


PYTHON
FOR

PROGRAMMERS



LICENSE,	DISCLAIMER	OF	LIABILITY,	AND	LIMITED	WARRANTY

By	purchasing	or	using	this	book	and	companion	files	(the	“Work”),	you	agree	that	this	license
grants	permission	to	use	the	contents	contained	herein,	including	the	disc,	but	does	not	give	you
the	right	of	ownership	to	any	of	the	textual	content	in	the	book	/	disc	or	ownership	to	any	of	the
information	or	products	contained	in	it.	This	license	does	not	permit	uploading	of	the	Work	onto
the	 Internet	 or	 on	 a	 network	 (of	 any	 kind)	 without	 the	 written	 consent	 of	 the	 Publisher.
Duplication	 or	 dissemination	 of	 any	 text,	 code,	 simulations,	 images,	 etc.	 contained	 herein	 is
limited	 to	 and	 subject	 to	 licensing	 terms	 for	 the	 respective	products,	 and	permission	must	 be
obtained	from	the	Publisher	or	the	owner	of	the	content,	etc.,	in	order	to	reproduce	or	network
any	portion	of	the	textual	material	(in	any	media)	that	is	contained	in	the	Work.

MERCURY	 LEARNING	 AND	 INFORMATION	 (“MLI”	 or	 “the	 Publisher”)	 and	 anyone	 involved	 in	 the
creation,	 writing,	 or	 production	 of	 the	 companion	 disc,	 accompanying	 algorithms,	 code,	 or
computer	programs	(“the	software”),	and	any	accompanying	Web	site	or	software	of	the	Work,
cannot	 and	 do	 not	 warrant	 the	 performance	 or	 results	 that	 might	 be	 obtained	 by	 using	 the
contents	of	the	Work.	The	author,	developers,	and	the	Publisher	have	used	their	best	efforts	to
ensure	the	accuracy	and	functionality	of	the	textual	material	and/or	programs	contained	in	this
package;	 we,	 however,	 make	 no	 warranty	 of	 any	 kind,	 express	 or	 implied,	 regarding	 the
performance	of	 these	contents	or	programs.	The	Work	 is	sold	“as	 is”	without	warranty	(except
for	defective	materials	used	in	manufacturing	the	book	or	due	to	faulty	workmanship).

The	author,	developers,	and	the	publisher	of	any	accompanying	content,	and	anyone	involved	in
the	composition,	production,	and	manufacturing	of	 this	work	will	not	be	 liable	 for	damages	of
any	kind	arising	out	of	the	use	of	(or	the	inability	to	use)	the	algorithms,	source	code,	computer
programs,	or	textual	material	contained	in	this	publication.	This	 includes,	but	 is	not	 limited	to,
loss	of	revenue	or	profit,	or	other	incidental,	physical,	or	consequential	damages	arising	out	of
the	use	of	this	Work.

The	sole	remedy	 in	 the	event	of	a	claim	of	any	kind	 is	expressly	 limited	 to	replacement	of	 the
book	and/or	disc,	and	only	at	the	discretion	of	the	Publisher.	The	use	of	“implied	warranty”	and
certain	 “exclusions”	 vary	 from	 state	 to	 state,	 and	 might	 not	 apply	 to	 the	 purchaser	 of	 this
product.

Companion	files	for	this	title	are	available	by	writing	to	the	publisher	at	info@merclearning.com.



PYTHON
FOR

PROGRAMMERS

OSWALD	CAMPESATO

MERCURY	LEARNING	AND	INFORMATION
Dulles,	Virginia

Boston,	Massachusetts
New	Delhi



Copyright	©2022	by	MERCURY	LEARNING	AND	INFORMATION	LLC.	All	rights	reserved.

This	publication,	portions	of	it,	or	any	accompanying	software	may	not	be	reproduced	in	any	way,	stored	in	a
retrieval	 system	of	 any	 type,	 or	 transmitted	by	 any	means,	media,	 electronic	 display	 or	mechanical	 display,
including,	but	not	limited	to,	photocopy,	recording,	Internet	postings,	or	scanning,	without	prior	permission	in
writing	from	the	publisher.

Publisher:	David	Pallai
MERCURY	LEARNING	AND	INFORMATION
22841	Quicksilver	Drive
Dulles,	VA	20166
info@merclearning.com
www.merclearning.com
800-232-0223

O.	Campesato.	Python	for	Programmers.
ISBN:	978-1-68392-817-1

The	 publisher	 recognizes	 and	 respects	 all	 marks	 used	 by	 companies,	 manufacturers,	 and	 developers	 as	 a
means	 to	 distinguish	 their	 products.	 All	 brand	 names	 and	 product	 names	 mentioned	 in	 this	 book	 are
trademarks	or	service	marks	of	 their	 respective	companies.	Any	omission	or	misuse	 (of	any	kind)	of	 service
marks	or	trademarks,	etc.	is	not	an	attempt	to	infringe	on	the	property	of	others.

Library	of	Congress	Control	Number:	2022940434

222324321	This	book	is	printed	on	acid-free	paper	in	the	United	States	of	America.

Our	titles	are	available	for	adoption,	license,	or	bulk	purchase	by	institutions,	corporations,	etc.	For	additional
information,	please	contact	the	Customer	Service	Dept.	at	800-232-0223(toll	free).

All	 of	 our	 titles	 are	 available	 in	 digital	 format	 at	 academiccourseware.com	 and	 other	 digital	 vendors.
Companion	 files	 (figures	and	code	 listings)	 for	 this	 title	are	available	by	contacting	 info@merclearning.com.
The	 sole	 obligation	 of	 MERCURY	 LEARNING	 AND	 INFORMATION	 to	 the	 purchaser	 is	 to	 replace	 the	 disc,	 based	 on
defective	materials	or	faulty	workmanship,	but	not	based	on	the	operation	or	functionality	of	the	product.



I’d	like	to	dedicate	this	book	to	my	parents	
–	may	this	bring	joy	and	happiness	into	their	lives.



