Disposition header

ifdparameters TRUE if dparameters is set

dparameters Array of disposition objects

ifparameters TRUE if parameters is set

parameters Array of parameter objects

parts Object for each part of a multipart message using the same

structure

array imap_getmailboxes(resource imap, string
reference, string pattern)

The imap_getmailboxes function (Listing 19.7) returns detailed information

about mailboxes in the form of an array of objects. The reference argument

is an IMAP server in the normal form: {server:port}. The pattern

argument controls which mailboxes are returned. An asterisk (*) matches all

mailboxes, and a percentage symbol (%) matches all mailboxes at a

particular level.

The returned objects contain three properties: name, delimiter, and

attributes, a bitfield that may be tested against the constants listed in

Table 19.5.

Table 19.5. Constants in the attributes Property

Constant Description

LATT_NOINFERIORS The mailbox contains no other mailboxes.

LATT_NOSELECT The mailbox is a container only and cannot be opened.

Constant Description

LATT_MARKED The mailbox is marked.

LATT_UNMARKED The mailbox is unmarked.

Listing 19.7 imap_getmailboxes

<?php

 $host = "{news.example.com/nntp:119}";

 //connect to IMAP server

 $imap = imap_open($host,

 "leon@example.com", "secret", OP_HALFOPEN);

 //grab a list of all the comp.lang newsgroups

 $group = imap_getmailboxes($imap, $host, "comp.lang.*");

 foreach($group as $g)

 {

 print(str_replace($host, '', $g->name) . "
");

 }

 //close connection

 imap_close($imap);

?>

array imap_get_quota(resource imap, string root)

The imap_get_quota function (Listing 19.8) returns an array describing

quota limits and usage for a given user. It may be run by the mail

administrator only. The root argument should name a mail account in the

form user.jsmith.

Listing 19.8 imap_get_quota

<?php

 $imap = imap_open("{mail.example.com}",

 "mailadmin", "secret", OP_HALFOPEN);

 $quota = imap_get_quota($imap, "user.leon");

 foreach($quota as $k=>$v)

 {

 print("$k {$v['usage']} {$v['limit']}
");

 }

 imap_close($imap);

?>

array imap_get_quotaroot(resource imap, string root)

The imap_get_quotaroot function returns quota limits and usage for your

own account. The root argument should name a mailbox, such as INBOX. It

returns an array in the same form returned by imap_get_quota.

array imap_getsubscribed(resource imap, string
reference, string pattern)

This function returns subscribed mailboxes. The reference and pattern

arguments are optional.

imap_header

The imap_header function is an alias for imap_headerinfo.

object imap_headerinfo(resource imap, integer message,
integer from_length, integer subject_length, string
default_host)

The imap_headerinfo function returns an object with properties matching

message headers. The from_length and subject_length arguments are

optional. These values govern the fetchfrom and fetchsubject properties

respectively.

Table 19.6 lists the possible properties of the returned object. Some

properties depend on whether the message is mail or news.

Table 19.6. imap_header Properties

Property Description

Answered Set to A if the message is flagged as answered.

Bcc Array of objects describing the Bcc header with the

following properties: adl, host, mailbox, personal.

Bccaddress The complete text of the Bcc header.

Cc Array of objects describing the Cc header with the

following properties: adl, host, mailbox, personal.

Ccaddress The complete text of the Cc header.

Date Message date in the following form:

Thu, 23 Jan 2003 09:55:17 -0800

Deleted Set to D if the message is marked for deletion.

Property Description

Draft Set to X if the message is a draft.

Flagged Set to F if the message is flagged.

followup_to The complete text of the Followup-To header.

From Array of objects describing the From header with the

following properties: adl, host, mailbox, personal.

Fromaddress The complete text of the From header.

in_reply_to The complete text of the In-Reply-To header.

MailDate The mailing date in the following form:

23-Jan-2003 09:55:09 -0800

message_id The Message-ID header.

Msgno The message number.

Recent Set to R if the message is recent. Set to N if the

message is flagged as answered.

References The complete text of the References header.

Remail The complete text of the Remail header.

reply_to Array of objects describing the reply-to header with

the following properties: adl, host, mailbox,

personal.

reply_toaddress The complete text of the Reply-To header.

return_path Array of objects describing the Return-Path header

with the following properties: adl, host, mailbox,

personal.

return_pathaddressThe complete text of the Return-Path header.

Sender Array of objects describing the Sender header with the

following properties: adl, host, mailbox, personal.

Senderaddress The complete text of the Sender header.

Size The size of the message.

Subject The complete text of the Subject header.

To Array of objects describing the To header with the

following properties: adl, host, mailbox, personal.

Toaddress The complete text of the To header.

Property Description

Udate The message date represented as a UNIX timestamp.

Unseen Set to U if the message is unread and not recent.

array imap_headers(resource imap)

The imap_headers function returns an array of strings, with one element per

message. Each string summarizes the headers for the message.

string imap_last_error()

Use imap_last_error to get the last error generated by an IMAP function.

array imap_list(resource imap)

Use imap_list to get the name of every mailbox in an array.

imap_list_full

The imap_list_full function is an alias to imap_getmailboxes.

imap_listmailbox

The imap_listmailbox function is an alias to imap_list.

imap_listsubscribed

Use imap_listsubscribed as an alias to imap_lsub.

array imap_lsub(resource imap)

The imap_lsub function returns a list of subscribed mailboxes.

boolean imap_mail(string to, string subject, string
message, string headers, string cc, string bcc, string
return_path)

The imap_mail function is an alternative to the mail function. The optional

cc and bcc arguments may contain a list of comma-separated addresses.

The return_path argument sets the Return-Path header.

string imap_mail_compose(array envelope, array body)

The imap_mail_compose function (Listing 19.9) returns a MIME message

given arrays describing the envelope and body. The envelope argument may

contain the following elements: bcc, cc, custom_headers, date, from,

in_reply_to, message_id, remail, reply_to, return_path, subject, to.

The body argument should contain an array of arrays that may contain the

following elements: bytes, charset, contents.data, description,

disposition, disposition.type, encoding, id, lines, md5, subtype, type,

type.parameters.

To send a composed message, send the output of this function to the

headers argument of imap_mail or mail. Keep in mind that these functions

set the value of the To and Subject headers. Including them in the MIME

envelope will result in duplicate headers. You may also send the message by

passing the message off to an external process, such as sendmail.

Listing 19.9 imap_mail_compose

<?php

 //assemble envelope

 $envelope = array(

 'from'=>'leon@example.com',

 'return_path'=>'leon@example.com'

);

 //grab logo

 $logo = file_get_contents("/image/logo.gif");

 //assemble body

 $body = array(

 //first part should be multipart/mixed

 array(

 'type'=>TYPEMULTIPART,

 'subtype'=>'mixed'

),

 //add a plain text message

 array(

 'type'=>TYPETEXT,

 'subtype'=>'plain',

 'contents.data'=>"Here's a message for you."

),

 //add an image

 array(

 'type'=>TYPEIMAGE,

 'subtype'=>'gif',

 'encoding'=>ENCBASE64,

 'contents.data'=>chunk_split(base64_encode($logo)),

 'description'=>'logo.gif'

)

);

 //compose MIME headers

 $mime = imap_mail_compose($envelope, $body);

 //show user the raw MIME

 print(nl2br($mime));

 //send the message

 imap_mail('leon@example.com', 'MIME Test', '', $mime);

?>

boolean imap_mail_copy(resource imap, string list, string
mailbox, integer flags)

The imap_mail_copy function (Listing 19.10) copies messages into another

mailbox. The list of messages can be a list of messages or a range. If listing

messages, separate them with commas. If giving a range, separate the

beginning and ending numbers with a colon. You may use an asterisk in

place of the end of the range to stand for the last message in the mailbox.

The optional flags argument is a bitfield that may be set with CP_UID, which

specifies that the list contains UIDs, or CP_MOVE, which instructs the function

to delete the original messages after copying. This last functionality may be

accomplished with the imap_mail_move function.

Listing 19.10 imap_mail_copy

<?php

 //delete messages 1 through 10

 $imap = imap_open("{mail.example.com}INBOX", "leon",

 "password");

 imap_mail_copy($imap, "INBOX.php", "1:10");

 imap_close($imap);

?>

boolean imap_mail_move(resource imap, string list,
string mailbox, integer flags)

The imap_mail_move function moves messages from the current mailbox to

a new mailbox. The original messages are marked for deletion. The list can

be a comma-separated list of messages or a range. If giving a range,

separate the beginning and ending numbers with a colon. You may use an

asterisk in place of the end to stand for the last message.

The optional flags argument is a bitfield that may be set with CP_UID, which

specifies that the list contains UIDs.

object imap_mailboxmsginfo(resource imap)

Use imap_mailboxmsginfo to return information about the current mailbox.

The object will have the properties listed in Table 19.7.

Table 19.7. Properties for imap_mailboxmsginfo

Date Recent

Driver Size

Mailbox Unread

Nmsgs Recent

array imap_mime_header_decode(string text)

RFC 2047 defines the method for encoding MIME headers using non-ASCII

character sets. This function decodes these headers into an array of objects

containing two elements: charset and text. Each block of encoded text

becomes an object in the array.

integer imap_msgno(resource imap, integer uid)

The imap_msgno function returns the message number based on a UID. To

get the UID based on message number, use imap_uid.

integer imap_num_msg(resource imap)

The imap_num_msg function returns the number of messages in the current

mailbox.

integer imap_num_recent(resource imap)

The imap_num_recent function returns the number of recent messages in

the current mailbox.

integer imap_open(string mailbox, string username,
string password, integer flags)

Use imap_open to begin a connection to a mail server. The mailbox

argument requires a special format. It should begin with a hostname

enclosed in curly braces. Although optional, you should add a colon and port

number immediate after the host name. Leaving it out causes PHP to delay

making the connection.

By default, this function opens a connection to an IMAP server. You can

connect to a POP3 server by adding /pop3 after the hostname and port. You

can connect to a Usenet news server by adding /nntp to the end. You may

also connect to IMAP and POP servers using SSL. Table 19.8 summarizes

server connection strings.

After the host and outside the curly braces, you may specify an IMAP

mailbox or NNTP newsgroup.

This function returns a resource representing the connection to the server.

Use this identifier with the IMAP functions that require an IMAP resource.

The optional flags argument is a bitfield that uses the constants listed in

Table 19.9.

Table 19.8. IMAP Server Strings

Connection Type Connection String

IMAP {mail.example.com:143}INBOX

IMAP over SSL {mail.example.com:993/ssl}INBOX

IMAP over SSL with self-

signed certificate

{mail.example.com:993/ssl/novalidate-

cert}INBOX

POP3 {mail.example.com:110/pop3}

POP3 over SSL {mail.example.com:995/pop3/ssl}

POP3 over SSL with self-

signed certificate

{mail.example.com:995/pop3/ssl/novalidate-

cert}

NNTP {news.example.com:119/nntp}

Table 19.9. Constants Used by imap_open

Constant Description

CL_EXPUNGE Clean out messages marked for deletion on close.

OP_ANONYMOUS Don’t use .newsrc file if connecting to an NNTP server.

OP_DEBUG Debug protocol negotiations.

OP_EXPUNGE Expunge connections.

OP_HALFOPEN Open connection, but not an IMAP or NNTP mailbox.

Constant Description

OP_PROTOTYPE Return driver prototype; for internal use only.

OP_READONLY Open in read-only mode.

OP_SECURE Don’t do nonsecure authentication.

OP_SHORTCACHE Use short caching.

OP_SILENT Don’t pass up events.

boolean imap_ping(resource imap)

The imap_ping function checks the stream to makes sure it is still alive. If

new mail has arrived, it will be detected when this function is called.

integer imap_popen(string mailbox, string username,
string password, integer flags)

The imap_popen function opens a persistent connection to an IMAP server.

This connection is not closed until the calling process ends, so it may be

reused by many page requests. At the time of this writing, the code behind

this function was unfinished.

string imap_qprint(string text)

The imap_qprint function converts a quote-printable string into an 8-bit

string.

imap_rename

You may use imap_rename as an alias for imap_renamemailbox.

boolean imap_renamemailbox(resource imap, string
old_name, string new_name)

The imap_renamemailbox function changes the name of a mailbox.

boolean imap_reopen(resource imap, string username,
string password, integer flags)

Use imap_reopen to open a connection that has died. Its operation is

identical to imap_open.

array imap_rfc822_parse_adrlist(string address, string
host)

The imap_rfc_parse_adrlist function parses an email address given a

default host and returns an array of objects. Each object has the following

properties: mailbox, host, personal, adl. The mailbox property is the

name before the @. The host property is the destination machine or domain.

The personal property is the name of the recipient. The adl property is the

source route, the chain of machines the mail will travel, if the address is

specified in that style. As the name of the function suggests, this function

implements addresses according to RFC 822.

object imap_rfc822_parse_headers(string text, string
default_host)

The imap_rfc822_parse_headers function parses raw mail headers and

returns an object similar to the object returned by imap_headerinfo.

string imap_rfc822_write_address(string mailbox, string
host, string personal_info)

The imap_rfc822_write_address returns an email address. As its name

suggests, this function implements addresses according to RFC 822.

imap_scan

You may use imap_scan as an alias for imap_scanmailbox.

array imap_scanmailbox(resource imap, string fragment)

The imap_scanmailbox function returns an array of mailbox names that

contain the given fragment.

array imap_search(resource imap, string criteria, integer
flags)

Use imap_search to get a list of message numbers based on search criteria.

It wraps the use of IMAP SEARCH statement defined in RFC 1176.

The criteria argument is a list of search codes separated by spaces. Table

19.10 summarizes these strings. Some of them take an argument, which

must always be surrounded by double quotes. The optional flags argument

may be set to SE_UID to cause UIDs to be returned instead of message

numbers.

Table 19.10. imap_search Criteria Codes

Criteria Description

ALL All messages in the mailbox.

ANSWERED Messages with the \ANSWERED flag set.

BCC “string” Messages containing the specified string in the Bcc field.

BEFORE “date” Messages whose date is earlier than the specified date.

BODY “string” Messages containing the specified string in the body.

CC “string” Messages containing the specified string in the Cc field.

DELETED Messages with the \DELETED flag set.

FLAGGED Messages with the \FLAGGED flag set.

FROM “string” Messages containing the specified string in the From field.

KEYWORD “flag” Messages with the specified flag set.

NEW Messages that have the \RECENT flag set but not the \SEEN

flag.

OLD Messages that do not have the \RECENT flag set.

ON “date” Messages whose date matches the specified date.

RECENT Messages that have the \RECENT flag set.

SEEN Messages that have the \SEEN flag set.

SINCE “date” Messages whose date is after the specified date.

SUBJECT

“string”

Messages containing the specified string in the Subject

field.

TEXT “string” Messages containing the specified string.

TO “string” Messages containing the specified string in the To field.

UNANSWERED Messages that do not have the \ANSWERED flag set.

UNDELETED Messages that do not have the \DELETED flag set.

UNFLAGGED Messages that do not have the \FLAGGED flag set.

Criteria Description

UNKEYWORD

“flag”

Messages that do not have the specified flag set.

UNSEEN Messages that do not have the \SEEN flag set.

boolean imap_setacl(resource imap, string mailbox,
string user, string access)

The imap_setacl function sets the access control list for the given mailbox.

It wraps the SETACL IMAP command, as defined in RFC 2086. Only a mail

administrator may execute this function. The mailbox argument should take

the form of user.leon. The access string should be a combination of the

codes in Table 19.11.

Table 19.11. ACL Codes

Code Name Rights

A Administer Set access for other users.

c Create Create new mailboxes.

d Delete Delete messages.

i Insert Append and copy messages.

l Lookup The mailbox shows in searches.

p Post Send mail to submission address for mailbox.

r Read Allow reading from mailbox.

s Seen/Unseen Mark a message as being seen or unseen.

w Write Change information about messages (excluding deleted

and seen flags).

string imap_setflag_full(resource imap, string sequence,
string flag, string options)

The imap_setflag_full function sets a flag on a sequence of messages.

The options argument, if supplied, may be set to ST_UID, which signals that

the sequence argument contains UIDs instead of message numbers.

boolean imap_set_quota(resource imap, string root,
integer limit)

The imap_set_quota function sets the quota for the given account. Only a

mail administrator may execute this function. The mailbox argument should

take the form of user.leon.

array imap_sort(resource imap, integer criteria, integer
reverse, integer options, string search)

Use the imap_sort function to get a sorted list of message numbers based

on sort criteria. The criteria argument must be one of the constants

defined in Table 19.12. If the reverse argument is set to 1, the sort order

will be reversed. The options argument is a bitfield that may be set with

SE_UID, specifying that UIDs are used, or SE_NOPREFETCH, which will stop

messages from being prefetched. The search argument may be set with

same search criteria accepted by imap_search.

Table 19.12. Criteria Constants for imap_sort

Constant Description

SORTARRIVAL Arrival date

SORTDATE Message date

SORTFROM First mailbox in from: line

SORTSIZE Size of message

SORTSUBJECT Message subject

SORTCC First mailbox in cc: line

SORTO First mailbox in to: line

object imap_status(resource imap, string mailbox, integer
options)

The imap_status function returns an object with properties describing the

status of a mailbox. The only property guaranteed to exist is flags, which

tells you which other properties exist. You choose the properties to generate

with the options argument. Constants to use for options are listed in Table

19.13.

Table 19.13. imap_status Options

Constant Description

SA_ALL Turns on all properties

SA_MESSAGES Number of messages in mailbox

SA_RECENT Number of recent messages

SA_QUOTA Disk space used by mailbox

SA_QUOTA_ALL Disk space used by all mailboxes

SA_UIDNEXT Next UID to be used

SA_UIDVALIDITY Flag for the validity of UID data

SA_UNSEEN Number of new messages

boolean imap_subscribe(resource imap, string mailbox)

Use imap_subscribe to subscribe to a mailbox.

array imap_thread(resource imap, integer options)

The imap_thread function (Listing 19.11) returns the list of messages for

the open mailbox, organized by thread. On the backend, it uses IMAP’s

THREAD command and the REFERENCES algorithm. The optional options

argument accepts the same search flags used by imap_search.

The returned array is one-dimensional and represents the tree of threads.

Each element of the array uses a key in the form node.property, where

node is the number of one of the nodes in the tree and property is one of

three strings: num, next, branch. The num property is the message number,

suitable for fetching headers or body. The next property is the node number

of the next message in the thread. A value of zero signifies the last message

in the local thread. The branch property stands for the end of a branch and

the next node will belong one level up. If the value of the branch property is

zero, the sub-tree continues. A non-zero branch value points to the next

message in the list, which starts a new thread.

Listing 19.11 imap_thread

<?php

 //connect to IMAP server

 $imap = imap_open(

 "{news.example.com:119/nntp}alt.fan.henry-rollins",

 "leon@example.com", "secret");

 //get threads

 $thread = imap_thread($imap);

 foreach($thread as $id=>$val)

 {

 list($node, $property) = explode(".", $id);

 if($property == 'num')

 {

 $header = imap_headerinfo($imap, $val);

 print("\n" .

 "" .

 $header->Subject .

 " by " . htmlentities($header->fromaddress) .

 "\n");

 }

 elseif($property == 'branch')

 {

 print "\n";

 }

 }

?>

integer imap_uid(resource imap, integer message)

The imap_uid function returns the UID for the given message. To get the

message number based on UID, use imap_msgno.

boolean imap_undelete(resource imap, integer message)

The imap_undelete function removes the deletion mark on a message.

boolean imap_unsubscribe(resource imap, string
mailbox)

Use imap_unsubscribe to unsubscribe to a mailbox.

string imap_utf7_decode(string data)

The imap_utf7_decode function takes UTF-7 encoded text and returns

plaintext.

string imap_utf7_encode(string data)

The imap_utf7_encode function returns UTF-7 encoded text.

string imap_utf8(string text)

The imap_utf8 function converts the given text to UTF-8.

19.3 MnoGoSearch

MnoGoSearch is a Web site search engine, formerly known as UdmSearch. It

works by following links on a Web site to build a database of keywords.

Although you may use it by itself, it can be more convenient to access the

engine directly from PHP.

You can find more information about MnoGoSearch at the home site:

<http://www.mnogosearch.ru/>. Listing 19.12 demonstrates use of the

MnoGoSearch functions.

Listing 19.12 Using MnoGoSearch

<?php

 if(!isset($_REQUEST['query']))

 {

 $_REQUEST['query'] = '';

 }

 if(!isset($_REQUEST['page']))

 {

 $_REQUEST['page'] = 0;

 }

 //connect to search engine

 $agent = udm_alloc_agent('mysql://user@localhost/mnogo/');

 //only return English documents

 udm_add_search_limit($agent, UDM_LIMIT_LANG, 'en');

 //ignore words of 2 or less letters

 udm_set_agent_param($agent, UDM_PARAM_MIN_WORD_LEN, 3);

 //return 10 results per page

 udm_set_agent_param($agent, UDM_PARAM_PAGE_SIZE, 10);

 //jump to specified page

 udm_set_agent_param($agent, UDM_PARAM_PAGE_NUM,

 $_REQUEST['page']);

 //get results

 $result = udm_find($agent, $_REQUEST['query']);

 $matches = udm_get_res_param($result, UDM_PARAM_FOUND);

 $rows = udm_get_res_param($result, UDM_PARAM_NUM_ROWS);

 $first = udm_get_res_param($result, UDM_PARAM_FIRST_DOC);

 $last = udm_get_res_param($result, UDM_PARAM_LAST_DOC);

 $rating = udm_get_res_param($result, UDM_PARAM_LAST_DOC);

 print("$matches matches
");

 $pages = ceil($matches/10);

 //links to each page

 for($p=0; $p < $pages; $p++)

 {

 if($p == $_REQUEST['page'])

 {

http://www.mnogosearch.ru/default.htm

 print(($p+1) . " ");

 }

 else

 {

 print("<a href=\"{$_SERVER['PHP_SELF']}?" .

 "query={$_REQUEST['query']}&page=$p\">" .

 ($p+1) . " ");

 }

 }

 print("

\n");

 for($i=0; $i < $rows; $i++)

 {

 print("<a href=\"" .

 udm_get_res_field($result, $i, UDM_FIELD_URL) .

 "\">" . udm_get_res_field($result, $i,

 UDM_FIELD_TITLE) . "
" .

 udm_get_res_field($result, $i, UDM_FIELD_TEXT) .

 "

");

 }

 udm_free_res($result);

 udm_free_agent($agent);

?>

<form action="<?php=$_SERVER['PHP_SELF']?>">

<input type="text" name="query" value="<?php=$_REQUEST['query']?>">

<input type="submit">

</form>

boolean udm_add_search_limit(resource agent, integer
limit, string value)

The udm_add_search_limit function sets one of the limits on search results.

You must supply a resource as returned by udm_alloc_agent. The limit

argument should match one of the constants in Table 19.14. You should read

the MnoGoSearch manual for information about categories and tags.

Table 19.14. MnoGoSearch Search Limits

Limit Description

UDM_LIMIT_CAT Return results for the given category only.

UDM_LIMIT_DATEReturn results whose modification date is before or after a

given date. The value should be < or > followed by a UNIX

timestamp.

UDM_LIMIT_LANGReturn documents in the given language, specified by two-

letter code.

UDM_LIMIT_TAG Return results for the given tag only.

UDM_LIMIT_URL Return results only for pages whose URL matches the given

pattern, using % and _ wildcard characters.

resource udm_alloc_agent(string address, string mode)

The udm_alloc_agent function returns a resource used for communicating with

the search engine. The address argument specifies database connection

information. The optional mode argument controls how the search engine stores

words.

The address argument takes the following form: type://user:password@

host:port/database/. The user, password, and port parts are optional. If you

use MnoGoSearch’s built-in database, you can leave the address blank. For

other databases, use one of the following types: ibase, msql, mssql, mysql,

oracle, pgsql, solid.

The mode argument can be one of four values: single, multi, crc, crc-

multi. See Chapter 5 of the MnoGoSearch manual for a description of these

modes.

integer udm_api_version()

Use udm_api_version to get the version of the MnoGoSearch API compiled into

the PHP extension.

array udm_cat_list(resource agent, string category)

The udm_cat_list function returns all category values of the same level as the

given category code. The returned array contains two elements for each

category. The first element is the category code. The second element is the

category name.

array udm_cat_path(resource agent, string category)

The udm_cat_path function returns an array tracing the path from the root of

the category tree to the given category code. The returned array contains two

elements for leaf: the category code and the category name.

boolean udm_check_charset(resource agent, string
charset)

The udm_check_charset function checks whether MnoGoSearch recognizes the

given character set.

boolean udm_check_stored(resource agent, resource
store, string document_id)

The udm_check_stored function checks whether the document cache daemon

recognizes the named document.

boolean udm_clear_search_limits(resource agent)

The udm_clear_search_limits function resets the search limits for the given

connection.

boolean udm_close_stored(resource agent, resource store)

The udm_close_stored function closes a connection to the document cache

daemon.

integer udm_crc32 (resource agent, string text)

The udm_crc32 function returns the CRC32 checksum for the given string.

integer udm_errno(resource agent)

The udm_errno function returns the error number for the given connection or

zero if no error occurred.

string udm_error(resource agent)

The udm_error function returns the error description for the given connection

or an empty string if no error occurred.

resource udm_find(resource agent, string query)

The udm_find function executes the given query and returns a result resource.

Use udm_get_res_field to get each result.

boolean udm_free_agent(resource agent)

Use udm_free_agent to end a connection to the search engine.

boolean udm_free_ispell_data(resource agent)

The udm_free_ispell_data function frees memory allocated by

udm_load_ispell_data.

boolean udm_free_res(resource result)

The udm_free_res function frees memory used by a result resource.

integer udm_get_doc_count(resource agent)

The udm_get_doc_count function returns the total number of documents in the

index.

string udm_get_res_field(resource result, integer row,
integer field)

Use udm_get_res_field to get the value of a field in the search results.

Specify the field with one of the constants in Table 19.15.

Table 19.15. MnoGoSearch Result Fields

Field Description

UDM_FIELD_CATEGORY Category code

UDM_FIELD_CONTENT MIME type

UDM_FIELD_CRC CRC32 checksum

UDM_FIELD_DESC Description from the meta tag

UDM_FIELD_KEYWORDS Keywords from the meta tag

UDM_FIELD_MODIFIED Last modification time as UNIX timestamp

UDM_FIELD_ORDER The number of the document in the result set

UDM_FIELD_RATING Rating

UDM_FIELD_SIZE Size

UDM_FIELD_TEXT The first few lines of the document

UDM_FIELD_TITLE Title

UDM_FIELD_URL URL

UDM_FIELD_URLID Unique ID

string udm_get_res_param(resource result, integer
parameter)

The udm_get_res_param function returns the value of one of the parameters of

a result set. Use one of the constants in Table 19.16 for the parameter

argument.

Table 19.16. MnoGoSearch Output Parameters

Parameter Description

UDM_PARAM_FIRST_DOC The number of the first document on current page

UDM_PARAM_FOUND The number of matches in the result set

UDM_PARAM_LAST_DOC The number of the last document on the current page

UDM_PARAM_NUM_ROWS The number of matches on the current page

UDM_PARAM_SEARCHTIME The number of seconds spend executing the search

UDM_PARAM_WORDINFO Information about query words found in the index

boolean udm_load_ispell_data(integer agent, integer
source, string option1, string option2, boolean sort)

The udm_load_ispell_data function loads ISpell-related data. Use a constant

from Table 19.17 for the source argument. The meaning of the other three

arguments change depending on the constant chosen. The sort argument

sorts the words in the dictionary.

Table 19.17. ISpell Loading Options

Source Description

UDM_ISPELL_TYPE_AFFIX Load an affix file. The option1 argument should be

a two-letter language code. The option2 argument

should be the path to the affix file.

UDM_ISPELL_TYPE_DB Load dictionary from an SQL database. Set option1

and option2 to blank strings.

UDM_ISPELL_TYPE_SERVER Load from a spell server. Set option1 to the host

running the server. Set option2 to an empty string.

UDM_ISPELL_TYPE_SPELL Load a dictionary file. The option1 argument should

be a two-letter language code. The option2

argument should be the path to the dictionary file.

resource udm_open_stored(resource agent, string
address)

The udm_open_stored function opens a connection to the document cache

server running on the specified server.

boolean udm_set_agent_param(resource agent, integer
parameter, string value)

The udm_set_agent_param function sets a parameter on an open agent

resource. Choose one of the parameters from Table 19.18.

Table 19.18. MnoGoSearch Input Parameters

Parameter Description

UDM_PARAM_CACHE_MODE Enable or disable caching of search results. Set

the value argument to UDM_CACHE_DISABLED or

UDM_CACHE_ENABLED.

UDM_PARAM_CHARSET Set the local character set.

UDM_PARAM_CROSS_WORDS Enable or disable cross words. Set the value

argument to UDM_CROSS_WORDS_DISABLED or

UDM_CROSS_ WORDS_ENABLED.

UDM_PARAM_ISPELL_PREFIXESEnable or disable the matches on queries that

differ by a prefix. This parameter requires

loading of an ISpell dictionary. Set the value

argument to UDM_PREFIXES_ DISABLED or

UDM_PREFIXES_ENABLED.

UDM_PARAM_MIN_WORD_LEN Set minimum word length.

UDM_PARAM_PAGE_NUM Choose result page, counting from zero.

UDM_PARAM_PAGE_SIZE Set number of results per page.

UDM_PARAM_PHRASE_MODE Enable or disable phrase searching. Set the

value argument to UDM_PHRASE_DISABLED or

UDM_ PHRASE_ENABLED.

UDM_PARAM_SEARCH_MODE Set the search mode. Set the value argument to

UDM_MODE_ALL, UDM_MODE_ANY, UDM_MODE_BOOL,

UDM_MODE_PHRASE.

UDM_PARAM_STOPFILE Set the path to the stop words file.

UDM_PARAM_STOPTABLE Set the name of a stop words table.

UDM_PARAM_TRACK_MODE Enable or disable query tracking. Set the value

argument to UDM_TRACK_DISABLED or

UDM_TRACK_ ENABLED.

UDM_PARAM_VARDIR Set the path to MnoGoSearch’s var directory.

Parameter Description

UDM_PARAM_WEIGHT_FACTOR Set weight factors for parts of the document.

The value should be a string of five hexadecimal

digits. The digits represent the weight of

matches against URL, body, title, keyword, and

description, in that order.

UDM_PARAM_WORD_MATCH Set the word match mode. Use one of the

following constants for the value argument:

UDM_MATCH_ BEGIN, UDM_MATCH_END,

UDM_MATCH_SUBSTR, UDM_MATCH_WORD.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

19.4 OpenSSL

The OpenSSL extension wraps a subset of the functions in the OpenSSL

library, allowing you to perform public key cryptography. They allow you to

make and verify signatures, and they allow you to encrypt and decrypt data.

Public key cryptography uses a pair of keys: One key encrypts data and the

other decrypts it. Compare this to simple encryption schemes that use the

same password to encrypt and decrypt. With two keys, the owner can keep

one key private while making the other public. Anyone can use the public

key to encrypt data for the holder of the private key. Without the private key,

the data remains unreadable.

This extension allows you to refer to keys in several ways. One way is with a

resource generated by one of the key-reading functions, such as

openssl_get_publickey. Alternatively, you can supply a string containing

the key or a string containing the path to a file containing the key. In these

two cases, the key must be in PEM (privacy-enhanced mail) format. For

private keys requiring a passphrase, you must specify an array containing

the key and the passphrase. Be sure to begin paths with file:// so that

PHP understands it’s a path and not a key.

boolean openssl_csr_export(resource csr, string output,
boolean terse)

The openssl_csr_export function puts a CSR (Certificate Signing Request)

into the output argument. The optional terse argument controls whether

the output includes extra, human-readable comments. It defaults to TRUE,

meaning it does not include comments.

boolean openssl_csr_export_to_file(resource csr, string
path, boolean terse)

The openssl_csr_export_to_file function (Listing 19.13) writes a CSR to

the specified path. The optional terse argument controls whether the output

includes extra, human-readable comments. It defaults to TRUE, meaning it

does not include comments.

Listing 19.13 openssl_csr_export_to_file

<?php

 //setup distinguished name

 $dn = array(

 "countryName"=>"US",

 "stateOrProvinceName"=>"California",

 "organizationName"=>"Example Company, Inc.",

 "commonName"=>"example.com",

 "emailAddress"=>"leon@example.com");

 //setup configuration

 $config = array(

 'private_key_bits'=>1024);

 //make new key

 $privatekey = openssl_pkey_new();

 openssl_pkey_export_to_file($privatekey, 'example.pem',

 'corephp');

 //make certificate signing request

 $csr = openssl_csr_new($dn, $privatekey, $config);

 openssl_csr_export_to_file($csr, 'example.csr', FALSE);

 //make self-signed certificate

 $certificate = openssl_csr_sign($csr, NULL, $privatekey, 45);

 openssl_x509_export_to_file($certificate, 'example.crt');

?>

resource openssl_csr_new(array dn, resource privatekey,
array config, array extra)

The openssl_csr_new function returns a CSR given an array describing the

DN (distinguished name) and a private key. The dn argument must be an

array with keys matching attributes required by the certificate authority. The

optional config argument can be an array that controls the configuration of

the CSR. Use the configuration parameters from Table 19.19. Use the

optional extra argument to include extra attributes.

Table 19.19. Configuration Keys for openssl_csr_new

Configuration Description

digest_alg Override default_md in opennssl.cnf.

encrypt_key Override encrypt_key in opennssl.cnf.

private_key_bitsOverride default_bits in opennssl.cnf.

private_key_typeSet the private key type. Set with OPENSSL_KEYTYPE_DH,

OPENSSL_KEYTYPE_DSA or OPENSSL_KEYTYPE_RSA

(default).

Req_extensions Override req_extensions in opennssl.cnf.

x509_extensions Override x509_extensions in opennssl.cnf.

resource openssl_csr_sign(resource csr, resource ca,
resource privatekey, integer days)

The openssl_csr_sign function signs a CSR. You may set ca to NULL to

produce a self-signed certificate. The days argument sets the number of

days the certificate is valid.

string openssl_error_string()

The openssl_error_string function returns a description of the last error or

FALSE if no error occurred. PHP keeps errors in a stack, which allows you to

call this function multiple times to fetch each error in reverse order.

openssl_free_key

Use openssl_free_key as an alias to openssl_pkey_free.

openssl_get_privatekey

Use openssl_get_privatekey as an alias to openssl_pkey_get_private.

openssl_get_publickey

Use openssl_get_publickey as an alias to openssl_pkey_get_public.

boolean openssl_open(string sealed_data, string
opened_data, string envelope, value privatekey)

The openssl_open function opens a sealed message and writes the clear

text into the opened_data argument.

boolean openssl_pkcs7_decrypt(string encrypted, string
clear, resource certificate, resource key)

Use openssl_pkcs7_decrypt to decrypt an S/MIME message. The

encrypted and clear arguments are paths to files.

boolean openssl_pkcs7_encrypt(string clear, string
encrypted, resource certificate, array headers, long flags)

Use openssl_pkcs7_encrypt to encrypt an S/MIME message. The clear

argument is the path to a clear text message. The encrypted argument is

the path to where PHP writes the encrypted message. Set the certificate

argument with a single certificate or an array of certificates if there are

multiple recipients. The headers argument is an array of headers to be

prepended to the encrypted data. The array may be indexed by integers, in

which case each element is a complete header, or indexed by header name.

The optional flags argument changes aspects of the encryption. Combine

constants in Table 19.20 with logical-OR operators.

Table 19.20. S/MIME Constants

Constant Description

PKCS7_BINARY Write encrypted message in binary format rather than

ordinary MIME text.

PKCS7_DETACHEDWhen signing a message, use cleartext signing with the

MIME type multipart/signed.

PKCS7_NOATTR Suppress inclusion of attributes.

PKCS7_NOCERTS Suppress inclusion of signer’s certificate.

PKCS7_NOCHAIN Suppress chaining of certificates.

PKCS7_NOINTERNDo not look for certificates in the included message.

PKCS7_NOSIGS Do not verify the signatures on a message.

PKCS7_NOVERIFYDo not verify the signer’s certificate of a signed message.

PKCS7_TEXT Add text/plain Content-type headers to encrypted

messages. Strip Content-type headers from decrypted

output.

boolean openssl_pkcs7_sign(string clear, string signed,
resource certificate, resource key, array headers, integer
flags, string extra_certificates)

The openssl_pkcs7_sign function signs an S/MIME message. PHP reads the

message from the file specified by the clear argument and writes the signed

message to the file specified by the signed argument. The headers

argument is an array of headers to be prepended to the encrypted data. The

array may be indexed by integers, in which case each element is a complete

header, or indexed by header name.

The optional flags argument changes aspects of the encryption. Combine

constants in Table 19.20 with logical-OR operators. It defaults to

PKCS7_DETACHED.

The optional extra_certificates argument may be the path to a collection

of extra certificates to include.

boolean openssl_pkcs7_verify(string file, long flags,
string certificates, array ca, string extra_certificates)

The openssl_pkcs7_verify function verifies an S/MIME message in a file.

The flags argument can be set with the constants in Table 19.20.

Set the optional certificates argument with the path to a file into which

PHP writes the certificates of the signers. The optional ca argument should

be an array of paths to files or directories containing certificate authority

certificates. The optional extra_certificates argument may specify the

path to a collection of untrusted certificates.

boolean openssl_pkey_export(resource key, string
output, string passphrase, array config)

The openssl_pkey_export function writes the PEM version of the given key

into the output argument. The optional config argument can be an array

that controls the configuration of the key. Use the configuration parameters

from Table 19.19.

boolean openssl_pkey_export_to_file(resource key,
string file, string passphrase, array config_args)

The openssl_pkey_export_to_file function writes the PEM version of the

given key into the specified file. The optional config argument can be an

array that controls the configuration of the key. Use the configuration

parameters from Table 19.19.

openssl_pkey_free(resource key)

The openssl_pkey_free function frees memory used by a key resource.

resource openssl_pkey_get_private(string key, string
passphrase)

The openssl_pkey_get_private function creates a key resource from a

string or a file. The passphrase argument is optional.

resource openssl_pkey_get_public(resource certificate)

The openssl_pkey_get_public function creates a key resource from a

certificate. You may specify the certificate by a resource, as returned by

openssl_x509_read, or from a PEM file.

resource openssl_pkey_new(array config)

The openssl_pkey_new argument returns a key resource. The optional

config argument can be an array that controls the configuration of the key.

Use the configuration parameters from Table 19.19.

boolean openssl_private_decrypt(string data, string
decrypted, resource key, integer padding)

The openssl_private_decrypt function (Listing 19.14) decrypts a message

with a private key. The optional padding argument defaults to OPENSSL_

PKCS1_PADDING. You may also set it with one of the following constants:

OPENSSL_SSLV23_PADDING, OPENSSL_PKCS1_OAEP_PADDING, OPENSSL_NO_

PADDING.

Listing 19.14 openssl_private_decrypt, openssl_public_encrypt

<?php

 /*

 ** Simulate a private message

 */

 //someone encrypts message with public key

 $message = "This message is for you only.";

 openssl_public_encrypt($message, $encrypted,

 "file://example.crt");

 //recipient uses private key to decrypt

 openssl_private_decrypt($encrypted, $clear,

 array("file://example.pem", 'corephp'));

 print("Decrypted message: $clear
");

?>

boolean openssl_private_encrypt(string data, string
encrypted, resource key, integer padding)

The openssl_private_encrypt function encrypts a message with a private

key. The optional padding argument defaults to OPENSSL_PKCS1_PADDING.

You may also set it with one of the following constants: OPENSSL_SSLV23

_PADDING, OPENSSL_PKCS1_OAEP_PADDING, OPENSSL_NO_PADDING.

boolean openssl_public_decrypt(string data, string
decrypted, resource key, integer padding)

The openssl_public_decrypt function (Listing 19.15) decrypts a message

with a public key. The optional padding argument defaults to

OPENSSL_PKCS1_PADDING. You may also set it with one of the following

constants: OPENSSL_SSLV23_PADDING, OPENSSL_PKCS1_OAEP_PADDING,

OPENSSL_NO_PADDING.

Listing 19.15 openssl_private_encrypt, openssl_public_decrypt

<?php

 /*

 ** Simulate a signed message

 */

 //individual encrypts message with private key

 $message = "This message is genuine.";

 openssl_private_encrypt($message, $encrypted,

 array("file://example.pem", 'corephp'));

 //everyone else decrypts message with public key

 openssl_public_decrypt($encrypted, $clear,

 "file://example.crt");

 print("Decrypted message: $clear
");

?>

boolean openssl_public_encrypt(string data, string
encrypted, resource key, integer padding)

The openssl_public_encrypt function encrypts a message with a public

key. The optional padding argument defaults to OPENSSL_PKCS1_PADDING.

You may also set it with one of the following constants:

OPENSSL_SSLV23_PADDING, OPENSSL_PKCS1_OAEP_PADDING,

OPENSSL_NO_PADDING.

integer openssl_seal(string opened_data, string
sealed_data, array envelope, array public)

The openssl_seal function (Listing 19.16) encrypts data using a randomly

generated key. PHP encrypts the key with each of the given public keys and

places them in the envelope argument. This allows the encryption of data

and sending to multiple recipients.

Listing 19.16 openssl_open, openssl_seal (cont.)

<?php

 //encrypt the data

 openssl_seal("some data", $sealed, $envelope,

 array('file://example.crt','file://example2.crt'));

 //pretend that the owner of example.crt now decrypts

 openssl_open($sealed, $opened, $envelope[0],

 array('file://example.pem', 'corephp'));

 print($opened);

?>

boolean openssl_sign(string data, string signature,
resource private_key)

The openssl_sign function (Listing 19.17) generates a signature for the

given data using the specified key, placing it in the signature argument.

Listing 19.17 openssl_sign, openssl_verify

<?php

 $data = "some data";

 //sign the data

 openssl_sign($data, $signature,

 array('file://example.pem', 'corephp'));

 //verify the signature

 if(1 == openssl_verify($data, $signature,

 'file://example.crt'))

 {

 print("Verified");

 }

 else

 {

 print("Not verified");

 }

?>

integer openssl_verify(string data, string signature,
resource public_key)

The openssl_verify function verifies the signature on signed data. It

returns 1 if verified, 0 if not verified, and -1 if an error occurred.

boolean openssl_x509_check_private_key(resource
certificate, resource private_key)

The openssl_x509_check_private_key function checks if the given key

belongs to the given certificate.

boolean openssl_x509_checkpurpose(resource
certificate, integer purpose, array ca, string untrusted)

The openssl_x509_checkpurpose function checks if the given certificate

may be used for the given purpose. It returns -1 on error. Use one constant

from Table 19.21 to specify the purpose. The ca argument should be an

array of trusted certificate authorities. The optional untrusted argument

may be the path to a file containing untrusted certificates.

Table 19.21. X.509 Purposes

Constant Description

X509_PURPOSE_ANY All purposes

X509_PURPOSE_CRL_SIGN Sign a certificate revocation list

X509_PURPOSE_NS_SSL_SERVER Netscape SSL server

X509_PURPOSE_SMIME_ENCRYPT Encrypt S/MIME email

X509_PURPOSE_SMIME_SIGN Sign S/MIME email

X509_PURPOSE_SSL_CLIENT SSL client

X509_PURPOSE_SSL_SERVER SSL server

boolean openssl_x509_export(resource certificate, string
output, boolean terse)

The openssl_x509_export function puts an X.509 certificate into the output

argument. The optional terse argument controls whether the output

includes extra, human-readable comments. It defaults to TRUE, meaning it

does not include comments.

boolean openssl_x509_export_to_file(resource
certificate, string file, boolean terse)

The openssl_x509_export_to_file function puts an X.509 certificate into

the specified file. The optional terse argument controls whether the output

includes extra, human-readable comments. It defaults to TRUE, meaning it

does not include comments.

void openssl_x509_free(resource certificate)

Use this function to free memory associated with a certificate resource.

array openssl_x509_parse(resource certificate, boolean
short_names)

The openssl_x509_parse function returns an array describing the attributes

of the given certificate. By default, PHP uses the short names for the array

keys. Set the optional short_names argument to FALSE to use longer names.

resource openssl_x509_read(string certificate)

The openssl_x509_read function creates a resource given the certificate as

a string or a path to a file.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

19.5 System V Messages

System V messages are one of three methods of inter-process

communication provided by System V operating systems. They allow

processes to communicate via formatted messages. Processes place

messages of a fixed length in the queues of other processes.

A complete discussion of System V messages is beyond the scope of this

text. There are plenty of resources for learning more about them. I

recommend Unix Network Programming by W. Richard Stevens, published by

Prentice Hall. The second edition was published in 1997 as two volumes.

Listings 19.18 and 19.19 implement a simple server that makes strings

uppercase using System V messages. The server waits for clients to place

messages in its queue. The server responds by placing the transformed text

in client queues. The clients can also send a greeting or ask the server to

shutdown.