CONTENTS

Preface

Chapter	1: Introduction	to	Python
Tools	for	Python
Python	Installation
Setting	the	PATH	Environment	Variable	(Windows	Only)
Launching	Python	on	Your	Machine
Python	Identifiers
Lines,	Indentation,	and	Multilines
Quotation	and	Comments	in	Python
Saving	Your	Code	in	a	Module
Some	Standard	Modules	in	Python
The	help()	and	dir()	Functions
Compile	Time	and	Runtime	Code	Checking
Simple	Data	Types	in	Python
Working	With	Numbers
Working	With	Fractions
Unicode	and	UTF-8
Working	With	Unicode
Working	With	Strings
Uninitialized	Variables	and	the	Value	None	in	Python
Slicing	and	Splicing	Strings
Search	and	Replace	a	String	in	Other	Strings
Remove	Leading	and	Trailing	Characters
Printing	Text	Without	NewLine	Characters
Text	Alignment
Working	With	Dates
Exception	Handling	in	Python
Handling	User	Input
Command-Line	Arguments
Summary

Chapter	2: Conditional	Logic	in	Python
Precedence	of	Operators	in	Python
Python	Reserved	Words
Working	With	Loops	in	Python
Nested	Loops
The	split()	Function	With	for	Loops
Using	the	split()	Function	to	Compare	Words
Using	the	split()	Function	to	Print	Justified	Text
Using	the	split()	Function	to	Print	Fixed	Width	Text
Using	the	split()	Function	to	Compare	Text	Strings
Using	the	split()	Function	to	Display	Characters	in	a	String
The	join()	Function
Python	while	Loops
Conditional	Logic	in	Python
The	break/continue/pass	Statements
Comparison	and	Boolean	Operators
Local	and	Global	Variables
Scope	of	Variables
Pass	by	Reference	versus	Value
Arguments	and	Parameters



Using	a	while	Loop	to	Find	the	Divisors	of	a	Number
User-Defined	Functions	in	Python
Specifying	Default	Values	in	a	Function
Functions	With	a	Variable	Number	of	Arguments
Summary

Chapter	3: Data	Structures	in	Python
Working	With	Lists
Sorting	Lists	of	Numbers	and	Strings
Concatenating	a	List	of	Words
The	Python	range()	Function
Lists	and	the	append()	Function
Working	With	Lists	and	the	split()	Function
Counting	Words	in	a	List
Iterating	Through	Pairs	of	Lists
List	Slices
Other	List-Related	Functions
Working	With	Vectors
Working	With	Matrices
Queues
Tuples	(Immutable	Lists)
Sets
Dictionaries
Dictionary	Functions	and	Methods
Ordered	Dictionaries
Other	Sequence	Types	in	Python
Mutable	and	Immutable	Types	in	Python
Packing/Unpacking	Sequences
Lambda	Expressions
Functional	Programming	in	Python:	The	map()	Function
Functional	Programming	in	Python:	The	filter()	Function
Summary

Chapter	4: Strings	and	Arrays
Time	and	Space	Complexity
Task:	Maximum	and	Minimum	Powers	of	an	Integer
Task:	Binary	Substrings	of	a	Number
Task:	Common	Substring	of	Two	Binary	Numbers
Task:	Multiply	and	Divide	via	Recursion
Task:	Sum	of	Prime	and	Composite	Numbers
Task:	Count	Word	Frequencies
Task:	Check	if	a	String	Contains	Unique	Characters
Task:	Insert	Characters	in	a	String
Task:	String	Permutations
Task:	Find	All	Subsets	of	a	Set
Task:	Check	for	Palindromes
Task:	Check	for	Longest	Palindrome
Working	With	Sequences	of	Strings
Task:	Longest	Sequences	of	Substrings
Working	With	1D	Arrays
Task:	Invert	Adjacent	Array	Elements
Working	With	2D	Arrays
The	Transpose	of	a	Matrix
Search	Algorithms
Well-Known	Sorting	Algorithms
Merge	Sort
Summary

Chapter	5: Built-In	Functions	and	Custom	Classes
A	Python	Module	versus	Package



Python	Functions	versus	Methods
Functionally	Oriented	Programming	in	Python
Importing	Custom	Python	Modules
How	to	Create	Custom	Classes
Construction	and	Initialization	of	Objects
Compiled	Modules
Classes,	Functions,	and	Methods	in	Python
Accessors	and	Mutators	versus	@property
Creating	an	Employee	Custom	Class
Working	With	a	List	of	Employees
Working	With	Linked	Lists	in	Python
Custom	Classes	and	Linked	Lists
Custom	Classes	and	Dictionaries
Custom	Classes	and	Priority	Queues
Overloading	Operators
Serialize	and	Deserialize	Data
Encapsulation
Single	Inheritance
A	Concrete	Example	of	Inheritance
Inheritance	and	Overriding	Methods
Multiple	Inheritance
Polymorphism
The	Python	abc	Module
Summary

Chapter	6: Recursion	and	Combinatorics
What	Is	Recursion?
Arithmetic	Series
Geometric	Series
Factorial	Values
Fibonacci	Numbers
Task:	Reverse	an	Array	of	Strings	via	Recursion
Task:	Check	for	Balanced	Parentheses
Task:	Calculate	the	Number	of	Digits
Task:	Determine	if	a	Positive	Integer	is	Prime
Task:	Find	the	Prime	Factorization	of	a	Positive	Integer
Task:	Goldbach’s	Conjecture
Task:	Calculate	the	GCD	(Greatest	Common	Divisor)
Task:	Calculate	the	LCM	(Lowest	Common	Multiple)
What	Is	Combinatorics?
Task:	Calculate	the	Sum	of	Binomial	Coefficients
The	Number	of	Subsets	of	a	Finite	Set
Summary

Appendix:	Introduction	to	Pandas
Index



PREFACE

WHAT	IS	THE	PRIMARY	VALUE	PROPOSITION	FOR	THIS	BOOK?

This	book	contains	a	 fast-paced	 introduction	to	Python	and	Python-based	solutions	 to	various
tasks.	 Some	 topics	 are	 presented	 in	 a	 high-level	manner	 for	 two	main	 reasons.	 First,	 it’s
important	 that	 you	be	 exposed	 to	 these	 concepts.	 In	 some	 cases	 you	will	 find	 topics	 that
might	pique	your	interest,	and	hence	motivate	you	to	learn	more	about	them	through	self-
study;	in	other	cases	you	will	probably	be	satisfied	with	a	brief	introduction.	In	other	words,
you	will	decide	whether	or	not	to	delve	into	more	detail	regarding	the	topics	in	this	book.

Second,	a	full	treatment	of	all	the	topics	that	are	covered	in	this	book	would	significantly
increase	the	size	of	this	book,	and	few	people	are	interested	in	reading	technical	tomes.

THE	TARGET	AUDIENCE
This	book	is	intended	primarily	for	developers	who	have	little	or	no	experience	with	Python
and	are	interested	in	learning	about	Python	as	well	as	an	introduction	to	Pandas.

This	 book	 is	 also	 intended	 to	 reach	 an	 international	 audience	 of	 readers	 with	 highly
diverse	backgrounds	in	various	age	groups.	While	many	readers	know	how	to	read	English,
their	 native	 spoken	 language	 is	 not	 English	 (which	 could	 be	 their	 second,	 third,	 or	 even
fourth	 language).	 Consequently,	 this	 book	 uses	 standard	 English	 rather	 than	 colloquial
expressions	that	might	be	confusing	to	those	readers.	As	you	know,	many	people	 learn	by
different	types	of	imitation,	which	includes	reading,	writing,	or	hearing	new	material.	This
book	takes	these	points	into	consideration	in	order	to	provide	a	comfortable	and	meaningful
learning	experience	for	the	intended	readers.

WHAT	WILL	I	LEARN	FROM	THIS	BOOK?
The	first	chapter	contains	a	quick	tour	of	basic	Python3,	followed	by	a	chapter	that	shows	you
how	 to	 work	 with	 loops	 and	 conditional	 logic	 in	 Python.	 The	 third	 chapter	 discusses	 data
structures	in	Python,	followed	by	a	chapter	that	contains	code	samples	for	tasks	that	involve
strings	and	arrays	in	Python.

The	fifth	chapter	contains	fundamental	concepts	in	OOP	(object-oriented	programming),
along	 with	 code	 samples	 that	 illustrate	 how	 they	 are	 implemented	 in	 Python.	 The	 sixth
chapter	introduces	you	to	recursion	and	some	fundamental	topics	in	combinatorics.	Finally,
the	Appendix	contains	an	introduction	to	Pandas.

GETTING	THE	MOST	FROM	THIS	BOOK
Some	programmers	learn	well	from	prose,	others	learn	well	from	sample	code	(and	lots	of
it),	which	means	that	there’s	no	single	style	that	can	be	used	for	everyone.

Moreover,	 some	 programmers	 want	 to	 run	 the	 code	 first,	 see	 what	 it	 does,	 and	 then
return	to	the	code	to	delve	into	the	details	(and	others	use	the	opposite	approach).

Consequently,	there	are	various	types	of	code	samples	in	this	book:	some	are	short,	some
are	long,	and	other	code	samples	“build”	from	earlier	code	samples.

WHAT	DO	I	NEED	TO	KNOW	FOR	THIS	BOOK?
Current	knowledge	of	Python	3.x	is	the	most	helpful	skill.	Knowledge	of	other	programming
languages	 (such	 as	 Java)	 can	 also	 be	 helpful	 because	 of	 the	 exposure	 to	 programming
concepts	 and	 constructs.	 The	 less	 technical	 knowledge	 that	 you	have,	 the	more	diligence
will	be	required	in	order	to	understand	the	various	topics	that	are	covered.

If	you	want	to	be	sure	that	you	can	grasp	the	material	in	this	book,	glance	through	some
of	the	code	samples	to	get	an	idea	of	how	much	is	familiar	to	you	and	how	much	is	new	for
you.

DON’T	THE	COMPANION	FILES	OBVIATE	THE	NEED	FOR	THIS	BOOK?



The	companion	files	contain	all	the	code	samples	to	save	you	time	and	effort	from	the	error-
prone	process	of	manually	typing	code	into	a	text	file.	In	addition,	there	are	situations	in
which	you	might	not	have	easy	access	to	the	files.	Furthermore,	the	code	samples	in	the
book	provide	explanations	that	are	not	available	on	the	companion	files.

DOES	THIS	BOOK	CONTAIN	PRODUCTION-LEVEL	CODE	SAMPLES?

The	primary	purpose	of	the	code	samples	in	this	book	is	to	show	you	Python-based	libraries
for	solving	a	variety	of	data-related	tasks	in	conjunction	with	acquiring	a	rudimentary
understanding	of	statistical	concepts.	Clarity	has	higher	priority	than	writing	more	compact
code	that	is	more	difficult	to	understand	(and	possibly	more	prone	to	bugs).	If	you	decide	to
use	any	of	the	code	in	this	book	in	a	production	website,	you	ought	to	subject	that	code	to
the	same	rigorous	analysis	as	the	other	parts	of	your	code	base.

WHAT	ARE	THE	NON-TECHNICAL	PREREQUISITES	FOR	THIS	BOOK?

Although	the	answer	to	this	question	is	more	difficult	to	quantify,	it’s	very	important	to	have
strong	 desire	 to	 learn	 about	 Python,	 along	 with	 the	motivation	 and	 discipline	 to	 read	 and
understand	the	code	samples.

HOW	DO	I	SET	UP	A	COMMAND	SHELL?

If	 you	are	a	Mac	user,	 there	are	 three	ways	 to	do	 so.	The	 first	method	 is	 to	use	 Finder	 to
navigate	to	Applications	>	Utilities	and	then	double	click	on	the	Utilities	application.	Next,	if
you	already	have	a	command	shell	available,	you	can	launch	a	new	command	shell	by	typing
the	following	command:
open	/Applications/Utilities/Terminal.app

A	second	method	for	Mac	users	 is	to	open	a	new	command	shell	on	a	MacBook	from	a
command	shell	that	is	already	visible	simply	by	clicking	command+n	in	that	command	shell,	and
your	Mac	will	launch	another	command	shell.

If	 you	 are	 a	 PC	 user,	 you	 can	 install	 Cygwin	 (open	 source	 https://cygwin.com/)	 that
simulates	 bash	 commands,	 or	 use	 another	 toolkit	 such	 as	 MKS	 (a	 commercial	 product).
Please	read	the	online	documentation	that	describes	the	download	and	installation	process.
Note	that	custom	aliases	are	not	automatically	set	if	they	are	defined	in	a	file	other	than	the
main	start-up	file	(such	as	.bash_login).

COMPANION	FILES

All	the	code	samples	and	figures	in	this	book	may	be	obtained	by	writing	to	the	publisher	at
info@merclearning.com.