Listing 19.18 System V message server

<?php

 //key for the server's queue

 define('SERVER_QUEUE', 1970);

 //message types

 define('MSG_SHUTDOWN', 1);

 define('MSG_TOUPPER', 2);

 define('MSG_HELLO', 3);

 //create queue

 $queue = msg_get_queue(SERVER_QUEUE);

 //process messages

 $keepListening = TRUE;

 while($keepListening)

 {

 //wait for a message

 msg_receive($queue, 0, $type, 1024, $message);

 switch($type)

 {

 case MSG_SHUTDOWN:

 $keepListening = FALSE;

 break;

 case MSG_HELLO:

 print($message . " says hello.\n");

 break;

 case MSG_TOUPPER:

 $clientQueue = msg_get_queue($message['caller']);

 $response = strtoupper($message['text']);

 msg_send($clientQueue, MSG_TOUPPER, $response);

 break;

 }

 }

 //remove the queue

 msg_remove_queue($queue);

?>

Listing 19.19 System V message client

<?php

 //key for the server's queue

 define('SERVER_QUEUE', 1970);

 //message types

 define('MSG_SHUTDOWN', 1);

 define('MSG_TOUPPER', 2);

 define('MSG_HELLO', 3);

 //create queue

 $qid = rand(1, 10000);

 $queue = msg_get_queue($qid);

 $serverQueue = msg_get_queue(SERVER_QUEUE);

 //send a greeting

 msg_send($serverQueue, MSG_HELLO, $qid);

 //send a string to set to uppercase

 msg_send($serverQueue, MSG_TOUPPER,

 array('caller'=>$qid,

 'text'=>'corephp'));

 //wait for return from server

 msg_receive($queue, 0, $type, 1024, $message);

 print("$message\n");

 //tell server to shutdown

 msg_send($serverQueue, MSG_SHUTDOWN, NULL);

 //remove the queue

 msg_remove_queue($queue);

?>

integer msg_get_queue(integer key, integer permission)

The msg_get_queue function creates or attaches to a message queue with

the given key. The permission argument controls read and write privileges

to the queue in the same way file permissions do. It defaults to 0666, which

is read and write access for all users.

boolean msg_receive(resource queue, integer
desired_type, integer type, integer size, string message,
boolean unserialize, integer flags, integer error)

The msg_receive function pulls the next message off the queue of the

desired type. The queue argument must be a resource created by

msg_get_queue. If you use 0 for the desired type, PHP returns the first

message of any type. PHP puts the actual type of the message in the type

argument. The size argument sets the maximum message size accepted.

The message argument receives the message.

The optional unserialize argument controls whether the message is a

serialized PHP variable needing to be unserialized. By default, this argument

is set to TRUE. PHP uses the same serialization method used by the session

functions.

The optional flags argument allows you to pass options to an underlying

layer. Combine the constants in Table 19.22 with logical-OR operators.

If an error occurs, the error argument receives the error code.

Table 19.22. System V Message Receive Flags

Constant Description

MSG_EXCEPT This flag causes msg_receive to look for a message whose

type does not match the desired type. It has no effect when

using 0 for the desired type.

MSG_IPC_NOWAITWith this flag, msg_receive does not wait for messages. It

sets error to ENOMSG and returns immediately if there are

no messages.

MSG_NOERROR With this flag, PHP truncates messages that are longer than

the maximum size.

boolean msg_remove_queue(resource queue)

The msg_remove_queue function destroys the given message queue.

boolean msg_send(resource queue, integer type, string
message, boolean serialize, boolean block, integer error)

The msg_send function places a message of a specified type in the specified

queue. The type must be greater than zero. By default, PHP serializes the

message using the same method defined for sessions. You may set the

serialize argument to FALSE to force PHP to send the message as a binary

string.

If the block argument is set to FALSE, PHP will not wait in the event that the

queue is full. Normally, PHP will wait indefinitely until space in the queue

becomes available. If you turn off blocking and the queue is full, PHP sets

error to EAGAIN.

boolean msg_set_queue(resource queue, array data)

The msg_set_queue function sets parameters on the queue. The queue

argument should be a resource returned by msg_get_queue. The data array

should contain keys from the following list: msg_perm.gid, msg_perm.mode,

msg_perm.uid, msg_qbytes. These correspond to the statistics returned by

msg_stat_queue and described in Table 19.23.

Only the root user and the owner of the queue may change these values.

Only the root user can change msg_qbytes.

array msg_stat_queue(resource queue)

The msg_stat_queue function returns an array describing the given queue

and the last message pulled from the queue. Table 19.23 lists the statistics

in the returned array.

Table 19.23. System V Message Statistics

Statistic Description

msg_ctime The UNIX timestamp for the last change to the queue.

msg_lrpid The process ID of the receiving process.

msg_lspid The process ID of the sending process.

msg_perm.gid The group ID of the queue owner.

msg_perm.mode The file access mode of the queue.

msg_perm.uid The user ID of the queue owner.

msg_qbytes The number of bytes of space available in the queue.

msg_qnum The number of messages in the queue.

msg_rtime The UNIX timestamp for the last read from the queue.

msg_stime The UNIX timestamp for the last write to the queue.

19.6 System V Semaphores

PHP offers an extension for using System V semaphores. If your

operating system supports this feature, you may add this extension to

your installation of PHP. At the time of this writing, only the Solaris,

Linux, and AIX operating systems were known to support semaphores.

Semaphores are a way to control a resource so that it is used by a

single entity at once, inspired by the flags used to communicate

between ships. The idea to use an integer counter to ensure single

control of a resource was described first by Edsger Dijkstra in the early

1960s for use in operating systems.

A complete tutorial on semaphores is beyond the scope of this text.

Semaphores are a standard topic for college computer science courses,

and you will find adequate descriptions in books about operating

systems. The whatis.com Web site <http://www.whatis.com/>

references Unix Network Programming by W. Richard Stevens,

published by Prentice Hall. The second edition was published in 1997

as two volumes.

boolean sem_acquire(integer identifier)

The sem_acquire function (Listing 19.20) attempts to acquire a

semaphore you’ve identified with the sem_get function. The function

will block until the semaphore is acquired. Note that it is possible to

wait forever while attempting to acquire a semaphore. One way is if a

script acquires a semaphore to its limit and then tries to acquire it

another time. In this case the semaphore can never decrement.

If you do not release a semaphore with sem_release, PHP will release

it for you and display a warning.

Listing 19.20 sem_acquire, sem_get, sem_release

<?php

 /*

 ** Semaphore example

 **

 ** To see this in action, try opening two or more

 ** browsers and load this script at the same time.

 ** You should see that each script will execute the

 ** fake procedure when it alone has acquired the

 ** semaphore. Pay attention to the output of the

 ** microtime function in each browser window.

 */

 //Define integer for this semaphore

 //This simply adds to readability

 define("SEM_COREPHP", 1970);

 //Get or create the semaphore

http://www.whatis.com/default.htm

 //This semaphore can be acquired only once

 $sem = sem_get(SEM_COREPHP, 1);

 //acquire semaphore

 if(sem_acquire($sem))

 {

 //perform some atomic function

 print("Faking procedure... " . microtime() .

 "
");

 sleep(3);

 print("Finishing fake procedure... " . microtime() .

 "
");

 //release semaphore

 sem_release($sem);

 }

 else

 {

 //we failed to acquire the semaphore

 print("Failed to acquire semaphore!
\n");

 }

?>

integer sem_get(integer key, integer maximum,
integer permission)

Use sem_get to receive an identifier for a semaphore. If the

semaphore does not exist, it will be created. The optional maximum and

permission arguments are used only during creation. The maximum

argument controls how many times a semaphore may be acquired. It

defaults to 1. The permission argument controls read and write

privileges to the semaphore in the same way file permissions do. It

defaults to 0666, which is read and write access for all users. The key

argument is used to identify the semaphore among processes in the

system. The integer returned by sem_get may be unique each time it

is called, even when the same key is specified.

boolean sem_release(integer identifier)

Use sem_release to reverse the process of the sem_acquire function.

boolean sem_remove(integer identifier)

Use sem_remove to remove a semaphore from memory.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

19.7 System V Shared Memory

PHP offers an extension for using System V shared memory. It follows

the same restrictions as the System V semaphore functions. That is, your

operating system must support this functionality. Solaris, Linux, and AIX

are known to work with shared memory.

Shared memory is virtual memory shared by separate processes. It helps

solve the problem of communication between processes running on the

same machine. An obvious method might be to write information to a

file, but access to permanent storage is relatively slow. Shared memory

allows the creation of system memory that may be accessed by multiple

processes, which is much faster. Since exclusive use of this memory is

essential, you must use some sort of locking. This is usually done with

semaphores. If you use the shared memory functions, make sure you

include support for System V semaphores as well.

A full discussion of the use of shared-memory functions is beyond the

scope of this text. I found a short description of shared memory at

whatis.com <http://www.whatis.com/>. You may also pursue college

courses about operating systems or refer to Unix Network Programming

by W. Richard Stevens to learn more about shared memory.

The shared memory extension was added to PHP by Christian Cartus.

integer shm_attach(integer key, integer size, integer
permissions)

The shm_attach function (Listing 19.21) returns an identifier to shared

memory. The key argument is an integer that specifies the shared

memory. The shared memory will be created if necessary, in which case

the optional size and permissions arguments will be used if present.

The size of the memory segment defaults to a value defined when PHP is

compiled. Minimum and maximum values for the size are dependent on

the operating system, but reasonable values to expect are a 1-byte

minimum and a 128K maximum. There are also limits on the number of

shared memory segments. Normal limits are 100 total segments and six

segments per process.

The permissions for a memory segment default to 0666, which is read

and write permission to all users. This value operates like those used to

set file permissions.

As with semaphores, calling shm_attach for the same key twice will

return two different identifiers, yet they will both point to the same

shared memory segment internally.

Keep in mind that shared memory does not expire automatically. You

must free it using shm_remove.

Listing 19.21 Using System V shared memory

http://www.whatis.com/default.htm

<?php

 /*

 ** Shared Memory example

 **

 ** This example builds on the semaphore example

 ** by using shared memory to communicate between

 ** multiple processes. This example creates shared

 ** memory but does not release it. Make sure you

 ** run the shm_remove example when you're done

 ** experimenting with this example.

 */

 //Define integer for semaphore key

 define("SEM_COREPHP", 1970);

 //Define integer for shared memory key

 define("SHM_COREPHP", 1970);

 //Define integer for variable key

 define("SHMVAR_MESSAGE", 1970);

 //Get or create the semaphore

 //This semaphore can only be acquired once

 $sem = sem_get(SEM_COREPHP, 1);

 //acquire semaphore

 if(sem_acquire($sem))

 {

 //attach to shared memory

 //make the memory 1K in size

 $mem = shm_attach(SHM_COREPHP, 1024);

 //attempt to get message variable, which

 //won't be there the first time

 if($old_message = shm_get_var($mem, SHMVAR_MESSAGE))

 {

 print("Previous value: $old_message
\n");

 }

 //create new message

 $new_message = getmypid() . " here at " . microtime();

 //set new value

 shm_put_var($mem, SHMVAR_MESSAGE, $new_message);

 //detach from shared memory

 shm_detach($mem);

 //release semaphore

 sem_release($sem);

 }

 else

 {

 //we failed to acquire the semaphore

 print("Failed to acquire semaphore!
\n");

 }

?>

boolean shm_detach(integer identifier)

Use shm_detach to free the memory associated with the identifier for a

shared-memory segment. This does not release the shared memory

itself. Use shm_remove to do this.

value shm_get_var(integer identifier, integer key)

The shm_get_var function returns a value stored in a variable with

shm_put_var.

boolean shm_put_var(integer identifier, integer key,
value)

The shm_put_var function sets the value for a variable in a shared

memory segment. If the variable does not exist, it will be created. The

variable will last inside the shared memory until removed with

shm_remove_var or when the shared memory segment itself is destroyed

with shm_remove. The value argument will be serialized with the same

argument used for the serialize function. That means you may use any

PHP value or variable�with one exception: at the time of this writing,

objects lose their methods when serialized.

boolean shm_remove(integer identifier)

Use shm_remove (Listing 19.22) to free a shared memory segment. All

variables in the segment will be destroyed, so it is not strictly necessary

to remove them. If you do not remove shared memory segments with

this function, they may exist perpetually.

Listing 19.22 shm_remove

<?php

 /*

 ** Shared Memory example 2

 **

 ** This example removes shared memory created

 ** by the previous shared memory example.

 */

 //Define integer for semaphore key

 define("SEM_COREPHP", 1970);

 //Define integer for shared memory key

 define("SHM_COREPHP", 1970);

 //Define integer for variable key

 define("SHMVAR_MESSAGE", 1970);

 //Get or create the semaphore

 //This semaphore can be acquired only once

 $sem = sem_get(SEM_COREPHP, 1);

 //acquire semaphore

 if(sem_acquire($sem))

 {

 //attach to shared memory

 //make the memory 1K in size

 $mem = shm_attach(SHM_COREPHP, 1024);

 //remove variable

 shm_remove_var($mem, SHMVAR_MESSAGE);

 //remove shared memory

 shm_remove($mem);

 //release semaphore

 sem_release($sem);

 }

 else

 {

 //we failed to acquire the semaphore

 print("Failed to acquire semaphore!
\n");

 }

?>

boolean shm_remove_var(integer identifier, integer
key)

The shm_remove_var function frees the memory associated with a

variable within a shared memory segment.

Chapter 20. XML
Topics in This Chapter

DOM XML

Expat XML

WDDX

The functions in this chapter manipulate XML documents. The

extensible mark-up language, XML, has steadily grown in popularity

since being introduced in 1996. XML is a first cousin to HTML in that

it, too, is derived from SGML, a generalized mark-up language that is

nearly 20 years old. Like HTML, XML documents surround textual

data with tags. Unlike HTML, XML can be used to communicate any

type of data. The best place to start learning about XML is its home

page at the W3C <http://www.w3.org/XML/>. Among the resources

there, you will find book recommendations.

PHP offers two methods for working with XML documents: DOM and

event handling. In the former method, the XML document appears as

a collection of objects. In the latter method, you read through an XML

document and PHP executes various handlers you define. This

chapter also discusses WDDX, an XML language for serializing data.

The examples in this chapter often refer to the XML document shown

in Listing 20.1. Listing 20.2 shows its DTD. Listing 20.3 demonstrates

an external unparsed entity. Listing 20.4 shows a simple XSL

document.

Listing 20.1 Example XML document

<?xml version='1.0'?>

<!DOCTYPE example SYSTEM "corephp.dtd" [

<!ENTITY externalEntity SYSTEM "corephp_entity.xml">

<!ENTITY capture SYSTEM

"http://www.php.net/gifs/php_logo.gif" NDATA gif>

<!NOTATION gif SYSTEM "/usr/local/bin/view_gif">

]>

<example output="capture"

 xmlns:xhtml="http://www.w3.org/1999/xhtml">

 <title>An Example XML Document</title>

 <code>

 This section contains some PHP code.

 <?phpphp

 print("Core PHP");

 ?>

 <xhtml:br />

 </code>

 &externalEntity;

 <table border="yes">

 <row><cell>A</cell><cell>D</cell></row>

http://www.w3.org/XML/default.htm

 <row><cell>B</cell><cell>E</cell></row>

 <row><cell>C</cell><cell>F</cell></row>

 </table>

</example>

Listing 20.2 Example DTD

<!ELEMENT example (title,code,table*)>

<!ATTLIST example output CDATA #IMPLIED>

<!ELEMENT title (#PCDATA)>

<!ELEMENT code (#PCDATA)>

<!ELEMENT table (row*)>

<!ATTLIST table border CDATA #REQUIRED>

<!ELEMENT row (cell*)>

<!ELEMENT cell (#PCDATA)>

Listing 20.3 Example external entity

<?xml version="1.0" ?>

This is the external entity.

Listing 20.4 Example XSL document

<xsl:stylesheet version="1.0"

 xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>

 <xsl:template match="/">

 <h1><xsl:value-of select="//title"/></h1>

 <pre>

 <xsl:value-of select="//code"/>

 </pre>

 <xsl:value-of select="$myParam" />

 </xsl:template>

</xsl:stylesheet>

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

20.1 DOM XML

The Document Object Model (DOM) is an interface for allowing programs to

read and update the elements of an XML document. Each element of the

document appears as an object with methods and attributes a program can

manipulate. One popular use of the DOM is JavaScript within browsers

updating the contents of an HTML page. From PHP’s perspective, the DOM

allows a natural way of treating an XML document as an ordinary data

structure. Compare this approach to that of the Expat XML functions

discussed later in this chapter.

PHP wraps the GNOME XML library <http://www.xmlsoft.org/> in order to

offer the functions described in this section. You can find the latest version

of the specification at the W3C site: <http://www.w3.org/DOM/>. A detailed

discussion of DOM is beyond the scope of this text, but you may find the

specification is enough to get you started. You find a copy of Joe Marini’s

Document Object Model: Processing Structured Documents.

PHP creates several classes to mirror those described by the DOM

specification. In order to maintain namespace integrity, the PHP classes

have a Dom prefix. For example, the specification’s node class is DomNode in

PHP. The PHP classes implement both attributes and methods defined in the

specification as methods. The names of the PHP methods follow

conventions for PHP functions, which includes using underscores to

separate words. Where the specification calls for an ownerDocument

property of the node class, PHP implements an owner_document method on

the DomNode class.

Several of the methods described below are not implemented at the time of

writing. However, because they appear in the source code and the DOM

specification, it’s likely they will work soon.

string DomAttribute::name()

The name method (Listing 20.5) returns the name of the attribute.

Listing 20.5 DomAttribute::name, DomAttribute::value

<?php

 //load the document

 $dom = domxml_open_file("corephp.xml");

 //grab the first table element

 list($table) = $dom->get_elements_by_tagname('table');

 //get the first attribute

 list($a) = $table->attributes();

 print("Attribute " . $a->name() . " is " .

 $a->value());

?>

http://www.xmlsoft.org/default.htm
http://www.w3.org/DOM/default.htm

boolean DomAttribute::specified()

If the XML document specifies the value of the attribute, this method

returns TRUE. If the attribute is implied, this method returns FALSE.

string DomAttribute::value()

The value method returns the value of the attribute.

object DomDocument::create_attribute(string name,
string value)

The create_attribute method returns a DomAttribute object with the

given name and value.

object DomDocument::create_cdata_section(string
cdata)

The create_cdata_section method returns a DomCData object.

object DomDocument::create_comment(string
comment)

The create_comment method returns a DomComment object.

object DomDocument::create_element(string name)

The create_element method returns a DomElement object.

object DomDocument::create_element_ns(string uri,
string name, string prefix)

The create_element_ns method returns a DomElement object for the given

namespace. The prefix argument is optional. If left out and the specified

namespace does not exists, PHP generates a random prefix.

object DomDocument::create_entity_reference(string
content)

The create_entity_reference method returns a DomEntityReference

object.

DomDocument::create_processing_instruction(string
target, string content)

The create_processing_instruction method returns a

DomProcessingInstruction object.

object DomDocument::create_text_node(string content)

The create_text_node method returns a DomText object.

object DomDocument::doctype()

The doctype method returns a DomDocumentType object.

object DomDocument::document_element()

The document_element method returns the DomElement object

corresponding to the root of the document.

integer DomDocument::dump_file(string file, integer
compression, boolean format)

The dump_file method writes an XML document to a file and returns the

number of bytes written. The optional compression argument sets the level

of GZIP compression applied to the file. Use 0 for no compression. The

optional format argument controls whether PHP preserves whitespace. By

default, PHP strips unnecessary whitespace.

string DomDocument::dump_mem(boolean format)

The dump_mem method (Listing 20.6) returns an XML document. By default,

PHP removes all unnecessary whitespace. If you set the optional format

argument to TRUE, PHP keeps formatting whitespace in the document.

Listing 20.6 DomDocument::dump_mem

<?php

 //create new document

 $dom = domxml_new_doc("1.0");

 //start ordinary HTML document

 $root = $dom->append_child($dom->create_element("html"));

 $head = $root->append_child($dom->create_element("head"));

 $title = $head->append_child($dom->create_element("title"));

 $body = $root->append_child($dom->create_element("body"));

 //start body with some PHP code

 $body->append_child(

 $dom->create_processing_instruction(

 'php',

 'print(date("Y-m-d"));'));

 $body->append_child($dom->create_element("br"));

 $body->set_attribute('id', 'corephp');

 //set title text with current time

 $title->append_child($dom->create_text_node(time()));

 //dump the entire document

 print($dom->dump_mem(TRUE));

?>

object DomDocument::get_element_by_id(string id)

The get_element_by_id method returns the DomElement object with the

given id attribute.

array DomDocument::get_elements_by_tagname(string
tagname)

The get_elements_by_tagname method returns an array of DomElement

objects with the given tag name.

string DomDocument::html_dump_mem()

The html_dump_mem method returns the XML document in a form suitable

for HTML browsers. This is almost identical to the output of the dump_mem

method, with a few XML-specific tags left out.

DomDocument::xinclude()

The xinclude method implements the XInclude tags in the document.

XInclude is described in the following document:

<http://www.w3.org/TR/xinclude/>.

array DomDocumentType::entities()

http://www.w3.org/TR/xinclude/default.htm

The entities method returns an array of entities.

string DomDocumentType::name()

The name method returns the name of the document type.

array DomDocumentType::notations()

The notations method returns an array of notations for the document

type.

string DomDocumentType::public_id()

The public_id method returns the public ID for the document type.

string DomDocumentType::system_id()

The system_id method returns the system ID for the document type.

string DomElement::get_attribute(string attribute)

The get_attribute method returns the value of the given attribute.

object DomElement::get_attribute_node(string attribute)

The get_attribute_node method returns a DomAttribute object for the

named attribute.

array DomElement::get_elements_by_tagname(string
tagname)

The get_elements_by_tagname method returns the elements with the

given tag name inside the element. Compare this to

DomDocument::get_elements_by_tagname, which returns elements for a

DomDocument object.

boolean DomElement::has_attribute(string name)

The has_attribute method tests for the presence of an attribute.

boolean DomElement::remove_attribute(string name)

The remove_attribute method removes an attribute from an element.

object DomElement::set_attribute(string name, string
value)

The set_attribute method sets the value of the given attribute on the

element. If the attribute doesn’t exist, it’s created. It returns the new

attribute object.

object DomElement::set_attribute_node(object attribute)

The set_attribute_node method adds the given DomAttribute object to

the element.

string DomElement::tagname()

The tagname method returns the tag name of the element.

boolean DomNode::add_namespace(string uri, string
prefix)

The add_namespace method adds the given namespace to the node.

object DomNode::append_child(object node)

The append_child method appends a node to another as a child and

returns a reference to the child. If the child node belonged to another

document, PHP detaches and moves it. All the children of the appending

node come along, of course. If you wish to copy a node, use the

DomNode::clone_node method.

object DomNode::append_sibling(object node)

The append_sibling method adds the given node to the document

immediately after a node.

array DomNode::attributes()

The attributes method returns an array of attributes of the given node.

array DomNode::child_nodes()

The child_nodes method returns an array of child nodes belonging to the

node.

object DomNode::clone_node(boolean deep)

The clone_node method returns a copy of the node. The optional deep

argument controls whether PHP should copy all children. It’s FALSE by

default.

string DomNode::dump_node(object node, boolean
format, integer level)

The dump_node method returns a partial XML document in the same

manner as DomDocument::dump_mem. The node argument is the root of the

returned tree. The format argument controls whether PHP formats the

document with whitespace. The level argument is the so-called

imbrication level, as defined by the GNOME XML library.

object DomNode::first_child()

The first_child method returns the first child of the node, or NULL if no

children exist.

string DomNode::get_content()

The get_content method returns all text node children of the node

concatenated into a single string.boolean DomNode::has_attributes()

method. The has_attributes method returns TRUE if the node contains at

least one attribute.

boolean DomNode::has_child_nodes()

The has_child_nodes returns TRUE if the node contains at least one child.

object DomNode::insert_before(object new_node, object
existing_node)

The insert_before method (Listing 20.7) inserts a new node immediately

before an existing node and returns the inserted node. If the new_node is

part of the existing document, PHP simply moves it. If you set

existing_node to NULL, PHP adds the node to the end of the list of

children.

Listing 20.7 DomNode::insert_before

<?php

 //load the document

 $dom = domxml_open_file("corephp.xml");

 //grab the first row element

 list($table) = $dom->get_elements_by_tagname('table');

 $child = $table->first_child();

 //make new row

 $row = $dom->create_element('row');

 $text = $dom->create_text_node('X');

 $cell = $dom->create_element('cell');

 $cell->append_child($text);

 $row->append_child($cell);

 $text = $dom->create_text_node('Y');

 $cell = $dom->create_element('cell');

 $cell->append_child($text);

 $row->append_child($cell);

 //insert the new row

 $table->insert_before($row, $child);

 //dump the document

 print($dom->dump_mem(TRUE));

?>

boolean DomNode::is_blank_node()

The is_blank_node method returns TRUE if the node is empty.

object DomNode::last_child()

The last_child method returns the last child of the node, or NULL if no

children exist.

object DomNode::next_sibling()

The next_sibling method returns the next node of the same level. You

may use this method and first_child to iterate over every child of a

given node.

string DomNode::node_name()

The node_name method returns the name of a node for the following

subclasses: DomAttribute, DomDocumentType, DomElement, DomEntity,

DomEntityReference, DomNotation, DomProcessingInstruction. For

DomCDataSection, DomComment, DomDocument, and DomText PHP returns

#cdata-section, #comment, #document, and #text, respectively.

integer DomNode::node_type()

The node_type method returns an integer matching one of the type

constants in Table 20.1.

Table 20.1. Node Type Constants

Constant Description

XML_ATTRIBUTE_NODE Attribute

XML_CDATA_SECTION_NODE CData Section

XML_COMMENT_NODE Comment

XML_DOCUMENT_FRAG_NODE Document Fragment

XML_DOCUMENT_NODE Document

XML_DOCUMENT_TYPE_NODE Document Type

XML_ELEMENT_NODE Element

XML_ENTITY_NODE Entity

XML_ENTITY_REF_NODE Entity Reference

XML_NOTATION_NODE Notation

XML_PI_NODE Processing Instruction

XML_TEXT_NODE Text

string DomNode::node_value()

The node_value method returns the value contained by the node for the

following subclasses: DomAttribute, DomCDataSection, DomComment,

DomProcessingInstruction, DomText. For other subclasses, it returns

NULL.

object DomNode::owner_document()

The owner_document method returns the document to which the node

belongs.

object DomNode::parent_node()

The parent_node method returns the parent of the node or NULL if the

node has no parent.

string DomNode::prefix()

The prefix method returns the prefix for the given node.

DomNode::previous_sibling()

The previous_sibling method returns the node of the same level that

appears immediately before the node in the document. It returns NULL if

there is no previous node. You can use this method with last_child to

iterate over all children.

object DomNode::remove_child(object child)

The remove_child method removes a child from a node and returns it. It

returns FALSE on failure.

object DomNode::replace_child(object old_child, object
new_child)

The replace_child method removes the child specified by the first

argument and puts the object specified by the second argument in its

place. It returns the replaced child. If the new child is part of the node’s

document, it is moved, not copied.

object DomNode::replace_node(object node)

The replace_node method (Listing 20.8) replaces a node with a new node

and returns the old node.

Listing 20.8 DomNode::replace_node

<?php

 //load the document

 $dom = domxml_open_file("corephp.xml");

 //grab the code element

 list($code) = $dom->get_elements_by_tagname('code');

 //loop over children

 for($c = $code->first_child(); $c !== NULL;

 $c = $c->next_sibling())

 {

 //if we find a block of PHP code, eval it

 //and replace it with a text node

 if(($c->node_type() == XML_PI_NODE) AND

 ($c->target() == 'php'))

 {

 //execute code and capture output

 ob_start();

 eval($c->data());

 $output = ob_get_contents();

 ob_end_clean();

 //replace pi node with text node

 $c->replace_node($dom->create_text_node($output));

 }

 }

 //dump the document

 print($dom->dump_mem(TRUE));

?>

boolean DomNode::set_content(string content)

The set_content method adds content to the node. If the node has

children, PHP adds the content to the end of the list of children.

boolean DomNode::set_name(string name)

The set_name method sets the name of the node. The following subclasses

allow for setting the name: DomAttribute, DomDocumentType, DomElement,

DomEntity, DomEntityReference, DomNotation,

DomProcessingInstruction.

DomNode::set_namespace(string uri, string prefix)

The set_namespace method sets the namespace for the node. Optionally,

you may set the prefix with the prefix argument. Otherwise, PHP

generates a random prefix.

DomNode::unlink_node()

The unlink_node method detaches a node from its document.

string DomProcessingInstruction::data()

The data method returns the contents of the DomProcessingInstruction

object. If the complete processing instruction appears as <?phpphp

phpinfo(); ?> in the document, this method returns phpinfo();.

string DomProcessingInstruction::target()

The target method returns the target of the DomProcessingInstruction

object. If the complete processing instruction appears as <?phpphp

phpinfo(); ?> in the document, this method returns php.

object domxml_new_doc(string version)

The domxml_new_doc function returns a DomDocument object with the XML

version set to the given version argument.

object domxml_open_file(string file)

The domxml_open_file function loads an XML document from a file and

returns a DomDocument object.

object domxml_open_mem(string document)

The domxml_open_mem function loads an XML document from a string and

returns a DomDocument object.

string domxml_version()

The domxml_version function returns the version of the XML library.

object domxml_xmltree(string document)

The domxml_xmltree function reads an entire XML document and returns

the root node. Each node contains a children property, which is an array

of objects. The objects also include the properties defined by the DOM

specification.

You cannot use these objects with the method discussed in this section.

object domxml_xslt_stylesheet(string document)

The domxml_xslt_stylesheet function returns a DomXsltStyleSheet

object given the contents of an XSL document.

string domxml_xslt_version()

The domxml_xslt_version function returns a string representing the

version of the XSLT library compiled into PHP.

object domxml_xslt_stylesheet_doc(object document)

The domxml_xslt_stylesheet_doc function returns a DomXsltStyleSheet

object given a DomDocument object.

object domxml_xslt_stylesheet_file(string file)

The domxml_xslt_stylesheet_file function returns a DomXsltStyleSheet

object given a path to a file.

object DomXsltStylesheet::process(object document,
array parameters, boolean xpath_parameters, string
profile_file)

The process method (Listing 20.9) applies a style sheet to a DomDocument

object. The optional parameters argument should be an associative array

matching parameters needed by the style sheet. The optional

xpath_parameters argument specifies whether the parameters are plain

strings or XPath expressions. Set the optional profile_file argument with

a path, and PHP writes profiling information.

Listing 20.9 DomXsltStyleSheet::process

<?php

 //load a document

 $dom = domxml_open_file("corephp.xml");

 //load a style sheet

 $xslt = domxml_xslt_stylesheet_file("corephp.xsl");

 //apply the stylesheet to the document

 $dom2 = $xslt->process($dom, array('myParam'=>'use this'));

 //dump the styled document

 print($dom2->dump_mem());

 print($xslt->result_dump_mem($dom2));

?>

DomXsltStylesheet::result_dump_file(object document,
string filename, integer compression)

The result_dump_file method dumps a DomDocument object returned by

the process method into a file. The optional compression argument sets

the level of GZIP compression applied to the file.

Unlike DomDocument:dump_file, this method does not force the output

document into being a well-formed XML document.

string DomXsltStylesheet::result_dump_mem(object
document)

The result_dump_mem method returns a string containing a styled

DomDocument. Unlike DomDocument:dump_file, this method does not force

the output document into being a well-formed XML document.

array XPathContext::xpath_eval(string xpath, object
node)

The xpath_eval method (Listing 20.10) returns an array of XPathObject

objects matching the xpath argument. Use the optional node argument for

expressions that require an additional context.

XPathObject objects contain no methods. The nodeset property is an array

of nodes objects.

Listing 20.10 XPathContext::xpath_eval

<?php

 //load the document

 $dom = domxml_open_file("corephp.xml");

 //create xpath context

 $context = xpath_new_context($dom);

 //find title

 $xpath = $context->xpath_eval("//title");

 //print contents

 print($xpath->nodeset[0]->get_content());

?>

boolean XPathContext::xpath_register_ns(string prefix,
string uri)

The xpath_register_ns method registers the given namespace.

object xpath_new_context(object document)

The xpath_new_context function returns an XPathContext object for the

given DomDocument object.

xptr_new_context

You may use xptr_new_context as an alias to xpath_new_context.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

20.2 Expat XML

The functions in this section wrap the Expat library developed by James Clark

<http://www.jclark.com/xml/>. This library is part of the PHP distribution,

and its purpose is parsing XML documents. A stream of data is fed to the

parser. As complete parts of the data are recognized, events are triggered.

These parts are the tags and the data they surround. You register the events

with a handler, a function you write. You may specify FALSE for the name of

any handler, and those events will be ignored.

Stig Bakken added the XML extension to PHP.

string utf8_decode(string data)

The utf8_decode function takes UTF-8 text and returns ISO-8859-1 text.

string utf8_encode(string data)

The utf8_encode function returns the data argument as UTF-8 text.

string xml_error_string(integer error)

The xml_error_string function returns the description for the given error

code.

integer xml_get_current_byte_index(resource parser)

The xml_get_current_byte_index function returns the number of bytes

parsed so far.

integer xml_get_current_column_number(resource
parser)

The xml_get_current_column_number function returns the column number in

the source file where the parser last read data. This function is useful for

reporting where an error occurred.

integer xml_get_current_line_number(resource parser)

The xml_get_current_line_number function returns the line number in the

source file where the parser last read data. This function is useful for

reporting where an error occurred.

http://www.jclark.com/xml/default.htm

integer xml_get_error_code(resource parser)

The xml_get_error_code function returns the last error code generated on

the given parser. Constants are defined for all the errors. They are listed in

Table 20.2. If no error has occurred, XML_ERROR_NONE is returned. If given an

invalid parser identifier, FALSE is returned.

Table 20.2. XML Error Constants

XML_ERROR_ASYNC_ENTITY

XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY_REF

XML_ERROR_BAD_CHAR_REF

XML_ERROR_BINARY_ENTITY_REF

XML_ERROR_DUPLICATE_ATTRIBUTE

XML_ERROR_EXTERNAL_ENTITY_HANDLING

XML_ERROR_INCORRECT_ENCODING

XML_ERROR_INVALID_TOKEN

XML_ERROR_JUNK_AFTER_DOC_ELEMENT

XML_ERROR_MISPLACED_XML_PI

XML_ERROR_NONE

XML_ERROR_NO_ELEMENTS

XML_ERROR_NO_MEMORY

XML_ERROR_PARAM_ENTITY_REF

XML_ERROR_PARTIAL_CHAR

XML_ERROR_RECURSIVE_ENTITY_REF

XML_ERROR_SYNTAX

XML_ERROR_TAG_MISMATCH

XML_ERROR_UNCLOSED_CDATA_SECTION

XML_ERROR_UNCLOSED_TOKEN

XML_ERROR_UNDEFINED_ENTITY

XML_ERROR_UNKNOWN_ENCODING

boolean xml_parse(resource parser, string data, boolean
final)

The xml_parse function scans over data and calls handlers you have

registered. The size of the data argument is not limited. You could parse an

entire file or a few bytes at a time. A typical use involves fetching data within

a while loop.

The final argument is optional. It tells the parser that the data you are

passing is the end of the file.

boolean xml_parse_into_struct(resource parser, string
data, array structure, array index)

The xml_parse_info_struct function (Listing 20.11) parses an entire

document and creates an array to describe it. You must pass the structure

argument as a reference. Elements numbered from zero will be added to it.

Each element will contain an associative array indexed by tag, type, level,

and value. The index argument is optional. You must pass it by reference as

well. It will contain elements indexed by distinct tags found in the XML file.

The value of each element will be a list of integers. These integers are indices

into the structure array. It allows you to index the elements of the

structure array that match a given tag.

If you set any handlers, they will be called when you use xml_parse_into_

struct.

Listing 20.11 xml_parse_into_struct

<?php

 //create parser

 if(!($parser = xml_parser_create()))

 {

 print("Could not create parser!
");

 exit();

 }

 //get entire file

 $data = file_get_contents("corephp.xml");

 //parse file into array

 xml_parse_into_struct($parser, $data, $structure, $index);

 //destroy parser

 xml_parser_free($parser);

 print("Structure:
" .

 "<table border=\"1\">" .

 "<tr>" .

 "<th>tag</th>" .

 "<th>type</th>" .

 "<th>level</th>" .

 "<th>value</th>" .

 "<tr>");

 foreach($structure as $s)

 {

 if(!isset($s["value"]))

 {

 $s["value"] = "";

 }

 print("<tr>" .

 "<td>{$s["tag"]}</td>" .

 "<td>{$s["type"]}</td>" .

 "<td>{$s["level"]}</td>" .

 "<td>{$s["value"]}</td>" .

 "<tr>");

 }

 print("</table>");

 print("Element Reference:
");

 foreach($index as $key=>$value)

 {

 print("$key:");

 foreach($value as $i)

 {

 print(" $i");

 }

 print("
");

 }

?>

resource xml_parser_create(string encoding)

Calling xml_parser_create is the first step in parsing an XML document. An

identifier to be used with most of the other functions is returned. The optional

encoding argument allows you to specify the character set used by the

parser. The three character sets accepted are ISO-8859-1, US-ASCII, and

UTF-8. The default is ISO-8859-1.

resource xml_parser_create_ns(string encoding, string
separator)

The xml_parser_create_ns function creates a parser, as xml_parser_create

does, with the addition of processing namespaces. The optional separator

argument specifies a single character used to separate name parts.

boolean xml_parser_free(resource parser)

The xml_parser_free function releases the memory being used by the

parser.

value xml_parser_get_option(resource parser, integer
option)

The xml_parser_get_option function returns an option’s current value. Table

20.3 lists the available options.

Table 20.3. XML Option Constants

XML_OPTION_CASE_FOLDING

XML_OPTION_SKIP_TAGSTART

XML_OPTION_SKIP_WHITE

XML_OPTION_TARGET_ENCODING

xml_parser_set_option(resource parser, integer option,
value data)

Use xml_parser_set_option to change the value of an option. Table 20.3

lists the available options.

boolean xml_set_character_data_handler(resource parser,
string function)

Character data is the text that appears between tags, and

xml_set_character_data_handler sets the function that executes when it is

encountered. Character data may span many lines and may cause several

events. PHP will not concatenate the data for you.

The function specified in the function argument must take two arguments.

The first is the parser identifier, an integer. The second is a string containing

the character data.

You may also specify the handler function as a class method or an object

method by supplying an array of two elements. The first element may be the

name of a class or an instantiation. The second element must be the name of

the method.

boolean xml_set_default_handler(resource parser, string
function)

The xml_set_default_handler function captures any text not handled by the

other handlers. This includes the DTD declaration and the XML tag.

The function specified in the function argument must take two arguments.

The first is the parser identifier, an integer. The second is a string containing

the data.

You may also specify the handler function as a class method or an object

method by supplying an array of two elements. The first element may be the

name of a class or an instantiation. The second element must be the name of

the method.

boolean xml_set_element_handler(resource parser, string
start, string end)

Use xml_set_element_handler (Listing 20.12) to assign the two functions

that handle start tags and end tags.

The start argument must name a function you’ve created that takes three

arguments. The first function is the parser identifier. The second is the name

of the start tag found. The third is an array of the attributes for the start tag.

The indices of this array are the attribute names. The elements are in the

same order as they appeared in the XML.

The second function handles end tags. It takes two arguments, the first of

which is the parser identifier. The other is the name of the tag.

You may also specify the handler functions as class methods or object

methods by supplying an array of two elements. The first element may be the

name of a class or an instantiation. The second element must be the name of

the method.

Listing 20.12 xml_set_element_handler

<?php

 /*

 ** define functions

 */

 function cdataHandler($parser, $data)

 {

 print($data);

 }

 function startHandler($parser, $name, $attributes)

 {

 switch($name)

 {

 case 'EXAMPLE':

 print("<hr>\n");

 break;

 case 'TITLE':

 print("");

 break;

 case 'CODE':

 print("<pre>");

 break;

 default:

 //ignore other tags

 }

 }

 function endHandler($parser, $name)

 {

 switch($name)

 {

 case 'EXAMPLE':

 print("<hr>\n");

 break;

 case 'TITLE';

 print("");

 break;

 case 'CODE':

 print("</pre>");

 break;

 default:

 //ignore other tags

 }

 }

 function piHandler($parser, $target, $data)

 {

 if($target == "php")

 {

 eval($data);

 }

 else

 {

 print(htmlentities($data));

 }

 }

 function defaultHandler($parser, $data)

 {

 global $defaultText;

 $defaultText .= $data;

 }

 function ndataHandler($parser, $name, $base, $systemID,

 $publicID, $notation)

 {

 print("<!--\n");

 print("NDATA\n");

 print("Entity: $name\n");

 print("Base: $base\n");

 print("System ID: $systemID\n");

 print("Public ID: $publicID\n");

 print("Notation: $notation\n");

 print("-->\n");

 }

 function notationHandler($parser, $name, $base, $systemID,

 $publicID)

 {

 print("<!--\n");

 print("Notation: $name\n");

 print("Base: $base\n");

 print("System ID: $systemID\n");

 print("Public ID: $publicID\n");

 print("-->\n");

 }

 function externalHandler($parser, $name, $base, $systemID,

 $publicID)

 {

 //here you could create another parser

 print("<!--Loading $systemID-->\n");

 return(TRUE);

 }

 /*

 ** Initialize

 */

 //create parser

 if(!($parser = xml_parser_create()))

 {

 print("Could not create parser!
\n");

 exit();

 }

 //register handlers

 xml_set_character_data_handler($parser, "cdataHandler");

 xml_set_element_handler($parser, "startHandler",

 "endHandler");

 xml_set_processing_instruction_handler($parser, "piHandler");

 xml_set_default_handler($parser, "defaultHandler");

 xml_set_unparsed_entity_decl_handler($parser, "ndataHandler");

 xml_set_notation_decl_handler($parser, "notationHandler");

 xml_set_external_entity_ref_handler($parser,

 "externalHandler");

 /*

 ** Parse file

 */

 if(!($fp = fopen("corephp.xml", "r")))

 {

 print("Couldn't open corephp.xml!
\n");

 xml_parser_free($parser);

 exit();

 }

 while($line = fread($fp, 1024))

 {

 if(!xml_parse($parser, $line, feof($fp)))

 {

 //Error, so print full info

 print("ERROR: " .

 xml_error_string(xml_get_error_code($parser)) .

 " at line " .

 xml_get_current_line_number($parser) .

 ", column " .

 xml_get_current_column_number($parser) .

 ", byte " .

 xml_get_current_byte_index($parser) .

 "
\n");

 }

 }

 //destroy parser

 xml_parser_free($parser);

 print("Text handled by the default handler:\n");

 print("<pre>" . htmlentities($defaultText) . "</pre>\n");

?>

boolean xml_set_end_namespace_decl_handler(resource
parser, string function)

The xml_set_end_namespace_decl_handler function handles when PHP finds

the end of a namespace declaration. The handler should receive one

argument. It receives the prefix.

You may also specify the handler function as a class method or an object

method by supplying an array of two elements. The first element may be the

name of a class or an instantiation. The second element must be the name of

the method.

boolean xml_set_external_entity_ref_handler(resource
parser, string function)

XML entities follow the form of HTML entities. They start with an ampersand

and end with a semicolon. Between these two characters is the name of the

entity. An external entity is defined in another file. This takes the form

<!ENTITY externalEntity SYSTEM “entities.xml”> in your XML file. Each

time the entity appears in the body of the XML file, the handler you specify in

xml_set_external_entity_ref_handler is called.

The handler function must take five arguments. First is the parser identifier.

Next is a string containing the names of the entities open for this parser. Then

come the base, the system ID, and the public ID.

You may also specify the handler function as a class method or an object

method by supplying an array of two elements. The first element may be the

name of a class or an instantiation. The second element must be the name of

the method.

boolean xml_set_notation_decl_handler(resource parser,
string function)

The handler registered with xml_set_notation_decl_handler receives

notation declarations. These are formed like <!NOTATION jpg SYSTEM

“/usr/local/bin/jview”> and are meant to suggest a program for handling

a data type.

The handler must take five arguments, the first of which is the parser

identifier. The second is the name of the notation entity. The rest are base,

system ID, and public ID, in that order.

You may also specify the handler function as a class method or an object

method by supplying an array of two elements. The first element may be the

name of a class or an instantiation. The second element must be the name of

the method.

xml_set_object(resource parser, object container)

The xml_set_object function (Listing 20.13) associates an object with a

parser. You must pass the parser identifier and a reference to an object. This

is best done within the object using the this variable. After using this

function, PHP will call methods of the object instead of the functions in the

global scope when you name handlers.