WHAT	ARE	THE	“NEXT	STEPS”	AFTER	FINISHING	THIS	BOOK?

The	answer	 to	 this	question	varies	widely,	mainly	because	 the	answer	depends	heavily	on
your	 objectives.	 If	 you	 are	 primarily	 interested	 in	 machine	 learning,	 there	 are	 some
subfields	of	machine	learning,	such	as	deep	learning	and	reinforcement	learning	(and	deep
reinforcement	 learning)	 that	might	 appeal	 to	 you.	 Fortunately,	 there	 are	many	 resources
available,	and	you	can	perform	an	Internet	search	for	those	resources.	One	other	point:	the
aspects	of	machine	learning	for	you	to	learn	depend	on	who	you	are:	the	needs	of	a	machine
learning	engineer,	data	scientist,	manager,	student	or	software	developer	are	all	different.



CHAPTER	1
INTRODUCTION	TO	PYTHON

This	 chapter	 contains	 an	 introduction	 to	 Python,	 with	 information	 about	 useful	 tools	 for
installing	Python	modules,	basic	Python	constructs,	and	how	to	work	with	some	data	types	in
Python.
The	 first	 part	 of	 this	 chapter	 covers	 how	 to	 install	 Python,	 some	 Python	 environment

variables,	and	how	to	use	 the	Python	 interpreter.	You	will	 see	 Python	 code	samples	and	also
how	to	save	Python	code	in	text	files	that	you	can	launch	from	the	command	line.	The	second
part	 of	 this	 chapter	 shows	 you	 how	 to	 work	 with	 simple	 data	 types,	 such	 as	 numbers,
fractions,	 and	 strings.	The	 final	 part	 of	 this	 chapter	discusses	 exceptions	 and	how	 to	use
them	in	Python	scripts.

NOTE
The	Python	scripts	in	this	book	are	for	Python	3.

TOOLS	FOR	PYTHON
The	 Anaconda	 Python	 distribution	 available	 for	Windows,	 Linux,	 and	Mac	 is	 downloadable
here:

http://continuum.io/downloads

Anaconda	is	well-suited	for	libraries	such	as	NumPy	(discussed	in	Chapter	3)	and	SciPy	(not
discussed	in	this	book).	Also,	 if	you	are	a	Windows	user,	Anaconda	appears	to	be	a	better
alternative.

easy_install	and	pip
Both	easy_install	and	pip	are	very	easy	to	use	when	you	need	to	install	Python	modules.
Whenever	you	need	to	install	a	Python	module	(and	there	are	many	in	this	book),	use	either
easy_install	or	pip	with	the	following	syntax:

easy_install	<module-name>
pip	install	<module-name>

NOTE
Python-based	 modules	 are	 easier	 to	 install,	 whereas	 modules	 with	 code	 written	 in	 C	 are
usually	faster	but	more	difficult	in	terms	of	installation.

virtualenv
The	virtualenv	tool	enables	you	to	create	isolated	Python	environments,	and	its	home	page	is
here:

http://www.virtualenv.org/en/latest/virtualenv.html
virtualenv	 addresses	 the	 problem	 of	 preserving	 the	 correct	 dependencies	 and	 versions

(and	indirectly	permissions)	for	different	applications.	If	you	are	a	Python	novice	you	might
not	need	virtualenv	right	now,	but	keep	this	tool	in	mind.

IPython
Another	very	good	tool	is	IPython	(which	won	a	Jolt	award),	and	its	home	page	is	here:

http://ipython.org/install.html



Type	ipython	to	invoke	IPython	from	the	command	line:
ipython

The	preceding	command	displays	the	following	output:
Python	3.9.13	(main,	May	24	2022,	21:28:12)
Type	'copyright',	'credits'	or	'license'	for	more	information
IPython	7.22.0	--	An	enhanced	Interactive	Python.	Type	'?'	for	help.

In	[1]:

Type	a	question	mark	 (“?”)	 at	 the	prompt	 and	 you	will	 see	 some	useful	 information,	 a
portion	of	which	is	here:

IPython	--	An	enhanced	Interactive	Python
=========================================

IPython	offers	a	fully	compatible	replacement	for	the	standard	Python	interpreter,	with	convenient
shell	features,	special	commands,	command	history	mechanism	and	output	results	caching.

At	 your	 system	 command	 line,	 type	 'ipython	 -h'	 to	 see	 the	 command	 line	 options	 available.	 This
document	only	describes	interactive	features.

GETTING	HELP
------------

Within	IPython	you	have	various	way	to	access	help:

  ?        	->	Introduction	and	overview	of	IPython's	features	(this	screen).
  object?  	->	Details	about	'object'.
  object??  ->	More	detailed,	verbose	information	about	'object'.
  %quickref	->	Quick	reference	of	all	IPython	specific	syntax	and	magics.
  help      ->	Access	Python's	own	help	system.

If	you	are	in	terminal	IPython	you	can	quit	this	screen	by	pressing	`q`.

Finally,	simply	type	quit()	at	the	command	prompt	and	you	will	exit	the	ipython	shell.
The	 next	 section	 shows	 you	 how	 to	 check	 whether	 or	 not	 Python	 is	 installed	 on	 your

machine,	and	also	where	you	can	download	Python.

PYTHON	INSTALLATION
Before	you	download	anything,	check	 if	you	have	Python	already	 installed	on	your	machine
(which	is	likely	if	you	have	a	Macbook	or	a	Linux	machine)	by	typing	the	following	command
in	a	command	shell:

python	-V

The	output	for	the	Macbook	used	in	this	book	is	here:
Python	3.9.1

NOTE
Install	Python	3.9.13	(or	as	close	as	possible	to	this	version)	on	your	machine	so	that	you
will	have	the	same	version	of	Python	that	was	used	to	test	the	Python	scripts	in	this	book.

If	you	need	to	install	Python	on	your	machine,	navigate	to	the	Python	home	page	and	select	the
downloads	link	or	navigate	directly	to	this	website:

http://www.python.org/download/

In	addition,	PythonWin	is	available	for	Windows,	and	its	home	page	is	here:

http://www.cgl.ucsf.edu/Outreach/pc204/pythonwin.html

Use	any	text	editor	that	can	create,	edit,	and	save	Python	scripts	and	save	them	as	plain
text	files	(don’t	use	Microsoft	Word).
After	you	have	Python	 installed	and	configured	on	your	machine,	you	are	 ready	 to	work

with	the	Python	scripts	in	this	book.

SETTING	THE	PATH	ENVIRONMENT	VARIABLE	(WINDOWS	ONLY)

The	PATH	environment	variable	specifies	a	list	of	directories	that	are	searched	whenever	you
specify	 an	 executable	 program	 from	 the	 command	 line.	 A	 good	 guide	 to	 setting	 up	 your
environment	so	that	the	Python	executable	is	always	available	in	every	command	shell	 is	to
follow	the	instructions	here:

http://www.blog.pythonlibrary.org/2011/11/24/python-101-setting-up-python-on-windows/



•
•
•

•
•

•

•
•

LAUNCHING	PYTHON	ON	YOUR	MACHINE

There	are	three	different	ways	to	launch	Python:

Use	the	Python	Interactive	Interpreter
Launch	Python	scripts	from	the	command	line
Use	an	IDE

The	next	section	shows	you	how	to	launch	the	Python	interpreter	from	the	command	line,
and	later	in	this	chapter	you	will	learn	how	to	launch	Python	scripts	from	the	command	line
and	also	about	Python	IDEs.

NOTE
The	emphasis	in	this	book	is	to	launch	Python	scripts	from	the	command	line	or	to	enter	code
in	the	Python	interpreter.

The	Python	Interactive	Interpreter
Launch	 the	 Python	 interactive	 interpreter	 from	 the	 command	 line	 by	 opening	 a	 command
shell	and	typing	the	following	command:

python

You	will	see	the	following	prompt	(or	something	similar):
Python	3.9.1	(v3.9.1:1e5d33e9b9,	Dec	7	2020,	12:44:01)
[Clang	12.0.0	(clang-1200.0.32.27)]	on	darwin
Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.
>>>

Type	the	expression	2	+	7	at	the	prompt:
>>>	2	+	7

Python	displays	the	following	result:
9
>>>

Press	ctrl-d	to	exit	the	Python	shell.
You	can	 launch	any	Python	 script	 from	 the	command	 line	by	preceding	 it	with	 the	word

“python.”	For	example,	if	you	have	a	Python	script	myscript.py	that	contains	Python	commands,
launch	the	script	as	follows:

python	myscript.py
As	a	simple	illustration,	suppose	that	the	Python	script	myscript.py	contains	the	following

Python	code:
print('Hello	World	from	Python')
print('2	+	7	=	',	2+7)

When	you	launch	the	preceding	Python	script	you	will	see	the	following	output:
Hello	World	from	Python
2	+	7	=  9

PYTHON	IDENTIFIERS
A	Python	 identifier	 is	the	name	of	a	variable,	 function,	class,	module,	or	other	Python	object,
and	a	valid	identifier	conforms	to	the	following	rules:

It	starts	with	a	letter	A	to	Z,	a	to	z,	or	an	underscore	(_)
It	includes	zero	or	more	letters,	underscores,	and	digits	(0	to	9)

NOTE
Python	identifiers	cannot	contain	characters	such	as	@,	$,	and	%.

Python	is	a	case-sensitive	language,	so	Abc	and	abc	different	identifiers	in	Python.
In	addition,	Python	has	the	following	naming	convention:

Class	names	start	with	an	uppercase	letter	and	all	other	identifiers	with	a	lowercase
letter
An	initial	underscore	is	used	for	private	identifiers
Two	initial	underscores	are	used	for	strongly	private	identifiers

A	 Python	 identifier	 with	 two	 initial	 underscore	 and	 two	 trailing	 underscore	 characters
indicates	a	language-defined	special	name.



LINES,	INDENTATION,	AND	MULTILINES

Unlike	other	programming	languages	(such	as	Java	or	Objective-C),	Python	uses	indentation
instead	of	curly	braces	for	code	blocks.	Indentation	must	be	consistent	in	a	code	block,	as
shown	here:

if	True:
    print("ABC")
    print("DEF")
else:
    print("ABC")
 print("DEF")

Multiline	 statements	 in	 Python	 can	 terminate	 with	 a	 new	 line	 or	 the	 backslash	 (“\”)
character,	as	shown	here:

total	=	x1	+	\
        x2	+	\
        x3

Obviously	you	can	place	x1,	x2,	and	x3	on	the	same	line,	so	there	is	no	reason	to	use	three
separate	 lines;	 however,	 this	 functionality	 is	 available	 in	 case	 you	 need	 to	 add	 a	 set	 of
variables	that	do	not	fit	on	a	single	line.
You	 can	 specify	multiple	 statements	 in	 one	 line	 by	 using	 a	 semicolon	 (“;”)	 to	 separate

each	statement,	as	shown	here:
a=10;	b=5;	print(a);	print(a+b)

The	output	of	the	preceding	code	snippet	is	here:
10
15

NOTE
The	use	of	semicolons	and	the	continuation	character	are	discouraged	in	Python.

QUOTATION	AND	COMMENTS	IN	PYTHON
Python	 allows	single	 (‘),	double	 (“)	and	 triple	 (‘’’	 or	 “””)	quotes	 for	 string	 literals,	provided
that	 they	match	at	 the	beginning	and	 the	end	of	 the	string.	You	can	use	 triple	quotes	 for
strings	that	span	multiple	lines.	The	following	examples	are	legal	Python	strings:

word	=	'word'
line	=	"This	is	a	sentence."
para	=	"""This	is	a	paragraph.	This	paragraph	contains
more	than	one	sentence."""