Listing 20.13 xml_set_object

<?php

 class myParser

 {

 var $parser;

 function parse($filename)

 {

 //create parser

 if(!($this->parser = xml_parser_create()))

 {

 print("Could not create parser!
");

 exit();

 }

 //associate parser with this object

 xml_set_object($this->parser, $this);

 //register handlers

 xml_set_character_data_handler($this->parser,

 "cdataHandler");

 xml_set_element_handler($this->parser,

 "startHandler", "endHandler");

 /*

 ** Parse file

 */

 if(!($fp = fopen($filename, "r")))

 {

 print("Couldn't open example.xml!
");

 xml_parser_free($this->parser);

 return;

 }

 while($line = fread($fp, 1024))

 {

 xml_parse($this->parser, $line, feof($fp));

 }

 //destroy parser

 xml_parser_free($this->parser);

 }

 function cdataHandler($parser, $data)

 {

 print($data);

 }

 function startHandler($parser, $name, $attributes)

 {

 switch($name)

 {

 case 'EXAMPLE':

 print("<hr>");

 break;

 case 'TITLE':

 print("");

 break;

 case 'CODE':

 print("<pre>");

 break;

 default:

 //ignore other tags

 }

 }

 function endHandler($parser, $name)

 {

 switch($name)

 {

 case 'EXAMPLE':

 print("<hr>");

 break;

 case 'TITLE';

 print("");

 break;

 case 'CODE':

 print("</pre>");

 break;

 default:

 //ignore other tags

 }

 }

 }

 $p = new myParser;

 $p->parse("corephp.xml");

?>

boolean
xml_set_processing_instruction_handler(resource parser,
string function)

The xml_set_processing_instruction_handler function registers the

function that handles tags of the following form: <?phptarget data?>. This

may be familiar; it’s how PHP code is embedded in files. The target keyword

identifies the type of data inside the tag. Everything else is data.

The function argument must specify a function that takes three arguments.

The first is the parser identifier. The second is the target. The third is the

data.

You may also specify the handler function as a class method or an object

method by supplying an array of two elements. The first element may be the

name of a class or an instantiation. The second element must be the name of

the method.

xml_set_start_namespace_decl_handler(resource parser,
string function)

The xml_set_start_namespace_decl_handler function handles the start of a

namespace declaration. The handler should accept two arguments. The first

receives the prefix and the second receives the URI.

You may also specify the handler function as a class method or an object

method by supplying an array of two elements. The first element may be the

name of a class or an instantiation. The second element must be the name of

the method.

boolean xml_set_unparsed_entity_decl_handler(resource
parser, string function)

This function specifies a handler for external entities that contain an NDATA

element. These take the form of <!ENTITY php-pic SYSTEM “php.jpg”

NDATA jpg>, and they specify an external file.

You may also specify the handler function as a class method or an object

method by supplying an array of two elements. The first element may be the

name of a class or an instantiation. The second element must be the name of

the method.

20.3 WDDX

The Web Distributed Data Exchange, or WDDX, is an XML language

for describing data in a way that facilitates moving it from one

programming environment to another. The intent is to relieve

difficulty associated with sending data between applications that

represent data differently. Traditionally this has been done by

designing special interfaces for each case. For instance, you may

decide that your PERL script will write out its three return data

separated with tabs, using a regular expression to extract the text

you later convert to integers. WDDX intends to unify the effort into a

single interface. If you wish to learn more about WDDX, visit the

home site at <http://www.openwddx.org/>.

Andrei Zmievski added WDDX support to PHP.

wddx_add_vars(integer packet_identifier, string
variable, …)

The wddx_add_vars function is one of three functions for creating

packets incrementally. After creating a packet with

wddx_packet_start, you may add as many variables as you wish

with wddx_add_vars. After the packet_identifier argument, you

may pass strings with the names of variables in the local scope or

arrays of strings. If necessary, PHP will explore multidimensional

arrays for names of variables. The variables will be added to the

packet until you use wddx_packet_end to create the actual packet as

a string.

value wddx_deserialize(string packet)

The wddx_deserialize function (Listing 20.14) returns a variable

representing the data contained in a WDDX packet. If the packet

contains a single value, it will be returned as an appropriate type. If

the packet contains multiple values in a structure, an associative

array will be returned.

Listing 20.14 wddx_deserialize

<?php

 //simulate WDDX packet

 $packet = "<wddxPacket version='1.0'>" .

 "<data>" .

 "<string>Core PHP Programming</string>" .

 "</data>" .

 "</wddxPacket>";

 //pull data out of packet

 $data = wddx_deserialize($packet);

http://www.openwddx.org/default.htm

 //test the type of the variable

 if(is_array($data))

 {

 //loop over each value

 foreach($data as $key=>$value)

 {

 print("$key: $value
\n");

 }

 }

 else

 {

 //simply print the value

 print("$data
\n");

 }

?>

string wddx_packet_end(integer packet_identifier)

The wddx_packet_end function returns a string for the packet created

with wddx_packet_start and wddx_add_vars.

integer wddx_packet_start(string comment)

The wddx_packet_start function (Listing 20.15) returns an identifier

to a WDDX packet you can build as you go. The optional comment

argument will be placed in the packet if supplied. Use the returned

packet identifier with wddx_add_vars and wddx_packet_end.

Listing 20.15 wddx_packet_start

<?php

 //create test data

 $Name = "Leon Atkinson";

 $Email = "corephp@leonatkinson.com";

 $Residence = "Martinez";

 $Info = array("Email", "Residence");

 //start packet

 $wddx = wddx_packet_start("Core PHP Programming");

 //add some variables to the packet

 wddx_add_vars($wddx, "Name", $Info);

 //create packet

 $packet = wddx_packet_end($wddx);

 //print packet for demonstration purposes

 print($packet);

?>

string wddx_serialize_value(value data, string
comment)

The wddx_serialize_value function creates a WDDX packet

containing a single value. The data will be encoded with no name.

The optional comment field will be added to the packet as well.

string wddx_serialize_vars(string variable, …)

Use wddx_serialize_vars (Listing 20.16) to create a packet

containing many variables. You may specify any number of variable

names in the local scope. Each argument may be a string or an array.

PHP will recursively explore multidimensional arrays for more names

of variables if necessary. A WDDX packet is returned.

Listing 20.16 wddx_serialize_vars

<?php

 //create test data

 $Name = "Leon Atkinson";

 $Email = "corephp@leonatkinson.com";

 $Residence = "Martinez";

 $Info = array("Email", "Residence");

 //print packet

 print(wddx_serialize_vars("Name", $Info));

?>

Part III: Algorithms
An algorithm is a recipe for solving a problem. This section

discusses broad problems in computer science and how to solve

them, all in the context of PHP. These problems are inherent in

any programming endeavor, but in most cases PHP makes

handling them easier. However, the particular circumstances of

the Web offer the seasoned programmer a new set of

challenges. This section brings these issues to your attention.

Chapter 21 examines sorting and searching, along with a

related topic, random numbers. Although PHP has built-in

functions for sorting data, this chapter explores the theory

behind sorting. This gives you the knowledge to code custom

sorting functions when the need arises.

Chapter 22 discusses parsing and string evaluation. Much of this

chapter is about regular expressions, a powerful way to

describe patterns that are compared to strings. These are useful

for validating user input.

Chapter 23 describes integrating PHP with a database. MySQL is

used in the examples because it’s Open Source. Databases

allow you to manipulate data in powerful ways and are

necessary for many Web applications.

Chapter 24 is about network issues, such as sending HTTP

headers. Because PHP scripts execute as Web pages, network

issues appear frequently.

Chapter 25 explores generating graphics with PHP. It develops

examples that create buttons and graphs dynamically.

 • Chapter 21 Sorting, Searching, and Random Numbers

 • Chapter 22 Parsing and String Evaluation

 • Chapter 23 Database Integration

 • Chapter 24 Networks

 • Chapter 25 Generating Graphics

Chapter 21. Sorting, Searching, and
Random Numbers
Topics in This Chapter

Sorting

Built-In Sorting Functions

Sorting with a Comparison Function

Searching

Indexing

Random Numbers

Random Identifiers

Choosing Banner Ads

Sorting and searching are two fundamental concepts of computer

science. They are closely tied to almost every application: databases,

compilers, even the World Wide Web. The more information you have

online, the more important it becomes to know exactly where that

information is.

Admittedly, sorting is not as serious a topic in the context of PHP as it

is for C++. PHP offers some very powerful sorting functions, even

one that allows you to define how to compare two elements. This

chapter deals with some classic problems of computer science. You

may be interested in learning about the concepts that become useful

as you use more generalized languages like C or Ada. But further

than that, these concepts will help you understand the internal

workings of databases, Web servers, even PHP itself. You will be more

capable of dealing with the inevitable problem unsolved by any built-

in PHP function.

This chapter also discusses random numbers, which are useful for

putting data out of order. The practical application of this usually

takes the form of unique identifiers, for files or sessions.

21.1 Sorting

To sort means to put a set of like items into order. The rules of

ordering can be simple, such as strings sorted by the order of the

alphabet. They could be complex, such as sorting addresses first by

country, then by state, then by city. The process of sorting can take

several forms but always involves comparing two elements with a set

of rules for ordering. The result of the comparison determines

whether the two items are in order or out of order, therefore needing

to be swapped.

There are three classes of sorts: exchange, insert, and select. In an

exchange method, two elements are compared and possibly

exchanged. This process continues until the list is in order. In an

insert method, the elements are removed and placed in another list,

one by one. Each time an element is moved, it is inserted into the

correct position. When all elements are moved, the list is in order. A

selection sort involves building a second list by scanning the first and

repeatedly selecting the lowest value. Insertion and selection sorts

are two sides of a coin. The former scans the new list; the latter

scans the old list.

As I said earlier, a sorting algorithm is essentially comparison and

possible movement of elements in a list. On average, moving an

element takes the same amount of time, no matter which algorithm

you use. Likewise, the comparison is independent of the actual sort.

If we take these to be constants, then the most important question to

ask about each algorithm is, How many times does the algorithm

perform either of these costly actions?

Of course, the sort must be kept in context with the data. Some

algorithms perform very well when the data are completely

unordered but are slow when the data are already in order or in

reverse order. Some sorts perform very poorly when there are many

elements; others have such an overhead as to be inappropriate for

smaller data sets. Like any technician, the programmer matches the

tool to the job.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

21.2 Built-In Sorting Functions

Usually, it will not be necessary to write your own sort functions. PHP

offers several functions for sorting arrays. The most basic is sort.

This function is described, along with the other sorting functions in

Chapter 11. It’s instructive to compare sort to rsort, asort, and

ksort.

The sort function puts all the elements in the array in order from

lowest to highest. If the array contains any strings, then this means

ordering them by the ASCII codes of each character. If the array

contains only numbers, then they are ordered by their values. The

indices�the values used to reference the elements�are discarded

and replaced with integers starting with zero. This is an important

effect, which Listing 21.1 demonstrates; Figure 21.1 shows the

output. Notice that although I use some numbers and a string to

index the array, after I sort it, all the elements are numbered zero

through four. Keep this in mind if you ever need to clean up the

indices of an array.

Listing 21.1 Sorting with sort

<?php

 /*

 ** Fill fruit array with random values

 */

 $fruit[1] = "Apple";

 $fruit[13] = "apple";

 $fruit[64] = "Blueberry";

 $fruit[3] = "pear";

 $fruit["last"] = "Watermelon";

 //sort the array

 sort($fruit);

 //dump array to show new order

 print("<pre>");

 print_r($fruit);

 print("</pre>\n");

?>

Figure 21.1. Output of Listing 21.1.

Another point worth noting in Listing 21.1 is the order of the output:

Apple, Blueberry, Watermelon, apple, pear. A dictionary might list

apple just before or just after Apple, but the ASCII code for A is 65.

The ASCII code for a is 97. Appendix B lists all the ASCII codes. Later

in this chapter I’ll explain how to code a case-insensitive sort.

The rsort function works exactly like sort except that it orders

elements in the reverse order. Try modifying the code in Listing 21.1

by changing sort to rsort.

Two other two sort functions, asort and arsort, work in a slightly

different way. They preserve the relationship between the index and

the element. This is most useful when you have an associative array.

If the array is indexed by numbers, you probably do not want to

preserve their indices. On the other hand, what if you did? Listing

21.2 illustrates a possible scenario; output is shown in Figure 21.2.

Listing 21.2 Using the asort function

<?php

 // Fill and array in order of preference

 $pasta = array(1=>"ravioli",

 "spaghetti",

 "vermicelli",

 "lasagna",

 "gnocchi",

 "rigatoni");

 // Sort the array, keeping indices

 asort($pasta);

 // Print array, now in alphabetical order

 foreach($pasta as $rank=>$name)

 {

 print("$name was ranked number $rank
\n");

 }

?>

Figure 21.2. Output of Listing 21.2.

Listing 21.2 gets each element in the order in which the elements

exist in memory. They retain their original indices, which are the

numbers starting with zero used when the elements were added to

the array. If I had used arsort, the order would have been the exact

opposite. Listing 21.3 is perhaps a more typical use of these

functions. It is important to keep the elements in the array returned

by getdate associated with their indices. Listing 21.3 sorts the array

in reverse order by the elements. It may not be particularly useful

but illustrates the use of this function. The output is shown in Figure

21.3.

Listing 21.3 Using the arsort function

<?php

 //get an array from getdate

 $today = getdate();

 //Sort the array, keeping indices

 arsort($today);

 //Print array, now in descending order

 print("<pre>");

 print_r($today);

 print("</pre>\n");

?>

Figure 21.3. Output of Listing 21.3.

The last sorting function I want to discuss in this section is ksort.

This function sorts an array on the values of the indices. I’ve modified

the code in Listing 21.3 to use ksort instead of arsort. Notice that

now all the elements are in the order of their indices, or keys.

The ksort function is perhaps most useful in situations where you

have an associative array and you don’t have complete control over

the contents. In Listing 21.4 the script gets an array generated by

the getdate function. If you run it with the ksort line commented

out, you will see that the order is arbitrary. It’s simply the order

chosen when the function was coded. I could have typed a couple of

lines for each element based on the list of elements found in the

description of the getdate function in Chapter 14. A more readable

solution is to sort on the keys and to print each element in a loop. As

you might have guessed, the krsort function sorts an array by its

indices in reverse.

Listing 21.4 Using the ksort function

<?php

 // get an array from getdate

 $today = getdate();

 // Sort the array, keeping indices

 ksort($today);

 //Print array, now ordered by keys

 print("<pre>");

 print_r($today);

 print("</pre>\n");

?>

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

21.3 Sorting with a Comparison Function

The built-in sorting functions are appropriate in the overwhelming

majority of situations. If your problem requires a sort that performs

better than the one used in the built-in functions, you are faced with

coding your own. If your problem is that you need to compare

complex elements, such as objects or multidimensional arrays, the

solution is to write a comparison function and plug it into the usort

function.

The usort function allows you to sort an array using your own

comparison function. Your comparison function must accept two

values and return an integer. The two arguments are compared, and

if a negative number is returned, then the values are considered to

be in order. If zero is returned, they are considered to be equal. A

positive number signifies that the numbers are out of order.

In Listing 21.5, I’ve created a multidimensional array with three

elements for name, title, and hourly rate. Sometimes I want to be

able list employees by name, but other times I might want to list

them by title or how much they make per hour. To solve this problem,

I’ve written three comparison functions. Output is shown in Figure

21.4.

Listing 21.5 Using the usort function

<?php

 class EmployeeTracker

 {

 static $title = array(

 "President"=>1,

 "Executive"=>2,

 "Manager"=>3,

 "Programmer"=>4

);

 public $employees;

 public function __construct($data)

 {

 $this->employees = $data;

 }

 // byName

 // compare employees based on name

 function byName($left, $right)

 {

 return(strcmp($left[0], $right[0]));

 }

 // byTitle

 // compare employees based on title

 function byTitle($left, $right)

 {

 if($left[1] == $right[1])

 {

 return(0);

 }

 else

 {

 return(EmployeeTracker::$title[$left[1]] -

 EmployeeTracker::$title[$right[1]]);

 }

 }

 // bySalary

 // compare employees based on salary, then name

 function bySalary($left, $right)

 {

 if($left[2] == $right[2])

 {

 return(byName($left, $right));

 }

 else

 {

 return($right[2] - $left[2]);

 }

 }

 // printEmployees

 // send entire list of employees to browser

 function printEmployees()

 {

 foreach($this->employees as $value)

 {

 printf("%s (%s) %.2f/Hour
\n",

 $value[0],

 $value[1],

 $value[2]);

 }

 }

 }

 // Create some employees (Name, Title, Rate)

 $e = new EmployeeTracker(array(

 array("Mckillop, Jeff", "Executive", 50),

 array("Porter, Carl", "Manager", 45),

 array("Marazzani, Rick", "Manager", 35),

 array("Dibetta, Bob", "Programmer", 65),

 array("Atkinson, Leon", "President", 100)));

 print("Unsorted
\n");

 $e->printEmployees();

 print("Sorted by Name
\n");

 usort($e->employees, array($e, "byName"));

 $e->printEmployees();

 print("Sorted by Title
\n");

 usort($e->employees, array($e, "byTitle"));

 $e->printEmployees();

 print("Sorted by Rate
\n");

 usort($e->employees, array($e, "bySalary"));

 $e->printEmployees();

?>

Figure 21.4. Output of Listing 21.5.

The byName function is a simple wrapper for strcmp. Names will be

ordered by ASCII code. The byTitle function assigns an integer

value to each title and then returns the comparison of these integers.

The bySalary function compares the wage element, but if two

employees make the same amount of money per hour, their names

are compared.

21.4 Searching

Sorting organizes information into a form that aids in finding the exact piece

being looked for. If you need to look up a phone number, it’s easy to flip

through the pages of a phone book until you find the approximate area

where the number might be. With a bit of scanning you can find the number,

because all the names are in order. For most of us, this process is automatic.

If you want to duplicate this process inside a PHP script, you have to think

about each of the steps. The simplest way is to start at the beginning and

look at every entry until you find the one you want. If you get to the end and

haven’t found it, it must not exist. I don’t have to tell you this is probably

the worst way to search, but sometimes this is all you have. If the data are

unsorted, there is no better way.

You can dramatically improve your search time by doing a binary search. The

requirement is that the data be sorted. Luckily, I’ve shown this to be

relatively simple. The binary search involves repeatedly dividing the list into

a half that won’t contain the target value and a half that will.

To perform a binary search, start in the middle of the list. If the element in

the middle precedes the element you are searching for, you can be sure it’s

in the half of the list that follows the middle element. You will now have half

as many elements to search through. If you repeat these steps, you will zero

in on your targeted value very quickly. To be precise, the worst case is that it

will take log n, or the base-two logarithm of the number of elements in the

data. If you had 128 numbers, it would take at most seven guesses. Listing

21.6 puts this idea into action.

Listing 21.6 A binary search

<?php

 // byName

 // compare employees based on name

 function byName($left, $right)

 {

 return(strcmp($left[0], $right[0]));

 }

 //Create some employees (Name, Title, Rate)

 $employee = array(

 array("Mckillop, Jeff", "Executive", 50),

 array("Porter, Carl", "Instructor", 45),

 array("Marazzani, Rick", "Manager", 35),

 array("Dibetta, Bob", "Programmer", 65),

 array("Atkinson, Leon", "President", 100));

 //Sort the list

 usort($employee, "byName");

 print("<pre>");

 print_r($employee);

 print("</pre>\n");

 //Pick target

 $Name = "Porter, Carl";

 print("Searching for $Name
\n");

 //Set range to search in

 $lower_limit = 0;

 $upper_limit = count($employee) - 1;

 //Pick mid-point

 $index = floor(($lower_limit + $upper_limit)/2);

 while($lower_limit < $upper_limit)

 {

 if(strcmp($employee[$index][0], $Name) < 0)

 {

 //Target in upper half

 $lower_limit = $index + 1;

 }

 elseif(strcmp($employee[$index][0], $Name) > 0)

 {

 //Target in lower half

 $upper_limit = $index - 1;

 }

 else

 {

 //Target found

 $lower_limit = $index;

 $upper_limit = $index;

 }

 //Pick mid-point

 $index = floor(($lower_limit + $upper_limit)/2);

 }

 // Print results

 print("Position $index
\n");

 print("{$employee[$index][0]} {$employee[$index][1]}
\n");

?>

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

21.5 Indexing

By sorting the data, you spend time up front, betting it will pay off when you

need to search. But even this searching costs something. A binary search

may take several steps. When you need to do hundreds of searches, you

may look for further improvement in performance. One way is to perform

every possible search beforehand, creating an index. A lot of work is done at

first, which allows searches to be performed fast.

Let’s explore how we can transform the binary search in Listing 21.6 into a

single lookup. We want an array that, given a name, returns its position in

the original array, so we’ll build a list of matches. Refer to the code in Listing

21.7. We won’t bother sorting the list. It won’t help, because we will be

visiting every element of the array. As we visit each element, we create a

new array. The index of this array is the name of the employee. Each

element of the index will be an array of indices in the employee array. Once

the index is created, finding an employee is a single statement. If the name

is found in the array, we can retrieve the index values for the employee

array.

Listing 21.7 Building an index

<?php

 //Create some employees (Name, Title, Rate)

 $employee = array(

 array("Mckillop, Jeff", "Executive", 50),

 array("Porter, Carl", "Instructor", 45),

 array("Marazzani, Rick", "Manager", 35),

 array("Dibetta, Bob", "Programmer", 65),

 array("Atkinson, Leon", "President", 100));

 //build index

 $employeeIndex = array();

 foreach($employee as $id=>$val)

 {

 $employeeIndex[$val[0]] = $id;

 }

 //where's Carl?

 $index = $employeeIndex["Porter, Carl"];

 print("Position $index
\n");

 print("{$employee[$index][0]} {$employee[$index][1]}
\n");

?>

This example is not very realistic because we’re only making one search, and

we’re building the index with each request. The index needs to be built only

once as long as the employee array doesn’t change. You could save the array

to a file, perhaps using PHP serialization functionality, and then load it when

needed. I wrote similar code for the FreeTrade project that indexes keywords

that appear in pages of a Web site.

Of course, databases present a larger solution to managing data. In most

cases, it’s best to rely on a database to store large amounts of data, because

databases have specialized code for searching and sorting. Databases are

discussed in Chapter 23.

21.6 Random Numbers

Closely tied to sorting and searching is the generation of random

numbers. Often, random numbers are used to put lists out of order. They

offer the opportunity to create surprise. They allow you to squeeze more

information onto a single page by choosing content randomly for each

request. You see this every day on the Web in the form of quotes of the

day, banner ads, and session identifiers.

There are two important qualities of truly random numbers: Their

distribution is uniform, and each successive value is independent of the

previous value. To have a uniform distribution means that no value is

generated more often than any other. The idea of independence is that

given a sequence of numbers returned by the generator, you should be

unable to guess the next. Of course, we can’t write an algorithm that

really generates independent values. We have to have some formula,

which by its nature is predictable. Yet, we can get pretty close using what

is called a pseudorandom number generator. These use simple

mathematical expressions that return seemingly random numbers. You

provide a starting input called a seed. The first call to the function uses

this seed for input, and subsequent calls use the previous value. Keep in

mind that a seed will begin the same sequence of output values any time

it’s used. One way to keep things seeming different is to use the number

of seconds on the clock to seed the generators.

The standard C library offers the rand function for generating random

numbers, and PHP wraps it in a function of the same name. You pass

upper and lower limits, and integers are returned. You can seed the

generator with the srand function, or just let the system seed it for you

with the current time. Unfortunately, the standard generator on some

operating systems can be inadequate. Fortunately, Pedro Melo added a

new set of functions to PHP that use the Mersenne twister algorithm.

I won’t attempt to describe the algorithm behind the Mersenne Twister

algorithm because it’s out of the scope of this text. You can visit the

home page for more information

<http://www.math.keio.ac.jp/~matumoto/emt.html>. You can read a

careful description there to convince yourself of the validity of the

algorithm if you wish.

Listing 21.8 is a very simple example that generates 100 random

numbers between 1 and 100, using the mt_rand function. It then

computes the average and the median. If the distribution of numbers is

uniform, the average and median will be very close. The sample set is

really small, though, so you will see lots of variance as you rerun the

script. The output is shown in Figure 21.5.

Listing 21.8 Getting random numbers

<?php

 // Seed the generator

 mt_srand(doubleval(microtime()) * 100000000);

 // Generate numbers

http://www.math.keio.ac.jp/~matumoto/emt.html

 print("<h3>Sample Set</h3>\n");

 $size = 100;

 $total = 0;

 for($i=0; $i < $size; $i++)

 {

 $n = mt_rand(1, $size);

 $sample[$i] = $n;

 $total += $n;

 print("$n ");

 }

 print("
\n");

 print("Average: " . ($total/$size) . "
\n");

 sort($sample);

 print("Median: " . ($sample[intval($size/2)]) . "
\n");

?>

Figure 21.5. Output from Listing 21.8.

21.7 Random Identifiers

If you ever need to track users through a site, you will need to assign

unique identifiers. You can store all the information you know about the

user in a database and pass the identifier from page to page either

through links or with cookies. You will have to generate these identifiers

randomly; otherwise, it is too easy for anyone to masquerade as a

legitimate user. Fortunately, random identifiers are easy to generate.

Listing 21.9 illustrates how this works. A pool of characters to use in the

session identifier is defined. Characters are picked randomly from the

list to build a session identifier of the specified length. That identifier is

used inside a link so that it is passed to the next page. This method

works for any browser, even Lynx. Chapter 23 discusses the integration

of this technique with a database.

It’s very important to have random numbers here. Suppose you simply

used the seconds on the clock. For an entire second, every session

identifier would be the same. And it’s very likely many people will be

accessing a Web site during a single second. In Listing 21.9, I’ve used

the time on the microsecond clock to seed the random generator, but

even this allows the window of opportunity for getting a duplicate

session identifier. One way to avoid this situation is to use a lockable

resource that holds a seed�for example, a file. Once you lock the file,

you can read the seed and write back a new one, at which point you are

assured that two concurrent processes never get the same seed.

Listing 21.9 Generating a session identifier

<?php

 // SessionID

 // generates a session id

 function getSessionID($length=16)

 {

 // Set pool of possible characters

 $Pool = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

 $Pool .= "abcdefghijklmnopqrstuvwxyz";

 $lastChar = strlen($Pool) - 1;

 $sid = "";

 for($i = 0; $i < $length; $i++)

 {

 $sid .= $Pool[mt_rand(0, $lastChar)];

 }

 return($sid);

 }

 // Seed the generator

 mt_srand(100000000 * (double)microtime());

 if(isset($_REQUEST['sid']))

 {

 print("Old Session ID was {$_REQUEST['sid']}
\n");

 }

 $sid = getSessionID();

 print("");

 print("Get Another Session ID");

 print("\n");

?>

21.8 Choosing Banner Ads

Another use for random numbers is selecting banner ads. Suppose you’ve

signed up three sponsors for your Web site. Each has a single banner you

promise to display on an equal proportion of hits to your site. To

accomplish this, generate a random number and match each number to a

particular banner. In Listing 21.10, I’ve used a switch statement on a call

to mt_rand. In a situation like this, you don’t need to worry too much

about using good seeds. You simply want a reasonable distribution of the

three choices. Someone guessing which banner will display at midnight

poses no security risk.

Listing 21.10 Random banner ad

<?php

 //Seed the generator

 mt_srand(doubleval(microtime()) * 100000000);

 //choose banner

 switch(mt_rand(1,3))

 {

 case 1:

 $bannerURL = "http://www.leonatkinson.com/random/";

 $bannerImage = "leon_banner.png";

 break;

 case 2:

 $bannerURL = "http://www.php.net/";

 $bannerImage = "php_banner.png";

 break;

 default:

 $bannerURL = "http://www.phptr.com/";

 $bannerImage = "phptr_banner.png";

 }

 //display banner

 print("");

 print("<img src=\"$bannerImage\" ");

 print("width=\"400\" height=\"148\" border=\"0\">");

 print("");

?>

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

Chapter 22. Parsing and String Evaluation
Topics in This Chapter

Tokenizing

Regular Expressions

Defining Regular Expressions

Using Regular Expressions in PHP Scripts

Parsing is the act of breaking a whole into components, usually a

sentence into words. PHP must parse the code you write as a first

step in turning a script into an HTML document. There will come a

time when you are faced with extracting or verifying data collected in

a string. This could be as simple as a tab-delimited list. It could be as

complicated as the string a browser uses to identify itself to a Web

server. You may choose to tokenize the string, breaking it into pieces.

Or you may choose to apply a regular expression. This chapter

examines PHP’s functions for parsing and string evaluation.

22.1 Tokenizing

PHP allows for a simple model for tokenizing a string. Certain characters, of

your choice, are considered separators. Strings of characters between

separators are considered tokens. You may change the set of separators

with each token you pull from a string, which is handy for irregular

strings�that is, ones that aren’t simply comma-separated lists.

Listing 22.1 accepts a sentence and breaks it into words using the strtok

function, described in Chapter 12. As far as the script is concerned, a word

is surrounded by a space, punctuation, or either end of the sentence. Single

and double quotes are left as part of the word. Output is shown in Figure

22.1.

Listing 22.1 Tokenizing a string

<?php

 /*

 ** If submitted a sentence, parse it

 */

 if(isset($_REQUEST['sentence']))

 {

 $total=0;

 print("Submitted text:");

 print("{$_REQUEST['sentence']}
\n
\n");

 //set characters that separate tokens

 $separators = " ,!.?";

 //get each token

 for($token = strtok($_REQUEST['sentence'], $separators);

 $token !== FALSE;

 $token = strtok($separators))

 {

 //skip empty tokens

 if($token != "")

 {

 // count each word

 if(!isset($word_count[strtolower($token)]))

 {

 $word_count[strtolower($token)]=1;

 }

 else

 {

 $word_count[strtolower($token)]++;

 }

 $total++;

 }

 }

 //first sort by word

 ksort($word_count);

 //next sort by frequency

 arsort($word_count);

 print("$total Words Found\n");

 print("\n");

 foreach($word_count as $key=>$value)

 {

 print("$key ($value)\n");

 }

 print("\n");

 }

 print("<form action=\"{$_SERVER['PHP_SELF']}\" " .

 "method=\"post\">\n");

 print("<input name=\"sentence\" size=\"40\">\n");

 print("<input type=\"submit\" value=\"Parse\">\n");

 print("</form>\n");

?>

Figure 22.1. Output from Listing 22.1.

Note the use of the for loop in this example. Instead of incrementing an

integer, it gets tokens, one by one. When strtok encounters the end of

input, it returns FALSE. Your first inclination might be to test for FALSE in

the for loop with the != operator. Recall that an empty string is considered

equivalent to FALSE. If two separators follow each other, strtok will return

an empty string, as you’d expect. Since we don’t want to stop tokenizing at

the first repeated separator, we must check for a genuine FALSE with the

!== operator.

The strtok function is useful only in the most simple and structured

situations. An example might be reading a tab-delimited text file. The

algorithm might be to read a line from a file, pulling each token from the

line using the tab character, then continuing by getting the next line from

the file.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

22.2 Regular Expressions

Fortunately, PHP offers something more powerful than the strtok

function: regular expressions. Written in a language of their own,

regular expressions describe patterns that are compared to strings.

The PHP source code includes an implementation of regular

expressions that conforms to the POSIX 1003.2 standard. This

standard allows for expressions of an older style but encourages a

modern style that I will describe. All the regular expression functions

are described in Chapter 12.

In 1999 Andrei Zmievski added support for regular expressions that

follow the style of Perl. They offer two advantages over PHP native

regular expressions. They make it easier to copy an expression from

a Perl script, and they take less time to execute.

It is beyond the scope of this text to examine regular expressions in

depth. It is a subject worthy of a book itself. I will explain the basics

as well as demonstrate the various PHP functions that use regular

expressions. An excellent resource for learning more about regular

expressions is Chapter 2 of Ellie Quigley’s UNIX Shells by Example. If

you are interested in PERL-style regular expressions, check the

official PERL documentation site first

<http://www.perldoc.com/perl5.8.0/pod/perlre.html>. You will then

need to read the documentation at the PHP site itself that lists the

differences between Perl and the PHP implementation

<http://www.php.net/manual/pcre.pattern.syntax.php>. There are

several differences in the PHP implementation, but most PERL

expressions execute unmodified in PHP.

http://www.perldoc.com/perl5.8.0/pod/perlre.html
http://www.php.net/manual/pcre.pattern.syntax.php
file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

22.3 Defining Regular Expressions

At the highest level, a regular expression is one or more branches

separated by the vertical bar character (|). This character is

considered to have the properties of a logical-OR. Any of the

branches could match with an evaluated string. Table 22.1 provides a

few examples.

Table 22.1. Branches in a Regular Expression

Sample Description

Apple Matches the word apple.

apple|ball Matches either apple or ball.

begin|end|break Matches either begin, end, or break.

Each branch contains one or more atoms. Characters that modify the

number of times the atom may be matched in succession may follow

these atoms. An asterisk (*) means the atom can match any number

of times. A plus sign (+) means the atom must match at least once. A

question mark (?) signifies that the atom may match once or not at

all.

Alternatively, the atom may be bound, which means it is followed by

curly braces, { and }, that contain integers. If the curly braces

contain a single number, then the atom must be matched exactly that

number of times. If the curly braces contain a number followed by a

comma, the atom must be matched that number of times or more. If

the curly braces contain two numbers separated by a comma, the

atom must match at least the first number of times, but not more

than the second number. See Table 22.2 for some examples of

repetition.

Table 22.2. Allowing Repetition of Patterns in Regular

Expressions

Sample Description

a(b*) Matches a, ab, abb, …�an a plus any number of b‘s.

a(b+) Matches ab, abb, abbb, …�an a plus one or more b‘s.

a(b?) Matches either a or ab�an a possibly followed by a b.

a(b{3}) Matches only abbb.

Sample Description

a(b{2,}) Matches abb, abbb, abbbb, …�an a followed by two or

more b‘s.

a(b{2,4})Matches abb, abbb, abbbb�an a followed by two to four

b‘s.

An atom is a series of characters, some having special meaning,

others simply standing for a character that must be matched. A

period (.) matches any single character. A carat (^) matches the

beginning of the string. A dollar sign ($) matches the end of the

string. If you need to match one of the special characters (^ . [] $

() | * ? {} \), put a backslash in front of it. In fact, any character

preceded by a backslash will be treated literally even if it has no

special meaning. Any character with no special meaning will be

considered just a character to be matched, backslash or not. You may

also group atoms with parentheses so that they are treated as an

atom.

Square brackets ([]) are used to specify a range of possible values.

This may take the form of a list of legal characters. A range may be

specified using the dash character (-). If the list or range is preceded

by a carat (^), the meaning is taken to be any character not in the

following list or range. Take note of this double meaning for the carat.

In addition to lists and ranges, square brackets may contain a

character class. These class names are further surrounded by colons,

so that to match any alphabetic character, you write [:alpha:]. The

classes are alnum, alpha, blank, cntrl, digit, graph, lower, print,

punct, space, upper, and xdigit. You may wish to look at the man

page for ctype to get a description of these classes.

Finally, two additional square bracket codes specify the beginning and

ending of a word. They are [:<:] and [:>:], respectively. A word in

this sense is defined as any sequence of alphanumeric characters and

the underscore characters. Table 22.3 shows examples of using

square brackets.

Table 22.3. Square Brackets in Regular Expressions

Sample Description

a.c Matches aac, abc, acc, …�any three-character string

beginning with an a and ending with a c.

^a.* Matches any string starting with an a.

[a-c]*x$ Matches x, ax, bx, abax, abcx�any string of letters

from the first three letters of the alphabet followed by

an x.

b[ao]y Matches only bay or boy.

Sample Description

[^Zz]{5} Matches any string, five characters long, that does not

contain either an uppercase or lowercase z.

[[:digit:]]Matches any digit, equivalent to writing [0�9].

[[:<:]]a.* Matches any word that starts with a.

22.4 Using Regular Expressions in PHP Scripts

The basic function for executing regular expressions is ereg. This function

evaluates a string against a regular expression, returning TRUE if the pattern

described by the regular expression appears in the string. In this minimal form,

you can check that a string conforms to a given pattern. For example, you can

ensure that a U.S. postal ZIP code is in the proper form of five digits followed

by a dash and four more digits. Listing 22.2 demonstrates this idea; Figure

22.2 shows the output.

Listing 22.2 hecking a ZIP code

<?php

 /*

 ** Check a ZIP code

 ** This script will test a zip code, which

 ** must be five digits, optionally followed by

 ** a dash and four digits.

 */

 /*

 ** if zip submitted evaluate it

 */

 if(isset($_REQUEST['zip']))

 {

 if(ereg("^([0-9]{5})(-[0-9]{4})?$", $_REQUEST['zip']))

 {

 print("{$_REQUEST['zip']} is a valid ZIP code.
\n");

 }

 else

 {

 print("{$_REQUEST['zip']} is not " .

 "a valid ZIP code.
\n");

 }

 }

 //start form

 print("<form action=\"{$_SERVER['PHP_SELF']}\">\n");

 print("<input type=\"text\" name=\"zip\">\n");

 print("<input type=\"submit\">\n");

 print("</form>\n");

?>

Figure 22.2. Output from Listing 22.2.

The script offers a form for inputting a ZIP code. It must have five digits and

may be followed by a dash and four more digits. The functionality of the script

hinges on the regular expression ^([0�9]{5})(-[0�9]{4})?$, which is

compared to user input. It’s instructive to examine this expression in detail.

The expression starts with a carat. This causes the expression to match only

from the beginning of the evaluated string. If this were left out, the ZIP code

could be preceded by any number of characters, such as abc12345�1234, and

still be a valid match. Likewise, the dollar sign at the end of the expression

matches the end of the string. This stops matching of strings like

12345�1234abc. The combination of using a carat and a dollar sign allows us

to match only exact strings.

The first subexpression is ([0�9]{5}). The square-bracketed range allows

only characters from zero to nine. The curly braces specify that there must be

exactly five of these characters.

The second subexpression is (-[0�9]{4})?. Like the first, it specifies exactly

four digits. The dash is a literal character that must precede the digits. The

question mark specifies that the entire subexpression may match once or not

at all. This makes the four-digit extension optional.

You can easily expand this idea to check phone numbers or dates. Regular

expressions provide a neat way of checking variables returned from forms.

Consider the alternative of nesting if statements and searching strings with

the strpos function.

You may also choose to have subexpression matches returned in an array. This

is useful in situations where you need to break a string into components. The

string a browser uses to identify itself is a good string for this method. Encoded

in this string are the browser’s name, version, and the type of computer it’s

running on. Pulling this information out into separate variables will allow you to

customize your site based on the capabilities of the browser.

Listing 22.3 is a script for creating a set of variables that aid in cloaking a site

for a particular browser. For the purpose of illustration, we will customize a link

based on the browser being used. If the user visits the page with Netscape

Navigator, we will provide a link to the download page for Microsoft Internet

Explorer. Otherwise, we’ll put a link to Netscape’s download page. This is an

example of customizing content, but the same method can be used to decide

whether to use advanced features.

Listing 22.3 Evaluating user agent

<?php

 //evaluate user agent like

 //Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; Q312461)

 ereg("^([[:alpha:]]+)/([[:digit:]\.]+)(.*)$",

 $_SERVER['HTTP_USER_AGENT'], $match);

 $browserName = $match[1];

 $browserVersion = $match[2];

 $browserDescription = $match[3];

 //look for clues that this is MSIE

 if(eregi("msie", $browserDescription))

 {

 //looking for something like:

 //(compatible; MSIE 6.0; Windows NT 5.1; Q312461)

 eregi("MSIE ([[:digit:]\.]+);",

 $browserDescription, $match);

 $browserName = "MSIE";

 $browserVersion = $match[1];

 }

 print("You are using $browserName " .

 "version $browserVersion!
\n" .

 "You might want to try ");

 if(eregi("mozilla", $browserName))

 {

 print("<a href=\"" .

 "http://www.microsoft.com/ie/download/default.asp\">");

 print("Internet Explorer");

 print(" ");

 }

 else

 {

 print("<a href=\"" .

 "http://www.netscape.com/computing/download/".

 "index.html" ."\">");

 print("Navigator");

 print(" ");

 }

 print("for comparison.
\n");

?>

In this script the main ereg function is not used in an if statement. It assumes

the browser will identify itself minimally as a name, a slash, and the version.

The match array gets set with the parts of the evaluated string that match with

the parts of the regular expression. There are three subexpressions for name,

version, and any extra description. Most browsers follow this form, including

Navigator and Internet Explorer. Since Internet Explorer always reports that it

is a Mozilla (Netscape) browser, extra steps must be taken to determine if a

browser is really a Netscape browser or an imposter. This is done with a call to

eregi.

If you are wondering why element zero is ignored, that’s because the zero

element holds the substring that matches the entire regular expression. In this

situation it is not interesting. Usually, the zero element is useful when you are

searching for a particular string in a larger context. For example, you may be

scanning the body of a Web page for URLs. Listing 22.4 fetches the PHP home

page and lists all the links on the page. The output is shown in Figure 22.3.

Listing 22.4 Scanning text for URLs

<?php

 //set URL to fetch

 $URL = "http://www.php.net/";

 //open file

 $page = fopen($URL, "r");

 print("Links at $URL
\n");

 print("\n");

 while(!feof($page))

 {

 //get a line

 $line = fgets($page, 1024);

 //loop while there are still URLs present

 while(eregi("href=\"[^\"]*\"", $line, $match))

 {

 //print out URL

 print("{$match[0]}\n");

 //remove URL from line

 $replace = ereg_replace("\?", "\?", $match[0]);

 $line = ereg_replace($replace, "", $line);

 }

 }

 print("\n");

 fclose($page);

?>

Figure 22.3. Output from Listing 22.4.

The main loop of this script gets lines of text from the file stream and looks for

href properties. If one is found in a line, it will be placed in the zero element of

the match array. The script prints it out and then removes it from the line using

the ereg_replace function. This function replaces text matched with a regular

expression with a string. In this case the script replaces the href property with

an empty string. The reason for finding the link and then removing it is that it

is possible for two links to be on one line of HTML. The eregi function will

match the first substring only. The solution is to find and remove each link until

none remain.

Notice that when removing the link, a replace variable is prepared. Some links

might contain a question mark, a valid character in a URL that separates a

filename from form variables. Since this character has special meaning to

regular expressions, the script places a backslash before it to let PHP know it’s

to be taken literally.

I frequently use ereg_replace to convert text for use in a new context. You

can use ereg_replace to collapse multiple spaces into a single space. Listing

22.5 demonstrates this idea. The output is shown in Figure 22.4.

Listing 22.5 Replacing multiple spaces

<?php

 /*

 ** if text submitted show it

 */

 if(isset($_REQUEST['text']))

 {

 print("Unfiltered
\n" .

 "<pre>{$_REQUEST['text']}</pre>" .

 "
\n");

 $_REQUEST['text'] = ereg_replace("[[:space:]]+",

 " ", $_REQUEST['text']);

 print("Filtered
\n" .

 "<pre>{$_REQUEST['text']}</pre>" .

 "
\n");

 }

 else

 {

 $_REQUEST['text'] = "";

 }

 //start form

 print("<form action=\"{$_SERVER['PHP_SELF']}\">\n" .

 "<textarea name=\"text\" cols=\"40\" rows=\"10\">" .

 "{$_REQUEST['text']}</textarea>
\n" .

 "<input type=\"submit\">\n" .

 "</form>\n");

?>

Figure 22.4. Output from Listing 22.5.

Chapter 23. Database Integration
Topics in This Chapter

Building HTML Tables from SQL Queries

Tracking Visitors with Session Identifiers

Storing Content in a Database

Database Abstraction Layers

PHP has strong support for many databases. If native support for

your favorite database doesn’t exist, there’s always ODBC, which is a

standard for external database drivers. Support for new databases

seems to show up regularly. The universal remark in this regard from

the PHP developers has been “give us a machine to test on, and we’ll

add support.”

MySQL is undoubtedly the most popular database used by PHP

coders. Apart from being free, it suits Web development because of

its blazing speed. In the examples for this chapter I’ll assume you

have a MySQL database. If you don’t, you can either go to the MySQL

Web site <http://www.mysql.com/> and investigate downloading and

installing, or you can pursue changing the examples to work with

another database.

Most relational databases use the Structured Query Language, or

SQL. It is a fourth-generation language (4GL), which means it reads

a bit more like English than PHP source code. A tutorial on SQL is

beyond the scope of this book. If you’re completely new to SQL, look

for my other book, Core MySQL, also published by Prentice Hall

Professional Technical Reference.

http://www.mysql.com/default.htm
file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

23.1 Building HTML Tables from SQL Queries

Perhaps the simplest task you can perform with a database and PHP is to

extract data from a table and display it in an HTML table. The table could

contain a catalog of items for sale, a list of projects, or a list of Internet

name servers and their ping times. For illustration purposes, I’ll use the

first scenario. Imagine that a supermarket wants to list the items it has

for sale on its Web site. As a proof of concept, you must create a page

that lists some items from a database. We’ll use the test database that’s

created when MySQL is installed. The PHP script for viewing the catalog

of products will reside on the same machine as the database server.

The first step is to create the table. Listing 23.1 displays some SQL code

for creating a simple, three-column table. The table is named catalog. It

has a column called ID that is an integer with at most 11 digits. It cannot

be null, and new rows will automatically be assigned consecutive values.

The last line of the definition specifies ID as a primary key. This causes

an index to be built on the column and disallows duplicate IDs. The other

two columns are Name and Price.

Listing 23.1 Creating catalog table

CREATE TABLE catalog

(

 ID INT(11) NOT NULL AUTO_INCREMENT,

 Name CHAR(32),

 Price DECIMAL(6,2),

 PRIMARY KEY (ID)

);

Name is a character string that may be up to 32 characters long. Price is

a six-digit number with two decimal places, which is a good setup for

money. Next, we will need to put some items in the table. Since we’re

only creating a demo, we’ll fill in some items we might expect in a

supermarket along with some dummy prices. To do this we’ll use the

INSERT statement. Listing 23.2 is an example of this procedure.