A	string	 literal	 that	begins	with	 the	 letter	 “r”	 (for	 “raw”)	 treats	 everything	as	a	 literal
character	and	“escapes”	the	meaning	of	meta	characters,	as	shown	here:

a1	=	r'\n'
a2	=	r'\r'
a3	=	r'\t'
print('a1:',a1,'a2:',a2,'a3:',a3)

The	output	of	the	preceding	code	block	is	here:
a1:	\n	a2:	\r	a3:	\t

You	 can	 embed	 a	 single	 quote	 in	 a	 pair	 of	 double	 quotes	 (and	 vice	 versa)	 in	 order	 to
display	a	single	quote	or	a	double	quote.	Another	way	to	accomplish	the	same	result	 is	to
precede	a	single	or	double	quote	with	a	backslash	(“\”)	character.	The	following	code	block
illustrates	these	techniques:

b1	=	"'"
b2	=	'"'
b3	=	'\''
b4	=	"\""
print('b1:',b1,'b2:',b2)
print('b3:',b3,'b4:',b4)

The	output	of	the	preceding	code	block	is	here:
b1:	'	b2:	"
b3:	'	b4:	"

A	 hash	 sign	 (#)	 that	 is	 not	 inside	 a	 string	 literal	 is	 the	 character	 that	 indicates	 the
beginning	of	a	comment.	Moreover,	all	characters	after	the	#	and	up	to	the	physical	line	end
are	part	of	the	comment	(and	ignored	by	the	Python	interpreter).	Consider	the	following	code
block:

#!/usr/bin/python
#	First	comment



print("Hello,	Python!")  #	second	comment

This	will	produce	following	result:
Hello,	Python!

A	comment	may	be	on	the	same	line	after	a	statement	or	expression:
name	=	"Tom	Jones"	#	This	is	also	comment

You	can	comment	multiple	lines	as	follows:
#	This	is	comment	one
#	This	is	comment	two
#	This	is	comment	three

A	blank	line	in	Python	is	a	line	containing	only	whitespace,	a	comment,	or	both.

SAVING	YOUR	CODE	IN	A	MODULE
Earlier	you	saw	how	to	launch	the	Python	interpreter	from	the	command	line	and	then	enter
Python	 commands.	However,	 that	 everything	 that	 you	 type	 in	 the	 Python	 interpreter	 is	 only
valid	 for	 the	 current	 session:	 If	 you	 exit	 the	 interpreter	 and	 then	 launch	 the	 interpreter
again,	your	previous	definitions	are	no	longer	valid.	Fortunately,	Python	enables	you	to	store
code	in	a	text	file,	as	discussed	in	the	next	section.
A	module	 in	Python	 is	a	 text	 file	 that	contains	Python	 statements.	 In	 the	previous	section,

you	saw	how	the	Python	 interpreter	enables	you	to	test	code	snippets	whose	definitions	are
valid	for	the	current	session.	If	you	want	to	retain	the	code	snippets	and	other	definitions,
place	them	in	a	text	file	so	that	you	can	execute	that	code	outside	of	the	Python	interpreter.
The	outermost	statements	in	a	Python	are	executed	from	top	to	bottom	when	the	module	is

imported	for	the	first	time,	which	will	then	set	up	its	variables	and	functions.
A	Python	module	can	be	run	directly	from	the	command	line,	as	shown	here:
python	first.py

As	an	illustration,	place	the	following	two	statements	in	a	text	file	called	first.py:
x	=	3
print(x)

Type	the	following	command:
python	first.py

The	 output	 from	 the	 preceding	 command	 is	 3,	 which	 is	 the	 same	 as	 executing	 the
preceding	code	from	the	Python	interpreter.
When	a	Python	module	is	run	directly,	the	special	variable	__name__	is	set	to	__main__.	You	will

often	see	the	following	type	of	code	in	a	Python	module:
if	__name__	==	'__main__':
    #	do	something	here
    print('Running	directly')

The	preceding	code	snippet	enables	Python	to	determine	if	a	Python	module	was	launched
from	the	command	line	or	imported	into	another	Python	module.

SOME	STANDARD	MODULES	IN	PYTHON
The	 Python	 Standard	 Library	 provides	 many	 modules	 that	 can	 simplify	 your	 own	 Python
scripts.	A	list	of	the	Standard	Library	modules	is	here:

http://www.python.org/doc/

Some	of	the	most	important	Python	modules	include	cgi,	math,	os,	pickle,	random,	re,	socket,
sys,	time,	and	urllib.
The	code	samples	 in	 this	book	use	 the	modules	math,	os,	random,	re,	socket,	sys,	time,	and

urllib.	You	need	to	import	these	modules	in	order	to	use	them	in	your	code.	For	example,	the
following	code	block	shows	you	how	to	import	four	standard	Python	modules:

import	datetime
import	re
import	sys
import	time

The	code	samples	in	this	book	import	one	or	more	of	the	preceding	modules,	as	well	as
other	Python	modules.

THE	HELP()	AND	DIR()	FUNCTIONS

An	 internet	 search	 for	 Python-related	 topics	 usually	 returns	 a	 number	 of	 links	with	 useful



information.	 Alternatively,	 you	 can	 check	 the	 official	 Python	 documentation	 site:
docs.python.org
In	 addition,	 Python	 provides	 the	 help()	 and	 dir()	 functions	 that	 are	 accessible	 from	 the

Python	 interpreter.	 The	 help()	 function	 displays	 documentation	 strings,	 whereas	 the	 dir()
function	displays	defined	symbols.
For	example,	if	you	type	help(sys)	you	will	see	documentation	for	the	sys	module,	whereas

dir(sys)	displays	a	list	of	the	defined	symbols.
Type	 the	 following	 command	 in	 the	 Python	 interpreter	 to	 display	 the	 string-related

methods	in	Python:
>>>	dir(str)

The	preceding	command	generates	the	following	output:
['__add__',	'__class__',	'__contains__',	'__delattr__',	'__doc__',	'__eq__',	'__format__',	'__ge__',
'__getattribute__',	'__getitem__',	'__getnewargs__',	'__getslice__',	'__gt__',	'__hash__',
'__init__',	'__le__',	'__len__',	'__lt__',	'__mod__',	'__mul__',	'__ne__',	'__new__',	'__reduce__',
'__reduce_ex__',	'__repr__',	'__rmod__',	'__rmul__',	'__setattr__',	'__sizeof__',	'__str__',
'__subclasshook__',	'_formatter_field_name_split',	'_formatter_parser',	'capitalize',	'center',
'count',	'decode',	'encode',	'endswith',	'expandtabs',	'find',	'format',	'index',	'isalnum',
'isalpha',	'isdigit',	'islower',	'isspace',	'istitle',	'isupper',	'join',	'ljust',	'lower',	'lstrip',
'partition',	'replace',	'rfind',	'rindex',	'rjust',	'rpartition',	'rsplit',	'rstrip',	'split',
'splitlines',	'startswith',	'strip',	'swapcase',	'title',	'translate',	'upper',	'zfill']

The	preceding	list	gives	you	a	consolidated	“dump”	of	built-in	functions	(including	some
that	are	discussed	 later	 in	this	chapter).	Although	the	max()	 function	obviously	returns	 the
maximum	value	of	its	arguments,	the	purpose	of	other	functions	such	as	filter()	or	map()	 is
not	immediately	apparent	(unless	you	have	used	them	in	other	programming	languages).	In
any	 case,	 the	 preceding	 list	 provides	 a	 starting	 point	 for	 finding	 out	more	 about	 various
Python	built-in	functions	that	are	not	discussed	in	this	chapter.
Although	dir()	does	not	list	the	names	of	built-in	functions	and	variables,	you	can	obtain

this	information	from	the	standard	module	__builtin__	that	is	automatically	imported	under
the	name	__builtins__:

>>>	dir(__builtins__)

The	following	command	shows	you	how	to	get	more	information	about	a	function:
help(str.lower)

The	output	from	the	preceding	command	is	here:
Help	on	method_descriptor:

lower(...)
    S.lower()	->	string
    
    Return	a	copy	of	the	string	S	converted	to	lowercase.
(END)

Check	the	online	documentation	and	also	experiment	with	help()	and	dir()	when	you	need
additional	information	about	a	particular	function	or	module.

COMPILE	TIME	AND	RUNTIME	CODE	CHECKING
Python	performs	some	compile-time	checking,	but	most	checks	(including	type,	name,	and	so
forth)	are	deferred	until	code	execution.	Consequently,	if	your	Python	code	references	a	user-
defined	function	that	that	does	not	exist,	the	code	will	compile	successfully.	In	fact,	the	code
will	 fail	with	an	exception	only	when	 the	 code	 execution	 path	 references	 the	 nonexistent
function.
As	 a	 simple	 example,	 consider	 the	 following	 Python	 function	 myFunc	 that	 references	 the

nonexistent	function	called	DoesNotExist:
def	myFunc(x):
    if	x	==	3:
        print(DoesNotExist(x))
    else:
        print('x:	',x)

The	 preceding	 code	will	 only	 fail	when	 the	 myFunc	 function	 is	 passed	 the	 value	 3,	 after
which	Python	raises	an	error.
You	should	now	have	an	understanding	of	some	basic	concepts,	such	as	how	to	use	the

Python	interpreter	and	how	to	launch	your	custom	Python	modules.	The	next	section	discusses
primitive	data	types	in	Python.

SIMPLE	DATA	TYPES	IN	PYTHON

Python	supports	primitive	data	types,	such	as	numbers	(integers,	floating	point	numbers,	and
exponential	 numbers),	 strings,	 and	 dates.	 Python	 also	 supports	 more	 complex	 data	 types,



such	as	lists	(or	arrays),	tuples,	and	dictionaries.	The	next	several	sections	discuss	some	of
the	 Python	 primitive	 data	 types,	 along	 with	 code	 snippets	 that	 show	 you	 how	 to	 perform
various	operations	on	those	data	types.

WORKING	WITH	NUMBERS

Python	provides	arithmetic	operations	for	manipulating	numbers	in	a	straightforward	manner
that	is	similar	to	other	programming	languages.	The	following	examples	involve	arithmetic
operations	on	integers:

>>>	2+2
4
>>>	4/3
1
>>>	3*8
24

The	following	example	assigns	numbers	to	two	variables	and	computes	their	product:
>>>	x	=	4
>>>	y	=	7
>>>	x	*	y
28

The	following	examples	demonstrate	arithmetic	operations	involving	integers:
>>>	2+2
4
>>>	4/3
1
>>>	3*8
24

Notice	that	division	(“/”)	of	two	integers	is	actually	a	truncation	in	which	only	the	integer
result	is	retained.	The	following	example	converts	a	floating	point	number	into	exponential
form:

>>>	fnum	=	0.00012345689000007
>>>	"%.14e"%fnum
'1.23456890000070e-04'

You	can	use	the	int()	function	and	the	float()	function	to	convert	strings	to	numbers:
word1	=	"123"
word2	=	"456.78"
var1	=	int(word1)
var2	=	float(word2)
print("var1:	",var1,"	var2:	",var2)

The	output	from	the	preceding	code	block	is	here:
var1:  123  var2:  456.78

Alternatively,	you	can	use	the	eval()	function:
word1	=	"123"
word2	=	"456.78"
var1	=	eval(word1)
var2	=	eval(word2)
print("var1:	",var1,"	var2:	",var2)

If	you	attempt	to	convert	a	string	that	is	not	a	valid	integer	or	a	floating	point	number,
Python	raises	an	exception,	so	it’s	advisable	to	place	your	code	in	a	try/except	block	(discussed
later	in	this	chapter).

Working	With	Other	Bases
Numbers	in	Python	are	in	base	10	(the	default),	but	you	can	easily	convert	numbers	to	other
bases.	For	example,	 the	 following	code	block	 initializes	 the	variable	 x	with	 the	value	 1234,
and	then	displays	that	number	in	base	2,	8,	and	16,	respectively:

>>>	x	=	1234
>>>	bin(x)	'0b10011010010'
>>>	oct(x)	'0o2322'
>>>	hex(x)	'0x4d2'

Use	the	format()	function	if	you	want	to	suppress	the	0b,	0o,	or	0x	prefixes,	as	shown	here:
>>>	format(x,	'b')	'10011010010'
>>>	format(x,	'o')	'2322'
>>>	format(x,	'x')	'4d2'

Negative	integers	are	displayed	with	a	negative	sign:
>>>	x	=	-1234
>>>	format(x,	'b')	'-10011010010'
>>>	format(x,	'x')	'-4d2'

The	chr()	Function



The	 Python	 chr()	 function	 takes	 a	 positive	 integer	 as	 a	 parameter	 and	 converts	 it	 to	 its
corresponding	 alphabetic	 value	 (if	 one	 exists).	 The	 letters	 A	 through	 Z	 have	 decimal
representation	of	65	through	91	 (which	corresponds	 to	hexadecimal	41	 through	5b),	and	the
lowercase	 letters	 a	 through	 z	 have	 decimal	 representation	 97	 through	 122	 (hexadecimal	 61
through	7a).	Here	is	an	example	of	using	the	chr()	function	to	print	uppercase	A:

>>>	x=chr(65)
>>>	x
'A'