Listing 23.2 Inserting data into catalog table

INSERT INTO catalog (Name, Price) VALUES

 ('Toothbrush', 1.79),

 ('Comb', 0.95),

 ('Toothpaste', 5.39),

 ('Dental Floss', 3.50),

 ('Shampoo', 2.50),

 ('Conditioner', 3.15),

 ('Deodorant', 1.50),

 ('Hair Gel', 6.25),

 ('Razor Blades', 2.99),

 ('Brush', 1.15);

Each SQL statement ends with a semicolon, much as in PHP. We’re telling

the MySQL server that we want to insert a number of rows into the

catalog table, and we’ll be supplying only the name and price. Since

we’re leaving out ID, MySQL creates one. This is due to our defining the

column as AUTO_INCREMENT. The VALUES keyword lets the server know

we are about to send the values we promised earlier in the command.

Notice the use of single quotes to surround text, as is standard in SQL.

MySQL allows inserting multiple rows in one statement by separating

rows with commas. Most other database servers require a separate

statement for each row.

Just to check that everything went well, Figure 23.1 shows the output

you would get if you selected everything from the catalog table from

within the MySQL client. I got this output by typing SELECT * FROM

catalog; in the MySQL client.

Figure 23.1 SELECT * FROM catalog.

+----+--------------+-------+

| ID | Name | Price |

+----+--------------+-------+

| 1 | Toothbrush | 1.79 |

| 2 | Comb | 0.95 |

| 3 | Toothpaste | 5.39 |

| 4 | Dental Floss | 3.50 |

| 5 | Shampoo | 2.50 |

| 6 | Conditioner | 3.15 |

| 7 | Deodorant | 1.50 |

| 8 | Hair Gel | 6.25 |

| 9 | Razor Blades | 2.99 |

| 10 | Brush | 1.15 |

+----+--------------+-------+

10 rows in set (0.00 sec)

The last step is to write a PHP script that gets the contents of the table

and dresses it up in an HTML table. Listing 23.3 lists PHP code for

extracting the name and price values, then displaying them in an HTML

table. The output is shown in Figure 23.2. The first step in

communicating with a database server is to connect to it. This is done

with the mysql_connect function. It takes a hostname, a username, and

a password. I usually create a user named httpd in my MySQL

databases with no password. I also restrict this user to connections made

from the local server. I name it after the UNIX user who will be executing

the scripts�in other words, the Web server. If you are renting space

from a hosting service, you may have a MySQL user and database

assigned to you, in which case you’ll need to modify the function

arguments, of course.

Listing 23.3 Creating HTML table from a query

<?php

 //connect to server, then test for failure

 if(!($dbLink = mysql_connect("localhost", "httpd", "")))

 {

 print("Failed to connect to database!
\n");

 print("Aborting!
\n");

 exit();

 }

 //select database, then test for failure

 if(!($dbResult = mysql_query("USE test", $dbLink)))

 {

 print("Can't use the test database!
\n");

 print("Aborting!
\n");

 exit();

 }

 // get everything from catalog table

 $Query = "SELECT Name, Price " .

 "FROM catalog " .

 "ORDER BY Name ";

 if(!($dbResult = mysql_query($Query, $dbLink)))

 {

 print("Couldn't execute query!
\n");

 print("MySQL reports: " . mysql_error() . "
\n");

 print("Query was: $Query
\n");

 exit();

 }

 //start table

 print("<table border=\"0\">\n");

 //create header row

 print("<tr>\n");

 print("<td bgcolor=\"#cccccc\">Item</td>\n");

 print("<td bgcolor=\"#cccccc\">Price</td>\n");

 print("</tr>\n");

 // get each row

 while($dbRow = mysql_fetch_assoc($dbResult))

 {

 print("<tr>\n");

 print("<td>{$dbRow['Name']}</td>\n");

 print("<td align=\"right\">{$dbRow['Price']}</td>\n");

 print("</tr>\n");

 }

 //end table

 print("</table>\n");

?>

Figure 23.2. Output from Listing 23.3.

If the connection is successful, a MySQL link identifier will be returned.

Notice that I’m testing for failure and performing the connection on one

line. The function used to connect to the database is mysql_connect. If

you’ve flipped through the descriptions of the MySQL functions in

Chapter 17, you might remember another function called

mysql_pconnect. These two functions operate identically inside a script,

but mysql_pconnect returns persistent connections.

Most of the database functions that PHP offers incorporate the idea of a

persistent connection�a connection that does not close when your script

ends. If the same Web process runs another script later that connects to

the same database server, the connection will be reused. This has the

potential to save overhead. In practice, the savings are not dramatic,

owing to the way Apache 1.3.x and earlier use child processes instead of

threads. These processes serve a number of requests and then are

replaced by new processes. When a process ends, it takes its persistent

connection with it, of course.

The next step is to select a database. Here I’ve selected the database

named test. Once we tell PHP which database to use, we get all rows

from the catalog table. This is done with the mysql_query function. It

executes a query on the given link and returns a result identifier. We will

use this result identifier to fetch the results of the query.

Before we begin pulling data from the results, we must begin building an

HTML table. This is done, as you might expect, by using an opening table

tag. I’ve created a header row with a gray background and left the rest

of the table behavior as default.

Now that the header row is printed, we can fetch each row from the

result set. The fastest way to do this, executionwise, is to use

mysql_fetch_assoc. This expresses each column in the result as an

element of an associative array. The names of the columns are used for

the keys of the array. You could also use mysql_fetch_row or

mysql_fetch_object, which are equally efficient. You should avoid

mysql_result, since this function does a costly lookup into a two-

dimensional array.

When no more rows remain, FALSE will be returned. Capitalizing on this

behavior, I put the fetch of the row inside a while loop. I create a row in

the HTML table, printing object properties inside the table cells. When no

rows remain, I close the table. I don’t bother to close the connection to

the database because PHP will do this automatically.

This is an extremely simple example, but it touches on all the major

features of working with a database. Since each row is created in a loop,

each is uniform. If the data change, there is no need to touch the code

that turns them into HTML. You can just change the data in the database.

A good example of this technique in action is the Random Band Name

Generator <http://www.leonatkinson.com/random/index.php?

SCREEN=band>, which creates random band names from a table of

words stored in a MySQL database to which anyone can add. Each

refresh of the page fetches another ten names.

http://www.leonatkinson.com/random/index.php@SCREEN=band

23.2 Tracking Visitors with Session Identifiers

As Web sites evolve into Web applications, the problem of maintaining state

arises. The issue is that, from page to page, the application needs to remember

who is visiting the page. The Web is stateless. Your browser makes a connection

to a server, requests one or more files, and then closes the connection. Five

minutes later, when you click to a connecting page, the routine happens all over

again. While a log is kept, the server doesn’t remember you. Any information

you gave it about yourself three pages back may be saved somewhere, but it’s

not associated with you after that.

Imagine a wizardlike interface for ordering a pizza. The first screen asks you

how many pizzas you want. Then you go through a page for each pizza, picking

toppings and type of crust. Finally, a page asks for your name and number so

that your order can be emailed to the nearest pizza parlor. One way to handle

this problem is to pass all the information gathered up to that point with each

form submission. As you go from page to page, those data grow and grow.

You’re telling the server a partial version of your order many times. It works,

but it’s definitely wasteful of network bandwidth.

Using a database and a session identifier, you can store information as it

becomes available. A single identifier is used as a key to the information. Once

your script has the identifier, it can remember what has gone on before.

How the script gets the identifier is another issue. You have two choices. One is

to pass the identifier as a variable inside every link or form. In a form this is

simple to do with a hidden variable. In a link you have to insert a question mark

and a variable definition. If your session ID is stored in a variable called

session, then you might write something like print(“<a href="page2.php?

session=$session">next”); to send session to the next page. This

technique works with all browsers, even Lynx.

An alternative is to use cookies. Like GET and POST form variables, cookies are

turned into variables by PHP. So, you could create a cookie named session. The

difference would be that since cookies may only be set in headers, you’ll have to

send them to the browser before sending any HTML code. Check out the

setcookie function in Chapter 8 if you wish to pursue this strategy. A more

complex strategy attempts to use cookies, but falls back on GET variables if

necessary.

In fact, PHP can handle all these details for you. See the discussion of sessions

in Chapter 7. What’s missing from the standard functionality is database

integration. You can use session_set_save_handler to keep the session data

in a database. The big advantage is that PHP takes care of generating session

identifiers and sending them to the browser. The big disadvantage is that PHP

keeps the session data as a serialized array. If you need to manipulate the

session data before storing it or before returning it to PHP, you must first use

unserialize, change the array, then serialize the array again before passing it

along.

Why would you need to manipulate the variables in the session? Perhaps you

wish to disallow certain variables from sessions. More likely you’d like to keep

certain variables as columns in the session table so you can run queries with

them. For example, each user in a store may have an active order. If you add a

column to the session table for the order ID, you can run queries that show

which users have invoices underway or even which items they have in their

baskets.

For the purposes of comparison, let’s examine using PHP’s session handling

versus a system written in PHP. The first step is to create a table to hold the

sessions. Listing 23.4 is SQL code for creating a simple session table in a MySQL

database.

Listing 23.4 Creating session table

CREATE TABLE session

(

 ID VARCHAR(32) NOT NULL,

 LastAction DATETIME,

 Invoice INT(11),

 SessionData TEXT,

 PRIMARY KEY (ID)

);

The primary key of this table is PHP’s session identifier, a 32-character string.

Each time the user moves to a new page, the application updates the

LastAction column. That way we can clear out any sessions that appear to be

unused. The Invoice column holds a pointer to a row in an invoice table and the

SessionData holds the serialized variables in the user’s session.

Listing 23.5 uses PHP’s session handler with routines for storing the session data

in the table from Listing 23.4. The mySession class encapsulates the routines for

storing the session data in the table. In addition, a block of code takes care of

reading and writing the Invoice column. It’s nice that PHP handles sending the

session identifier between the server and client without any extra work. It’s

unfortunate that the session handler must execute its own queries separate

from those that manipulate the Invoice column.

Listing 23.5 PHP sessions saved in a MySQL database

<?php

 class mySession

 {

 private $dbLink;

 public function open()

 {

 if(!($this->dbLink =

 mysql_connect("localhost", "httpd", "")))

 {

 return(FALSE);

 }

 //select database, then test for failure

 if(!($dbResult =

 mysql_query("USE test", $this->dbLink)))

 {

 return(FALSE);

 }

 return(TRUE);

 }

 public function close()

 {

 mysql_close($this->dbLink);

 return(TRUE);

 }

 public function read($id)

 {

 $Query = "SELECT SessionData " .

 "FROM session " .

 "WHERE ID = '" . addslashes($id) . "'";

 if(!($dbResult = mysql_query($Query, $this->dbLink)))

 {

 return(FALSE);

 }

 $dbRow = mysql_fetch_assoc($dbResult);

 //mark the session as being accessed

 $Query = "UPDATE session " .

 "SET " .

 "LastAction=NOW() " .

 "WHERE ID='".addslashes($id)."' ";

 if(!($dbResult = mysql_query($Query, $this->dbLink)))

 {

 return(FALSE);

 }

 return($dbRow['SessionData']);

 }

 public function write($id, $data)

 {

 //create the session if it doesn't exist

 $Query = "INSERT IGNORE " .

 "INTO session (ID) " .

 "VALUES ('".addslashes($id)."')";

 if(!($dbResult = mysql_query($Query, $this->dbLink)))

 {

 return(FALSE);

 }

 //update the session

 $Query = "UPDATE session " .

 "SET " .

 "SessionData='".addslashes($data)."', " .

 "LastAction=NOW() " .

 "WHERE ID='".addslashes($id)."' ";

 if(!($dbResult = mysql_query($Query, $this->dbLink)))

 {

 return(FALSE);

 }

 return(TRUE);

 }

 public function destroy($id)

 {

 $Query = "DELETE session " .

 "WHERE ID='".addslashes($id)."' ";

 if(!($dbResult = mysql_query($Query, $this->dbLink)))

 {

 return(FALSE);

 }

 return(TRUE);

 }

 public function garbage($lifetime)

 {

 $Query = "DELETE session " .

 "WHERE (LastAction + $lifetime) < NOW() ";

 if(!($dbResult = mysql_query($Query, $this->dbLink)))

 {

 return(FALSE);

 }

 return(TRUE);

 }

 }

 $s = new mySession();

 session_set_save_handler(

 array($s, 'open'),

 array($s, 'close'),

 array($s, 'read'),

 array($s, 'write'),

 array($s, 'destroy'),

 array($s, 'garbage')

);

 //start session

 session_start();

 //Increment counter with each page load

 if(isset($_SESSION['Count']))

 {

 $_SESSION['Count']++;

 }

 else

 {

 //start with count of 1

 $_SESSION['Count'] = 1;

 }

 //connect to database

 if(!($dbLink = mysql_connect("localhost", "httpd", "")))

 {

 print("Couldn't connect to database!
\n");

 }

 //select database, then test for failure

 if(!($dbResult = mysql_query("USE test", $dbLink)))

 {

 print("Couldn't use test database!
\n");

 }

 //if the user changes the invoice ID, update

 //the column and the session

 if(isset($_REQUEST['invoice']))

 {

 //force invoice to be integer

 $_REQUEST['invoice'] = (integer)$_REQUEST['invoice'];

 if(!($dbLink = mysql_connect("localhost", "httpd", "")))

 {

 print("Couldn't connect to database!
\n");

 }

 //select database, then test for failure

 if(!($dbResult = mysql_query("USE test", $dbLink)))

 {

 print("Couldn't use test database!
\n");

 }

 $Query = "UPDATE session " .

 "SET Invoice={$_REQUEST['invoice']} " .

 "WHERE ID = '" . session_id() . "' ";

 if(!($dbResult = mysql_query($Query, $dbLink)))

 {

 print("Couldn't update invoice!
\n");

 }

 $Invoice = $_REQUEST['invoice'];

 }

 else

 {

 //get the invoice

 $Query = "SELECT Invoice FROM session " .

 "WHERE ID = '" . session_id() . "' ";

 if(!($dbResult = mysql_query($Query, $dbLink)))

 {

 print("Couldn't get invoice!
\n");

 }

 $dbRow = mysql_fetch_assoc($dbResult);

 $Invoice = $dbRow['Invoice'];

 }

?>

<html>

<head>

<title>Listing 23-5</title>

</head>

<body>

<?php

 print("You have viewed this page {$_SESSION['Count']}

 times!
\n");

 print("Current Invoice: $Invoice
\n");

 //show form for getting name

 print("<form " .

 "action=\"{$_SERVER['PHP_SELF']}\" " .

 "method=\"post\">" .

 "<input type=\"text\" name=\"invoice\" " .

 "value=\"\">\n" .

 "<input type=\"submit\" value=\"set order number\">
\n" .

 "</form>");

 //use a link to reload this page

 print("reload
\n");

?>

</body>

</html>

Compare the technique in Listing 23.5 with the one in Listing 23.6. The first

time you load Listing 23.6, it will create a session for you. Each click of the

“reload” link causes the script to check the session. If the session identifier is

not in the session table, then the script rejects the session identifier and

creates a new one. You can try submitting a bad session identifier by erasing a

character in the location box of your browser.

Listing 23.6 Customer session handling

<html>

<head>

<title>Listing 23-6</title>

</head>

<body>

<?php

 //create a session identifier

 function SessionID($length=32)

 {

 // Set pool of possible characters

 $Pool = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" .

 "abcdefghijklmnopqrstuvwxyz";

 $lastChar = strlen($Pool) - 1;

 $sid = "";

 for($i = 0; $i < $length; $i++)

 {

 $sid .= $Pool[mt_rand(0, $lastChar)];

 }

 return($sid);

 }

 //connect to database

 if(!($dbLink = mysql_connect("localhost", "httpd", "")))

 {

 print("Couldn't connect to database!
\n");

 }

 //select database, then test for failure

 if(!($dbResult = mysql_query("USE test", $dbLink)))

 {

 print("Couldn't use test database!
\n");

 }

 //clear out any old sessions

 $Query = "DELETE FROM session " .

 "WHERE DATE_ADD(LastAction, INTERVAL 1800 SECOND) < " .

 "NOW()";

 if(!($dbResult = mysql_query($Query, $dbLink)))

 {

 //can't execute query

 print("Couldn't remove old sessions!
\n");

 }

 //check session

 $mySession = NULL;

 if(isset($_REQUEST['sid']))

 {

 //we have a session, so check it

 $Query = "SELECT SessionData, Invoice " .

 "FROM session " .

 "WHERE ID='" . addslashes($_REQUEST['sid']) . "' ";

 if(!($dbResult = mysql_query($Query, $dbLink)))

 {

 //can't execute query

 print("Couldn't query session table!
\n");

 print("MySQL Reports: " . mysql_error() . "
\n");

 }

 //if we have a row, then the match succeeded

 if($dbRow = mysql_fetch_assoc($dbResult))

 {

 //get session data

 $mySession = unserialize($dbRow['SessionData']);

 $mySession['Invoice'] = $dbRow['Invoice'];

 }

 else

 {

 //session is bad

 print("Bad Session ID ({$_REQUEST['sid']})!
\n");

 unset($_REQUEST['sid']);

 }

 }

 //if session is empty, we need to create it

 if(!isset($_REQUEST['sid']))

 {

 //no session, so create one

 $_REQUEST['sid'] = SessionID();

 $mySession = array('Count'=>0);

 //insert session to database

 $Query = "INSERT INTO session " .

 "(ID, SessionData, LastAction) " .

 "VALUES (" .

 "'" . addslashes($_REQUEST['sid']) . "', " .

 "'" . addslashes(serialize($mySession)) . "', " .

 "NOW()) ";

 if(!($dbResult = mysql_query($Query, $dbLink)))

 {

 //can't execute query

 print("Couldn't insert into session table!
\n");

 print("MySQL Reports: " . mysql_error() . "
\n");

 exit();

 }

 }

 //if the user changes the invoice ID, update

 //the column and the session

 if(isset($_REQUEST['invoice']))

 {

 //force invoice to be integer

 $_REQUEST['invoice'] = (integer)$_REQUEST['invoice'];

 $Query = "UPDATE session " .

 "SET Invoice={$_REQUEST['invoice']} " .

 "WHERE ID = '" . addslashes($_REQUEST['sid']) . "' ";

 if(!($dbResult = mysql_query($Query, $dbLink)))

 {

 print("Couldn't update invoice!
\n");

 }

 $mySession['Invoice'] = $_REQUEST['invoice'];

 }

 //increment view count

 $mySession['Count']++;

 if(!isset($mySession['Invoice']))

 {

 $mySession['Invoice'] = 'NULL';

 }

 print("You have viewed this page " .

 "{$mySession['Count']} times!
\n");

 print("Current Invoice: {$mySession['Invoice']}
\n");

 //show form for getting name

 print("<form " .

 "action=\"{$_SERVER['PHP_SELF']}\" " .

 "method=\"post\">" .

 "<input type=\"hidden\" name=\"sid\" " .

 "value=\"{$_REQUEST['sid']}\">" .

 "<input type=\"text\" name=\"invoice\" " .

 "value=\"\">\n" .

 "<input type=\"submit\" value=\"set order number\">" .

 "
\n" .

 "</form>");

 //use a link to reload this page

 print("<a href=\"" .

 "{$_SERVER['PHP_SELF']}?sid={$_REQUEST['sid']}\">reload" .

 "
\n");

 /*

 ** save the session

 */

 //pull invoice out

 $Invoice = $mySession['Invoice'];

 unset($mySession['Invoice']);

 $Query = "UPDATE session " .

 "SET LastAction = NOW(), " .

 "Invoice = $Invoice, " .

 "SessionData = '" . serialize($mySession) . "' " .

 "WHERE ID='" . addslashes($_REQUEST['sid']) . "' ";

 if(!($dbResult = mysql_query($Query, $dbLink)))

 {

 //can't execute query

 print("Couldn't update session table!
\n");

 print("MySQL Reports: " . mysql_error() . "
\n");

 exit();

 }

?>

</body>

</html>

23.3 Storing Content in a Database

Information stored in a database is not limited to short strings, like the 32-

character item name from Listing 23.3. You can create 64K blobs, which are

enough to store a good-sized Web page. The advantage here is that pages exist

in a very structured environment. You can identify them with a number, and

relationships can be drawn between them using only these numbers. The

disadvantage is that since the information is now in a database, you can’t just

load the file into your favorite editor. You have to balance the costs and benefits;

most Web sites don’t need every piece of content stored in a database.

A situation where it makes a lot of sense to put the content in a database is a

Bulletin Board System, or BBS. The system stores messages, which are more

than just Web pages. Each message has its own title, creation time, and author.

This structure can be conveniently wrapped up into a database table.

Furthermore, since each message can be given a unique identifier, we can

associate messages in a parent-child tree. A user can create a new thread of

discussion that spawns many other messages. Messages can be displayed in this

hierarchical structure to facilitate browsing.

As with all database-related systems, the first step is to create a table. Listing

23.7 creates a table for storing messages. Each message has a title, the name

of the person who posted the message, when the message was posted, a parent

message, and the body of text. The parent ID might be NULL, in which case we

understand the message to be the beginning of a thread. The body doesn’t have

to be plaintext. It can contain HTML. In this way it allows users to create their

own Web pages using their browsers.

Listing 23.7 Create message table

CREATE TABLE Message

(

 ID INT NOT NULL AUTO_INCREMENT,

 Title VARCHAR(64),

 Poster VARCHAR(64),

 Created DATETIME,

 Parent INT,

 Body BLOB,

 PRIMARY KEY(ID)

);

The script in Listing 23.8 has two modes: listing message titles and viewing a

single message. If the messageID variable is empty, the script shows a list of

every message in the system organized by thread. It accomplishes this with the

showMessages function. You might want to turn back to Chapter 4, specifically

the section on recursion. The showMessages function uses recursion to travel to

every branch of the tree of messages. It starts by getting a list of all the

messages that have no parent. These are the root-level messages, or

beginnings of threads. After showing each root-level message, showMessages is

called for the thread. This process continues until a message is found with no

children. Unordered-list tags display the message titles. The indention aids the

user in understanding the hierarchy.

Listing 23.8 A simple BBS

<html>

<head>

<title>Listing 23-8</title>

</head>

<body>

<?php

 print("<h1>Leon's BBS</h1>\n");

 //connect to server, then test for failure

 if(!($dbLink = mysql_connect("localhost", "httpd", "")))

 {

 print("Failed to connect to database!
\n");

 print("Aborting!<br\n");

 exit();

 }

 //select database, then test for failure

 if(!($dbResult = mysql_query("USE test", $dbLink)))

 {

 print("Can't use the test database!
\n");

 print("Aborting!
\n");

 exit();

 }

 /*

 ** recursive function that spits out all

 ** descendent messages

 */

 function showMessages($parentID)

 {

 global $dbLink;

 $dateToUse = Date("U");

 print("\n");

 $Query = "SELECT ID, Title, Created " .

 "FROM bbsMessage " .

 "WHERE Parent=$parentID " .

 "ORDER BY Created ";

 if(!($dbResult = mysql_query($Query, $dbLink)))

 {

 //can't execute query

 print("Couldn't query bbsMessage table!
\n");

 print("MySQL Reports: " . mysql_error() . "
\n");

 exit();

 }

 while($row = mysql_fetch_assoc($dbResult))

 {

 //show message title as a link to view the body

 print("({$row['Created']}) " .

 "<a href=\"" .

 "{$_SERVER['PHP_SELF']}?messageID={$row['ID']}" .

 "\">" .

 "{$row['Title']}\n");

 //show children of this message

 showMessages($row['ID']);

 }

 print("\n");

 }

 /*

 ** print out a form for adding a message with

 ** parent id given

 */

 function postForm($parentID, $useTitle)

 {

 print("<form action=\"{$_SERVER['PHP_SELF']}\" " .

 "method=\"post\">\n" .

 "<input type=\"hidden\" name=\"inputParent\" " .

 "value=\"$parentID\">\n" .

 "<input type=\"hidden\" name=\"ACTION\" " .

 "value=\"POST\">\n" .

 "<table border=\"1\" cellspacing=\"0\" " .

 "cellpadding=\"5\" width=\"400\">\n" .

 "<tr>\n" .

 "<td width=\"100\">Title</td>\n" .

 "<td width=\"300\">" .

 "<input type=\"text\" name=\"inputTitle\" " .

 "size=\"35\" maxlength=\"64\" value=\"$useTitle\">" .

 "</td>\n" .

 "</tr>\n" .

 "<tr>\n" .

 "<td width=\"100\">Poster</td>\n" .

 "<td width=\"300\">" .

 "<input type=\"text\" name=\"inputPoster\" " .

 "size=\"35\" maxlength=\"64\">" .

 "</td>\n" .

 "</tr>\n" .

 "<tr>\n" .

 "<td colspan=\"2\" width=\"400\">" .

 "<textarea name=\"inputBody\" " .

 "cols=\"45\" rows=\"5\"></textarea>" .

 "</td>\n" .

 "</tr>\n" .

 "<tr>\n" .

 "<td colspan=\"2\" width=\"400\" align=\"middle\">" .

 "<input type=\"submit\" value=\"Post\">" .

 "</td>\n" .

 "</tr>\n" .

 "</table>\n" .

 "</form>\n");

 }

 /*

 ** perform actions

 */

 if(isset($_REQUEST['ACTION']))

 {

 if($_REQUEST['ACTION'] == "POST")

 {

 $Query = "INSERT INTO bbsMessage " .

 "(Title, Poster, Created, Parent, Body)" .

 "VALUES(" .

 "'" . addslashes($_REQUEST['inputTitle']) . "', " .

 "'" . addslashes($_REQUEST['inputPoster']) . "', " .

 "NOW(), {$_REQUEST['inputParent']}, " .

 "'" . addslashes($_REQUEST['inputBody']) . "')";

 if(!($dbResult = mysql_query($Query, $dbLink)))

 {

 //can't execute query

 print("Couldn't insert into bbsMessage " .

 "table!
\n");

 print("MySQL Reports: " . mysql_error() .

 "
\n");

 exit();

 }

 }

 }

 /*

 ** Show Message or show list of messages

 */

 if(isset($_REQUEST['messageID']) AND

 ($_REQUEST['messageID'] > 0))

 {

 $Query = "SELECT ID, Title, Poster, Created, " .

 "Parent, Body " .

 "FROM bbsMessage " .

 "WHERE ID={$_REQUEST['messageID']} ";

 if(!($dbResult = mysql_query($Query, $dbLink)))

 {

 //can't execute query

 print("Couldn't query bbsMessage table!
\n");

 print("MySQL Reports: " . mysql_error() . "
\n");

 exit();

 }

 if($row = mysql_fetch_assoc($dbResult))

 {

 print("<table border=\"1\" cellspacing=\"0\" " .

 "cellpadding=\"5\" width=\"400\">\n" .

 "<tr>" .

 "<td width=\"100\">Title</td>" .

 "<td width=\"300\">{$row['Title']}</td>" .

 "</tr>\n" .

 "<tr>" .

 "<td width=\"100\">Poster</td>" .

 "<td width=\"300\">{$row['Poster']}</td>" .

 "</tr>\n" .

 "<tr>" .

 "<td width=\"100\">Posted</td>" .

 "<td width=\"300\">{$row['Created']}</td>" .

 "</tr>\n" .

 "<tr>" .

 "<td colspan=\"2\" width=\"400\">" .

 "{$row['Body']}" .

 "</td>" .

 "</tr>\n" .

 "</table>\n");

 postForm($row['ID'], "RE: {$row['Title']}");

 }

 print("" .

 "List of Messages
\n");

 }

 else

 {

 print("<h2>List of Messages</h2>\n");

 // get entire list

 showMessages(0);

 postForm(0, "");

 }

?>

</body>

</html>

For the efficiency-minded, this use of recursion is not optimal. Each thread will

cause another call to showMessages, which causes another query to the

database. There is a way to query the database once and traverse the tree of

messages in memory, but I’ll leave that as an exercise for you.

If a message title is clicked on, the page is reloaded with messageID set. This

causes the script to switch over into the mode where a message is displayed.

The fields of the message are displayed in a table. If the message contains any

HTML, it will be rendered by the browser, because no attempt is made to filter it

out. This restriction is best applied as part of the code that adds a new

message.

Regardless of the two modes, a form is shown for adding a message. If a

message is added while the list of messages is shown, the message will be

added to the root level. If a message is added while the user is viewing a

message, then it will be considered a reply. The new message will be made a

child of the viewed message.

This BBS is simple. A more sophisticated solution might involve allowing only

authenticated users to add messages or keeping messages private until

approved by a moderator. You can use this same structure to build any

application that manages user-submitted data, such as a guest book. If you are

searching for a sophisticated BBS solution, I suggest checking out Brian Moon’s

Phorum project <http://www.phorum.org/>.

http://www.phorum.org/default.htm

23.4 Database Abstraction Layers

Imagine creating a Web application that uses MySQL and later being

asked to make it work with Oracle. All the PHP functions are different,

so you’d have to change every one. In addition, as MySQL and Oracle

each use slightly different SQL, you will probably have to change

most of your queries. One way of coping with this problem is an

abstraction layer. This separates your business logic�the rules of

your application�from the code that interfaces with the database. A

single function calls the right function based on the type of database

you need to query.

Perhaps the most popular database abstraction layer is part of PEAR

<http://pear.php.net/>. This library also contains code for session

management.

Despite abstraction layers, incompatibilities between databases

continue to offer challenges. MySQL uses a special qualifier for

column definitions called AUTO_INCREMENT. It causes a column to be

populated automatically with integers in ascending order. In Oracle

this functionality can be approximated using a sequence and a

trigger. The differences are difficult to reconcile systematically. In

1999 Scott Ambler proposed a solution in his white paper “The

Design of a Robust Persistence Layer for Relational Databases”

<http://www.ambysoft.com/persistenceLayer.html>. A careful

analysis of the problem is explored as well as a detailed design,

neither of which I can do justice to in the context of this chapter.

An abstraction layer trades some performance in favor of robustness.

Certain unique, high-performance features of each database must be

abandoned. The abstraction layer will provide the common set of

functionality. But what you gain is independence from any particular

database.

http://pear.php.net/default.htm
http://www.ambysoft.com/persistenceLayer.html
file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

Chapter 24. Networks
Topics in This Chapter

HTTP Authentication

Controlling the Browser’s Cache

Setting Document Type

Email with Attachments

HTML Email

Verifying an Email Address

Most anything you write in PHP will be in the context of a network.

It’s a language intended primarily to produce HTML documents via

the HTTP protocol. PHP allows you to code without worrying about the

underlying protocols, but it also allows you to address the protocols

directly when necessary. This chapter deals intimately with two

important protocols: HTTP and SMTP. These are the protocols for

transferring Web documents and mail. I’ve attempted to describe

some common problems and provide solutions. This chapter may

address a particular problem you face, such as protecting a Web page

with basic HTTP authentication, but it also illustrates generally how to

use HTTP headers and communicate with remote servers.

24.1 HTTP Authentication

If you have any experience with the Web, you’re familiar with basic HTTP

authentication. You request a page, and a small dialog window appears

asking for username and password. As described in Chapter 9, PHP allows

you to open URLs with the fopen function. You can even specify a

username and password in the URL in the same way you do in Navigator’s

location box. Authentication is implemented using HTTP headers, and you

can protect your PHP pages using the header function.

To protect a page with basic HTTP authentication, you must send two

headers. The WWW-Authenticate header tells the browser that a

username and password are required. It also specifies a realm that groups

pages. A username and password are good for an entire realm, so users

don’t need to authenticate themselves with each page request. The other

header is the status, which should be HTTP/1.0 401 Unauthorized.

Compare this to the usual header, HTTP/1.0 200 OK.

Listing 24.1 is an example of protecting a single page. The HTML to make

a page is put into functions because it needs to be printed whether the

authentication succeeds or fails. PHP creates the PHP_AUTH_USER and

PHP_AUTH_PW elements of the _SERVER array automatically if the browser

passes a username and password. The example requires leon for the

username and secret for the password. A more complex scheme might

match username and password against a list stored in a file or a database.

Listing 24.1 Requiring authentication

<?php

 /*

 ** Define a couple of functions for

 ** starting and ending an HTML document

 */

 function startPage()

 {

 print("<html>\n");

 print("<head>\n");

 print("<title>Listing 24-1</title>\n");

 print("</head>\n");

 print("<body>\n");

 }

 function endPage()

 {

 print("</body>\n");

 print("</html>\n");

 }

 /*

 ** test for username/password

 */

 if(($_SERVER['PHP_AUTH_USER'] == "leon") AND

 ($_SERVER['PHP_AUTH_PW'] == "secret"))

 {

 startPage();

 print("You have logged in successfully!
\n");

 endPage();

 }

 else

 {

 //Send headers to cause a browser to request

 //username and password from user

 header("WWW-Authenticate: " .

 "Basic realm=\"Leon's Protected Area\"");

 header("HTTP/1.0 401 Unauthorized");

 //Show failure text, which browsers usually

 //show only after several failed attempts

 print("This page is protected by HTTP " .

 "Authentication.
\nUse leon " .

 "for the username, and secret " .

 "for the password.
\n");

 }

?>

Now that you know how to protect a page, it may be instructive to work in

the other direction, requesting a protected page. As I said earlier, the

fopen function allows you to specify username and password as part of a

URL, but you may have a more complicated situation in which you need to

use fsockopen. An Authentication request header is necessary. The value

of this header is a username and password separated by a colon. This

string is base64 encoded in compliance with the HTTP specification.

Listing 24.2 requests the script in Listing 24.1. You may need to modify

the URI to make it work on your Web server. The script assumes you have

installed all the examples on your Web server in /corephp/listings. If

you are wondering about the \r\n at the end of each line, recall that all

lines sent to HTTP servers must end in a carriage return and a linefeed.

Listing 24.2 Requesting a protected document

<html>

<head>

<title>Listing 24-2</title>

</head>

<body>

<pre>

<?php

 //open socket

 if(!($fp = fsockopen("localhost", 80)))

 {

 print("Couldn't open socket!
\n");

 exit;

 }

 //make request for document

 fputs($fp, "HEAD /corephp/listings/24-1.php HTTP/1.0\r\n");

 //send username and password

 fputs($fp, "Authorization: Basic " .

 base64_encode("leon:secret") .

 "\r\n");

 //end request

 fputs($fp, "\r\n");

 //dump response from server

 fpassthru($fp);

?>

</pre>

</body>

</html>

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

24.2 Controlling the Browser’s Cache

One hassle of writing dynamic Web pages is the behavior of caches. Browsers

maintain their own cache, and by default they will check for a newer version

of the page only once per session. Some ISPs provide their own cache as well.

The intention is to avoid wasteful retransmission of pages. However, if the

content on your page potentially changes with each request, it can be

annoying if an old version appears. If you are developing an e-commerce site,

it can be critical that each page is processed anew.

On the other hand, your page may be dynamically building a page that

contains information that doesn’t change very often. My experience has been

that caches are smart enough to store URLs that appear to be ordinary HTML

files, but not URLs that contain variables following a question mark. Your PHP

may use variables in the URL, though. If the information on these pages

changes infrequently, you want to let the cache know.

RFC 2616 describes the HTTP 1.1 protocol, which offers several headers for

controlling the cache. Listing 24.3 shows the headers to send to prevent a

page from being cached. The Last-Modified header reports the last time a

document was changed, and setting it to the current time tells the browser

this version of the page is fresh. The Expires header tells the browser when

this version of the document will become stale and should be requested

again. Again, we use the current time, hopefully causing the browser to keep

the document out of the cache. Perhaps the most important header, Cache-

Control tells the browser how to cache the page. In this situation, we are

requesting the page not be cached. The fourth header is for the benefit of

older browsers that understand only HTTP 1.0. Try reloading the script in

Listing 24.3 rapidly. You should see the date update each time.

Listing 24.3 Sending headers to prevent caching

<?php

 header("Last-Modified: " . gmdate("D, d M Y H:i:s") . " GMT");

 header("Expires: " . gmdate("D, d M Y H:i:s") . " GMT");

 header("Cache-Control: no-store, no-cache, must-revalidate ");

 header("Cache-Control: post-check=0, pre-check=0", false);

 header("Pragma: no-cache");

?>

<html>

<head>

<title>Listing 24-3</title>

</head>

<body>

The time is <?php print(date("D, d M Y H:i:s")); ?>

</body>

</html>

Listing 24.4 causes a page to be cached for 24 hours. Like Listing 24.3, the

Last-Modified, Expires, and Cache-Control headers are used to control

cache behavior. The last modification time is sent as the actual modification of

the file. The expiration time is sent as 24 hours from now. And the cache is

instructed to let the document age for 86,400 seconds, the number of

seconds in a day. To prove to yourself that the file is being returned by the

cache, try reloading the page quickly. The dates on the page should remain

the same.

Listing 24.4 Sending headers to encourage caching

<?php

 //report actual modification time of script

 $LastModified = filemtime(__FILE__) + date("Z");

 header("Last-Modified: " .

 gmdate("D, d M Y H:i:s", $LastModified) . " GMT");

 //set expiration time 24 hours (86400 seconds) from now

 $Expires = time() + 86400;

 header("Expires: " .

 gmdate("D, d M Y H:i:s", $Expires) . " GMT");

 //tell cache to let page age for 24 hours (86400 seconds)

 header("Cache-Control: max-age=86400");

?>

<html>

<head>

<title>Listing 24-4</title>

</head>

<body>

The time is <?php print(gmdate("D, d M Y H:i:s")); ?> GMT

This document was last modified

<?php print(gmdate("D, d M Y H:i:s", $LastModified)); ?> GMT

It expires

<?php print(gmdate("D, d M Y H:i:s", $Expires)); ?> GMT

</body>

</html>

Notice that all the dates in these two examples use GMT, or Greenwich Mean

Time. This is specified by the HTTP protocol. Forgetting to convert from your

local time zone to GMT can be an annoying source of bugs.

24.3 Setting Document Type

By default, PHP sends an HTTP header specifying the document as being

HTML. The Content-Type header specifies the MIME type text/html, and

the browser interprets the code as HTML. Sometimes you will wish to

create other types of documents with PHP. Chapter 25 discusses creating

images, which may require an image/png content type. MIME types are

administered by IANA, the Internet Assigned Numbers Authority. You can

find a list of official media types at <http://www.isi.edu/in-

notes/iana/assignments/media-types/>.

At times, you may wish to take advantage of how browsers react to

different types of content. For example, text/plain displays in a fixed-

width font with no interpretation of HTML. If you use */* for the content

type, the browser displays a dialog window for saving the file. Perhaps the

most interesting use is for launching a helper application.

Listing 24.5 creates a tab-delimited text file that may launch Microsoft

Excel. Take note that the computer must meet a few qualifications,

however. First, it probably needs to be running Windows, and it must have

Microsoft Excel installed. Newer versions of Excel associate the

application/vnd.ms-excel content type with .xls files. My experience

has been that these headers will cause an Excel OLE container inside either

MSIE or Netscape Navigator on a Windows machine, but your experience

may differ. Other browsers will likely ask the user if the file should be

saved.

Notice the second header in Listing 24.5, Content-Disposition. This is not

part of the HTTP 1.1 standard, but most browsers recognize it. It allows you

to suggest a filename. If you add attachment; to the header, the browser

may choose to open Excel in a separate window.

Listing 24.5 Sending a tab-delimited Excel file

<?php

 //set the document type

 header("Content-Type: application/vnd.ms-excel");

 header("Content-Disposition: filename=\"listing24-5.txt\"");

 //send some tab-delimited data

 print("Listing 24-5\r\n");

 for($i=1; $i < 100; $i++)

 {

 print("$i\t");

 print(($i * $i) . "\t");

 print(($i * $i * $i) . "\r\n");

 }

?>

Using Content-Type this way is almost black magic, since browsers don’t

follow a standard when encountering different MIME types. This technique

has proven to be most successful for me when writing intranet applications

where I had the luxury of serving a narrow set of browsers.

http://www.isi.edu/in-notes/iana/assignments/media-types/default.htm

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

24.4 Email with Attachments

Sending plain email with PHP is easy. The mail function handles all the

messy protocol details behind the scenes. But if you want to send

attachments, you will need to dig into an RFC, specifically RFC 1341. This

RFC describes MIME, Multipurpose Internet Mail Extensions. You can read it

at the faqs.org site <http://www.faqs.org/rfcs/rfc1341.html>, but I’ll show

you a somewhat naïve implementation.

There are several example implementations to be found on the Web. Check

out David Sklar’s networking section <http://px.sklar.com/section.html?

id=10>. Most of these put functionality into a class and attempt to

incorporate every aspect of the standard. Listing 24.6 contains code that

sends email with multiple attachments using two simple functions. Use this

example as a basis for learning the process, and expand its functionality if

necessary.

Listing 24.6 Sending attachments

<html>

<head>

<title>Listing 24-6</title>

</head>

<body>

<?php

 /*

 ** Function: makeAttachment

 ** Input: ARRAY attachment

 ** Output: STRING

 ** Description: Returns headers and data for one

 ** attachment. It expects an array with elements

 ** type, name, and content. Attachments are naively

 ** base64 encoded, even when unnecessary.

 */

 function makeAttachment($attachment)

 {

 //send content type

 $headers = "Content-Type: " . $attachment["type"];

 if(isset($attachment["name"]))

 {

 $headers .= "; name=\"{$attachment["name"]}\"";

 }

 $headers .= "\r\n" .

 "Content-Transfer-Encoding: base64\r\n" .

 "\r\n" .

 chunk_split(base64_encode($attachment["content"])) .

 "\r\n";

 return($headers);

 }

http://www.faqs.org/rfcs/rfc1341.html
http://px.sklar.com/section.html@id=10

 /*

 ** Function: mailAttachment

 ** Input: STRING to, STRING from, STRING subject,

 ** ARRAY attachment

 ** Output: none

 ** Description: Sends attachments via email. The attachment

 ** array is a 2D array. Each element is an associative array

 ** containing elements type, name and content.

 */

 function mailAttachment($to, $from, $subject, $attachment)

 {

 //add from header

 $headers = "From: $from\r\n";

 //specify MIME version 1.0

 $headers .= "MIME-Version: 1.0\r\n";

 //multiple parts require special treatment

 if(count($attachment) > 1)

 {

 //multiple attachments require special handling

 $boundary = uniqid("COREPHP");

 $headers .= "Content-Type: multipart/mixed" .

 "; boundary = $boundary\r\n\r\n" .

 "This is a MIME encoded message.\r\n\r\n" .

 "--$boundary";

 foreach($attachment as $a)

 {

 $headers .= "\r\n" .

 makeAttachment($a) .

 "--$boundary";

 }

 $headers .= "--\r\n";

 }

 else

 {

 $headers .= makeAttachment($attachment[0]);

 }

 //send message

 mail($to, $subject, "", $headers);

 }

 //add text explaining message

 $attach[] = array("content"=>"This is Listing 24-6",

 "type"=>"text/plain");

 //add script to list of attachments

 $fp = fopen(__FILE__, "r");

 $attach[] = array("name"=>basename(__FILE__),

 "content"=>fread($fp, filesize(__FILE__)),

 "type"=>"application/octet-stream");

 fclose($fp);

 //send mail to root

 mailAttachment("root@localhost",

 "httpd@localhost",

 "Listing 24-6",

 $attach);

 print("Mail sent!
\n");

?>

</body>

</html>

The mailAttachment function assembles the parts that make up a MIME

message. These parts are sent in the fourth argument of the mail function,

which is generally used for headers. In the case of a MIME message, this

area is used for both headers and attachments. After the customary From

headers are sent, a MIME-Version header is sent. Unless there’s only one

attachment, a boundary string must be created. This is used to divide

attachments from one another. We want to avoid using a boundary value

that might appear in the message itself, so we use the uniqid function.

Each attachment is surrounded by the boundaries that always start with two

dashes. The attachment itself is prepared by the makeAttachment function.

Each attachment requires Content-Type and Content-Transfer-Encoding

headers. The type of content depends on the attachment itself. If an image

file is being sent, it might be image/jpg. These are the same codes

discussed above with regard to the HTTP protocol. For the sake of simplicity,

this function always encodes attachments using base64, which can turn

binary files into 7-bit ASCII. This prevents them from being corrupted as

they travel through mail servers that accept only 7-bit ASCII. As you might

imagine, text files don’t require encoding, and complete implementations

encode attachments based on content type.

It may be instructive to see the assembled message in full. Try sending

yourself a message. On a UNIX operating system, you should be able to

peek at the file itself inside /var/spool/mail before reading it, or perhaps

inside ~/Mail/received afterward.

24.5 HTML Email

An HTML email is a message presented in HTML instead of plain text. This

allows control of colors and fonts for decoration, and it even allows the

inclusion of images in a message. It’s easy to send HTML email from your

client, but it’s not as easy from a PHP script. The key is to understand how to

form MIME messages.

But first, you should decide whether the advantages of sending an HTML email

fits your needs and whether you can do so ethically. The first reason to

consider HTML email is the greater control over presentation you’ll gain.

Plaintext is fine when an email is a simple narrative, but if you want to present

a table, you will have difficulty. Most GUI email clients use a variable-width font

to display messages. As a result, it’s impossible to align text in columns using

tabs or spaces.

Consider an order summary sent to a customer. Information such as items

purchased, prices, and other data need to be presented in an email. Although a

table seems like a natural way to organize the information, it’s only possible

with HTML.

HTML offers the value of making a better presentation. It lets you control fonts,

colors, and general layout with tables, an important feature to many people.

Those in the advertising industry surely see the value in the increased control

this type of email provides.

There can also be an issue of usability. Image tags work in most email clients,

so you can even put graphics in your messages. Because you can put images

inline, you can also take advantage of the client’s need to retrieve those

images when the message is opened. Although there is a standard that

includes all necessary images in one large email (called MHTML), few clients

support it. So, your images must be hosted on a Web server.

You can measure how many times your message was viewed by looking at your

Web server logs. But you can go further than that. It’s easy to put the URL to a

PHP script in for the image source attribute. The script can return an image,

but before it does, it can capture some information generated by the

request�such as the name of the client, the IP address of the requester, or

even some extra information you’ve put in the URL as GET variables.

By now, you’re probably detecting the distinct smell of spam. These are the

tricks of those annoying people who send out advertisements for anything from

cable television descramblers to pornography sites. These tricks are also used

by sites you’ve requested to notify you of sales or new products. There are a

few issues to consider before you decide to send HTML emails. The most

important one is privacy. With HTML emails, it’s very easy to track who opened

the email you sent, when they opened it, and maybe even more.

Imagine putting a bit of code like this into an HTML email:

<img src="http://www.spam.com/saveinfo.php?sentTo=you@yourhost.com"

width="1" height="1" border="0">

When the recipient opens the email, the email client fetches the image, but the

email address is sent along with the request. Now the operator knows that out

of the thousands of people he spammed, this particular person opened it. In

most cases, this is rude. You can even gather information about someone

without disclosing the practice. In fact, if you make it a tiny 1x1 image, they

may not even have the clue of seeing an image in the email.

You should also consider people who have slow connections to the Internet or

do not have the ability to view HTML email. If you send an HTML email to

people with limited or no ability to view HTML email, they may end up just

receiving your raw HTML code.

Sending an email with a lot of large images is a problem for people who use

modems to connect to the Internet, regardless of which software they use. This

is the same problem you face when creating a Web page, except people aren’t

used to waiting five minutes for their email to display. They may not be online

when they open their email. As a result, the image may be displayed as broken

or it may cause their computer to attempt to reconnect to the Internet. Either

scenario can be annoying.

There are situations where it is appropriate to send an HTML email, and other

times when it’s definitely not. Sending unsolicited email, especially a duplicate

message to a large group, is definitely not nice in most cases. Gathering

information about people without their consent isn’t good either. If someone

gives you permission, HTML email can be a tool to improve the experience of

reading a message.

Your message must use MIME headers in order to use HTML. Sending

messages with attachments is similar to sending attachments. Instead of

sending a multipart/mixed message, send a multipart/alternative

message. This alerts the client that several versions of the same message are

included, and the client should pick the best version. The simplest case is to

include a plain text version and an HTML version. If the client understands

HTML, that version should be presented instead of the plaintext version.

Listing 24.7 demonstrates a simple HTML email. I used base64 encoding

instead of quoted-printable because Microsoft’s email clients appear to have

trouble with quoted-printable messages.

Listing 24.7 HTML email

<?php

 //add From: header

 $headers = "From: webserver@localhost\r\n";

 //specify MIME version 1.0

 $headers .= "MIME-Version: 1.0\r\n";

 //unique boundary

 $boundary = uniqid("COREPHP");

 //tell e-mail client this e-mail contains

 //alternate versions

 $headers .= "Content-Type: multipart/alternative" .

 "; boundary = $boundary\r\n\r\n";

 //message to people with clients who don't

 //understand MIME

 $headers .= "This is a MIME encoded message.\r\n\r\n";

 //plain text version of message

 $headers .= "--$boundary\r\n" .

 "Content-Type: text/plain; charset=UTF-7\r\n" .

 "Content-Transfer-Encoding: base64\r\n\r\n";

 $headers .= chunk_split(base64_encode(

 "This is the plain text version!"));

 //HTML version of message

 $headers .= "--$boundary\r\n" .

 "Content-Type: text/html; charset=UTF-7\r\n" .

 "Content-Transfer-Encoding: base64\r\n\r\n";

 $headers .= chunk_split(base64_encode(

 "This the HTML version!"));

 //send message

 mail("root@localhost", "An HTML Message", "", $headers);

 print("HTML Email sent!");

?>

24.6 Verifying an Email Address

It doesn’t take much experience with email to discover what happens when

it is misaddressed. The email is returned to you. This is called bounced

email. Consider for a moment a Web site that allows users to fill out a form

that includes an email address and sends a thank-you message. Certainly,

many people will either mistakenly mistype their addresses or purposely give

a bad address. You can check the form of the address, of course, but a well-

formed address can fail to match to a real mail box. When this happens, the

mail bounces back to the user who sent the mail. Unfortunately, this is

probably the Web server itself.

Reading through the bounced email can be interesting. Those running an e-

commerce site may be concerned about order confirmations that go

undelivered. Yet, the volume of mail can be very large. Add to this that

delivery failure is not immediate. To the process that sends the mail, it

appears to be successful. It may be worthwhile to verify an email address

before sending mail.

RFC 821 describes the SMTP protocol, which is used for exchanging email.

You can read it at the faqs.org Web site

<http://www.faqs.org/rfcs/rfc821.html>. It lives up to its name, Simple Mail

Transfer Protocol, in that it’s simple enough to use interactively from a telnet

session. In order to verify an address, you can connect to the appropriate

SMTP server and begin sending a message. If you specify a valid recipient,

the server will return a 250 response code, at which point you can abort the

process.

It sounds easy, but there’s a catch. The domain name portion of an address,

the part after the @, is not necessarily the same machine that receives email.

Domains are associated with one or more mail exchangers�machines that

accept STMP connections for delivery of local mail. The getmxrr function

returns all DNS records for a given domain.

Now consider Listing 24.8. The verifyEmail function is based on a similar

function written by Jon Stevens. As you can see, the function attempts to

fetch a list of mail exchangers. If a domain doesn’t have mail exchangers,

the script guesses that the domain name itself accepts mail.

Listing 24.8 Verifying an email address

<html>

<head>

<title>Listing 24-8</title>

</head>

<body>

<?php

 /*

 ** Function: verifyEmail

 ** Input: STRING address, REFERENCE error

 ** Output: BOOLEAN

 ** Description: Attempts to verify an email address by

 ** contacting a mail exchanger. Registered mail

 ** exchangers are requested from the domain controller first,

 ** then the exact domain itself. The error argument will

http://www.faqs.org/rfcs/rfc821.html

 ** contain relevant text if the address could not be

 ** verified.

 */

 function verifyEmail($address, &$error)

 {

 $mxhost = array();

 $mxweight = array();

 list($user, $domain) = split("@", $address, 2);

 //make sure the domain has a mail exchanger

 if(dns_check_record($domain, "MX"))

 {

 //get mail exchanger records

 if(!dns_get_mx($domain, $mxhost, $mxweight))

 {

 $error =

 "Could not retrieve mail exchangers!
\n";

 return(FALSE);

 }

 }

 else

 {

 //if no mail exchanger, maybe the host itself

 //will accept mail

 $mxhost[] = $domain;

 $mxweight[] = 1;

 }

 //create sorted array of hosts

 $weighted_host = array();

 for($i = 0; $i < count($mxhost); $i++)

 {

 $weighted_host[($mxweight[$i])] = $mxhost[$i];

 }

 ksort($weighted_host);

 //loop over each host

 foreach($weighted_host as $host)

 {

 //connect to host on SMTP port

 if(!($fp = fsockopen($host, 25)))

 {

 //couldn't connect to this host, but

 //the next might work

 continue;

 }

 /*

 ** skip over "220" messages

 ** give up if no response for 10 seconds

 */

 stream_set_blocking($fp, FALSE);

 $stopTime = time() + 10;

 $gotResponse = FALSE;

 while(TRUE)

 {

 //try to get a line from mail server

 $line = fgets($fp, 1024);

 if(substr($line, 0, 3) == "220")

 {

 //reset timer

 $stopTime = time() + 10;

 $gotResponse = TRUE;

 }

 elseif(($line == "") AND ($gotResponse))

 {

 break;

 }

 elseif(time() > $stopTime)

 {

 break;

 }

 }

 if(!$gotResponse)

 {

 //this host was unresponsive, but

 //maybe the next will be better

 continue;

 }

 stream_set_blocking($fp, TRUE);

 //sign in

 fputs($fp, "HELO {$_SERVER['SERVER_NAME']}\r\n");

 fgets($fp, 1024);

 //set from

 fputs($fp, "MAIL FROM: " .

 "<httpd@{$_SERVER['SERVER_NAME']}>\r\n");

 fgets($fp, 1024);

 //try address

 fputs($fp, "RCPT TO: <$address>\r\n");

 $line = fgets($fp, 1024);

 //close connection

 fputs($fp, "QUIT\r\n");

 fclose($fp);

 if(substr($line, 0, 3) != "250")

 {

 //mail server doesn't recognize

 //this address, so it must be bad

 $error = $line;

 return(FALSE);

 }

 else

 {

 //address recognized

 return(TRUE);

 }

 }

 $error = "Unable to reach a mail exchanger!";

 return(FALSE);

 }

 if(verifyEmail("leon@clearink.com", $error))

 {

 print("Verified!
\n");

 }

 else

 {

 print("Could not verify!
\n");

 print("Error: $error
\n");

 }

?>

</body>

</html>

SMTP servers precede each message with a numerical code, such as the 250

code mentioned above. When first connecting with a server, it may send any

number of 220 messages. These contain comments, such as the AOL servers’

reminders not to use them for spam. No special code marks the end of the

comments; the server simply stops sending lines. Recall that by default the

fgets function returns after encountering the maximum number of

characters specified or an end-of-line marker. This will not work in the case

of an indeterminate number of lines. The script will wait forever after the last

comment. Socket blocking must be turned off to handle this situation.

When set_socket_blocking turns off blocking, fgets return immediately

with whatever data is available in the buffer. The strategy is to loop

continually, checking the buffer each time through the loop. There will likely

be some lag time between establishing a connection and receiving the first

message from the server. Then, as 220 messages appear, the script must

begin watching for the data to stop flowing, which means the server is likely

waiting for a command. To avoid the situation where a server is very

unresponsive, a further check must be made against a clock. If 10 seconds

pass, the server will be considered unavailable. Of course, this may reject

addresses on slow servers.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

Chapter 25. Generating Graphics
Topics in This Chapter

Dynamic Buttons

Generating Graphs on the Fly

Bar Graphs

Pie Charts

Stretching Single-Pixel Images

This chapter explores generating graphics using the GD extension

functions described in Chapter 16. It is important to be aware of the

issues involved with the creation of graphics on the fly. The first is

that it is relatively costly in terms of CPU time. In most cases the

flexibility of dynamic graphics is not worth what you pay in the load

imposed on the server. Another issue is that making nice-looking

graphics from PHP functions is not easy. Many techniques available in

graphics editors are next to impossible. As you will see in the

examples that follow, a lot of work goes into creating simple, flat

charts. Last, while there is adequate support for text, functions you’d

expect in a word processor do not exist. Text does not wrap at line

ends. There is no concept of leading, spacing, or descenders.

Regardless, generating graphics makes sense in some situations. This

chapter contains some real examples that you can start using with

very little modification.

25.1 Dynamic Buttons

Images wrapped in anchor tags are a common navigational device. Instead of

plaintext, this method allows you to create buttons similar to those created in

the operating system or even to create fanciful icons. In most cases it is best

to leave these as graphics created in your favorite graphics editor, because the

time between changes is relatively long. However, if you have a button that

changes often, it may make sense to create it dynamically with PHP. The

content of the button, the label, needs to be available as a string in PHP. It

could be a statement setting the value of a variable. It could also be a value

retrieved from a file or a database.

An illustration will make this idea clear. Many corporate Web sites have a

section for press releases. Instead of just a list of text links, your client wants a

graphic of a flaming newspaper for each press release, all under the title “Hot

off the Press.” Each burning newspaper has text over the top with the headline

from the press release. With a small company that issues only one press

release a month, you are better off creating these graphics by hand. With a

company that issues a press release each week, it starts to make sense to

automate the process. You can put the press releases into a database and

generate a graphic on the fly as surfers view the list of press releases. One

advantage of this approach is that if the CEO finds out you’re putting flaming

newspapers on the site, you can make a minor modification and the graphics

become the company logo with the press-release title over it.

Seriously, you must consider the tradeoffs associated with dynamically created

graphics. You don’t want to save yourself 15 minutes a month if it makes every

page download 30 seconds longer. If you’ve been working with the Web for any

time at all, you know to reuse graphics throughout the site because the

browser caches them. The first page may take longer to load, but each

successive page 0is faster because the graphics are already loaded in the

browser. Dynamic graphics can be cached, of course, but the browser uses the

URL to cache files. The GET-method form variables are part of the URL, so

http://www.site.com/button.php?label=home&from=1 and

http://www.site.com/button.php?label=home&from=2 may create two

identical graphics but are different as far as the browser cache is concerned.

These are only some of the issues involved with dynamic buttons. To

demonstrate the process, I’ll provide an example and describe the steps.

Listing 25.1 is a script that creates a PNG image of a button with a text label.

The button is rectangular and has some highlighting and shadowing. The label

has a drop-shadow effect applied to it and is centered both vertically and

horizontally. The output is shown in Figure 25.1.

Listing 25.1 PNG button

<?php

 /*

 ** PNG button

 ** Creates a graphical button based

 ** on form variables.

 */

 class Button

 {

 private $image;

 public function __construct($width, $height, $label, $font)

 {

 $this->image = imagecreate($width, $height);

 $colorBody = imagecolorallocate($this->image,

 0x99, 0x99, 0x99);

 $colorShadow = imagecolorallocate($this->image,

 0x33, 0x33, 0x33);

 $colorHighlight = imagecolorallocate($this->image,

 0xCC, 0xCC, 0xCC);

 //create body of button

 imagefilledrectangle($this->image,

 1, 1, $width-2, $height-2,

 $colorBody);

 //draw bottom shadow

 imageline($this->image,

 0, $height-1,

 $width-1, $height-1,

 $colorShadow);

 //draw right shadow

 imageline($this->image,

 $width-1, 1,

 $width-1, $height-1,

 $colorShadow);

 //draw top highlight

 imageline($this->image,

 0, 0,

 $width-1, 0,

 $colorHighlight);

 //draw left highlight

 imageline($this->image,

 0, 0,

 0, $height-2,

 $colorHighlight);

 //determine label size

 $labelHeight = imagefontheight($font);

 $labelWidth = imagefontwidth($font) * strlen($label);

 //determine label upper left corner

 $labelX = ($width - $labelWidth)/2;

 $labelY = ($height - $labelHeight)/2;

 //draw label shadow

 imagestring($this->image,

 $font,

 $labelX+1,

 $labelY+1,

 $label,

 $colorShadow);

 //draw label

 imagestring($this->image,

 $font,

 $labelX,

 $labelY,

 $label,

 $colorHighlight);

 }

 public function drawPNG()

 {

 header("Content-type: image/png");

 imagepng($this->image);

 }

 public function drawJPEG()

 {

 header("Content-type: image/jpeg");

 imagejpeg($this->image);

 }

 }

 //set parameters if not given

 if(!isset($_REQUEST['width']))

 {

 $_REQUEST['width'] = 100;

 }

 if(!isset($_REQUEST['height']))

 {

 $_REQUEST['height'] = 30;

 }

 if(!isset($_REQUEST['label']))

 {

 $_REQUEST['label'] = "CLICK";

 }

 if(!isset($_REQUEST['font']))

 {

 $_REQUEST['font'] = 5;

 }

 $b = new Button($_REQUEST['width'], $_REQUEST['height'],

 $_REQUEST['label'], $_REQUEST['font']);

 $b->drawPNG();

?>

Figure 25.1. Output from Listing 25.1.

The first step the script takes is to make sure it has valid information for all the

parameters. These include the size of the button and the text with which to

label the button. I’ve chosen to use the built-in fonts, which are numbered one

through five. Chapter 16 has descriptions of functions for loading different

fonts, and I encourage you to modify my script to incorporate them.

The next step is to create an image. There are two ways to do this. You can

create a blank image of a specific size, or you can load an existing image file.

I’ve chosen the former because it allows the script to make buttons of any size.

You can make much more stylish buttons using the latter method. This is

another good exercise.

The button will be drawn with three colors: a body color, a highlight color, and

a shadow color. I’ve chosen to go with three shades of gray. These colors must

be allocated with the imagecolorallocate function. Using the body color, the

script makes a rectangle that is one pixel smaller than the entire image. The

border around this rectangle is created with four lines. The lines on the bottom

and right sides are drawn in the shadow color, and the top and left sides are

drawn with the highlight color. This creates an illusion of the button being

three-dimensional.

To finish the button, the script draws the label. First, the text is drawn slightly

off center in the shadow color. Then the text is drawn in the highlight color over

it and exactly centered, making the text look as though it is floating over the

button.

At this point the script has created the image and needs to send it to the

browser. It is very important that the header be sent to let the browser know

that this file is an image. Without it, you get a garbled bunch of strange

characters.

This wraps up the script that creates a button, but to really make use of it, we

have to use it in the context of a Web page. Listing 25.2 demonstrates the

minimal steps. I’ve created an array of four button labels I want to create. I

then loop through the array, each time creating an image tag. The source of

the image is the previous script. I pass the script some parameters to set the

size of the button and the label. I leave the font as the default, but I could

have set that as well. The output is shown in Figure 25.2.

Listing 25.2 Creating buttons dynamically

<?php

 //define button labels

 $label = array("HOME",

 "ABOUT US",

 "OUR PRODUCTS",

 "CONTACT US");

 //display all buttons

 foreach($label as $text)

 {

 //link back to this page

 print("");

 //create dynamic image tag

 print("<img src=\"25-1.php");

 print("?label=" . htmlentities($text));

 print("&width=145");

 print("&height=25");

 print("\" border=\"0\"");

 print("width=\"145\" height=\"25\">");

 print("
\n");

 }

?>

Figure 25.2. Output from Listing 25.2.

25.2 Generating Graphs on the Fly

Perhaps a more likely use of dynamic graphics is in generating

graphs. Since graphs rely on data, they lend themselves to formula-

driven creation. If the data change often, using PHP to generate the

graphs is a good idea. In the following examples, I’ve written the

data into the script, but pulling data from a database is not difficult.

Sending the data from a form is probably not a practical idea for

large amounts of data. The GET method imposes a relatively small

limit on the total size of a URL that varies between Web servers. You

could use the POST method, however. The two examples I’ll show are

a bar graph and a pie chart. Each uses the same set of data, which is

a fictitious survey of favorite meat.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

25.3 Bar Graphs

Bar graphs are a good way to compare values to each other. Creating them

is a relatively simple task because each data point is a rectangle. The height

of the rectangle represents the value of the data point. To make the

transition, a scaling factor is used. In Listing 25.3 the graph is 200 pixels tall

and the scaling factor is two. This means that a data point with the value 75

will be 150 pixels tall. The output is shown in Figure 25.3.

Listing 25.3 Creating a bar graph

<?php

 /*

 ** Bar graph

 */

 //fill in graph parameters

 $GraphWidth = 400;

 $GraphHeight = 200;

 $GraphScale = 2;

 $GraphFont = 5;

 $GraphData = array(

 "Beef"=>"99",

 "Pork"=>"75",

 "Chicken"=>"15",

 "Lamb"=>"66",

 "Fish"=>"22");

 //create image

 $image = imagecreate($GraphWidth, $GraphHeight);

 imageantialias($image, TRUE);

 //allocate colors

 $colorBody = imagecolorallocate($image, 0xFF, 0xFF, 0xFF);

 $colorGrid = imagecolorallocate($image, 0xCC, 0xCC, 0xCC);

 $colorBar = imagecolorallocate($image, 0xFF, 0xFF, 0x00);

 $colorText = imagecolorallocate($image, 0x00, 0x00, 0x00);

 //fill background

 imagefill($image, 0, 0, $colorBody);

 //draw vertical grid line

 $GridLabelWidth = imagefontwidth($GraphFont)*3 + 1;

 imageline($image,

 $GridLabelWidth, 0,

 $GridLabelWidth, $GraphHeight-1,

 $colorGrid);

 //draw horizontal grid lines

 $styleDashed = array_merge(array_fill(0, 4, $colorGrid),

 array_fill(0, 4, IMG_COLOR_TRANSPARENT));

 imagesetstyle($image, $styleDashed);

 for($index = 0;

 $index < $GraphHeight;

 $index += $GraphHeight/10)

 {

 imageline($image,

 0, $index,

 $GraphWidth-1, $index,

 IMG_COLOR_STYLED);

 //draw label

 imagestring($image,

 $GraphFont,

 0,

 $index,

 round(($GraphHeight - $index)/$GraphScale),

 $colorText);

 }

 //add bottom line

 imageline($image,

 0, $GraphHeight-1,

 $GraphWidth-1, $GraphHeight-1,

 $colorGrid);

 //draw each bar

 $BarWidth = (($GraphWidth-$GridLabelWidth)/count($GraphData))

 - 10;

 $column = 0;

 foreach($GraphData as $label=>$value)

 {

 //draw bar

 $BarTopX = $GridLabelWidth +

 (($column+1) * 10) + ($column * $BarWidth);

 $BarBottomX = $BarTopX + $BarWidth;

 $BarBottomY = $GraphHeight-1;

 $BarTopY = $BarBottomY - ($value * $GraphScale);

 imagefilledrectangle($image,

 $BarTopX, $BarTopY,

 $BarBottomX, $BarBottomY,

 $colorBar);

 //draw label

 $LabelX = $BarTopX +

 (($BarBottomX - $BarTopX)/2) -

 (imagefontheight($GraphFont)/2);

 $LabelY = $BarBottomY-10;

 imagestringup($image,

 $GraphFont,

 $LabelX,

 $LabelY,

 "$label: $value",

 $colorText);

 $column++;

 }

 //output image

 header("Content-type: image/png");

 imagepng($image);

?>

Figure 25.3. Output from Listing 25.3.

The business of creating the graph is similar to the process described earlier

in which a button is created. A blank image is created, several colors are

allocated, and functions are called for drawing shapes into the image. The

script allows the width of the bars to adapt to the width of the graph. The

width of the graph is divided by the number of bars drawn. A 10-pixel gutter

is drawn between the bars. In the center of the bar the data point’s label is

written along with its value.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

25.4 Pie Charts

Pie charts are a good way to see how a value represents a percentage of a

whole. Each data point is a slice of a pie with a unique color. A legend

associates the colors with each data point’s label and value.

Since the pie chart is round, it represents a slightly more complex problem

than the bar graph. PHP’s image functions allow you to draw a pie slice, solid

or outlined. Because each slice represents a portion of the whole, the script

must calculate how many degrees to dedicate to the slice by dividing the

value by the total of all slice values. Then it’s a matter of calling

imagefilledarc.

As with the bar graph, the data used in the chart come from an array

hardcoded into the script in Listing 25.4. It is possible to keep the chart up

to date by editing every time the data change, but it may be better to link it

with a database. The output is shown in Figure 25.4.

Listing 25.4 Creating a pie chart

<?php

 //fill in chart parameters

 $ChartDiameter = 300;

 $ChartFont = 5;

 $ChartFontHeight = imagefontheight($ChartFont);

 $ChartData = array(

 "Beef"=>"99",

 "Pork"=>"75",

 "Chicken"=>"15",

 "Lamb"=>"66",

 "Fish"=>"22");

 //determine graphic size

 $ChartWidth = $ChartDiameter + 20;

 $ChartHeight = $ChartDiameter + 20 +

 (($ChartFontHeight + 2) * count($ChartData));

 //determine total of all values

 $ChartTotal = array_sum($ChartData);

 //set center of pie

 $ChartCenterX = $ChartDiameter/2 + 10;

 $ChartCenterY = $ChartDiameter/2 + 10;

 //create image

 $image = imagecreate($ChartWidth, $ChartHeight);

 imageantialias($image, TRUE);

 //create a round brush for drawing borders

 $dot = imagecreate(10, 10);

 $dotColorBlack = imagecolorallocate($dot, 0, 0, 0);

 $dotColorTransparent = imagecolorallocate($dot, 255, 0, 255);

 imagecolortransparent($dot, $dotColorTransparent);

 imagefill($dot, 0, 0, $dotColorTransparent);

 imagefilledellipse($dot, 4, 4, 5, 5, $dotColorBlack);

 imagesetbrush($image, $dot);

 //allocate colors

 $colorBody = imagecolorallocate($image, 0xFF, 0xFF, 0xFF);

 $colorBorder = imagecolorallocate($image, 0x00, 0x00, 0x00);

 $colorText = imagecolorallocate($image, 0x00, 0x00, 0x00);

 $colorSlice = array(

 imagecolorallocate($image, 0xFF, 0x00, 0x00),

 imagecolorallocate($image, 0x00, 0xFF, 0x00),

 imagecolorallocate($image, 0x00, 0x00, 0xFF),

 imagecolorallocate($image, 0xFF, 0xFF, 0x00),

 imagecolorallocate($image, 0xFF, 0x00, 0xFF),

 imagecolorallocate($image, 0x00, 0xFF, 0xFF),

 imagecolorallocate($image, 0x99, 0x00, 0x00),

 imagecolorallocate($image, 0x00, 0x99, 0x00),

 imagecolorallocate($image, 0x00, 0x00, 0x99),

 imagecolorallocate($image, 0x99, 0x99, 0x00),

 imagecolorallocate($image, 0x99, 0x00, 0x99),

 imagecolorallocate($image, 0x00, 0x99, 0x99));

 //fill background

 imagefill($image, 0, 0, $colorBody);

 /*

 ** draw each slice

 */

 $Degrees = 0;

 $slice=0;

 foreach($ChartData as $label=>$value)

 {

 $StartDegrees = round($Degrees);

 $Degrees += (($value/$ChartTotal)*360);

 $EndDegrees = round($Degrees);

 $CurrentColor = $colorSlice[$slice%(count($colorSlice))];

 //draw pie slice

 imagefilledarc(

 $image,

 $ChartCenterX, $ChartCenterY,

 $ChartDiameter,$ChartDiameter,

 $StartDegrees, $EndDegrees,

 $CurrentColor, IMG_ARC_PIE);

 //draw legend for this slice

 $LineY = $ChartDiameter + 20 +

 ($slice*($ChartFontHeight+2));

 imagerectangle($image,

 10,

 $LineY,

 10 + $ChartFontHeight,

 $LineY+$ChartFontHeight,

 $colorBorder);

 imagefilltoborder($image,

 12,

 $LineY + 2,

 $colorBorder,

 $CurrentColor);

 imagestring($image,

 $ChartFont,

 20 + $ChartFontHeight,

 $LineY,

 "$label: $value",

 $colorText);

 $slice++;

 }

 //draw border

 imageellipse($image,

 $ChartCenterX, $ChartCenterY,

 $ChartDiameter,$ChartDiameter,

 IMG_COLOR_BRUSHED);

 //output image

 header("Content-type: image/png");

 imagepng($image);

?>

Figure 25.4. Output from Listing 25.4.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

25.5 Stretching Single-Pixel Images

The following technique takes advantage of the behavior of most

browsers with the width and height properties of the image tag. It does

not require the GD extension, because it doesn’t actually manipulate an

image. It relies on the browser to stretch an image to match the width

and height specified in the IMG tag. This allows you to stretch a single-

pixel image into a large bar.

Refer to Listing 25.5. An HTML table is used to line up graph labels with

bars. The largest data element will fill 100 percent of the graph width,

which is specified by the graphWidthMax variable. Each element is

pulled from the data array and used to scale graphWidthMax. This

produces a horizontally oriented bar graph, but the same method can

make a vertical graph too. You may wish to add a second, clear image

to the right of each bar to ensure the graph renders correctly on all

browsers. See Figure 25.5.

Listing 25.5 Bar graph using stretched images

<?php

 //fill in graph parameters

 $graphWidthMax = 400;

 $graphData = array(

 "Beef"=>"99",

 "Pork"=>"75",

 "Chicken"=>"15",

 "Lamb"=>"66",

 "Fish"=>"22");

 $barHeight = 10;

 $barMax = max($graphData);

 print("<table border=\"0\">\n");

 foreach($graphData as $label=>$rating)

 {

 //calculate width

 $barWidth = intval($graphWidthMax * $rating/$barMax);

 print("<tr>\n");

 //label

 print("<th>$label</th>\n");

 //data

 print("<td>");

 print("<img src=\"reddot.png\" ");

 print("width=\"$barWidth\" height=\"$barHeight\" ");

 print("border=\"0\">");

 print("</td>\n");

 print("</tr>\n");

 }

 print("</table>\n");

?>

Figure 25.5. Output from Listing 25.5.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

Part IV: Software Engineering
Software engineering is more than just programming. Like a

civil engineer carefully designs and builds a skyscraper, a

software engineer carefully designs and implements software

systems. Even small PHP scripts may benefit from software

engineering concepts. This section explores the issues involved

in using PHP in a Web site.

Chapter 26 is about integrating PHP and HTML. You can use PHP

just in key places or in generating every page of a site. This

chapter helps you decide.

Chapter 27 discusses system specification and design. It

develops an approach for designing a system with PHP,

including a phase of careful requirements analysis. A survey is

made of existing methods for designing with PHP.

Chapter 28 touches on issues of efficiency and debugging. It

provides information to help measure performance, and it

describes remote debugging.

Chapter 29 discusses implementing design patterns in PHP.

 • Chapter 26 Integration with HTML

 • Chapter 27 Design

 • Chapter 28 Efficiency and Debugging

 • Chapter 29 Design Patterns

Chapter 26. Integration with HTML
Topics in This Chapter

Sprinkling PHP within an HTML Document

Using PHP to Output All HTML

Separating HTML from PHP

Generating HTML with PHP

By this time, you have learned the basics of PHP. You have a

reference for the functions, and you’ve been introduced to some

fundamental problems of programming. But all the examples I’ve

shown have been pieces, snippets for the sake of illustration. This

chapter discusses how to integrate PHP into a Web site. It will help

you decide whether to build a site completely with PHP, to sprinkle

PHP throughout the site, or to simply create a few key PHP-driven

pages. It also discusses issues involved in using PHP to generate

HTML.

26.1 Sprinkling PHP within an HTML Document

The first and most obvious approach to using PHP is to build HTML files as you

have always done, inserting PHP tags as if they were HTML tags. This could

take the form of repeating HTML that you replace with a call to a PHP function.

It could take the form of a large block of PHP code that generates database

output. Or it could be a script that processes a form submission. These are all

situations in which the impact of PHP on the site is low. This is a good first step

for those new to programming. You are able to insert the smallest amount of

PHP code as a test. As your experience and confidence grow, so will your

reliance on PHP.

Aside from simple tasks, such as inserting today’s data with <?php

print(date(‘Y/m/d’)); ?>, you can write your own function for wrapping a

block of HTML. Listing 26.1 defines a class for printing HTML tables.

Listing 26.1 Formatting function

<?php

 /*

 ** Simple class for creating HTML tables

 */

 class HTMLTable

 {

 static function start($header=FALSE)

 {

 print("<table border=\"1\">\n");

 if(is_array($header))

 {

 print("<tr>\n");

 foreach($header as $h)

 {

 print("<th>" .

 strtoupper($h) .

 "</th>\n");

 }

 print("</tr>\n");

 }

 }

 static function end()

 {

 print("</table>\n\n");

 }

 static function printRow($label, $field)

 {

 print("<tr>\n");

 //label

 if($label !== "")

 {

 print("<th>" .

 strtoupper($label) .

 "</th>\n");

 }

 if(!is_array($field))

 {

 $field = array($field);

 }

 foreach($field as $key=>$value)

 {

 print("<td>");

 if($value === "")

 {

 print(" ");

 }

 else

 {

 print($value);

 }

 print("</td>\n");

 }

 print("</tr>\n");

 }

 static function printSet($set)

 {

 foreach($set as $field)

 {

 if(isset($field['label']))

 {

 $label = $field['label'];

 unset($field['label']);

 }

 else

 {

 $label = "";

 }

 HTMLTable::printRow($label, $field);

 }

 }

 }

?>

<html>

<head>

<title>Listing 26-1</title>

</head>

<body>

<p>

This is an example of using a function to repeat

a commonly-used piece of HTML code. It builds

out a table, like this one.

</p>

<?php

 //show table with labels on the left

 HTMLTable::start();

 HTMLTable::printRow('step 1', 'Start the table');

 HTMLTable::printRow('step 2', 'Print rows');

 HTMLTable::printRow('step 3', 'End the table');

 HTMLTable::end();

?>

<p>

The HTMLTable class allows you to draw all HTML

tables in the same way. To change the look of

all tables, you need only edit the class. Cascading

Style Sheets offer similar technology, but implementing

in PHP means we can make unlimited changes to the

data before building the HTML. It also means we

can neatly indent the data without affecting the

placement on the final document.

</p>

<?php

 //show a table with labels on top

 HTMLTable::start(array('artist', 'song'));

 HTMLTable::printSet(array(

 array('Thelonious Monk', 'Bemsha Swing'),

 array('John Coltrane', 'Spiral'),

 array('Charlie Parker', 'Koko')

));

 HTMLTable::end();

?>

</body>

</html>

One benefit of this technique is that every table renders in exactly the same

way. Less text to type for each table means less chance of leaving out part of

the formula. This is nice to the programmer, who undoubtedly is eager to find a

shortcut to typing long segments of identical HTML. A higher degree of quality

is ensured. If a call to the function is mistyped, PHP displays an error. If no

errors are displayed, the tables are most likely displayed identically and in the

correct format.

If the format of the table needs changing, the code must be altered in only one

place. Furthermore, PHP offers the opportunity to make changes to the data

before displaying it. In Listing 26.1, the code switches labels to uppercase.

Note how the class operates in two modes, labels on top or labels on the left.

Another similar use of PHP is to dress up what is essentially CGI output: a

large block of PHP surrounded by HTML so that the output of the code simply

appears in a larger page. This is a similar approach offered by SSI (Server-Side

Includes). An SSI tag may call a CGI and insert the output in its place.

The approach is appropriate in situations in which your site is mostly static, but

certain key areas must be dynamic. The advantage is low impact on the Web

server. PHP is used only when absolutely needed. In Listing 26.2 the code

generates information that doesn’t change, but it’s easy to imagine code that

pulls stock quotes from a database. It eliminates the need to edit the HTML

page each time the information changes, but parts that don’t change often, like

the layout of the page, are left as static HTML.

Listing 26.2 Dressing up CGI output

<html>

<head>

<title>Listing 26-2</title>

</head>

<body>

<h1>Color Chart</h1>

<p>

The following chart displays the colors

safe for displaying in all browsers. These

colors should not dither on any computer

with a color palette of at least 256

colors.

</p>

<p>

This chart will only display on browsers

that support table cell background colors.

</p>

<?php

 $color = array("00", "33", "66", "99", "CC", "FF");

 $nColors = count($color);

 for($Red = 0; $Red < $nColors; $Red++)

 {

 print("<table>\n");

 for($Green = 0; $Green < $nColors; $Green++)

 {

 print("<tr>\n");

 for($Blue = 0; $Blue < $nColors; $Blue++)

 {

 $CellColor = $color[$Red] .

 $color[$Green] . $color[$Blue];

 print("<td bgcolor=\"#$CellColor\">");

 print("<tt>$CellColor</tt>");

 print("</td>\n");

 }

 print("</tr>\n");

 }

 print("</table>\n");

 }

?>

</body>

</html>

While Listing 26.2 is an example of dynamic output, you are often faced with

the opposite situation. Your site may be completely static, but you need to

accept catalog requests. PHP is a good solution for accepting form submissions.

The first step is to create an HTML page that asks for name and address.

Listing 26.3 demonstrates.

Listing 26.3 Catalog request form

<html>

<head>

<title>Listing 26-3</title>

</head>

<body>

<p>

Please enter name and address to receive a free catalog.

</p>

<form action="26-4.php">

<table>

<tr>

 <td>Name</td>

 <td><input type="text" name="name"></td>

</tr>

<tr>

 <td>Address</td>

 <td><input type="text" name="address"></td>

</tr>

<tr>

 <td>City</td>

 <td><input type="text" name="city"></td>

</tr>

<tr>

 <td>State</td>

 <td><input type="text" name="state"></td>

</tr>

<tr>

 <td>ZIP</td>

 <td><input type="text" name="zip"></td>

</tr>

<tr>

 <td><input type="reset"></td>

 <td><input type="submit"></td>

</tr>

</table>

</form>

</body>

</html>

The page in Listing 26.3 is a very simple submission form. Each of the input

tags will be turned into the _REQUEST array when the submit button is clicked.

This calls the script listed in Listing 26.4. The script opens a file named

requests.txt for appending and writes each of the form fields into the file.

Each field is separated by tab characters, which allows you to import the file

into a spreadsheet easily.

Listing 26.4 Form submission

<html>

<head>

<title>Listing 26-4</title>

</head>

<body>

<?

 /*

 ** process form input, append it to file

 */

 $fp = fopen("/tmp/requests.txt", "a");

 if($fp)

 {

 //massage user input

 $_REQUEST['name'] = substr(0, 16, $_REQUEST['name']);

 $_REQUEST['address'] = substr(0, 32, $_REQUEST['address']);

 $_REQUEST['city'] = substr(0, 16, $_REQUEST['city']);

 $_REQUEST['state'] = substr(0, 2, $_REQUEST['state']);

 $_REQUEST['zip'] = substr(0, 10, $_REQUEST['zip']);

 //lock the file

 flock($fp, (LOCK_SH));

 //write request

 fputs($fp, $_REQUEST['name'] . "\t" .

 $_REQUEST['address'] . "\t" .

 $_REQUEST['city'] . "\t" .

 $_REQUEST['state'] . "\t" .

 $_REQUEST['zip'] . "\n");

 //release lock

 flock($fp, LOCK_UN);

 //close the file

 fclose($fp);

 }

?>

<p>

Thank you for your catalog request!

</p>

<p>

Return to site

</p>

</body>

</html>

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

26.2 Using PHP to Output All HTML

Any of the examples in the previous section is an excellent first step

toward introducing PHP into a Web site. Their impact in terms of

server load is relatively low. I like to think of sites using similar

approaches as being PHP-enabled, as if they had a small injection of

PHP that makes them extraordinary. The step beyond this is what I

think of as PHP-powered: a site made completely of PHP. In this

approach every byte of output comes from PHP. The print function

sends HTML tags. Every page is a script inside a single pair of PHP

tags.

You might have noticed that most of the examples in the book take

this approach. I have found that while this requires extra time up

front, the code is much more maintainable. Once information is put in

the context of a PHP variable, it’s easy to add something dynamic to

it later. It also has the advantage of ultimately being more readable

as the page becomes more complex. Compare the simple examples

in Listing 26.5 to Listing 26.6. Both change the background color of

the page depending on the time of day.

Listing 26.5 Mixing PHP and HTML

<html>

<head>

<title>Listing 26-5</title>

</head>

<?php

 $Hour = date("H");

 $Intensity = round(($Hour/24.0)*(0xFF));

 $PageColor = dechex($Intensity) .

 dechex($Intensity) .

 dechex($Intensity);

?>

<body bgcolor="#<?php print($PageColor); ?>">

<h1>Listing 26-5</h1>

</body>

</html>

Listing 26.6 Converting script to be completely PHP

<?php

 //start document

 print("<html>\n");

 print("<head>\n");

 print("<title>Listing 26-6</title>\n");

 print("</head>\n");

 $Hour = date("H");

 $Intensity = round(($Hour/24.0)*(0xFF));

 $PageColor = dechex($Intensity) .

 dechex($Intensity) .

 dechex($Intensity);

 //show body

 print("<body bgcolor=\"#$PageColor\">\n");

 print("<h1>Listing 26-6</h1>\n");

 print("</body>\n");

 print("</html>\n");

?>

My experience has been that having all the HTML inside the PHP

script allows very quick changes. I don’t have to search for the

opening and closing tags buried inside the HTML as in Listing 26.5. It

also allows me to break code up into separate lines in the source

code that appear as a single line in the output. An example is the

header text. I can enhance the readability but not sacrifice the

presentation. This has become very handy when dealing with tables.

Leaving any whitespace between a td tag and an image causes an

extra pixel to appear. In an HTML file, the solution is to run the whole

thing together on one line. Inside a PHP script I can have many print

calls and send an endline only in the last. The result is a single line in

the output, but very readable source code.

The usefulness of these techniques, like that of many others,

increases with the size of the project. I’ve created 50-page Web

applications using both approaches and can attest to the value of

putting everything inside the PHP code.

26.3 Separating HTML from PHP

The last approach I want to discuss involves using the include and

require functions. As you may recall from Chapter 7, these functions

include a file in the PHP code. The file is considered to be a PHP file

regardless of the extension on the name. If PHP code appears in the

included file, it is surrounded by <?php and ?> tags. You may want to

turn back to the functional reference to refresh yourself on the

differences between include and require, but they aren’t

particularly important to this discussion.

Certain chunks of HTML must appear on every well-formed page.

Additionally, you may develop repeating elements such as a company

logo. Rather than write them into every page, you may choose to put

them into a file and dynamically include them. Listing 26.7 contains

HTML you might include at the top of every page on a site. In Listing

26.8 are two lines to close a page. Listing 26.10 wraps the content in

Listing 26.9 with the opening and closing code to form a complete

page.

Listing 26.7 Start of HTML page

<html>

<head>

<title>PHP</title>

</head>

<body>

Listing 26.8 End of HTML page

</body>

</html>

Listing 26.9 Page content

<p>

This is the body of the page.

It's just a bit of HTML.

</p>

Listing 26.10 Page-building script

<?php

 // include code to open HTML page

 require("26-7");

 // include content

 require("26-9");

 // include code to close HTML page

 require("26-8");

?>

In this way, HTML and PHP are separated into modules. In this

example, I have hardcoded the inclusion of a two-line HTML file, but I

could just as easily have included the color tables from Listing 26.2.

The HTML in Listing 26.7 can be reused from page to page, and if I

need to add something to every page on the site, I need to edit only

that one file. I might want to add the PHP function from Listing 26.1.

It will then be available for use inside the code from Listing 26.9.

It may occur to you that this approach is exhibiting another pattern.

Every page on the site will simply become three calls to require. The

first and last calls will always be the same. In fact, every page on the

site will vary simply by the name of the file included in the second

require statement. This takes us beyond the issue of integrating

HTML and PHP and into the structural design of a site. It is possible to

create a site that has exactly one PHP script. This idea is developed in

Chapter 27.

26.4 Generating HTML with PHP

An HTML select tag allows you to list several options that appear as a

pull-down menu. I am often in the situation of creating the contents of

the list on the fly. Sometimes the contents are pulled from a database,

such as for choosing from among users in a Web application. Other

times the contents are generated, such as choosing month, day, and

year. There are two aspects to this problem. First, there is the fairly

simple problem of creating all the values for the option tags. This is

best accomplished in a loop. The second issue deals with preselecting

one of the options.

Regardless of the source of the contents, database or otherwise, the

technique is similar. To illustrate, I’ll develop a function for generating

three select fields for getting a date from the user: month, day, and

year. To generate a list of the months, it is best to draw from an array

to display their names. Days and years are numbers, so their values

and displayed names are the same. Listing 26.11 demonstrates.

Listing 26.11 Date selector

<?php

 /*

 ** Get three selectors for month, day, year

 */

 function getDateSelectors($name, $date=NULL)

 {

 static $monthName = array(1=>"January",

 "February", "March", "April", "May",

 "June", "July", "August", "September",

 "October", "November", "December");

 if($date === NULL)

 {

 $date = time();

 }

 //make Month selector

 $givenMonth = date("m", $date);

 $fields = "<select name=\"{$name}[month]\">\n";

 for($m = 1; $m <= 12; $m++)

 {

 $fields .= "<option value=\"$m\"";

 if($m == $givenMonth)

 {

 $fields .= " selected";

 }

 $fields .= ">" . $monthName[$m] . "</option>\n";

 }

 $fields .= "</select>\n";

 $fields .= "<select name=\"{$name}[day]\">\n";

 $givenDay = date("d", $date);

 for($d=1; $d <= 31; $d++)

 {

 $fields .= "<option value=\"$d\"";

 if($d == $givenDay)

 {

 $fields .= " selected";

 }

 $fields .= ">$d</option>\n";

 }

 $fields .= "</select>\n";

 $fields .= "<select name=\"{$name}[year]\">\n";

 $givenYear = date("Y", $date);

 $lastYear = date('Y')+5;

 for($y = date('Y')-5; $y <= $lastYear; $y++)

 {

 $fields .= "<option value=\"$y\"";

 if($y == $givenYear)

 {

 $fields .= " selected";

 }

 $fields .= ">$y</option>\n";

 }

 $fields .= "</select>\n";

 return($fields);

 }

 //start document

 print("<html>\n" .

 "<head>\n" .

 "<title>Listing 26-11</title>\n" .

 "</head>\n");

 //start body

 print("<body>\n");

 //choose default date

 if(isset($_REQUEST['sample']))

 {

 //construct time

 $UseDate = mktime(0, 0, 0,

 $_REQUEST['sample']['month'],

 $_REQUEST['sample']['day'],

 $_REQUEST['sample']['year']);

 }

 else

 {

 //use default

 $UseDate = NULL;

 }

 //make simple form

 print("<form action=\"{$_SERVER['PHP_SELF']}\">\n");

 print(getDateSelectors("sample", $UseDate));

 print("<input type=\"submit\">\n");

 print("</form>\n");

 //close HTML document

 print("</body>\n" .

 "</html>\n");

?>

The options for each selector are generated in a for loop. Months

range from 1 to 12, days from 1 to 31. For years, I’ve chosen to

present an 11-year range around the current year. Notice that if you

submit a date, it refreshes the page and sets the form with the date

you chose. The key is the addition of the if statement. Each time

through the loop, the current value is tested against the one to be

selected.

Note how the three selectors pass their values as part of an array. PHP

understands to create array elements from form fields named with

square brackets. If you duplicate this technique, do not include quotes

around the associative key. That is, use {$name}[month] instead of

{$name}[‘month’]. When parsing form fields, PHP does not expect

string delimiters around the key.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

Chapter 27. Design
Topics in This Chapter

Writing Requirements Specifications

Writing Design Documents

Change Management

Modularization Using include

FreeEnergy

Templates

Application Frameworks

PEAR

URLs Friendly to Search Engines

Building a Web site with PHP is not the same as building a static Web

site. If you choose simply to sprinkle PHP code occasionally

throughout the site, the effect may be minimal, of course. If you

choose to use PHP to generate every page, you will find many

opportunities for transforming patterns into functions. As I wrote in

Chapter 26, elements such as opening and closing body tags can be

put into a function or an included file. The consequence of this

situation is that you no longer have just a Web site. You have a Web

application.

When this happens, it becomes more important to draw upon formal

development techniques. Certainly, structured design is useful when

building static Web sites. The case is made plainly in Web Site

Engineering by Thomas Powell. The addition of PHP makes careful

design critical. PHP applications may not be mission-critical endeavors

that include thousands of programmers, but there are some ideas

from software engineering that can benefit small projects. I can’t

cover every topic of software engineering as it applies to Web

applications in the context of a chapter. I recommend reading Powell’s

book as an excellent starting point. I also recommend Pete McBreen’s

Software Craftsmanship. His ideas frame the experience of PHP-

powered development well.

After introducing the basics of software requirements and design, I

will explore some specific design issues and solutions.

27.1 Writing Requirements Specifications

Before you can design a system, it is important to understand what

it’s supposed to do. Too often this comes in the form of a verbal

request such as, “We need a home page with a guest book and a

visitor counter,” which is never further defined. This usually leads to

the building of a prototype that is 25 percent of what the client

wants. Changes are made to the prototype, and the site is now 50

percent of what the client wants now. During the time the changes

were made, the client has moved the target.

The solution to this problem is to set a target and stick with it. This

should start with a statement of the goals for the project. In my

experience the most important question left unasked is about

motivation. When a client asks for a large, animated scene to appear

on his index page, often the motivation is a desire to seem familiar

with leading-edge technology. Instead of blindly fulfilling the client’s

request, it is better to look for the best solution for the Why? A slick

graphical design can say more about the client’s attention to

advances in technology.

Once you have asked Why? enough times, you should have a list of

several goals for the project. These goals should suggest a set of

requirements. If one of the system’s goals is to generate more

business, one requirement may be to raise visitor awareness of items

in the client’s catalog. This may evolve into a requirement that

products appear throughout the site on a rotational basis. This could

be implemented as banners or kickers strategically placed within the

site. Don’t, however, tie yourself down with design issues. This

earliest stage of site development should concentrate solely on the

goals of the system.

From a solid base of goals, you can begin to describe the system

requirements. This usually takes the form of a requirements

specification document, a formal description of the black-box

behavior expected from the site. The goals will suggest a collection of

functional requirements and constraints on the design. As I’ve said,

having a goal of increasing sales suggests, among other things, that

the site should raise customer awareness of catalog items. Another

requirement could be that the site provides some free service to

attract visitors. An example is a loan company offering a mortgage

calculator. It is a good idea to informally explore possible solutions to

requirements, but it’s still important to keep design decisions out at

this time.

The requirements specification is formal and structured, but it should

be understandable by nonexperts in the implementation technology.

The description of the system’s behavior serves partially as a contract

between the client and developer. Clear statements will eliminate

misunderstandings that have a high cost later in development. That is

not to say that the document shouldn’t be precise. When possible,

state requirements in measurable terms. Constraining page size to

30K is an objective standard and easily tested. Requiring the site to

inspire confidence in the client company is not easily measurable, but

sometimes it’s all you have.

Table 27.1 lists six things toward which a requirements specification

should aspire. It should only specify external behavior. Every

requirement should be expressed as the answer to a What? question.

It should specify constraints. These are best expressed as quantities:

How many hits per day? Maximum page size? Maximum page depth?

The requirements specification should allow you to change it later.

While you should use natural language, don’t write a long narrative.

Number sections of the document and use diagrams where necessary.

It should be a document that helps a future programmer learn about

the system. Don’t be surprised if that programmer is you six months

later.

The requirements should pay attention to the entire life of the

system. If the system needs to be able to recover from a catastrophic

failure within an hour, write it into the specification. And the follow-up

to this idea is that you should describe how the system deals with

adversity�not just disaster, but also illegal user input. Some systems

ignore user input that is not understood. How many times have you

seen a “404 Document Not Found” error? It’s nice when that page

includes a link to the index page of the site.

Table 27.1. Properties of Requirements Specifications

Specifies only external system behavior

Specifies constraints on the implementation

Allows easy modification

Serves as a reference tool for system maintainers

Records forethought about the lifecycle of the system

Characterizes acceptable responses to undesired events

Keeping these guidelines in mind, refer to Table 27.2, which outlines

the structure of a requirements specification. The overview should be

a page or less that reviews the goals of the site. If the goals were

detailed in another document, make this document available. It is

important to preserve the thought that went into the project at each

phase. The requirements build on the goals, and in turn the design

builds on the requirements. But being able to refer to the original

goals of the system will be helpful to the designer and even the

implementer.

Table 27.2. Requirements Specification Document

Structure

Overview of system goals

Operating and development environments

External interfaces and data flow

Functional requirements

Performance requirements

Exception handling

Implementation priorities

Foreseeable modifications

Design suggestions

The operating and development environments are sometimes

overlooked in requirements specifications. This includes both the

browser and the Web server. If you are developing an intranet

application, you may be fortunate enough to optimize for a particular

browser version. I’ve found that while a large company may impose a

standard browser for the organization for which you’ve developed an

application, another standard may apply to the users in another

organization a thousand miles away. The most popular browsers

operate closer to a standard than they did in the early days of the

Web, so this is less of an issue than it was.

The Web server is perhaps more under your control and certainly less

finicky about differences in source code. If you are using PHP, most

likely you will be using Apache. It’s a good idea to use identical

versions of both Apache and PHP for your development and live

environments.

For the most part, your list of external interfaces will include the

Internet connection between the browser and the Web server, the

local file system, and possibly a database connection. I find it helpful

to create a diagram that shows the relationship between data

elements, the simplest of which might be a box labeled Browser

connected to a box labeled Server. The line would have arrows at

each end to show that information travels in both directions. This

diagram is a description of the context, not a design of the data

structure. Whether you will be using a database may be obvious, but

which database may not be. If the system will be storing data

somehow, just show data flowing into a box that could be database

or flat file. The goal is to describe how data moves around in the

system.

The functional requirements will certainly be the largest part of the

document. If you have drawn a data flow diagram, you may have a

very good idea of how the system breaks up into modules. The more

you can partition the functionality into distinct pieces, the easier it

will be to group the functional requirements. I’ve written many

requirements documents for Web applications that are essentially

data warehouses. My approach has been to dedicate a section to

each of the major data entities. A project management application

might have a collection of project descriptions, a collection of users,

and a collection of comments. Each of these would have a section in

the functional requirements that lists first all the information it stores

and then the ways the information can be manipulated.

The performance requirements are constraints on the functionality.

You may wish to outline a minimum browser configuration for use of

the site. Maximum page weights are a good idea. If the client is

dictating that a certain technology be used, it should be noted in this

section. It’s good to know in advance that while you will be allowed to

use PHP, you have to deal with Oracle and Internet Information

Server on Windows XP.

The exception-handling section describes how the system deals with

adversity. The two parts of this are disaster and invalid input. Discuss

what should happen if the Web server suddenly bursts into flame.

Decide whether backups will be made hourly, daily, or weekly. Also

decide how the system handles users entering garbage. For example,

define whether filling out a form with a missing city asks the user to

hit the back button or automatically redisplays the form with

everything filled out and the missing field marked with a red asterisk.

If the client has a preference for the order of implementation, outline

it. My experience has been that, faced with a dire deadline before the

project begins, the client will bargain for which functionality will

appear in the first round. Other requirements may not be critical to

the system, and the client is willing to wait. If there is a preference in

this area, it is very important for the designer and implementers to

know in advance.

Farther in the future are the foreseeable modifications. The client

may not be ready to create a million-dollar e-commerce site just yet,

but may expect to ask you to plug this functionality into the site a

year from now. It may not make sense to use an expensive database

to implement a 50-item catalog, but building a strong foundation for

later expansion will likely be worthwhile.

The last part of the requirements specification is a collection of design

hints. This represents the requirements writer’s forethought about

pitfalls for the designer. You might summarize a similar project. You

might suggest a design approach.

27.2 Writing Design Documents

Once you have created a requirements specification document, you

will have to decide whether to write a design document. Often it is

not necessary, especially when a few people are working on a small

project. You may wish to choose key elements of a complete design

document and develop them to the point of usefulness.

The first part of design is concerned with the architecture of the

system. The system should be broken into sections that encompass

broad groups of functionality. A Web application for project

management might break down into a module that handles project

information, a module that handles users, and a module that handles

timesheet entries. An informational Web site can be broken down by

the secondary pages�that is, the pages one click away from the

home page. The “About Us” section serves to inform visitors about

the company itself, while a catalog area is a resource for learning

about the items the company sells.

Depending on the type of site, you should choose some sort of

diagram that shows the subsystems and how they relate to each

other. These are called entity relationship diagrams. I almost always

create a page-flow diagram. Each node in the graph is a page as

experienced by the user. Lines representing links connect the page to

other pages on the site. Another useful diagram is one that shows the

relationships between database tables. Nodes represent tables, and

you may wish to list the fields inside boxes that stand for the tables.

Lines connect tables and show how fields match. It’s also helpful to

indicate whether the relationship between the tables is one to one or

one to many.

The next phase of design is interface specification. This defines how

subsystems communicate. It can be as simple as listing the URLs for

each page. If the site has forms, all the fields should be enumerated.

If you are tracking user sessions, you will want to specify how you

will be doing this, with cookies or form variables. Define acceptable

values for the session identifier. If the site will be communicating with

files or a database, this phase will define names of files or login

information for databases.

The largest part of a design document is a detailed description of how

each module works. At this point it’s acceptable to specify exactly the

method for implementing the module. For example, you may specify

that a list of catalog items be presented using the ul tag. On the

other hand, if it doesn’t matter, leave it out. The programmer will

have the best idea for solving the problem.

I suggest pursuing a style guide, which may be part of the design

document or may stand alone. This document specifies the style of

the code in the project. You’ll find an example in Appendix G, but

don’t bother flipping there now. The style guide deals with issues like

how to name variables and where to place curly braces. Many of

these issues are arbitrary. What’s important is that a decision is made

and followed. A large body of code formatted according to a standard

is easier to read.

For the rest of this chapter I’d like to present some design ideas you

may choose to adopt. PHP’s dynamic nature allows for structural

designs that can’t be achieved in plain HTML. It is a shame to waste

this functionality by using PHP as a faster alternative to CGI. I

encourage you to consider using PHP as the engine that powers a

completely dynamic Web site.

27.3 Change Management

Anyone who’s worked with a team on a Web application knows the

pain of dividing the tasks among team members. For small teams, it

usually works to shout over cubicle walls. For larger teams, you may

need a manager to coordinate the development process. However,

Gantt charts don’t seem to fit the shoot-from-the-hip mentality of the

typical Web programmer. It feels natural to wander through the files

of the project, changing them as you tackle a problem without

worrying if someone else is editing them.

Sometimes changes are lost, but people cope by keeping backups.

Alternatively, team members can warn each other not to touch some

files for short period. If a file is destroyed, you may hunt through

archives to find an older version. Developers can guard against losing

newer changes by keeping local copies of every change they make,

but it feels like a big hassle.

Web sites evolve through many iterations. The team works on a

project, and it integrates the changes when it finishes. There are two

typical methods for putting the changes into production. The brute

force method involves replacing all application files. This ensures that

you don’t miss any files. Alternatively, you can copy just the new files

and the files that changed.

Instead of trying to control the source code through ad hoc activities,

consider using a source code control system. Popular among C

programmers, source code control works well with most

programming languages. The PHP development team uses source

code control to coordinate the hundreds of people contributing to

PHP, as do many open-source projects.

The overwhelming favorite source code control system among open-

source developers is CVS (concurrent versions system). CVS is an

open-source project itself. At its core is the functionality of the diff

and patch utilities that are part of most operating systems. You can

use diff to compare two files and find the differences. The patch

utility can apply the differences to a third file to bring it up to date.

CVS keeps a repository for a project that includes every incremental

change to every file. Users interact with the repository by running

shell commands on the server. Remote users must use a remote

shell, which is rsh by default. It’s wise to avoid rsh and use ssh if

you can, as rsh sends passwords and traffic through the net

unencrypted. Some open-source projects provide a read-only account

for grabbing a current development version without allowing changes.

After checking out files from a repository, a developer may make any

number of changes to files without disturbing any other developer.

Under normal use, CVS does not grant exclusive use of a file to one

user. These are called unreserved copies. Developers work on files

concurrently, and CVS takes care of tracking changes as they are

checked in. CVS distributes changes on demand to developers. The

changes integrate into source files even if the developer updates a

file with changes that aren’t checked in.

CVS does support reserved copies, but most users find them

unnecessary. In most contexts, CVS can resolve differences between

files without human intervention. When conflicts do occur, CVS alerts

the developer and marks conflicting code plainly.

Although I present a brief tutorial here, find Karl Fogel’s book, Open

Source Development with CVS <http://cvsbook.red-bean.com/>. The

chapters that deal with CVS specifically are free to download, but I

recommend buying the book if you decide to use CVS. Beyond the

mechanics of CVS itself, it documents how CVS fits into the

development process. Also, keep an eye on the Subversion project

<http://subversion.tigris.org/>, which aims to build a CVS

replacement.

If you’re running Linux or FreeBSD, CVS may be installed already. If

not, use a package manager appropriate for your system, such as

RPM or apt-get. If you’re using Windows, you can run CVS clients

with no problem, but CVS servers don’t work well. You can set up a

server that allows local CVS usage with which to experiment, but you

need a UNIX operating system to use CVS seriously.

The CVS Web site <http://www.cvshome.org/> has links for

downloading binaries for many operating systems. You can also

download source code and compile it yourself, but I won’t go over

those steps. The compilation follows typical steps because it uses

autoconf. See the installation instructions in the source code archive.

CVS requires just one binary that’s typically installed as

/usr/local/bin/cvs. This is the client application, but it also makes

changes on the server through a remote shell. To start using a host

as a CVS server, you only need to create a repository.

All CVS functionality goes through the cvs command-line utility. The

init command to cvs creates a new repository. The -d option sets

the path to the repository. CVS creates this directory and places

several files inside it. Figure 27.1 is a capture from my shell as I

created a new repository and listed the contents.

Figure 27.1 Creating a CVS repository.

cvs -d /home/cvshome init

ls -R /home/cvshome

/home/cvshome:

CVSROOT

/home/cvshome/CVSROOT:

Emptydir config,v loginfo rcsinfo

checkoutlist cvswrappers loginfo,v rcsinfo,v

checkoutlist,v cvswrappers,v modules taginfo

commitinfo editinfo modules,v taginfo,v

commitinfo,v editinfo,v notify verifymsg

config history notify,v verifymsg,v

/home/cvshome/CVSROOT/Emptydir:

I created this directory as the root user. This doesn’t allow anyone

else to use the repository. I created a group named cvs in

http://cvsbook.red-bean.com/default.htm
http://subversion.tigris.org/default.htm
http://www.cvshome.org/default.htm

/etc/group and used chgrp to allow users in this group to use the

repository.

Traditionally, CVS uses a password server process on port 2401 for

connections. Installation involves adding the server to inetd‘s list of

daemons. CVS manages a set of users and passwords separate from

those in /etc/passwd with the pserver daemon. All commands

through the password server execute as a single user.

Using pserver is good for public repositories, such as those for open-

source projects. If you’re using it for your internal team, don’t bother

with it. It’s complicated and less secure than SSH.

CVS uses rsh by default. Set the CVS_RSH environment variable to

switch it to SSH. For example, I added the lines in Figure 27.2 to my

.bash_profile file.

Figure 27.2 Additions to bash profile.

#make sure cvs uses SSH

CVS_RSH=ssh

export CVS_RSH

To access the CVS server remotely, you must use special notation.

CVS uses colons to separate information about the authentication

method and the hostname of the server. For example,

:ext:leon@192.168.123.194:/home/cvshome matches my

repository.

In this mode, CVS will prompt you for your password each time you

execute cvs. Some people find this annoying, so they generate an

authorized key. This is a function of SSH, not CVS. You can read

about this on the OpenSSH site <http://www.openssh.org/>.

Use the import command to create a project inside your repository.

This command creates a directory in the repository and copies all the

files in your current directory recursively. For example, I started a

new project in a directory called myproject. Inside the directory is a

single PHP script. To create a directory in the repository, I issued the

commands in Figure 27.3. Note how I used backslashes to keep the

lines from wrapping.

The -d option appears again, specifying the path to the repository.

The -m option applies to the import command. It sets a comment to

associate with the CVS action. This comment can be as long as you

need, and if you leave out the -m option, CVS will launch an editor for

you. The last three commands specify the project name, the vendor

tag, and the release tag. These names are up to you. The project

name will be the name used for the directory on the server, and it’s

how you refer to the project, so choose a short name. What you

choose for the vendor tag and the release tag aren’t important

usually. I use the name of the company and start by default.

Figure 27.3 Importing a project into CVS.

http://www.openssh.org/default.htm

/tmp/myproject> cvs \

-d :ext:leon@192.168.123.194:/home/cvshome import \

-m 'starting my project' myproject mycompany start

leon@192.168.123.194's password:

N myproject/index.php

No conflicts created by this import

/tmp/development/myproject>

CVS created a directory on the server, but it hasn’t changed any of

the files I imported. To work with the files in the repository, you must

make a checkout.

The checkout command copies files from the server to your local

machine. It also creates directories named CVS in every subdirectory

of the project. These subdirectories keep track of the status of the

files and where they came from. After making a checkout, you no

longer need to specify the path to the repository. CVS will find it in

the CVS directory.

Figure 27.4 shows how I made a checkout of my new project.

Figure 27.4 Checking out a project from CVS.

~> cvs -d :ext:leon@192.168.123.194:/home/cvshome \

checkout myproject

leon@192.168.123.194's password:

cvs server: Updating myproject

U myproject/index.php

~>

Once you checkout the project, you can start editing files. Other

developers can make their own checkouts. When you finish working

on a file, use a commit command to integrate your changes into the

project. CVS examines all the files in the current directory and in any

subdirectories. It then coordinates with the server to find changes

and apply them to the server’s copies of the files. Figure 27.5 shows

the results of making a commit.

You and other developers can commit changes as often as you wish,

and the server keeps the most current version at all times. Your own

files do not receive updates unless you ask for them explicitly with

the update command. CVS will check all files recursively. If the

server has a newer version, it applies the changes to your files. Your

changes are not lost. CVS does its best to merge your changes with

those committed since you last updated your files.

Figure 27.5 Checking changes into CVS.

~/myproject>cvs commit -m 'added navigation code'

leon@192.168.123.194's password:

Checking in index.php;

/home/cvshome/myproject/index.php,v <-- index.php

new revision: 1.2; previous revision: 1.1

done

~/myproject>

Updating your files often helps keep your work coordinated with other

developers and avoids conflicts. Conflicts occur when two developers

disagree on a particular part of the source code. For example,

consider the following sequence of events. In the beginning state, a

line in the source code states $a=3. Later, another developer changes

the line to $a=5 and commits the file. This sets the official version of

the line. If you issue an update before changing this line, you will

receive the change with no conflicts, and you can change it yourself.

However, if you change the line before issuing an update, you will

encounter a conflict. CVS marks the conflicting sections of code and

inserts both versions in the source code. To resolve the conflict, you

must edit the file and choose one version or the other.

Regularly updating files helps avoid conflicts. It also alerts you to

changes in files. As you issue an update, CVS notifies you of which

files have changed since your last update. You can also configure CVS

to email changes to a mailing list. If all developers subscribe to the

mailing list, they can monitor activity on the project. This isn’t a

substitute for proper communication among team members, but it

reduces the need to consult constantly with each other about who’s

editing which file.

When you’re ready to make the project live, you have two options. If

releases are infrequent, you may wish to make an export of the

project and replace existing files on the production server. Use the

export command to make a checkout that contains no CVS

directories.

For a site that gets frequently updated, I prefer making an ordinary

CVS checkout on the production server. When making a new version

of the site live, you need to log in to the production server and issue

an update command. This is faster and less hassle than replacing all

existing files. It also avoids those errors associated with missing files

or incorrect paths.

27.4 Modularization Using include

Despite its name, the include function is not equivalent to C’s

preprocessor command of the same name. In many ways it is like a

function call. Given the name of a file, PHP attempts to parse the file

as if it appeared in place of the call to include. The difference from a

function is that the code will be parsed only if the include statement

is executed. You can take advantage of this by wrapping calls to

include in if statements. The require function, however, will

always include the specified file, even if it is inside an if block that is

never executed. It has been discussed several times on the PHP

mailing list that require is faster than include because PHP is able

to inject the specified file into the script during an early pass across

the code. However, this applies only to files specified by a static path.

If the call to require contains a variable, it can’t be executed until

runtime. It may be helpful to adopt a rule of using require only

when outside a compound statement and when specifying a static

path.

Almost anything I write in PHP uses include extensively. The first

reason is that it makes the code more readable. The other reason is

that it breaks the site into modules. This allows multiple people to

work on the site at once. It forces you to write code that is more

easily reused within the existing site and on your next project. Most

Web sites have to rely on repeating elements. Consistent navigation

aids the user, but it is also a major problem when building and

maintaining the site. Each page has to have a similar code block

pasted into it. Making this a module and including it allows you to

debug the code once, making changes quickly.

You can adopt a strategy that consists of placing functions into

include modules. As each script requires a particular function, you

can simply add an include. If your library of functions is small

enough, you might place them all into one file. However, you likely

will have pieces of code that are needed on just a handful of pages.

In this case, you’ll want this module to stand alone.

As your library of functions grows, you may discover some

interdependencies. Imagine a module for establishing a connection to

a database, plus a couple of other modules that rely on the database

connection. Each of these two scripts will include the database

connection module. But what happens when both are themselves

included in a script? The database module is included twice. This may

cause a second connection to be made to the database, and if any

functions are defined, PHP will report the error of a duplicate

function.

In C programmers avoid this situation by defining constants inside

the included files. In PHP you can use the include_once statement. A

function named printBold is defined in Listing 27.1. This function is

needed in the script shown in Listing 27.2. I’ve purposely placed a

bug in the form of a second include. The second time the module is

included, it will return before redeclaring the function.

Listing 27.1 Preventing a double include

<?php

 function printBold($text)

 {

 print("$text");

 }

?>

Listing 27.2 Attempting to include a module twice

<?php

 //load printBold function

 include_once("27-1.php");

 //try loading printBold function again

 include_once("27-1.php");

 printBold("Successfully avoided a second include");

?>

27.5 FreeEnergy

I used the technique of including modules on several Web

applications, and it led me to consider all the discrete elements of a

Web page. Headers and footers are obvious, and so are other

repeating navigational elements. Sometimes you can divide pages up

into the content unique to the page, the stuff that comes before it,

and the stuff that comes after it. This could be hard to maintain,

however. Some of the HTML is in one file, some in another. If nothing

else, you’ll need to flip between two editor windows.

Consider for a moment a Web page as an object�that is, in an

object-oriented way. On the surface, a Web page is a pair of html

tags containing head tags and body tags. Regardless of the design or

content of the page, these tags must exist, and inside them will be

placed further tags. Inside the body tags a table can be placed for

controlling the layout of the page. Inside the cells of the table are

either links to other pages on the site or some content unique to the

page.

FreeEnergy is a system that attempts to encapsulate major pieces of

each page into files to be included on demand. Before I proceed, I

want to state my motivations clearly. My first concern when

developing a Web site is that it be correct and of the highest quality.

Second is that it may be developed and maintained in minimal time.

After these needs are addressed, I consider performance.

Performance is considered last because of the relatively cheap cost of

faster hardware. Moore’s law suggests that eighteen months from

now, CPU speed and memory capacity will have doubled for the same

price. This doubling costs nothing but time. Also, experience has

shown that a small minority of code contributes to a majority of the

time spent processing. These small sections can be optimized later,

leaving the rest of the code to be written as clearly as possible.

The FreeEnergy system uses more calls to include than you would

find if you simply make a few includes at the top of your pages. Hits

to the file system do take longer than function calls, of course. You

could place everything you might need in one large file and include it

on every page, but you will face digging through that large file when

you need to change anything. A trade has been made between the

performance of the application and the time it takes to develop and

maintain it.

I called this system FreeEnergy because it seems to draw power from

the environment that PHP provides. The include function in PHP is

quite unique and central to FreeEnergy, especially the allowance for

naming a script with a variable. The content unique to a page is

called a screen. The screen name is passed to a single PHP script,

which references the screen name in a large array that matches the

screen to corresponding layout and navigation modules.

The FreeEnergy system breaks Web pages into five modules: action,

layout, navigation, screen, and utility. Action modules perform some

sort of write function to a database, a file, or possibly to the network.

Only one action module executes during a request, and it is executed

before the screen module. An action module may override the screen

module named in the request. This is helpful in cases where an action

module is attempting to process a form and the submitted data are

incomplete or otherwise unsatisfactory. Action modules never send

data directly to the screen. Instead, they add messages to a stack to

be popped later by the layout module. It is possible that an action

module will send header information, so it’s important that no output

be produced.

Layout modules contain just enough code to arrange the output of

screen and navigation modules. They typically contain table tags for

controlling the layout of a Web page. Inside the table cells, calls to

include are placed. They may be invoking navigation modules or

screen modules.

Navigation modules contain links and repeating elements. In the

vernacular used by engineers I work with, these are “top nav,”

“bottom nav,” and “side nav.” Consider the popular site, Yahoo!. Its

pages generally consist of the same navigation across the top and

some at the bottom. Its top nav includes the logo and links to

important areas of the site. If the Yahoo! site were coded in

FreeEnergy, there would probably be a dynamic navigation module

for generating breadcrumbs for the current section, such as Home >

Computers and Internet > Software > Internet > World Wide

Web > Servers > Server Side Scripting > PHP.

Screen modules contain the content unique to the particular page

being displayed. They may be plain HTML, or they may be primarily

PHP code, depending on context. A press release is static. Someone

unfamiliar with PHP can prepare it. He needs only know that the

screen module is an HTML fragment.

Any module may rely on a utility module in much the same way

utility files are used in other contexts. Some utility modules are called

with each page load. Others are collections of functions or objects

related to a particular database table.

All modules are collected in a modules directory that further contains

a subdirectory for each module type. To enhance security, it is placed

outside of the Web server’s document root. Within the document root

is a single PHP script index.php. This script begins the process of

calling successive modules and structuring their output with the

standard HTML tags.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

27.6 Templates

Another approach to modularizing PHP applications can be called

templatizing. Loose coupling is a fundamental principle of good

system design. Aside from avoiding confusing people who don’t

understand PHP, a separation offers the benefit of switching to a

different presentation language, such as XML, without disturbing the

business logic.

Using templates, interface designers insert simple tags into

prototypical files (templates) composed mostly of HTML. They insert

short bits of a simple templating language that a PHP script parses in

order to replace markers with generated information.

As with most solutions, there’s a tradeoff. The cost of a templating

system is increased work for PHP with each page load. PHP includes

an efficient parser written in C by the geniuses at Zend. Writing your

own parser in PHP itself is bound to be less than optimal, or so the

argument goes. Yet, a simple syntax can help keep parsing fast, and

some caching tricks can avoid most of the heavy lifting.

I’m optimistic about the average person being able to learn to

program in PHP. Templating pessimistically guesses that the average

person won’t learn PHP but can understand a simpler middle ground

between PHP and HTML. I like to teach people to understand PHP, but

I also understand there’s usually a context for a good tool.

FastTemplate is perhaps the oldest of the templating systems. It was

ported from the original Perl implementation. It uses .tpl files to

hold templates. These templates contain HTML and markers inside

curly braces. A PHP script loads a template, sets values for each of

the markers, and parses the template to produce a final chunk of

HTML ready to send to the browser.

Listing 27.3 Main template

<html>

<head><title>{TITLE}</title>

</head>

<body>

<h1>{TITLE}</h1>

<table>

<tr>

<td valign="top">{SIDENAV}</td>

<td valign="top">{MAIN}</td>

</tr>

</table>

</body>

</html>

Listing 27.3 shows a simple template. Look for the markers in curly

braces. This template uses three: TITLE, SIDENAV, and MAIN. These

are chunks of content generated inside the main PHP script. The first

is a simple variable assignment, and the second will contain another

template file. The last is a standard name used by FastTemplate to

stand for the main content of any screen. Listing 27.4, Listing 27.5,

and Listing 27.6 are a few other templates used in this example.

Listing 27.4 Side navigation

Home

About Us

Contact Us

Listing 27.5 Table template

<table border="1">

<tr><th>n</th> <th>n^2</th> <th>n^3</th></tr>

{ROWS}

</table>

Listing 27.6 Row template

<tr>

 <td>{NUMBER}</td> <td>{SQUARE}</td> <td>{CUBE}</td>

</tr>

The side navigation is a simple set of links to other scripts, as you

might expect. The table includes three columns for a number, its

square, and its cube. A template stored in row.tpl further defines

the rows of the table. The PHP script in Listing 27.7 calls this

template for each row of the table.

Listing 27.7 Script using templates

<?php

 //get FastTemplate class

 require_once("class.FastTemplate.php");

 //instantiate

 //use templates in current directory

 $tpl = new FastTemplate(".");

 //set list of templates used

 $tpl->define(

 array(

 "main"=>"27-3.tpl",

 "side"=>"27-4.tpl",

 "table"=>"27-5.tpl",

 "row"=>"27-6.tpl"

)

);

 //set the value of the TITLE variable

 $tpl->assign(array("TITLE"=>"FastTemplate Test"));

 //get side navigation

 $tpl->parse("SIDENAV", "side");

 //create rows for the table

 for($n=1; $n <= 10; $n++)

 {

 //set values

 $tpl->assign(

 array(

 "NUMBER"=>$n,

 "SQUARE"=>pow($n,2),

 "CUBE"=>pow($n,3)

)

);

 //parse row template and append it to ROWS

 $tpl->parse("ROWS",".row");

 }

 //parse table, main and put it in MAIN

 $tpl->parse("MAIN", array("table","main"));

 //send entire contents to the browser

 $tpl->FastPrint("MAIN");

?>

Most of the code in this example ought to be easy to follow. The

template files need to be in a subdirectory, as shown in the

instantiation. The assign method sets one or more variables to a

fixed value, and the parse method parses a template. You must

define marker values before parsing a template, of course.

This example produces a table of numbers generated in a loop. Each

row of the table is appended to the ROWS variable by assigning

variable values and parsing the template. Note that the call to parse

uses a period before the name of the template, row. This tells

FastTemplate to append instead of replace.

FastTemplate also uses another syntax for repeating blocks. You mark

part of the HTML with HTML comments that must follow a strict form.

There’s no room for adding extra spacing or breaking the comment

onto two lines. These are called dynamic blocks, and they are really

embedded templates.

PHPLib is a large framework for building Web applications. It includes

a class that uses templates very similar to those used by

FastTemplate. You must download the entire package to get the

template class, but it’s usable by itself.

Like FastTemplate, PHPLib’s template class uses curly braces for

markers. It also supports repeating blocks using HTML comment

syntax. Other than the differences in method names, this class works

like FastTemplate.

Two other similar solutions are AvantTemplate and TemplatePower.

These classes use the same approach to templating defined by

FastTemplate: markers that stand for replaceable values. They also

add support for including templates directly instead of using a

marker.

Choosing between these templating systems is largely one of

personal preference. You might prefer the syntax of one of them over

others. TemplatePower claims to be faster than FastTemplate by six

times. Naturally, if you use PHPLib, its included templating class is

your best choice.

The consequence of the extra layer keeping HTML and PHP logic

separate is a hit to performance. Every page load requires parsing

templates and filling in values for markers. It can have a significant

effect on the time it takes to assemble a page. Some data must be

regenerated with each request, such as the contents of a shopping

basket, but most information on a Web site is static. We can save a

lot of work if we cache the parsed templates.

In computer terms, a cache is temporary, fast storage. Space in the

cache is limited, and data placed there is volatile. Caches rely on the

idea that a request for data now predicts another request for the

same data in the near future. If an application behaves this way and

the cache is sufficiently large, you will experience a performance

increase by using a cache.

The cachedFastTemplate class adds caching to the original PHP

FastTemplate implementation. Two new methods allow reading from

and writing to text files stored in /tmp. The write_cache method

stores fully parsed templates in a directory named after the Web

server’s host name. The is_cached method will load the contents

from the directory if the template was cached previously.

The appeal of this class is that it’s a drop-in replacement for the

original class. You don’t need to update your templates. Changes to

your PHP scripts are minor, and they will continue to function even

without modification. They just won’t cache.

There are a few other templating systems that use caching, but

Smarty is an industrial-strength solution. First, Smarty compiles

templates into native PHP. The template file edited by interface

designers is parsed only once. Calls to templates cause the PHP

engine to run a .php file. This eliminates the overhead of running a

parser written in PHP.

Compilation of scripts occurs behind the scenes, with no commands

in your script. If a page request calls for a template that hasn’t been

compiled yet, Smarty compiles it. If the template file changes after

this compilation, Smarty will recompile the next time your script uses

the template.

Additionally, Smarty includes caching functionality, increasing the

performance for static pages. For those pages with static content,

Smarty will process the template into a plaintext file. As with other

caching implementations, you can set an expiration time, after which

the file will be regenerated.

Smarty’s templating system includes more than just marker

replacement. It also includes sophisticated control flow, such as if-

else statements. This allows interface designers to make simple

logical decisions without bothering programmers. The system also

includes loops and a function for including other templates in place.

Templating systems are clearly a satisfying solution for some people;

otherwise, they wouldn’t be so popular. FastTemplate is simple, and

I’m sure anyone comfortable with HTML can handle working around

the markers. The complex solutions, such as Smarty, may be nearly

as intimidating as PHP itself. This is not to suggest that Smarty has

no value. Its approach certainly will be attractive to many

programmers, and careful communication with novices can help keep

them away from the more complex syntax.

Most of these templating systems use {name} as a marker for some

value to be placed later by a PHP script. It’s only slightly more

complicated to write <?php=$name?>. The biggest disadvantage to

using PHP tags is that they don’t show up visually in browsers, which

treat them as unrecognized tags.

27.7 Application Frameworks

Taking application development to the next logical level, application

frameworks attempt to organize reusable components to a ready

platform for application development. The bargain made with these

tools is trading some flexibility and performance for a large library of

ready-made components. This can lead to rapid development.

BinaryCloud <http://www.binarycloud.com/> is a complete

application- hosting environment written in PHP, meant for building

enterprise-level applications. Alex Black and his company, Turing

Studio, lead the maintenance of BinaryCloud. BinaryCloud compiles

its own source files into PHP scripts. It uses the Smarty template

engine discussed earlier in the chapter. The source code is freely

available under a GNU license.

Another approach to Web site design with PHP is the Midgard project

<http://www.midgard-project.org/>. The maintainers are Jukka

Zitting and Henri Bergius. Rather than code a solution in PHP alone,

they have pursued integrating PHP into their own application server.

Midgard is capable of organizing more than 800,000 pages of content

using a Web-based interface. For this reason it is ideal for operating

Magazine sites.

Midgard is an open-source project, of course. You can download an

official release or grab a snapshot through CVS. Binary downloads are

available as well.

Ariadne is a Web application framework from Muze, a development

agency in the Netherlands. It’s available under the GNU Public

License. Auke van Slooten leads the project. The source code can be

downloaded from the Muze site

<http://www.muze.nl/software/ariadne/>.

Ariadne stores PHP source code as objects in a MySQL database.

These objects interact with each other using a virtual file system. A

rich user interface is presented to the user through Web pages, but

advanced users may dig deeper, as well. Another major component

controls access rights for users or groups.

Horde <http://www.horde.org/> is the application framework used for

IMP, a popular email client written in PHP. Chuck Hagenbuch started

the Horde Project. Currently, Eric Rostetter maintains the project,

which is available under a GNU license. The framework evolved from

the backend of the original IMP application, and its heritage shows in

its ability to build quality Web applications for communicating with

Internet servers.

http://www.binarycloud.com/default.htm
http://www.midgard-project.org/default.htm
http://www.muze.nl/software/ariadne/default.htm
http://www.horde.org/default.htm
file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

27.8 PEAR

PEAR <http://pear.php.net/> is the PHP Extension and Application

Repository. It’s part of the PHP project, and you get a copy of the

core PEAR library when you install PHP. In some ways, PEAR is a

parallel to Perl’s CPAN. It collects many general-purpose PHP scripts

into a cohesive library. You can fetch components as you need them

using part of PEAR itself. Stig Bakken, a longtime PHP contributor,

leads the PEAR project.

A core set of PEAR classes comes along with PHP. Although some

packages have a narrow purpose, PEAR as a whole is general

purpose. Downloading a PEAR package is easy. The PHP distribution

includes a shell script named pear. Running pear without any

arguments lists available commands. To get a list of packages

available for installation, run pear remote-list. To install a package,

execute something like pear install XML_Tree. The script

downloads and installs the package.

Using a PEAR class is easy too. PHP keeps the downloaded PEAR

classes in /usr/local/lib/php by default. This path should be in

your include path, which means you can include a PEAR class simply

by naming it. For example, require_once(‘XML/Tree.php’) gets the

XML Tree class. Listing 27.8 demonstrates the use of XML_Tree, which

allows the creation of an XML document without having the DOMXML

extension available.

Listing 27.8 Using a PEAR class

<?php

 //load XML_Tree

 require_once('XML/Tree.php');

 //create a document

 $tree = new XML_Tree;

 $root =& $tree->addRoot('catalog');

 $section =& $root->addChild('section');

 $section->addChild('A');

 $section->addChild('B');

 $section->addChild('C');

 $section =& $root->addChild('section');

 $section->addChild('X');

 $section->addChild('Y');

 $section->addChild('Z');

 //dump XML document

 header('Content-Type: text/xml');

 $tree->dump();

?>

http://pear.php.net/default.htm

27.9 URLs Friendly to Search Engines

Search engines such as Google <http://www.google.com/> and All

the Web <http://www.alltheweb.com/> attempt to explore the entire

Web. They have become an essential resource for Internet users, and

anyone who maintains a public site benefits from being listed. Search

engines use robots, or spiders, to explore pages in a Web site, and

they index PHP scripts the same way they index HTML files. When

links appear in a page, they are followed. Consequently, the entire

site becomes searchable.

Unfortunately, many robots do not follow links that appear to contain

form variables. Links containing question marks may lead a robot into

an endless loop, so they are programmed to avoid them. This

presents a problem for sites that use form variables in links. Passing

form variables in anchor tags is a natural way for PHP to

communicate, but it can keep your pages out of the search engines.

To overcome this problem, data must be passed in a format that

resembles ordinary URLs.

First, consider how a Web server accepts a URI and matches it to a

file. The URI is a virtual path, the part of the URL that comes after

the hostname. It begins with a slash and may be followed by a

directory, another slash, and so forth. One by one, the Web server

matches directories in the URI to directories in the file system. A

script is executed when it matches part of the URI, even when more

path information follows. Ordinarily, this extra path information is

thrown away, but you can capture it.

Look at Listing 27.9. This script works with Apache compiled for UNIX

but may not work with other Web servers. It relies on the PATH_INFO

environment variable, which may not be present in a different

context. Each Web server creates a unique set of environment

variables, although there is overlap.

Listing 27.9 Using path info

<?php

 if(isset($_SERVER['PATH_INFO']))

 {

 //remove .html from the end

 $path = str_replace(".html",

 "", $_SERVER['PATH_INFO']);

 //remove leading slash

 $path = substr($path, 1);

 //iterate over parts

 $pathVar = array();

 $v = explode("/", $path);

 $c = count($v);

 for($i=0; $i<$c; $i += 2)

 {

 $pathVar[($v[$i])] = $v[$i+1];

http://www.google.com/default.htm
http://www.alltheweb.com/default.htm

 }

 print("You are viewing message " .

 "{$pathVar['message']}
\n");

 }

 //pick a random ID

 $nextID = rand(1, 1000);

 print("<a href=\"{$_SERVER["SCRIPT_NAME"]}/message/

 $nextID.html\">" .

 "View Message $nextID
\n");

?>

You may be accessing the code in Listing 27.9 from the URL

http://localhost/corephp/27-9.php/message/1234.html. In this

case, you are connecting to a local server that contains a directory

named corephp in its document root. A default installation of Apache

might place this in /usr/local/apcache/htdocs. The name of the

script is 27-9.php, and everything after the script name is then

placed in the PATH_INFO variable. No file named 1234.html exists,

but to the Web browser it appears to be an ordinary HTML document.

It appears that way to a spider as well.

The code in Listing 27.9 doesn’t really do much. It splits the path info

into pairs used for variable name and value. The script pretends

message is an identifier. It could be referencing a record in a

relational database. I’ve added some code to use a random number

to create a link to another imaginary record. Remember the BBS from

Chapter 23? This method could be applied, and each message would

appear to be a single HTML file.

I’ve introduced only the essential principles of this method. There are

a few pitfalls, and there are a few enhancements to be pursued. Keep

in mind that Web browsers do their best to fill in relative URLs, and

using path information this way may foil their attempts to request

images that appear in your scripts. Therefore, you must use absolute

paths. You might also wish to name your PHP script so that it doesn’t

contain an extension. This is possible with Apache by setting the

default document type, using the DefaultType configuration

directive. You can also use Apache’s mod_rewrite. I encourage you to

read about these parts of Apache at its home site

<http://www.apache.org/docs/>.

http://www.apache.org/docs/default.htm

Chapter 28. Efficiency and Debugging
Topics in This Chapter

Optimization

Measuring Performance

Optimize the Slowest Parts

When to Store Content in a Database

Debugging Strategies

Simulating HTTP Connections

Output Buffering

Output Compression

Avoiding eval

Don’t Load Extensions Dynamically

Improving Performance of MySQL Queries

Optimizing Disk-Based Sessions

Don’t Pass by Reference

Avoid Concatenation of Large Strings

Avoid Serving Large Files with PHP-Enabled Apache

Understanding Persistent Database Connections

Avoid Using exec, Backticks, and system If Possible

Use php.ini-recommended

Don’t Use Regular Expressions Unless You Must

Optimizing Loops

IIS Configuration

This chapter touches upon some issues of efficiency and debugging,

which are more art than science. Efficiency should not be your first

concern when writing code. You must first write code that works, and

hopefully your second concern is keeping the code maintainable.

You will pick up some tactical design issues as you gain more

experience in programming. These begin to gel as idioms�repeated

structures applied to similar problems. Individuals and organizations

tend to develop their own idioms, and you will notice them in code

found in magazine articles and code repositories. Once you accept an

idiom as your own, you can consider it a solved problem. This

consistency saves time when writing code and when reading it later.

In most projects, a tiny minority of code is responsible for most of

the execution time. Consequently, it pays to measure first and

optimize the slowest section. If performance increases to acceptable

levels, stop optimizing.

When a bug appears in your script, the time you spent writing

meaningful comments and indenting will pay off. Sometimes just

reading over troublesome code reveals its flaws. Most of the time you

must print incremental values of variables to understand the

problem.

Among the many books on the subject, I can recommend two. The

first is Writing Solid Code by Steve Maguire. It’s oriented toward

writing applications in C, but many of the concepts apply to writing

PHP scripts. The other is The Practice of Programming by Brian

Kernighan and Rob Pike; Chapter 7 will be of particular interest.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

28.1 Optimization

One reason I like PHP is that it allows the freedom to quickly create

Web applications without worrying about following all the rules of

proper design. When it comes to rapid prototyping, PHP shines. With

this power comes the responsibility to write clean code when it’s time

to write longer-lasting code. Sticking to a style guide helps you write

understandable programs, but eventually you will write code that

doesn’t execute fast enough.

Optimization is the process of fine-tuning a program to increase

speed or reduce memory usage. Memory usage is not as important as

it once was, because memory is relatively inexpensive. However,

shorter execution times are always desirable.

Before you write a program, commit yourself to writing clearly at the

expense of performance. Follow coding conventions, such as using

mysql_fetch_row instead of mysql_result. But keep in mind that

programming time is expensive, especially when programmers must

struggle to understand code. The simplest solution is usually best.

When you finish a program, consider whether its performance is

adequate. If your project benefits from a formal requirements

specification, refer to any performance constraints. It’s not unusual to

include maximum page load times for Web applications. Many factors

affect the time between clicking a link and viewing a complete page.

Be sure to eliminate factors you cannot control, such as the speed of

the network.

If you determine that your program needs optimization, consider

upgrading the hardware first. This may be the least expensive

alternative. In 1965 Gordon Moore observed that computing power

doubled every 18 months. It’s called Moore’s law. Despite the steep

increase in power, the cost of computing power drops with time. For

example, despite CPU clock speeds doubling, their cost remains

relatively stable. Upgrading your server is likely less expensive than

hiring programmers to optimize the code.

After upgrading hardware, consider upgrading the software

supporting your program. Start with the operating system. Linux and

BSD UNIX have the reputation of squeezing more performance out of

older hardware, and they may outperform commercial operating

systems, especially if you factor in server crashes.

If your program uses a database, consider the differences between

relational databases. If you can do without the few advanced features

not yet part of MySQL, it may offer a significant performance

enhancement over other database servers. Check out the

benchmarks provided on their Web site. Also, consider giving your

database server more memory.

Two Zend products can help speed execution times of PHP programs.

The first is the Zend Optimizer. This optimizes PHP code as it passes

through the Zend Engine. It can run PHP programs 40 percent to 100

percent faster than without it. Like PHP, the Zend Optimizer is free.

The next product to consider is the Zend Cache. It provides even

more performance over the optimizer by keeping compiled code in

memory. Some users have experienced 300 percent improvements.

Visit the Zend Web site <http://www.zend.com/> to purchase the

Zend Cache.

http://www.zend.com/default.htm
file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

28.2 Measuring Performance

Before you can begin optimizing, you must be able to measure performance. There are two

easy methods: inserting HTML comments and using Apache’s ApacheBench utility. PHP

applications run on a Web server, but the overhead added by serving HTML documents over

a network should be factored out of your measurements.

You need to isolate the server from other activity, perhaps by barring other users or even

disconnecting it from the network. Running tests on a server that’s providing a public site

may give varying results, as traffic changes during the day. Run your tests on a dedicated

server even if the hardware doesn’t match the production server. Optimizations made on

slower hardware should translate into relative gains when put into production.

The easiest method you can use is insertion of HTML comments into your script’s output.

This method adds to the overall weight of the page, but it doesn’t disturb the display. I

usually print the output of the microtime function. Insert lines like print(“<!—” .

microtime() . “—>\n”)at the beginning, end, and at key points inside your script. To

measure performance, request the page in a Web browser and view the source. This

produces lines like those in Figure 28.1.

Figure 28.1 Measuring performance with microtime.

<!-- 0.57843700 1046300374 -->

<!-- 0.71726700 1046300374 -->

<!-- 0.10676900 1046300375 -->

The microtime function returns the number of seconds on the clock. The first figure is a

fraction of seconds, and the other is the number of seconds since January 1, 1970. You can

add the two numbers and put them in an array, but I prefer to minimize the effect on

performance by doing the calculation outside of the script. In the example above, the first

part of the script takes approximately 0.14 seconds, and the second part takes 0.39.

If you decide to calculate time differences, consider the method used in Listing 28.1. Entries

to the clock array contain a one-word description followed by the output of microtime. The

explode function breaks up the three values so the script can display a table of timing

values. The first column of the table holds the number of seconds elapsed since the last

entry.

Listing 28.1 Calculating microtime differences

<?php

 //start clock

 $clock[] = 'Start ' . microtime();

 //fake some long calculation

 $value = 0;

 for($index = 0; $index < 10000; $index++)

 {

 $value += (cos(time()%pi()));

 }

 //end clock

 $clock[] = 'cos ' . microtime();

 //write to file

 $fp = fopen("/tmp/data.txt", "w");

 for($index = 0; $index < 10000; $index++)

 {

 fputs($fp, "Testing performance\n");

 }

 fclose($fp);

 //end clock

 $clock[] = 'fputs ' . microtime();

 //print clock

 $entry = explode(' ', $clock[0]);

 $lastVal = $entry[1] + $entry[2];

 print('<table border="1">');

 foreach($clock as $c)

 {

 $entry = explode(' ', $c);

 print('<tr>');

 print('<td>' . ($entry[1] + $entry[2] - $lastVal) .

 '</td>');

 print('<td>' . $entry[0] . '</td>');

 print('<td>' . ($entry[1] + $entry[2]) . '</td>');

 print('</tr>');

 $lastVal = $entry[1] + $entry[2];

 }

 print('</table>');

?>

Inserting HTML comments is my favorite method, because it takes no preparation. But its

big weakness is a small sample size. I always try three or four page loads to eliminate any

variances due to caching or periodic server tasks.

The Apache Web server includes a program that addresses this problem by measuring the

number of requests your server can handle. It’s called ApacheBench, but the executable is

ab. ApacheBench makes a number of requests to a given URL and reports on how long it

took. Figure 28.2 shows the results of running 1,000 requests for a simple HTML script. The

line in bold is the part I typed into my shell.

I requested an HTML document to get an idea of the baseline performance of my server. Any

PHP script ought to be slower than an HTML document. Comparing the figures gives me an

idea of the room for improvement. If I found my server could serve a PHP script at 10

requests per second, I’d have a lot of room for improvement.

Keep in mind that I’m running ApacheBench on the server. This eliminates the effects of

moving data over the network, but ApacheBench uses some CPU time. I could test from

another machine to let the Web server use all the system resources.

By default, ApacheBench makes one connection at a time. If you use 100 for the -n option,

it connects to the server 100 times sequentially. In reality, Web servers handle many

requests at once. Use the -c option to set the concurrency level. For example, -n 1000 -c

10 makes one thousand connections with 10 requests active at all times. This usually

reduces the number of requests the server can handle, but at low levels the server is

waiting for hardware, such as the hard disk.

The ApacheBench program is a good way to measure overall change without inconsistencies,

but it can’t tell you which parts of a script are slower than others. It also includes the

overhead involved with connecting to the server and negotiating for the document using

HTTP. You can get around this limitation by altering your script. If you comment out parts

and compare performance, you can gain an understanding of which parts are slowest.

Alternatively, you may use ApacheBench together with microtime comments.

Figure 28.2 ApacheBench output.

/usr/local/apache/bin/ab -n 10000 http://localhost/50k.html

This is ApacheBench, Version 1.3d <$Revision: 1.65 $> apache-1.3

Copyright (c) 1996 Adam Twiss, Zeus Technology Ltd, http://www.zeustech.net/

Copyright (c) 1998-2002 The Apache Software Foundation, http://www.apache.org/

Benchmarking localhost (be patient)

Completed 1000 requests

Completed 2000 requests

Completed 3000 requests

Completed 4000 requests

Completed 5000 requests

Completed 6000 requests

Completed 7000 requests

Completed 8000 requests

Completed 9000 requests

Finished 10000 requests

Server Software: Apache/1.3.26

Server Hostname: localhost

Server Port: 80

Document Path: /50k.html

Document Length: 51205 bytes

Concurrency Level: 1

Time taken for tests: 20.161 seconds

Complete requests: 10000

Failed requests: 0

Broken pipe errors: 0

Total transferred: 514950000 bytes

HTML transferred: 512050000 bytes

Requests per second: 496.01 [#/sec] (mean)

Time per request: 2.02 [ms] (mean)

Time per request: 2.02 [ms] (mean, across all concurrent requests)

Transfer rate: 25541.89 [Kbytes/sec] received

Connnection Times (ms)

 min mean[+/-sd] median max

Connect: 0 0 0.0 0 2

Processing: 1 1 0.0 1 4

Waiting: 0 0 0.0 0 2

Total: 1 1 0.1 1 4

Percentage of the requests served within a certain time (ms)

 50% 1

 66% 1

 75% 1

 80% 1

 90% 1

 95% 1

 98% 1

 99% 1

 100% 4 (last request)

Whichever method you use, be sure to test with a range of values. If your program uses

input from the user, try both the easy cases and the difficult ones, but concentrate on the

common cases. For example, when testing a program that analyzes text from a textarea

tag, don’t limit yourself to typing a few words into the form. Enter realistic data, including

large values, but don’t bother with values so large they fall out of normal usage. People

rarely type a megabyte of text into a text area, so if performance drops off sharply when

you do, it’s probably not worth worrying about.

Remember to measure again after each change to your program, and stop when you

achieve your goal. If a change reduces performance, return to an earlier version. Let your

measurements justify your changes.

28.3 Optimize the Slowest Parts

Although there are other motivations, such as personal satisfaction,

most people optimize a program to save money. Don’t lose sight of

this as you spend time increasing the performance of your programs.

There’s no sense in spending more time optimizing than the

optimization itself saves. Optimizing an application used by many

people is usually worth the time, especially if you benefit from

licensing fees. It’s hard to judge the value of an open-source

application you optimize, but I find work on open-source projects

satisfying as recreation.

To make the most of your time, try to optimize the slowest parts of

your program where you stand to gain the most. Generally, you

should try to improve algorithms by finding faster alternatives.

Computer scientists use a special notation called big-O notation to

describe the relative efficiency of an algorithm. An algorithm that

must examine each input datum once is O(n). An algorithm that must

examine each element twice is still called O(n), as linear factors are

not interesting. A really slow algorithm might be O(n^2), or O of n-

squared. A really fast algorithm might be O(n log n), or n times the

logarithm of n. This subject is far too complex to cover here. You can

find detailed discussions of this topic on the Internet and in university

courses. Understanding it may help you choose faster algorithms.

Permanent storage, such as a hard disk, is much slower than volatile

storage, such as RAM. Operating systems compensate somewhat by

caching disk blocks to system memory, but you can’t keep your entire

system in RAM. Parts of your program that use permanent storage

are good candidates for optimization.

If you are using data stored in files, consider using a relational

database instead. Database servers can do a better job of caching

data than the operating system because they view the data with a

finer granularity. Database servers may also cache open files, saving

you the overhead in opening and closing files.

Alternatively, you can try caching data within your own program, but

consider the lifecycle of a PHP script execution. At the end of the

request, PHP frees all memory. If during your program you need to

refer to the same file many times, you may increase performance by

reading the file into a variable.

Consider optimizing your database queries too. MySQL includes the

EXPLAIN statement, which returns information about how the join

engine uses indexes. MySQL’s online manual includes information

about the process of optimizing queries.

Here are two tips for loops. If the number of iterations in a loop is

low, you might get some performance gain from replacing the loop

with a number of statements. For example, consider a for loop that

sets 10 values in an array. You can replace the loop with 10

statements, which is a duplication of code but may execute slightly

faster.

Also, don’t recompute values inside a loop. If you use the size of an

array in the loop, use a variable to store the size before you enter the

loop instead of calling count each time through the loop. Likewise,

look for parts of mathematical expressions that factor into constant

values.

Function calls carry a high overhead. You can get a bump in

performance if you eliminate a function. Compiled languages, such as

C and Java, have the luxury of replacing function calls with inline

code. You should avoid functions that you call only once. One

technique for readable code is to use functions to hide details. This

technique is expensive in PHP.

If all else fails, you have the option of moving part of your code into

C, wrapping it in a PHP function. This technique is not for the novice,

but many of PHP’s functions began as optimizations. Consider the

in_array function. You can test for the presence of the value in an

array by looping through it, but the function written in C is much

faster.

28.4 When to Store Content in a Database

When I speak of content, I mean static text, perhaps containing

HTML. There is no rule saying that content should never be placed in

a database or that it should always be put in a database. In the case

of a bulletin board, it makes sense to put each message in a

database. Messages are likely to be added continually. It is

convenient to treat them as units, manipulating them by their

creation dates or authors. At the other extreme, a copyright message

that appears at the bottom of every page of a site is more suited to a

text file that is retrieved with the require function.

Somewhere between these two extremes is a break-even point. The

reason is that databases provide a tradeoff. They allow you to handle

data in complex ways. They allow you to associate several pieces of

information around a common identifier. However, you trade away

some performance, as retrieving data is slower than if you opened a

file and read the contents.

Many Web sites are nothing more than a handful of pages dressed up

in a common graphic theme. A hundred files in a directory are easy

to manage. You can name each one to describe its contents and refer

to it in a URL, such as http://www.example.com/index.php?

screen=about_us, and still get the benefit of systematically

generating the layout and navigation. Your PHP script can use the

value of the screen variable as the name of a local file, perhaps in a

directory named screens. Developers can work on the page contents

as they are accustomed, because they know the code is stored in a

file named about_us in a directory named screens.

When the content grows to a thousand pages, keeping each in a

separate file starts to become unmanageable. A relational database

will help you better organize the content. With a site so large, it’s

likely that there will be many versions of the navigation. In a

database it is easy to build a table that associates page content with

navigation. You can also automate hyperlinks by creating one-way

associations between pages. This would cause a link to automatically

appear on a page.

The biggest problem with this approach is the lack of good tools for

editing the site. Developers are used to fetching files into an editor

via FTP. Asking these same people to start using a database shell is

most likely out of the question. The cost of teaching SQL to anyone

who might work on the site may eliminate any benefit gained when

the content is put into the database. So, you are faced with creating

your own tools to edit the content. The logical path is to create Web-

based tools, since coding a desktop application is a major project in

itself, especially if both Windows and Macintosh users are to be

accommodated. As you might guess, Web-based site editors are less

than ideal. However, with very large sites they become bearable,

because the alternative of managing such a large static site is a

greater evil, so to speak.

http://www.example.com/index.php@screen=about_us

28.5 Debugging Strategies

There are times when code produces unexpected results. Examining

the code reveals nothing. In this case the best thing to do is some in-

line debugging. PHP scripts generate HTML to be interpreted by a

browser, and HTML has a comment tag. Therefore, it is a simple

matter to write PHP code that reports diagnostic information inside

HTML comments. This allows you to put diagnostic information into

an application without affecting its operation.

Often I create database queries dynamically, based on user input. A

stray character or invalid user input can cause the query to return an

error. Sometimes I print the query itself. I also print the results of the

error functions, such as mysql_error. The same applies to code

unrelated to databases. Printing diagnostic information, even if it is

as simple as saying “got here,” can help.

Chapter 9 describes many debugging-related functions. The print_r

function can be particularly helpful.

You can go a long way toward finding bugs in your applications by

turning on all errors, warnings, and notices. Warnings and notices

may not halt your scripts, but they can indicate potential problems.

Consider how PHP allows the use of a variable before initializing it. If

you mistype the name of a variable, PHP creates a new variable with

an empty value. PHP generates a notice if you use the value of a

variable before initializing it.

It may be easiest to turn on notices inside php.ini, assuming the

Web server is dedicated to development. A production server should

not display error messages as a security precaution. You can always

turn on full error reporting from within your script with the

error_reporting function.

If you don’t wish to disturb the HTML output of your scripts, you can

write messages to a log file. The error_log and syslog functions are

two solutions built into PHP. Of course, you can always open a text

file in your code and write diagnostic information. If you use Apache,

you can also use the apache_note function to pass debugging

information up to the Apache process where it may be included in

Apache’s logs. Refer to the Apache documentation to learn how to

create custom logs.

Finally, there are several tools available for debugging PHP scripts.

Zend Studio, for example, includes a remote debugger that allows

you to step over each line of your script.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_23061533.html

28.6 Simulating HTTP Connections

When writing PHP scripts, it is not necessary to understand every detail of the HTTP protocol. I would

be straying to include a treatise here, but you ought to have enough understanding so that you could

simulate a connect by using telnet. You may know that Web servers listen on port 80 by default. HTTP

is a text-based protocol, so it’s not hard to telnet directly to a Web server and type a simple request.

HTTP has several commands that should be familiar; GET and POST are used most often. HEAD is a

command that returns just the headers for a request. Browsers use this command to test whether

they really want to get an entire document.

It is especially helpful to simulate an HTTP connection when your script sends custom headers. Figure

28.3 is an example showing a request I made to an Apache server. The text in bold is what I typed.

The remote server returned everything else.

Figure 28.3 Simulating an HTTP connection.

[View full width]

telnet www.example.com 80

Trying 192.168.178.111...

Connected to www.example.com.

Escape character is '^]'.

HEAD / HTTP/1.0

HTTP/1.1 200 OK

Date: Wed, 26 Feb 2003 23:19:07 GMT

Server: Apache/1.3.26 (Unix) AuthMySQL/2.20 PHP/4.1.2 mod_gzip/1.3.19.1a mod_ssl/2.8.9

 OpenSSL/0.9.6g

X-Powered-By: PHP/4.1.2

Connection: close

Content-Type: text/html

Connection closed by foreign host.

[root@www tmp]#

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/&r=noccc&xmlid=0-13-046346-9/ch28lev1sec6#PLID0

28.7 Output Buffering

Output buffering is an advanced feature added in PHP 4. Enabling

output buffering makes PHP direct the output of applications to a

memory buffer instead of sending it directly to the client browser.

Once in the buffer, applications can manipulate the output. This

manipulation may be compression, conversion from XML to HTML, or

even changing embedded URLs. Afterwards, the application emits the

processed results to the browser.

Even if you have no need to perform postprocessing on the output

your applications emit, output buffering can improve the performance

of PHP-based Web sites by decreasing the number of I/O calls to the

Web server’s infrastructure. Calling the I/O layer of the Web server is

typically an expensive operation. Gathering the output into one big

block and performing just one I/O operation can be much faster than

performing an I/O call every time PHP emits a piece of output�that

is, every time you call print or echo.

If your PHP scripts emit HTML pages larger than 10K, allocating and

reallocating the buffer can consume more time than is saved from the

reduced number of I/O calls. As in many other cases in computer

science, you achieve the best performance by finding a good balance

between no buffering at all and complete buffering.

Thankfully, PHP’s output buffering layer allows users to strike this

balance. Instead of telling PHP to buffer all output, you can enable

chunked output buffering. Chunked output buffering limits the

amount of buffered data to a designated value and flushes the buffer

every time the buffer fills up. A good balanced value for chunked

output buffering is 4K. It significantly reduces the number of I/O calls

your script triggers without consuming significant amounts of

memory or imposing noticeable allocation overhead. For instance, if

the average size of a PHP-generated HTML page on your site is 50K,

PHP will typically perform between 500 and 10,000 I/O calls. With a

4K buffer, it would perform between 12 and 13 I/O calls, resulting in

a noticeable gain.

To enable a 4KB output buffer for your entire site, set the

output_buffering directive to 4096. If you wish to enable output

buffering on a per-script basis, use ob_start. For example, you

might write ob_start(null, 4096) to use a 4K buffer.

28.8 Output Compression

Even considering the growing availability of personal broadband

Internet access, many sites still address the market of dialup users. If

you happen to be running one of them, you probably know that the

size of your pages has direct influence on the amount of time your

users have to wait before they can see your Web site. Regardless of

your Web server’s performance, delivery to the client remains at the

mercy of the network. Reducing the size of your content reduces the

impact of network performance on the overall request-to-response

time.

Typically, giving up on certain elements in your Web site just to

improve performance is not an option. That is, graphics designers go

through their own process of optimizing the design with respect to

application requirements. One practical solution is compression of

your content. As you would hope, PHP comes to your aid if you need

to make use of compression.

PHP’s output compression support takes advantage of the fact that

most of the popular browsers (including Internet Explorer, Netscape

Navigator, and Mozilla) are capable of seamlessly decompressing

compressed pages. Such browsers send a special entry in their HTTP

request (Accept-Encoding: deflate, gzip), which hints to the

server that they know how to handle compressed content. Most

servers don’t do anything with this information, but with PHP you can

easily turn this into smaller pages and faster download times.

Document sizes typically reduce by 2 to 10 times!

If enabled, output compression will detect the special entry in the

browser’s request and will seamlessly compress any output that is

emitted by your application. To enable output compression (only for

browsers that support it; the behavior for browsers that don’t will not

be affected), simply turn on the zlib.output_compression directive

in php.ini.

If you wish to enable output compression for a specific page only, you

can do so with ob_start. For example, ob_start(“ob_gzhandler”,

4096) activates compression and buffers the output. Note that PHP

implements output compression on top of the output buffering

mechanism. Unlike regular chunked output buffering, which simply

sends out the contents of the output buffer each time it fills up, when

output compression is enabled the contents of the buffer go through

a special compression filter each time it has to be flushed. The size of

the buffer directly affects the efficiency of the compression. If you

use a smaller buffer size, compression ratios will be worse. Using

larger buffers will usually result in better compression ratios, but

typically comes with a price of higher allocation overhead. As with

regular output buffering, 4096 bytes is a good, balanced chunk size.

Unless you have a good reason to change it, you should stick to the

defaults.

Because compressing information is a CPU-intensive task, it only

makes sense if

your pages are large,

a large percentage of your users accesses your Web site over

slow connections, and

your Web server has CPU cycles to spare.

If some of these factors are not true in your case, enabling output

compression may actually decrease the overall performance. In case

you’re interested in output compression without having to pay the

CPU overhead price, consider the Zend Performance Suite. Zend

Performance Suite combines output compression with content

caching, which means you get all the benefits of output compression

without having to wait for the data to compress each time.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

28.9 Avoiding eval

Before we get into the gory details, the best way to remember this tip

is to remember the catchy phrase eval() is evil. You should do your

best to avoid it: eval suffers from slow performance because in order

to execute the code, it must invoke the runtime compiler component

in the Zend Engine, which is an expensive operation. In many

situations, you can replace a call to eval with equivalent code that

does not make use of eval.

The most common case where eval can be replaced with faster code

is when you use it for accessing variables or functions dynamically.

Consider Listing 28.2.

Listing 28.2 Unnecessary use of eval

<?php

 function assign($varname, $value)

 {

 eval("global \$$varname; \$$varname = \$value;");

 }

 for($i=0; $i<100; $i++)

 {

 assign("foo", 5);

 print($foo);

 }

?>

In this example, assign can be used to assign values into variables

when you have the variable name handy and not the variable itself.

In our case, the eval string will expand to global $foo; $foo =

$value; which assigns 5 to the global foo variable, and when we

print it, we get 5, as expected. You can achieve the same

functionality without using eval by using an indirect reference. See

Listing 28.3.

Listing 28.3 Removing unnecessary use of eval

<?php

 function assign($varname, $value)

 {

 global $$varname;

 $$varname = $value;

 }

 for($i=0; $i<100; $i++)

 {

 assign("foo", 5);

 print($foo);

 }

?>

Prefixing variable varname with an extra $ tells PHP to fetch the

variable whose name is the value of var. This feature is called an

indirect reference. In our case, the value of variable is foo, so PHP

globalizes foo and assigns the value to it. Since it doesn’t have to

invoke the runtime compiler, this new version will yield approximately

twice as many requests per second as the eval version!

Another way to eliminate repeated calls to eval involves creating a

function dynamically. Let’s assume that we have a few lines of code in

a variable named code, possibly fetched from a database, passed

from a different part of the program or constructed locally. Listing

28.4 shows a naïve implementation.

Listing 28.4 Call to dynamic code with eval

<?php

 //create some example code

 $code = "sqrt(pow(543, 12));";

 for($i=0; $i<100; $i++)

 {

 eval($code);

 }

?>

As mentioned before, this is exceptionally slow. PHP invokes the Zend

Engine runtime compiler for each iteration. The technique in Listing

28.5 offers a better solution.

Listing 28.5 Using a dynamic function to eliminate eval

<?php

 //create some example code

 $code = "sqrt(pow(543, 12));";

 //create a function to wrap

 //the loaded code

 $func = create_function('', $code);

 for($i=0; $i<100; $i++)

 {

 $func();

 }

?>

The create_function function creates a new function from the code

passed to it, as discussed in Chapter 11. While the results of Listing

28.4 and Listing 28.5 are identical, Listing 28.5 is several times

faster. The reason is simple: Listing 28.4 invokes the runtime

compiler 100 times, each time we eval the code. Using

create_function, the script invokes the runtime compiler only once

and declares an anonymous function, which it calls 100 times. This

saves 99 invocations of the runtime compiler, which results in a huge

performance boost.

28.10 Don’t Load Extensions Dynamically

The dl function allows applications to dynamically load extensions

into PHP, thereby adding functionality to the PHP engine. It is the

runtime equivalent of extension=/path/to/extension.so in

php.ini. However, using dl has many drawbacks over using

php.ini. We strongly encourage you not use it.

Dynamically loading a library for each script execution is much slower

than doing it once on server startup. You’re actually getting hurt

twice, because if you load it using the extension directive in

php.ini, it gets loaded once for all of the Web server processes

instead of being loaded for each process separately.

Due to the nature of memory management under UNIX, loading an

extension once on server startup is much more efficient than loading

it later, separately for each server process. An extension loaded on

server startup, by the Apache parent process, is shared among all the

child processes. However, when we load an extension in runtime into

specific Web server processes, each copy we load ends up consuming

its own chunk of memory, which is not shared with any other process,

thereby consuming much more memory.

What if I’m a Windows user and don’t care too much about Apache or

UNIX?, you may ask. In that case, the motivation for not using dl is

even simpler�dl is not supported by the thread-safe version of PHP.

Because virtually all of the PHP builds for Windows are built in

thread-safe mode, dl is typically not an option if you’re a Windows

user.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

28.11 Improving Performance of MySQL Queries

The mysql_query function is perhaps the most popular function in

PHP. If you’re a MySQL user, you use it routinely to issue queries to

the MySQL server and receive result sets. What you may not know is

that when a query returns large result sets or queries large

databases, mysql_query can be very inefficient.

In order to understand the reason for the inefficiency, you must

understand how mysql_query works. When you issue a SELECT

statement using mysql_query, PHP sends it to the MySQL server. The

MySQL server parses it, creates an execution plan, and starts to

iterate over the table rows, looking for valid results. Every time it

finds a valid result, the server sends it back over the network to the

client. On the client side, PHP appends each row to a buffer, until the

server sends a message that acknowledges that no rows remain.

When this happens, mysql_query returns control to the PHP

application and allows it to iterate over the result buffer.

The performance problem arises when we deal with large result sets

or when we’re querying very big databases. In such cases, the time

that passes from receiving the first result row and receiving the last

one can be quite long. Even though our client is idle and is virtually

doing nothing, we cannot use this time to begin processing the

results. We have to wait until the server sends the very last row, and

only after we get control back can we process the results. If we could

start processing the result rows as soon as they start arriving instead

of having to wait for the last row, performance would improve

significantly. As usual, PHP doesn’t disappoint us.

In addition to mysql_query, PHP offers an additional version of the

function, named mysql_unbuffered_query. The API for the two

functions is identical, but mysql_unbuffered_query does not buffer

the result rows before returning control to the PHP application.

Instead, it returns control to PHP as soon as it issues the query

successfully. Each time we fetch a row, the MySQL module attempts

to read the next row from the server and returns control to the

application as soon as it fetches the row. That way, we can process

the rows as they arrive instead of having to wait for the entire result

set to become available.

If unbuffered queries are so good, why does PHP even let you use

regular, buffered queries? Unfortunately, there’s a good reason for

that�unbuffered queries are not always a good idea. If the server

sends the rows faster than the client reads them, the server will keep

the relevant tables locked for more time than necessary. SQL

statements needing to write to the table must wait until the read

operation finishes. Since this may result in a huge performance

degradation for pages that make changes to the database, using

unbuffered queries is recommended only if the amount of processing

your pages perform on each row is sufficiently small or if updates are

infrequent.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

28.12 Optimizing Disk-Based Sessions

Many Web applications use HTTP sessions to retain information about specific users for the

duration of their visit. The default and most common storage for the session information is

disk files, located in /tmp. With heavily loaded Web sites that serve large number of users,

accessing the session store on the disk may become extremely inefficient, since most file

systems (including Linux’s ext2 and Windows’ NTFS) don’t handle a large number of files in

the same directory very efficiently. As the number of files in the /tmp directory grows due

to a large number of active sessions, the time it takes to open each session file becomes

longer.

A good first step would be moving the session storage directory from /tmp into a dedicated

directory in the file system. You can do that by setting the session.save_path directive in

php.ini. Using a different directory removes the overhead of non-PHP sessions-related files

if any reside in /tmp. However, this is indeed just a first step and not necessarily a very big

one. Given enough active sessions, the number of other files in /tmp may be negligible.

As if out of habit, PHP comes to the rescue and allows you to easily distribute the session

files to multiple directories without any hassle. PHP has built-in support to treat the first n

letters in the session key as hashing directories. For those of you not familiar with this

methodology, let’s illustrate. Consider we have a session with the key

3fdb6cd5748e5ef2ecc415530a3f167e. Assuming we’ve set session.save_path to

/tmp/php_sessions, PHP stores this session in a file named /tmp/php_sessions/

sess_3fdb6cd5748e5ef2ecc415530a3f167e. However, if we change php.ini to

session.save_path = 2;/tmp/php_sessions, PHP stores the session information in

/tmp/php_sessions/3/f/sess_3fdb6cd5748e5ef2ecc415530a3f167e. Note the extra

directories separating php_sessions and the session file itself. Similarly, if we set the

session.save_path to 4;/tmp/php_sessions, PHP stores the session file in

/tmp/php_sessions/3/f/d/b/sess_3fdb6cd5748e5ef2ecc415530a3f167e. The optional

semicolon-separated number in session.save_path is named the session save path depth.

Thanks to the exponential nature of this algorithm, the number of files per directory is

reduced by a power of 36 that equals the session save path depth, 36 being the number of

characters used for session identifiers. This means that there usually isn’t a need to go

beyond a depth of 2 or 3.

Garbage collection may be improved too. Garbage collection is the process of removing old

session files after a certain expiration timeout. By default, PHP takes care of garbage

collection automatically. However, due to architectural constraints, PHP’s built-in garbage

collection takes place inside the context of a request. This means that at least one request

will end up being blocked for the duration of the cleanup, which can sometimes take more

than a few seconds. Moreover, PHP’s automated cleanup supports only the default depth

setting of 0. As soon as we move to use a different depth, automated garbage collection will

no longer work, and session files will begin to pile up.

The best solution for the garbage collection issue is to move it out of PHP and into a cron

job. For instance, if you would like to remove sessions after 24 hours and perform collection

every hour, you could add the following line to the system’s crontab:

0 * * * * nobody find /tmp/php_sessions -name sess_* -ctime +1 | xargs rm �f

Using this mechanism works regardless of any session.save_path depth you may be using

and prevents any requests from getting stuck for long periods of time due to garbage

collection. Of course, you may want to tune the frequency of garbage collection by using

different cron settings or change the expiration limit for session file by using different find

settings.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

28.13 Don’t Pass by Reference (or, Don’t Trust Your
Instincts)

Telling people not to trust their instincts may be startling, but in the

context of PHP it can be good advice. One of the most common

examples of a popular bad hunch is the urge to pass variables by

reference for performance reasons. Admittedly, it sounds very

convincing. Instead of passing a copy of the variable, a script passes

the variable itself. That’s bound to be faster, isn’t it? Well, no. In

order to understand why, we need to understand a bit more about

how the Zend Engine handles values.

The Zend Engine implements a reference-counted, copy-on-write

value system. This means that multiple variables may point to the

same value without consuming multiple blocks of memory. Consider

Listing 28.6.

Listing 28.6 Zend Engine reference counting

<?php

 //create an array

 $apple = array(1=>'a', 2=>'b', 3=>'c');

 //make a copy, ZE keeps one version only

 $ball = $apple;

?>

In this example we assign apple to ball, but PHP copies no data.

Instead, it updates ball to point to the same location in memory

apple does, a location that contains the array that we originally

assigned to apple. For bookkeeping purposes, PHP notifies the array

and updates it with a reference count of 2. The Zend Engine takes

responsibility to ensure that the reference count of each value in the

system reflects the number of symbols referencing it. So much for

the reference-counted part. Let’s enhance our example with the code

in Listing 28.7.

Listing 28.7 Zend Engine splitting references on write

<?php

 //create an array

 $apple = array(1=>'a', 2=>'b', 3=>'c');

 //make a copy, ZE keeps one version only

 $ball = $apple;

 //apple changes, ZE makes separate versions

 //for apple and ball

 $apple[1] = 'd';

 //element 1 of ball remains a

 print($ball[1]);

?>

Of course, we don’t expect that modifying apple[1] will change

ball[1] and hope that the contents of ball[1] will remain a. If you

try running it, you’ll find out that indeed it does not get affected by

the assignment to apple[1]. But how could this be if we just said

that a and ball point to the very same location in memory?

This is where the copy-on-write part kicks in. As soon as the Zend

Engine detects a write operation to a value that is referenced by

more than one symbol, it replicates the value, creating an identical

value that sits in a different place in memory, disconnected from any

other symbols. Only then does it allow the write operation to

continue. This just-in-time duplication greatly improves performance

without any functional side effects thanks to avoiding unnecessary

data copies.

How does all of this relate to passing-by-reference being a bad idea?

A good start would be understanding why it doesn’t help, and the

reason is that thanks to the engine’s reference-counting mechanism,

there’s no need to explicitly pass any variables by reference. The

engine will automatically avoid unnecessary duplication if at all

possible.

Okay, so it’s not a good idea. It still doesn’t mean it will do any

harm�or does it? In reality, it turns out that it does. Let’s go back to

our apple and ball arrays and add a function that displays their

contents. See Listing 28.8.

Listing 28.8 Unnecessary pass by reference

<?php

 //function to print the count of an array

 //passed by reference

 function printArray(&$arr)

 {

 print(count($arr));

 }

 //create an array

 $apple = array(1=>'a', 2=>'b', 3=>'c');

 //make a copy, ZE keeps one version only

 $ball = $apple;

 //print array

 printArray($apple);

?>

Seemingly, there’s nothing wrong with this code. It produces the

expected results. However, this implementation is roughly 30 percent

slower than it would have been if you declared printArray to receive

its argument by value instead of by reference. When the engine

comes to pass apple to printArray, it detects that it needs to pass it

by reference. It then detects that the value in question has a

reference count of 2. Since we’re passing apple by reference, and

any changes that printArray might make must not be reflected in

ball, the Zend Engine must make separate copies for apple and

ball. If you pass a variable into a function by value, the Zend Engine

simply can increment the reference count.

Never use pass-by-reference for performance reasons. Use it only

when it makes sense from a functional point of view�let the engine

take care of passing arguments!

28.14 Avoid Concatenation of Large Strings

A very common practice in PHP is to needlessly concatenate large

chunks of data before printing them. Compare Listing 28.9 to Listing

28.10. The concatenation of subject and contents has to happen

before the script calls print, and if the size of contents is very big,

it can consume a lot of time. Listing 28.10 calls print multiple times;

PHP never needs to concatenate subject and contents in memory,

which saves valuable time. Note that since calling print itself has

some overhead, it may not always be advisable to separate

concatenations into multiple print statements. In certain cases it may

also make the code less readable. For that reason, it’s best if you

follow this practice only when displaying large strings.

Listing 28.9 Concatenation of large strings

<?php

 $subject = "some subject";

 $contents = "...a very large block of text...";

 print("Subject: $subject\n\n$contents");

?>

Listing 28.10 Avoiding concatenation of large strings

<?php

 $subject = "some subject";

 $contents = "...a very large block of text...";

 print("Subject: $subject\n\n");

 print($contents);

?>

28.15 Avoid Serving Large Files with PHP-Enabled
Apache

This isn’t a coding tip, but rather a server setup tip. If your Web site

serves large files for downloading, it may be a good idea to set up a

special Web server for serving them instead of serving them through

the PHP-enabled Apache Web server. There are several reasons for

doing so.

Large downloads can take a significant amount of time. The number

of concurrent processes that Apache uses is typically limited by a

relatively small number. Every Apache process that serves a

download file remains unavailable for the duration of the download.

This reduces the number of concurrent users that your Web site can

handle.

Apache processes consume relatively large amounts of memory for

each process, especially if Apache is PHP-enabled. Even if increasing

the maximum number of concurrent Apache processes is an option

for you, you will be wasting a large amount of memory needlessly.

To set up a download server, consider using the throttling Web server

thttpd <http://www.acme.com/software/thttpd/>. It is extremely

lightweight and imposes almost no overhead on the server, which

makes it one of the most suitable Web servers for serving large

amount of static content such as download files.

http://www.acme.com/software/thttpd/default.htm

28.16 Understanding Persistent Database
Connections

Persistent database connections are one of the least understood

features in PHP. Many people don’t understand the meaning of

persistent links, misconfigure their setup, get beaten by connection

problems, and dump persistent connections altogether. Since in many

situations, using persistent connections yields significant performance

gains, it is important to understand how to properly set them up so

that they get a fair trial.

The first important thing to understand about persistent connections

is what they are not. Persistent connections are not the same as

connection pooling, functionality offered by ODBC, JDBC, and certain

database drivers. Connection pooling, the process of juggling a pool

of connections to server threads, is not suitable for PHP because the

typical PHP environment is not multithreaded. In Apache 1.x (and

also in version 2.0, when using the prefork MPM), concurrency is

implemented by having several processes. Since database

connections cannot be shared among different processes, there’s no

way to implement connection pooling. That is, if we open a

connection in process, it cannot be used by any other process.

As opposed to pooled connections, persistent connections are

connections that are simply not closed at the end of the request, as

are ordinary connections. Future requests that are handled by the

same process can then reuse the opened connection, thus avoiding

the overhead of establishing a new database connection in each

request. The fundamental difference between pooled and persistent

connections is therefore that persistent connections keep one

connection open per Web server instance, whereas with pooled

connections, a relatively small number of opened connections is

shared between all server instances.

Given this knowledge, we can now make more informed decisions

about whether it makes sense for us to use persistent connections,

and if so, how to set them up. Here are a couple of guidelines to

follow.

When using persistent connections, given a long enough uptime,

there will be one connection open for each running Apache process.

This means that your database server must be able to handle at least

as many active connections as your Apache server’s MaxClients

setting. Having a few extra free connections in excess of MaxClients

is best so that you will still be able to connect to the database server

for administration purposes.

Persistent connections make sense only if your database server

handles a large number of open connections efficiently. Certain

database servers suffer from a significant performance hit when

working with a large number of open connections, even if they are

mostly idle. Other servers may have licensing restrictions on the

number of simultaneous connections that can be made to them in

any given time. With such servers, persistent connections are not

recommended. One example of a server that does handle a large

number of simultaneous connections very efficiently is MySQL, so

using persistent connections in conjunction with it is highly

recommended.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

28.17 Avoid Using exec, Backticks, and system If
Possible

A common mistake that many PHP programmers make is overusing

external processes for tasks that can be performed using PHP’s built-

in native functions. For instance, exec(“/bin/ls �a $dirname”,

$files), which uses the external /bin/ls program, can be replaced

by code in Listing 28.11.

Listing 28.11 Avoiding executing an external process

<?php

 $dir = opendir($dirname);

 while($entry = readdir($dir))

 {

 $files[] = $entry;

 }

?>

Even though it’s a few more lines of code, Listing 28.11 is much

faster and is also much less prone to security hazards. The exec

version requires you to make sure that dirname contains no malicious

switches or code that may end up doing something other than you

expect.

Whenever you find yourself using exec, system, or backticks, check

whether there’s a way to implement the same functionality using

native PHP code. If it can be done with reasonable effort, always

prefer the native PHP approach to external program invocation.

28.18 Use php.ini-recommended

The PHP distribution includes a file named php.ini-recommended

alongside the standard php.ini-dist file. Unlike php.ini-dist,

which comes preconfigured for PHP’s default settings, php.ini-

recommended has a list of nonstandard settings, which improve PHP’s

security and performance. Each nonstandard setting is thoroughly

documented in the body of php.ini-recommended, which describes

the consequences of enabling it as well as the category of

improvement to which this setting is related, such as performance or

security. When installing PHP for the first time, or when you want to

tune your PHP server for performance, try to use php.ini-

recommended.

28.19 Don’t Use Regular Expressions Unless You Must

PHP features a very large library of string functions, some of which are

extremely powerful. However, in many situations two or more functions can

be used to perform the same task, but with great differences in

performance.

Perhaps the most commonly overused functions are ereg_replace and

preg_replace. These regular-expression-based pattern-replacing functions

are often used even when the replacement pattern is completely static and

there’s no need for compiling a complex regular expression. For instance,

$str = ereg_replace("sheep", "lamb", "Mary had a little sheep");

can be up to 10 times slower than the equivalent

$str = str_replace("Mary had a little sheep", "sheep", "lamb");

Use regular expressions only when you absolutely have to!

If you do have to use a regular expression, try to use the Perl-compatible

functions, such as preg_match and preg_replace instead of the older

regular expression functions, such as ereg and ereg_replace. Besides

being more powerful, the Perl-compatible functions are typically quicker

than the old, POSIX regular expressions.

28.20 Optimizing Loops

A very common performance mistake in PHP is creating loops that

iterate over an array without caching the number of elements in the

array. For example, consider Listing 28.12. The first loop can be

optimized to perform about 50 percent faster by caching the value of

count($arr) in a variable instead of calling count over and over

again. You can even get the count inside the for loop’s initialization

step. Wherever possible, see if you can take static code, which is

invariant of the loop’s iterator, out of the loop.

Listing 28.12 Count array elements once

<?php

 //setup sample array

 $arr = array("Cosmo" , "Elaine", "George", "Jerry");

 //loop over elements, recounting each time

 for ($i=0; $i < count($arr); $i++)

 {

 print $arr[$i];

 }

 //loop over elements, make count first

 $n = count($arr);

 for ($i=0; $i < $n; $i++)

 {

 print $arr[$i];

 }

 //put count into init step

 for ($i=0, $n = count($arr); $i < $n; $i++)

 {

 print $arr[$i];

 }

?>

28.21 IIS Configuration

If you have a performance-sensitive PHP server deployed on

Microsoft IIS under Windows, you should be aware of the different

setup options that IIS allows. The different settings allow you to trade

reliability and security for performance.

Inside the your PHP application’s properties window in Internet

Services Manager, select the Home Directory tab. In that tab, you will

see an Application Protection pull-down menu, which determines the

isolation level of the application. By default, IIS sets it to Medium,

which means that PHP pages will be running in a separate process of

IIS. In practice, it means that if PHP experiences a crash, perhaps

due to memory corruption or stack overflow, the only the PHP-

dedicated IIS process is affected. Other applications are served by

other processes and are not effected.

While this setting helps make your server more robust, it comes at

the price of a big performance hit. The other applicable Application

Protection setting, Low, would make IIS run PHP in the main

inetinfo.exe process. Requests will not have to be relayed to

external processes, and performance will be dramatically increased.

However, the price may come in the form of reduced stability�any

PHP crash will bring the entire Web server down with it.

Unfortunately, because not all of PHP’s modules and the third-party

libraries they use are entirely thread-safe, such crashes cannot be

avoided.

For a performance-sensitive Web site, we recommend that you first

try using PHP with the Low Application Protection setting. Only if you

experience trouble should you switch to the Medium setting.

Chapter 29. Design Patterns
Topics in This Chapter

Patterns Defined

Singleton

Factory

Observer

Strategy

Popular among fans of Java and C++, design patterns are not a topic

often discussed among PHP programmers. Yet, they are an important

part of computer science. Furthermore, they apply to all

programming languages.

Design patterns have their root in the work of Christopher Alexander

in the context of designing buildings and cities. However, his work

applies to any design activity, and it soon inspired computer

scientists. The first popular book about software design patterns was

Design Patterns: Elements of Reusable Object-Oriented Software by

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.

People commonly refer to them as the Gang of Four, or GoF.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

29.1 Patterns Defined

Intuitively, we recognize patterns in our programming with almost

every line of code. Given an array, you have a favorite idiom for

looping over it. Since the foreach statement appeared in PHP, it’s

been my favorite.

From a larger perspective, we encounter the familiar problem of

where to place functionality in PHP scripts. Most projects require

dividing functionality into several modules. A flat, informational site

benefits well from a simple scheme using headers and footers applied

with include or require. Both examples have problems to be solved

and memorized solutions. The conditions define a problem that has a

known solution. Furthermore, after solving the problem a number of

times, you gain an appreciation for the side effects, good and bad, of

the solution.

The formal definition of design patterns includes four parts: a name,

a description of the problem, a solution, and a set of consequences.

The name gives us a convenient way to refer to the pattern. The

problem description defines a particular set of conditions to which the

pattern applies. The solution describes a best general strategy for

resolving the problem. Finally, the pattern explains any consequences

of applying the pattern.

Pattern solutions are not particularly fancy. They don’t require the

use of obscure features. They represent careful refinement over time,

based on experience. They tend to optimize for reusability rather

than efficiency. Naturally, a solution optimized for speed takes

advantage of a particular situation and therefore is not well suited to

the general case. For example, if you need the sum of three

numbers, you can easily write them in a line of code. You would not

use a general solution for the sum of 10,000 numbers, such as

looping over an array.

Although patterns have their roots in building architecture, in the

context of computer science they are closely linked to object-oriented

design. Object-oriented programming aims to produce generalized

software modules called objects. Design patterns seek to produce

generalized solutions to common problems. This avoids the

reinvention of the proverbial wheel.

Prior to PHP 5, PHP programmers found it difficult to implement

design patterns efficiently in PHP. Thanks to PHP 5’s revamped object

model, design patterns are now easy to implement and are becoming

a key ingredient in development of object-oriented PHP applications.

There are several advantages to using design patterns in your code.

You don’t need to think through the solution as long as you recognize

that the problem matches the one solved by the pattern. You don’t

need to analyze the consequences of applying the pattern. You don’t

need to spend time optimizing the implementation.

Instead of having to come up with a solution, you only have to

recognize what kind of problem you are facing. If the problem has an

applicable design pattern, then you may be able to skip much of the

design overhead and go directly to the implementation phase.

The consequences of using a certain design pattern are written in the

pattern description. Instead of having to analyze the possible

implications of using a certain algorithm�or worse, figure out why

the algorithm you chose is not right for you after you implement

it�you can refer to the pattern description. Implementing a solution

from a design pattern gives you a fairly good idea about the

complexity, limitations, and overhead of the solution.

The solutions supplied in design patterns tend to be efficient,

especially in terms of reducing development and maintenance times.

Simply put, you put other people’s brains to work on your problem for

free, which is a bargain.

If you’ve written large applications, it’s quite possible that you would

recognize similarities between some of the algorithms you used and

the algorithms described in certain design patterns. That is no

coincidence�design patterns are there to solve real-world problems

that you are likely to encounter regularly. It’s quite possible that after

performing a thorough investigation of a certain problem, the solution

you came up with is similar to that in the design pattern. If you were

aware of design patterns back then, it would have saved you at least

some of the design time.

While this chapter is not meant to provide thorough coverage of

design patterns, it acquaints you with some of the most popular ones

and includes PHP implementation examples. If you’re interested in

further enhancing your knowledge of design patterns, definitely find a

copy of the GoF book mentioned earlier. Craig Larman’s Applying UML

and Patterns: An Introduction to Object-Oriented Analysis and Design

and the Unified Process is another well-recommended resource.

29.2 Singleton

Singleton is a design pattern that is useful when you want to create

an object that should be accessible for different, distinct parts of your

application. Especially if this object is supposed to contain large

chunks of information, instantiating it over and over again may prove

to be extremely inefficient. Instead, if you had a way of sharing the

same instance between all of the different parts of the application, it

would be ideal. Of course, global variables come to mind, but they

require you to manage initialization. That is, you must make sure that

nobody erases this variable by mistake, that nobody instantiates

another instance of this class, and so forth. Relying on the application

code to properly use the infrastructure is definitely not object-

oriented. In object-oriented design, you would instantiate your own

class to expose an API allowing you to take care of these things in the

class itself instead of having to rely on every piece of application code

to maintain system integrity.

Figure 29.1 shows the structure of a Singleton implementation in PHP.

Analyzing this class, you can spot three key features: a private, static

property holding the single instance; a public, static method that

returns the single instance; and a private constructor.

A private, static property holds a single instantiation of the class. As

previously mentioned in the description of static class properties,

static variables are similar to global variables. In this case, however,

we take advantage of our ability to make this property private,

thereby preventing application code from reading it or changing it.

A public, static method returns the only instantiation of the class. This

single access point allows us to initialize the variable exactly once,

before the application code accesses it. Thanks to its being static, we

don’t need to instantiate an object before we can call this method.

Figure 29.1 Singleton pattern.

class Singleton

{

 static private $instance = NULL;

 private function __construct()

 {

 ... perform initialization as necessary ...

 }

 static public function getInstance()

 {

 if (self::$instance == NULL)

 {

 self::$instance = new Singleton();

 }

 return self::$instance;

 }

 ... class logic goes here ...

}

The constructor is private. A Singleton class is one of the few

situations in which it makes sense to use a private constructor. The

private constructor prevents users from instantiating the class

directly. They must use the getInstance method. Trying to

instantiate the class using $obj = new Singleton will result in a

fatal error, since the global scope may not call the private constructor.

One real-world example with which you can use the Singleton class is

a configuration class, which wraps around your application’s

configuration settings. Listing 29.1 is a simple example. Thanks to the

Singleton pattern, there’s never more than one copy of the

configuration file in memory. Any changes made to the configuration

automatically persist.

Listing 29.1 Configuration Singleton

<?php

 /*

 ** Configuration file singleton

 */

 class Configuration

 {

 static private $instance = NULL;

 private $ini_settings;

 private $updated = FALSE;

 const INI_FILENAME = "/tmp/corephp.ini";

 private function __construct()

 {

 if(file_exists(self::INI_FILENAME))

 {

 $this->ini_settings =

 parse_ini_file(self::INI_FILENAME);

 }

 }

 private function __destruct()

 {

 //if configuration hasn't changed, no need

 //to update it on disk

 if(!$this->updated)

 {

 return;

 }

 //overwrite INI file with the

 //version in memory

 $fp = fopen(self::INI_FILENAME, "w");

 if(!$fp)

 {

 return;

 }

 foreach ($this->ini_settings as $key => $value)

 {

 fputs($fp, "$key = \"$value\"\n");

 }

 fclose($fp);

 }

 public function getInstance()

 {

 if(self::$instance == NULL)

 {

 self::$instance = new Configuration();

 }

 return self::$instance;

 }

 public function get($name)

 {

 if(isset($this->ini_settings[$name]))

 {

 return $this->ini_settings[$name];

 }

 else

 {

 return(NULL);

 }

 }

 public function set($name, $value)

 {

 //update only if different from what

 //we already have

 if(!isset($this->ini_settings[$name]) OR

 ($this->ini_settings[$name] != $value))

 {

 $this->ini_settings[$name] = $value;

 $this->updated = TRUE;

 }

 }

 }

 //Test the class

 $config = Configuration::getInstance();

 $config->set("username", "leon");

 $config->set("password", "secret");

 print($config->get("username"));

?>

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

29.3 Factory

Factory is a design pattern aimed at decoupling the instantiation of

your objects from the application code that uses them. For example,

you may want to use different kinds of objects depending on the

situation. If you have two rendering classes, HtmlRenderer and

WmlRenderer, and want your application to transparently use the

right one depending on what kind of client is connected, you can

easily do that using the Factory design pattern.

There are many different variants of the Factory design pattern. In

Figure 29.2 we pick a simple one, which simply uses a global

function.

Figure 29.2 Factory pattern.

<?php

 //define abstract factory class

 class Renderer

 {

 private $document;

 abstract function render()

 {

 }

 function setDocument($document)

 {

 $this->document = $document;

 }

 }

 class HtmlRenderer extends Renderer

 {

 function render()

 {

 ... HTML rendering ...

 }

 }

 class WmlRenderer extends Renderer

 {

 function render()

 {

 ... WML rendering ...

 }

 }

 //Create the right kind of Renderer

 function RendererFactory()

 {

 $accept = strtolower($_SERVER["HTTP_ACCEPT"]);

 if(strpos($accept, "vnd.wap.wml") > 0)

 {

 return new WmlRenderer();

 }

 else

 {

 return new HtmlRenderer();

 }

 }

 //Application code

 $renderer = RendererFactory();

 $renderer->setDocument(...content...);

 $renderer->render();

?>

The Factory method receives no arguments, but in many situations

you may wish to pass information to the Factory that will help it

determine what kind of object should be instantiated. Nothing in the

Factory pattern prevents you from passing arguments to the

constructor.

A popular case for using factory methods is implementing an

unserializer�a piece of code that takes a two-dimensional, serialized

stream and turns it into objects. How do we write general-purpose

code that will be able to instantiate any type of object that may

appear in the stream? What if you want to specify different

arguments to the constructor, depending on the type of object you’re

instantiating? Listing 29.2 contains an implementation.

Listing 29.2 Registered classes with the Factory

pattern

<?php

 class Factory

 {

 private $registeredClasses = array();

 static private $instance = NULL;

 private function __construct() {}

 static function getInstance()

 {

 if(self::$instance == NULL)

 {

 self::$instance = new Factory();

 }

 return self::$instance;

 }

 function registerClass($id, $creator_func)

 {

 $this->registeredClasses[$id] = $creator_func;

 }

 function createObject($id, $args)

 {

 if(!isset($this->registeredClasses[$id]))

 {

 return(NULL);

 }

 return($this->registeredClasses[$id]($args));

 }

 }

 class MyClass

 {

 private $created;

 public function __construct()

 {

 $created = time();

 }

 public function getCreated()

 {

 return($this->created);

 }

 }

 function MyClassCreator()

 {

 return(new MyClass());

 }

 $factory = Factory::getInstance();

 $factory->registerClass(1234, "MyClassCreator");

 $instance = $factory->createObject(1234, array());

?>

Those of you who are familiar with the bits and bytes of PHP’s syntax

know that there’s a simpler way of doing it. Listing 29.2

demonstrates a more object-oriented way to solve the problem, as it

is done in other languages. It also allows for flexibility should you

wish to implement additional logic in the creator (possibly sending

some information to the constructor). In practice, it’s accurate to say

that PHP has built-in support for factory methods, utilized by simply

writing $object = new $classname.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

29.4 Observer

Observer is one of the most useful design patterns for developing large-

scale object-oriented applications. It allows you, with the use of

messages, to interconnect objects without their having to know anything

about each other. At the heart of the Observer pattern are two main

actors: observers and subjects. Observer objects find subject objects

interesting and need to know when the subject changes. Typically, multiple

observers monitor a single subject.

Listing 29.3 contains a simple implementation of the Observer pattern.

Listing 29.3 Observer pattern

<?php

 interface Message

 {

 static function getType();

 };

 interface Observer

 {

 function notifyMsg(Message $msg);

 };

 class Subject

 {

 private $observers = array();

 function registerObserver(Observer $observer, $msgType)

 {

 $this->observers[$msgType][] = $observer;

 }

 private function notifyMsg(Message $msg)

 {

 @$observers = $this->observers[$msg->getType()];

 if(!$observers)

 {

 return;

 }

 foreach($observers as $observer)

 {

 $observer->notifyMsg($msg);

 }

 }

 function someMethod()

 {

 //fake some task

 sleep(1);

 //notify observers

 $this->notifyMsg(new HelloMessage("Zeev"));

 }

 }

 class HelloMessage implements Message

 {

 private $name;

 function __construct($name)

 {

 $this->name = $name;

 }

 function getMsg()

 {

 return "Hello, $this->name!";

 }

 static function getType()

 {

 return "HELLO_TYPE";

 }

 }

 class MyObserver implements Observer

 {

 function notifyMsg(Message $msg)

 {

 if ($msg instanceof HelloMessage)

 {

 print $msg->getMsg();

 }

 }

 }

 $subject = new Subject();

 $observer = new MyObserver();

 $subject->registerObserver($observer,

 HelloMessage::getType());

 $subject->someMethod();

?>

The beauty in the Observer pattern is that it allows subject objects to

activate Observer objects without the subjects having any knowledge

about the objects that observe them other than that they support the

notification interface. The Observer pattern enables developers to connect

dependent objects in different parts of the application, dynamically and as

necessary, without having to provide specialized APIs for each type of

dependency. It also allows different Observer objects to select what kind

of information interests them without having to change any code in the

subject object.

One thing to worry about when implementing Observer is cyclic

notification paths. An object may both observe other objects and be

observed by other objects�that is, be both a Subject and an Observer. If

two objects observe each other and deliver messages that trigger another

message in their observing object, an endless loop occurs. In order to

avoid it, it’s best if you avoid delivering notification messages in your

notification handler. If it’s not possible, try to create a simple, one-sided

flow of information, which will prevent cyclic dependencies.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

29.5 Strategy

The Strategy pattern applies when you have a general problem to be

solved by two or more algorithms. The choice of solutions represents a

decision the user makes. For example, a graphics program allows for

saving an image in many different formats, each with unique code for

writing a file. The input to each of these routines is identical.

This pattern can also solve the problem of presenting a Web application

in various languages or styles. Very simple schemes can get by with an

array of translated words or colors for a theme, but complex

customization may require code to produce dynamic results. I

encountered this situation when trying to allow for international versions

of an e-commerce site.

Aside from differences in language, people of the world format numbers

differently. The number_format function goes a long way to solve this

problem, of course. It doesn’t address figures of money. Americans use $

to the left of numbers to represent dollars. Europeans may expect EUR,

the symbol for a Euro. It’s possible prices for Japanese customers should

have yen to the right of the figure, depending on the situation.

To implement the strategy pattern, you must define a shared interface

for all algorithms. You may then proceed with various implementations of

this interface. In PHP we can implement this by defining a general class

and extending it with subclasses. We can take advantage of

polymorphism to promote a consistent interface to the functionality.

Listing 29.4 contains the base class, localization. It defines two

methods, formatMoney and translate. The first method returns a

formatted version of a money figure. The second method attempts to

translate an English phrase into a local representation. The base class

defines default functionality. Subclasses can choose to use the defaults or

override them.

Listing 29.4 Strategy pattern

<?php

 //Strategy superclass

 class Localization

 {

 function formatMoney($sum)

 {

 number_format($sum);

 }

 function translate($phrase)

 {

 return($phrase);

 }

 }

?>

Listing 29.5 contains an English subclass of localization. This class

takes special care to place negative signs to the left of dollar signs. It

doesn’t override the translate method, since input phrases are

assumed to be in English.

Listing 29.5 English subclass

<?php

 //get Localization

 include_once('29-4.php');

 class English extends Localization

 {

 function formatMoney($sum)

 {

 $text = "";

 //negative signs precede dollar signs

 if($sum < 0)

 {

 $text .= "-";

 $sum = aba($sum);

 }

 $text .= "$" . number_format($sum, 2, '.', ',');

 return($text);

 }

 }

?>

Listing 29.6 contains a German subclass of localization. This class

uses periods to separate thousands and commas to separate decimals. It

also includes a crude translate method that handles only yes and no. In

a realistic context, the method would use some sort of database or

external interface to acquire translations.

Listing 29.6 German subclass

<?php

 include_once('29-4.php');

 class German extends Localization

 {

 public function formatMoney($sum)

 {

 $text = "EUR " . number_format($sum, 2, ',', '.');

 return($text);

 }

 public function translate($phrase)

 {

 if($phrase == 'yes')

 {

 return('ja');

 }

 if($phrase == 'no')

 {

 return('nein');

 }

 return($phrase);

 }

 }

?>

Finally, Listing 29.7 is an example of using the localization subclasses.

A script can choose between available subclasses based on a user’s

stated preference or some other clue, such as HTTP headers or domain

name. This implementation depends on classes kept in files of the same

name. After initialization, all use of the localization object remains the

same for any language.

Listing 29.7 Using localization

<?php

 print("Trying English
\n");

 include_once('29-5.php');

 $local = new English;

 print($local->formatMoney(12345678) . "
\n");

 print($local->translate('yes') . "
\n");

 print("Trying German
\n");

 include_once('29-6.php');

 $local = new German;

 print($local->formatMoney(12345678) . "
\n");

 print($local->translate('yes') . "
\n");

?>

One advantage of this pattern is the elimination of big conditionals.

Imagine a single script containing all the functionality for formatting

numbers in every language. It would require a switch statement or an

if-else tree. It also requires parsing more code than you would possibly

need for any particular page load.

Also consider how this pattern sets up a nice interface that allows later

extension. You can start with just one localization module, but native

speakers of other languages can contribute new modules easily. This

applies to more than just localization. It can apply to any context that

allows for multiple algorithms for a given problem.

Keep in mind that Strategy is meant for alternate functionality, not just

alternate data. That is, if the only difference between strategies can be

expressed as values, the pattern may not apply to the particular

problem. In practice, the example given earlier would contain much more

functionality differences between languages, differences which might

overwhelm this chapter.

You will find the Strategy pattern applied in PEAR_Error, the error-

handling class included in PEAR. Sterling Hughes wrote PEAR’s error

framework so that it uses a reasonable set of default behaviors, while

allowing for overloading for alternate functionality depending on context.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

Appendix A. Escape Sequences
The following codes may be included in strings and have special

meaning when printed to the browser or to a file. It is important to

note that they do not have special meaning when passed to other

functions, such as those communicating with a database or

evaluating a regular expression.

Code Description

" Double Quotes

\ Backslash Character

\n New Line

\r Carriage Return

\t Horizontal Tab

\x00 - \xFF Hex Characters

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

Appendix B. ASCII Codes
The following table lists the first 128 characters of the ASCII code.

PHP allows for ASCII codes ranging from 0 to 255, but above code

127 the representation differs across operating systems.

Decimal Hex Character Description

0 00 Null

1 01 Start of Heading

2 02 Start of Text

3 03 End of Text

4 04 End of Transmission

5 05 Enquiry

6 06 Acknowledge

7 07 Bell

8 08 Backspace

9 09 Character Tabulation

10 0A Line Feed

11 0B Line Tabulation

12 0C Form Feed

13 0D Carriage Return

14 0E Shift Out

15 0F Shift In

16 10 Datalink Escape

17 11 Device Control One

18 12 Device Control Two

19 13 Device Control Three

20 14 Device Control Four

21 15 Negative Acknowledge

22 16 Synchronous Idle

Decimal Hex Character Description

23 17 End Of Transmission Block

24 18 Cancel

25 19 End of Medium

26 1A Substitute

27 1B Escape

28 1C File Separator

29 1D Group Separator

30 1E Record Separator

31 1F Unit Separator

32 20 Space

33 21 ! Exclamation Mark

34 22 ” Quotation Mark

35 23 # Number Sign

36 24 $ Dollar Sign

37 25 % Percent Sign

38 26 & Ampersand

39 27 ’ Apostrophe

40 28 (Left Parenthesis

41 29) Right Parenthesis

42 2A * Asterisk

43 2B + Plus Sign

44 2C , Comma

45 2D - Hyphen-Minus

46 2E . Period

47 2F / Forward Slash

48 30 0 Zero

49 31 1 One

Decimal Hex Character Description

50 32 2 Two

51 33 3 Three

52 34 4 Four

53 35 5 Five

54 36 6 Six

55 37 7 Seven

56 38 8 Eight

57 39 9 Nine

58 3A : Colon

59 3B ; Semicolon

60 3C < Less-Than Sign

61 3D = Equals Sign

62 3E > Greater-Than Sign

63 3F ? Question Mark

64 40 @ At Symbol

65 41 A Uppercase A

66 42 B Uppercase B

67 43 C Uppercase C

68 44 D Uppercase D

69 45 E Uppercase E

70 46 F Uppercase F

71 47 G Uppercase G

72 48 H Uppercase H

73 49 I Uppercase I

74 4A J Uppercase J

75 4B K Uppercase K

76 4C L Uppercase L

Decimal Hex Character Description

77 4D M Uppercase M

78 4E N Uppercase N

79 4F O Uppercase O

80 50 P Uppercase P

81 51 Q Uppercase Q

82 52 R Uppercase R

83 53 S Uppercase S

84 54 T Uppercase T

85 55 U Uppercase U

86 56 V Uppercase V

87 57 W Uppercase W

88 58 X Uppercase X

89 59 Y Uppercase Y

90 5A Z Uppercase Z

91 5B [Left Square Bracket

92 5C \ Backslash

93 5D] Right Square Bracket

94 5E ^ Carat

95 5F _ Underscore

96 60 ` Accent

97 61 a Lowercase A

98 62 b Lowercase B

99 63 c Lowercase C

100 64 d Lowercase D

101 65 e Lowercase E

102 66 f Lowercase F

103 67 g Lowercase G

Decimal Hex Character Description

104 68 h Lowercase H

105 69 i Lowercase I

106 6A j Lowercase J

107 6B k Lowercase K

108 6C l Lowercase L

109 6D m Lowercase M

110 6E n Lowercase N

111 6F o Lowercase O

112 70 p Lowercase P

113 71 q Lowercase Q

114 72 r Lowercase R

115 73 s Lowercase S

116 74 t Lowercase T

117 75 u Lowercase U

118 76 v Lowercase V

119 77 w Lowercase W

120 78 x Lowercase X

121 79 y Lowercase Y

122 7A z Lowercase Z

123 7B { Left Curly Bracket

124 7C | Vertical Line

125 7D } Right Curly Bracket

126 7E ~ Tilde

127 7F Delete

If you are interested in how characters are rendered in a particular

browser, the script in Listing B.1 will print each character in a table.

Listing B.1 ASCII characters

<html>

<head>

<title>ASCII Characters</title>

</head>

<body>

<table border="1" cellspacing="0" cellpadding="5">

<?

 for($index=32; $index <= 255; $index++)

 {

 print("<tr>");

 print("<td>$index</td>");

 print("<td>".chr($index)."</td>");

 print("</tr>\n");

 }

?>

</table>

</body>

</html>

Appendix C. Operators

Precedence Operator Operation It Performs Associativity

1 ! logical not Right

 ~ bitwise not

 ++ Increment

 — decrement

 @ silence operator

 (int) integer cast

 (float) floating-point cast

 (string) string cast

 (bool) boolean cast

 (array) array cast

 (object) object cast

2 * multiply Left

 / divide

 % modulo

3 + add Left

 � subtract

 . concatenate

4 << bitwise shift left Left

 >> bitwise shift right

5 < is smaller Nonassociative

 <= is smaller or equal

 > is greater

 >= is greater or equal

6 == is equal Nonassociative

 != is not equal

Precedence Operator Operation It Performs Associativity

 === is identical

 !== is not identical

7 && logical and Left

8 || logical or Left

9 ? : question mark operator Left

10 = assign Right

 =& assign by reference

 += assign add

 -= assign subtract

 *= assign multiply

 /= assign divide

 %= assign modulo

 ^= assign bitwise xor

 &= assign bitwise and

 |= assign bitwise or

 .= assign concatenate

11 AND logical and Left

12 XOR logical xor Left

13 OR logical or Left

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

Appendix D. PHP Tags
There are several ways to mark an area of PHP script in a Web page,

displayed below. The results of the script, if any, will take the place in

the final output. If a line break follows the closing tag, it will be

removed. This helps you write more readable code.

<?

?>

This is the classic method for marking PHP code. Many of the

examples found on the Internet use this method, probably because

it’s been available the longest. PHP 2 used this method, except that

the second question mark was omitted.

This method is called short tags, and support for it may be turned on

or off. One way is to use the short_tags function described in

Chapter 15. A directive in the php.ini file controls enabling short

tags for all scripts. You can also configure PHP to enable short tags

before you compile it.

<?=

?>

Unlike other methods, these tags are shorthand for a call to the echo

function. This is probably best illustrated with an example.

<? $name="Leon"; ?>

Hi, my name is <?= $name ?>.

<?php

?>

This method was added to make PHP scripts compatible with XML,

which gets confused by the short tags described above.

<script language="php">

</script>

Some text editors, Microsoft’s Frontpage in particular, do not

understand tags that start with <?, so support for this longer tagging

method was added.

<%

%>

<%=

%>

These methods emulate ASP-style tags. They are otherwise identical

to the form using question marks.

Finally, you can run a script from the command line, like php

test.php. By default, the PHP compilation process creates a

command-line interface version of PHP. Windows users can find the

CLI version of PHP in its own subdirectory of the PHP distribution.

Appendix E. PHP Compile-Time
Configuration
The following are commands accepted by the configure script.

Typing ./configure —help in your shell will get you more

information about what each does.

--disable-all

--disable-cgi

--disable-cli

--disable-ctype

--disable-inline-optimization

--disable-ipv6

--disable-libtool-lock

--disable-mbregex

--disable-path-info-check

--disable-posix

--disable-rpath

--disable-session

--disable-short-tags

--disable-tokenizer

--disable-xml

--enable-all

--enable-bcmath

--enable-calendar

--enable-dba

--enable-dbase

--enable-dbx

--enable-debug

--enable-dio

--enable-discard-path

--enable-dmalloc

--enable-embed[=TYPE]

--enable-exif

--enable-fast-install[=PKGS]

--enable-fastcgi

--enable-filepro

--enable-force-cgi-redirect

--enable-ftp

--enable-gd-native-ttf

--enable-libgcc

--enable-magic-quotes

--enable-maintainer-zts

--enable-mbstring

--enable-memory-limit

--enable-pcntl

--enable-roxen-zts

--enable-safe-mode

--enable-shared[=PKGS]

--enable-shmop

--enable-sigchild

--enable-sockets

--enable-static[=PKGS]

--enable-sysvmsg

--enable-sysvsem

--enable-sysvshm

--enable-ucd-snmp-hack

--enable-versioning

--enable-wddx

--enable-xslt

--enable-yp

--with-adabas[=DIR]

--with-aolserver=DIR

--with-apache-hooks-static[=DIR]

--with-apache-hooks[=FILE]

--with-apache[=DIR]

--with-apxs2handler[=FILE]

--with-apxs2[=FILE]

--with-apxs[=FILE]

--with-birdstep[=DIR]

--with-bz2[=DIR]

--with-caudium=DIR

--with-cdb[=DIR]

--with-config-file-path=PATH

--with-config-file-scan-dir=PATH

--with-cpdflib[=DIR]

--with-crack[=DIR]

--with-curlwrappers

--with-curl[=DIR]

--with-custom-odbc[=DIR]

--with-cyrus[=dir]

--with-db

--with-db2[=DIR]

--with-db3[=DIR]

--with-db4[=DIR]

--with-dbmaker[=DIR]

--with-dbm[=DIR]

--with-dom-exslt[=DIR]

--with-dom-xslt[=DIR]

--with-dom[=DIR]

--with-empress-bcs[=DIR]

--with-empress[=DIR]

--with-esoob[=DIR]

--with-exec-dir[=DIR]

--with-expat-dir=DIR

--with-expat-dir=DIR

--with-expat-dir=DIR

--with-fam

--with-fbsql[=DIR]

--with-fdftk[=DIR]

--with-flatfile

--with-freetype-dir[=DIR]

--with-gdbm[=DIR]

--with-gd[=DIR]

--with-gettext[=DIR]

--with-gmp

--with-gnu-ld

--with-hwapi[=DIR]

--with-hyperwave

--with-ibm-db2[=DIR]

--with-iconv-dir=DIR

--with-iconv-dir=DIR

--with-iconv[=DIR]

--with-imap-ssl=<DIR>

--with-imap[=DIR]

--with-informix[=DIR]

--with-ingres[=DIR]

--with-inifile

--with-interbase[=DIR]

--with-iodbc[=DIR]

--with-ircg

--with-ircg-config=PATH

--with-isapi=DIR

--with-jpeg-dir[=DIR]

--with-jpeg-dir[=DIR]

--with-jpeg-dir[=DIR]

--with-kerberos[=DIR]

--with-layout=TYPE

--with-ldap[=DIR]

--with-libedit[=DIR]

--with-mcal[=DIR]

--with-mcrypt[=DIR]

--with-mcve[=DIR]

--with-mhash[=DIR]

--with-milter=DIR

--with-mime-magic[=FILE]

--with-ming[=DIR]

--with-mm[=DIR]

--with-mnogosearch[=DIR]

--with-mod_charset

--with-mod_charset

--with-msession[=DIR]

--with-msql[=DIR]

--with-mssql[=DIR]

--with-mysql-sock[=DIR]

--with-mysqli[=DIR]

--with-mysql[=DIR]

--with-ncurses[=DIR]

--with-ndbm[=DIR]

--with-nsapi=DIR

--with-oci8[=DIR]

--with-openlink[=DIR]

--with-openssl[=DIR]

--with-oracle[=DIR]

--with-ovrimos[=DIR]

--with-pdflib[=DIR]

--with-pear=DIR

--with-pfpro[=DIR]

--with-pgsql[=DIR]

--with-phttpd=DIR

--with-pi3web=DIR

--with-pic

--with-png-dir[=DIR]

--with-png-dir[=DIR]

--with-pspell[=DIR]

--with-qtdom

--with-readline[=DIR]

--with-recode[=DIR]

--with-regex=TYPE

--with-roxen=DIR

--with-sablot-js=DIR

--with-sapdb[=DIR]

--with-servlet[=DIR]

--with-snmp[=DIR]

--with-solid[=DIR]

--with-swf[=DIR]

--with-sybase-ct[=DIR]

--with-sybase[=DIR]

--with-t1lib[=DIR]

--with-thttpd=SRCDIR

--with-tiff-dir[=DIR]

--with-tiff-dir[=DIR]

--with-tsrm-pthreads

--with-tsrm-pth[=pth-config]

--with-tsrm-st

--with-ttf[=DIR]

--with-tux=MODULEDIR

--with-unixODBC[=DIR]

--with-webjames=SRCDIR

--with-xmlrpc[=DIR]

--with-xpm-dir[=DIR]

--with-xslt-sablot=DIR

--with-yaz[=DIR]

--with-zip[=DIR]

--with-zlib-dir=<DIR>

--with-zlib-dir[=DIR]

--with-zlib-dir[=DIR]

--with-zlib-dir[=DIR]

--with-zlib-dir[=DIR]

--with-zlib[=DIR]

--without-pcre-regex

--without-pear

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

Appendix F. Internet Resources
The first place to look for information about PHP on the Internet is

PHP’s home site <http://www.php.net/>. Many of the sites listed in

this appendix appear on pages of that site. You can download the

latest source code and executables there. You can read the latest

news. You will also find information about the various mailing lists,

which can be a great source of support. To subscribe to the general

mailing list, send mail to php-general-subscribe@lists.php.net. You

will get an email to confirm your subscription. Be prepared to get

hundreds of messages a day. I suggest sending the messages into

their own folder using a filter. If you’d prefer to just browse the

messages, try the archives at the AIMS group mailing list archives

<http://marc.theaimsgroup.com/?l=php-general>.

Another great resource is Nathan Wallace’s FAQTS.com site

<http://php.faqts.com/>, a collection of frequently asked questions,

including a large section about PHP.

The links below are just a sample of what’s available. The PHP home

site and the portals below list many more.

http://www.php.net/default.htm
mailto:php-general-subscribe@lists.php.net
http://marc.theaimsgroup.com/@l=php-general
http://faqts.com/default.htm
http://php.faqts.com/default.htm

F.1 Portals

<http://www.zend.com/> Zend

<http://www.phpbuilder.com/> PHP Builder

<http://www.weberdev.com/ WeberDev

<http://devshed.com/Server_Side/PHP/> DevShed’s PHP Resources

<http://www.phpwizard.net/> PHP Wizard

<http://www.php-center.de/> PHP Center (in German)

<http://www.phpindex.com/> PHP Index (in French)

http://www.zend.com/default.htm
http://www.phpbuilder.com/default.htm
http://www.weberdev.com/default.htm
http://devshed.com/Server_Side/PHP/default.htm
http://www.phpwizard.net/default.htm
http://www.php-center.de/default.htm
http://www.phpindex.com/default.htm
file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

F.2 Software

<http://px.sklar.com/> PX: PHP

Code

Exchange

<http://phplib.sourceforge.net/> PHP Base

Library

<http://www.phpclasses.org/> PHP

Classes

Repository

<http://www.hotscripts.com/PHP/Scripts_and_Programs/>

HotScripts’

PHP

Section

<http://sourceforge.net/projects/php4ue/>

UltraEdit

word files

for PHP

<http://dcl.sourceforge.net/>

Double

Choco

Latte, a

bug

tracking

system

<http://www.phorum.org/> Phorum,

threaded

discussions

<http://horde.org/imp/> Web to

mail

interface

<http://www.phpmyadmin.net/> MySQL

Web

interface

http://px.sklar.com/default.htm
http://phplib.sourceforge.net/default.htm
http://www.phpclasses.org/default.htm
http://www.hotscripts.com/PHP/Scripts_and_Programs/default.htm
http://sourceforge.net/projects/php4ue/default.htm
http://dcl.sourceforge.net/default.htm
http://www.phorum.org/default.htm
http://horde.org/imp/default.htm
http://www.phpmyadmin.net/default.htm

Appendix G. PHP Style Guide
This is a sample style guide based on the one used by the FreeTrade

project <http://share.whichever.com/freetrade/>. You may wish

to compare it to the style guide used by the PEAR project

<http://pear.php.net/>.

http://pear.php.net/default.htm
file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

G.1 Comments

Every file should start with a comment block describing its purpose, version,

author, and a copyright message. It should be a block comment in the style

below.

/*

** File: test

** Description: This is a test program

** Version: 1.0

** Created: 1/1/2004

** Author: Leon Atkinson

** Email: leon@leonatkinson.com

**

** Copyright (c) 2000 Your Group. All rights reserved.

*/

Every function should have a block comment specifying name, input/output,

and what the function does.

/*

** Function: doAdd

** Input: INTEGER a, INTEGER b

** Output: INTEGER

** Description: Adds two integers

*/

function doAdd($a, $b)

{

 return(a+b);

}

Ideally, every while, if, for, and similar block of code should be preceded by

a comment explaining what happens in the block. Sometimes this is

unnecessary.

// get input from user char by char

while(getInput($inputChar))

{

 storeChar($inputChar);

}

Explain sections of code that aren’t obvious.

//TAB is ASCII 9

define(TAB, 9);

//change tabs to spaces in userName

for($index=0; $index < count($userName); $index++)

{

 $userName[$index] = ereg_replace(TAB, " ", $userName[$index]);

}

G.2 Function Declarations

As previously stated, functions should have a comment block

explaining what they do and their input/output. The function block

should align starting at one tab from the left margin, unless the

function is part of a class definition. Opening and closing braces

should also be one tab from the left margin. The body of the function

should be indented two tabs.

<?php

 /*

 ** doAdd

 ** Adds two integers

 ** Input: $a, $b

 ** Output: sum of $a and $b

 */

 function doAdd($a, $b)

 {

 return(a+b);

 }

?>

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

G.3 Compound Statements

Flow-control primitives should be compound statements, even if they

contain only one instruction. Like functions, compound statements

should have opening braces that start at column zero relative to

scope. Code within the braces forms a new scope and should be

indented.

// tell the user if a is equal to ten

if($a==10)

{

 printf("a is ten.\n");

}

else

{

 printf("a is not ten.\n");

}

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

G.4 Naming

The names of variables, constants, and functions should begin with a

lowercase letter. In names that consist of more than one word, the

words are written together and each word starts with an uppercase

letter. Use short names for variables used in a small scope, such as

just inside a for loop. Use longer names for variables used in larger

scopes. Function names should begin with a lowercase letter and use

capitals for subsequent words.

/*

** Function getAddressFromEnvironment

** Input: $Prefix - prefix used to generate address form

** Return: array suitable for addressFields

*/

function getAddressFromEnvironment($Prefix)

{

 global $AddressInfo;

 //get list of all address fields

 //from the AddressInfo array

 reset($AddressInfo);

 while(list($field, $info) = each($AddressInfo))

 {

 $ReturnValue[$field] = trim($GLOBALS[($Prefix .

 $info[ADDR_VAR])]);

 }

 return($ReturnValue);

}

Function names should suggest an action or verb. Use names like

updateAddress or makeStateSelector. Variable names should

suggest a property or noun, such as userName or Width. Use

pronounceable names, such as User, not usr. Use descriptive names

for variables used globally; use short names for variables used

locally.

Be consistent and use parallelism. If you are abbreviating number as

num, always use that abbreviation. Don’t switch to using no or nmbr.

Values that are treated as constants�that is, are not changed by the

program�should be declared in the beginning of the scope in which

they are used. In PHP this is done with the define function. Each of

these constants should be paired with a comment that explains its

use. They should be named exclusively with uppercase letters, with

underscores to separate words. You should use constants in place of

any arbitrary values to improve readability.

// maximum length of a name to accept

define("MAX_NAME_LENGTH", 32);

print("Maximum name length is " . MAX_NAME_LENGTH);

Constants that belong to a specific module should use a consistent

prefix.

//text with which to label the field

define("ADDR_LABEL", 0);

//name of the form field (sans prefix of course)

define("ADDR_VAR", 1);

//error message to display for missing fields

define("ADDR_ERROR", 2);

Variables are to be declared with the smallest possible scope. This

means using function parameters when appropriate. Lines should not

exceed 78 characters. Break long lines at common separators, and

align the fragments in an indented block.

if(($size <0) OR

 ($size > max_size) OR

 (isSizeInvalid($size)))

{

 print("Invalid size");

}

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

G.5 Expressions

Write conditional expressions so that they read naturally aloud.

Sometimes eliminating a not operator (!) will make an expression

more understandable. Use parentheses liberally to resolve ambiguity.

Using parentheses can force an order of evaluation. This saves the

time a reader may spend remembering precedence of operators.

Keep each line simple. The trinary operator (x ? 1 : 2) usually

indicates too much code on one line. if..elseif..else is usually

more readable. Don’t sacrifice clarity for cleverness.

file:///tmp/calibre_4.4.0_tmp_NyTd2Q/VU3XFQ_pdf_out/0130463469_22061533.html

[Team LiB]

[SYMBOL] [I]

[Team LiB]

[Team LiB]

[SYMBOL] [I]

_Checking_in_changes_1

_Checking_out_source

_Coordinating_programmers

_Creating_a_repository

_Finding_a_solution

_How_CVS_works

_Importing_a_project

_Installing_CVS

_Preparing_releases

[Team LiB]

[Team LiB]

[SYMBOL] [I]

impl_compound

impl_constants

impl_expressions

impl_functions

impl_long

impl_naming

impl_variables

[Team LiB]

Brought to You by

Like the book? Buy it!

	Main Page
	Table of content
	Copyright
	Praise for ‘Core PHP Programming’
	Prentice Hall PTR Core Series
	About Prentice Hall Professional Technical Reference
	Foreword
	Preface
	Acknowledgments
	Part I: Programming with PHP
	Chapter 1. An Introduction to PHP
	1.1 The Origins of PHP
	1.2 PHP Is Better Than Its Alternatives
	1.3 Interfaces to External Systems
	1.4 How PHP Works with the Web Server
	1.5 Hardware and Software Requirements
	1.6 What a PHP Script Looks Like
	1.7 Saving Data for Later
	1.8 Receiving User Input
	1.9 Choosing Between Alternatives
	1.10 Repeating Code

	Chapter 2. Variables, Operators, and Expressions
	2.1 A Top-Down View
	2.2 Data Types
	2.3 Variables
	2.4 Constants
	2.5 Operators
	2.6 Building Expressions

	Chapter 3. Control Statements
	3.1 The ‘if’ Statement
	3.2 The ‘?’ Operator
	3.3 The ‘switch’ Statement
	3.4 Loops
	3.5 ‘exit’, ‘die’, and ‘return’
	3.6 Exceptions
	3.7 Declare

	Chapter 4. Functions
	4.1 Declaring a Function
	4.2 The ‘return’ Statement
	4.3 Scope
	4.4 Static Variables
	4.5 Arguments
	4.6 Recursion
	4.7 Dynamic Function Calls

	Chapter 5. Arrays
	5.1 Single-Dimensional Arrays
	5.2 Indexing Arrays
	5.3 Initializing Arrays
	5.4 Multidimensional Arrays
	5.5 Casting Arrays
	5.6 The ‘+’ Operator
	5.7 Referencing Arrays Inside Strings

	Chapter 6. Classes and Objects
	6.1 Object-Oriented Programming
	6.2 The PHP 5 Object Model
	6.3 Defining a Class
	6.4 Constructors and Destructors
	6.5 Cloning
	6.6 Accessing Properties and Methods
	6.7 Static Class Members
	6.8 Access Types
	6.9 Binding
	6.10 Abstract Methods and Abstract Classes
	6.11 User-Level Overloading
	6.12 Class Autoloading
	6.13 Object Serialization
	6.14 Namespaces
	6.15 The Evolution of the Zend Engine

	Chapter 7. I/O and Disk Access
	7.1 HTTP Connections
	7.2 Writing to the Browser
	7.3 Output Buffering
	7.4 Environment Variables
	7.5 Getting Input from Forms
	7.6 Passing Arrays in Forms
	7.7 Cookies
	7.8 File Uploads
	7.9 Reading and Writing to Files
	7.10 Sessions
	7.11 The ‘include’ and ‘require’ Functions
	7.12 Don’t Trust User Input

	Part II: Functional Reference
	Chapter 8. Browser I/O
	8.1 Pregenerated Variables
	8.2 Pregenerated Constants
	8.3 Sending Text to the Browser
	8.4 Output Buffering
	8.5 Session Handling
	8.6 HTTP Headers

	Chapter 9. Operating System
	9.1 Files
	9.2 Compressed File Functions
	9.3 Direct I/O
	9.4 Debugging
	9.5 POSIX
	9.6 Shell Commands
	9.7 Process Control

	Chapter 10. Network I/O
	10.1 General Network I/O
	10.2 Sockets
	10.3 FTP
	10.4 Curl
	10.5 SNMP

	Chapter 11. Data
	11.1 Data Types, Constants, and Variables
	11.2 Arrays
	11.3 Objects and Classes
	11.4 User Defined Functions

	Chapter 12. Encoding and Decoding
	12.1 Strings
	12.2 String Comparison
	12.3 Encoding and Decoding
	12.4 Compression
	12.5 Encryption
	12.6 Hashing
	12.7 Spell Checking
	12.8 Regular Expressions
	12.9 Character Set Encoding

	Chapter 13. Math
	13.1 Common Math
	13.2 Random Numbers
	13.3 Arbitrary-Precision Numbers

	Chapter 14. Time and Date
	14.1 Time and Date
	14.2 Alternative Calendars

	Chapter 15. Configuration
	15.1 Configuration Directives
	15.2 Configuration

	Chapter 16. Images and Graphics
	16.1 Analyzing Images
	16.2 Creating Images

	Chapter 17. Database
	17.1 DBM-Style Database Abstraction
	17.2 DBX
	17.3 LDAP
	17.4 MySQL
	17.5 ODBC
	17.6 Oracle
	17.7 Postgres
	17.8 Sybase and Microsoft SQL Server

	Chapter 18. Object Layers
	18.1 COM
	18.2 CORBA
	18.3 Java

	Chapter 19. Miscellaneous
	19.1 Apache
	19.2 IMAP
	19.3 MnoGoSearch
	19.4 OpenSSL
	19.5 System V Messages
	19.6 System V Semaphores
	19.7 System V Shared Memory

	Chapter 20. XML
	20.1 DOM XML
	20.2 Expat XML
	20.3 WDDX

	Part III: Algorithms
	Chapter 21. Sorting, Searching, and Random Numbers
	21.1 Sorting
	21.2 Built-In Sorting Functions
	21.3 Sorting with a Comparison Function
	21.4 Searching
	21.5 Indexing
	21.6 Random Numbers
	21.7 Random Identifiers
	21.8 Choosing Banner Ads

	Chapter 22. Parsing and String Evaluation
	22.1 Tokenizing
	22.2 Regular Expressions
	22.3 Defining Regular Expressions
	22.4 Using Regular Expressions in PHP Scripts

	Chapter 23. Database Integration
	23.1 Building HTML Tables from SQL Queries
	23.2 Tracking Visitors with Session Identifiers
	23.3 Storing Content in a Database
	23.4 Database Abstraction Layers

	Chapter 24. Networks
	24.1 HTTP Authentication
	24.2 Controlling the Browser’s Cache
	24.3 Setting Document Type
	24.4 Email with Attachments
	24.5 HTML Email
	24.6 Verifying an Email Address

	Chapter 25. Generating Graphics
	25.1 Dynamic Buttons
	25.2 Generating Graphs on the Fly
	25.3 Bar Graphs
	25.4 Pie Charts
	25.5 Stretching Single-Pixel Images

	Part IV: Software Engineering
	Chapter 26. Integration with HTML
	26.1 Sprinkling PHP within an HTML Document
	26.2 Using PHP to Output All HTML
	26.3 Separating HTML from PHP
	26.4 Generating HTML with PHP

	Chapter 27. Design
	27.1 Writing Requirements Specifications
	27.2 Writing Design Documents
	27.3 Change Management
	27.4 Modularization Using ‘include’
	27.5 FreeEnergy
	27.6 Templates
	27.7 Application Frameworks
	27.8 PEAR
	27.9 URLs Friendly to Search Engines

	Chapter 28. Efficiency and Debugging
	28.1 Optimization
	28.2 Measuring Performance
	28.3 Optimize the Slowest Parts
	28.4 When to Store Content in a Database
	28.5 Debugging Strategies
	28.6 Simulating HTTP Connections
	28.7 Output Buffering
	28.8 Output Compression
	28.9 Avoiding ‘eval’
	28.10 Don’t Load Extensions Dynamically
	28.11 Improving Performance of MySQL Queries
	28.12 Optimizing Disk-Based Sessions
	28.13 Don’t Pass by Reference (or, Don’t Trust Your Instincts)
	28.14 Avoid Concatenation of Large Strings
	28.15 Avoid Serving Large Files with PHP-Enabled Apache
	28.16 Understanding Persistent Database Connections
	28.17 Avoid Using ‘exec’, Backticks, and ‘system’ If Possible
	28.18 Use ‘php.ini-recommended’
	28.19 Don’t Use Regular Expressions Unless You Must
	28.20 Optimizing Loops
	28.21 IIS Configuration

	Chapter 29. Design Patterns
	29.1 Patterns Defined
	29.2 Singleton
	29.3 Factory
	29.4 Observer
	29.5 Strategy

	Appendix A. Escape Sequences
	Appendix B. ASCII Codes
	Appendix C. Operators
	Appendix D. PHP Tags
	Appendix E. PHP Compile-Time Configuration
	Appendix F. Internet Resources
	F.1 Portals
	F.2 Software

	Appendix G. PHP Style Guide
	G.1 Comments
	G.2 Function Declarations
	G.3 Compound Statements
	G.4 Naming
	G.5 Expressions

	Index
	Index SYMBOL
	Index I