The	following	code	block	prints	the	ASCII	values	for	a	range	of	integers:
result	=	""
for	x	in	range(65,91)
  print(x,	chr(x))
  result	=	result+chr(x)+'	'
print("result:	",result)

You	can	represent	a	range	of	characters	with	the	following	line:
for	x	in	range(65,91)

However,	the	following	equivalent	code	snippet	is	more	intuitive:
for	x	in	range(ord('A'),	ord('Z')):

If	you	want	to	display	the	result	for	lowercase	letters,	change	the	preceding	range	from
(65,91)	to	either	of	the	following	statements:

for	x	in	range(65,91)
for	x	in	range(ord('a'),	ord('z')):

The	round()	Function	in	Python
The	Python	round()	function	enables	you	to	round	decimal	values	to	the	nearest	precision:

>>>	round(1.23,	1)
1.2
>>>	round(-3.42,1)
-3.4

Formatting	Numbers	in	Python
Python	allows	you	to	specify	the	number	of	decimal	places	of	precision	to	use	when	printing
decimal	numbers,	as	shown	here:

>>>	x	=	1.23456
>>>	format(x,	'0.2f')
'1.23'
>>>	format(x,	'0.3f')
'1.235'
>>>	'value	is	{:0.3f}'.format(x)	'value	is	1.235'
>>>	from	decimal	import	Decimal
>>>	a	=	Decimal('4.2')
>>>	b	=	Decimal('2.1')
>>>	a	+	b
Decimal('6.3')
>>>	print(a	+	b)
6.3
>>>	(a	+	b)	==	Decimal('6.3')
True
>>>	x	=	1234.56789
>>>	#	Two	decimal	places	of	accuracy
>>>	format(x,	'0.2f')
'1234.57'
>>>	#	Right	justified	in	10	chars,	one-digit	accuracy
>>>	format(x,	'>10.1f')
'	1234.6'
>>>	#	Left	justified
>>>	format(x,	'<10.1f')	'1234.6	'
>>>	#	Centered
>>>	format(x,	'^10.1f')	'	1234.6	'
>>>	#	Inclusion	of	thousands	separator
>>>	format(x,	',')
'1,234.56789'
>>>	format(x,	'0,.1f')
'1,234.6'

WORKING	WITH	FRACTIONS
Python	 supports	 the	 Fraction()	 function	 (defined	 in	 the	 fractions	 module)	 that	 accepts	 two
integers	that	represent	the	numerator	and	the	denominator	(must	be	nonzero)	of	a	fraction.
Several	example	of	defining	and	manipulating	fractions	in	Python	are	shown	here:

>>>	from	fractions	import	Fraction
>>>	a	=	Fraction(5,	4)
>>>	b	=	Fraction(7,	16)



>>>	print(a	+	b)
27/16
>>>	print(a	*	b)	35/64
>>>	#	Getting	numerator/denominator
>>>	c	=	a	*	b
>>>	c.numerator
35
>>>	c.denominator	64
>>>	#	Converting	to	a	float	>>>	float(c)
0.546875
>>>	#	Limiting	the	denominator	of	a	value
>>>	print(c.limit_denominator(8))
4
>>>	#	Converting	a	float	to	a	fraction	>>>	x	=	3.75
>>>	y	=	Fraction(*x.as_integer_ratio())
>>>	y
Fraction(15,	4)

Before	delving	 into	Python	 code	samples	 that	work	with	strings,	 the	next	 section	briefly
discusses	Unicode	and	UTF-8,	both	of	which	are	character	encodings.

UNICODE	AND	UTF-8
A	Unicode	 string	consists	of	a	 sequence	of	numbers	 that	are	between	 0	and	0x10ffff,	 where
each	 number	 represents	 a	 group	 of	 bytes.	 An	 encoding	 is	 the	manner	 in	 which	 a	 Unicode
string	is	translated	into	a	sequence	of	bytes.	Among	the	various	encodings,	UTF-8	(Unicode
Transformation	Format)	is	perhaps	the	most	common,	and	it’s	also	the	default	encoding	for
many	systems.	The	digit	8	in	UTF-8	indicates	that	the	encoding	uses	8-bit	numbers,	whereas
UTF-16	uses	16-bit	numbers	(but	this	encoding	is	less	common).
The	ASCII	character	set	 is	a	subset	of	UTF-8,	so	a	valid	ASCII	string	can	be	read	as	a

UTF-8	string	without	any	re-encoding	required.	In	addition,	a	Unicode	string	can	be	converted
into	a	UTF-8	string.

WORKING	WITH	UNICODE

Python	supports	Unicode,	which	means	that	you	can	render	characters	in	different	languages.
Unicode	 data	 can	 be	 stored	 and	manipulated	 in	 the	 same	 way	 as	 strings.	 Create	 a	 Unicode
string	by	prepending	the	letter	“u,”	as	shown	here:

>>>	u'Hello	from	Python!'
u'Hello	from	Python!'

Special	 characters	 can	 be	 included	 in	 a	 string	 by	 specifying	 their	 Unicode	 value.	 For
example,	the	following	Unicode	string	embeds	a	space	(which	has	the	Unicode	value	0x0020)	in	a
string:

>>>	u'Hello\u0020from	Python!'
u'Hello	from	Python!'

Listing	1.1	displays	the	contents	of	Unicode1.py	 that	 illustrates	how	to	display	a	string	of
characters	in	Japanese	(Hiragana)	and	another	string	of	characters	in	Chinese	(Mandarin).

Listing	1.1:	Unicode1.py
chinese1	=	u'\u5c07\u63a2\u8a0e	HTML5	\u53ca\u5176\u4ed6'
hiragana	=	u'D3	\u306F	\u304B\u3063\u3053\u3043\u3043	\u3067\u3059!'

print('Chinese:',chinese1)
print('Hiragana:',hiragana)

The	output	of	Listing	1.1	is	here:

Chinese:	將探討	HTML5	及其他
Hiragana:	D3	は	かっこぃぃ	です!

The	next	portion	of	this	chapter	shows	you	how	to	“slice	and	dice”	text	strings	with	built-
in	Python	functions.

WORKING	WITH	STRINGS
A	string	 in	 Python3	 is	 based	 on	 Unicode,	whereas	 a	 string	 in	 Python2	 is	 a	 sequence	 of	 ASCII-
encoded	 bytes.	 You	 can	 concatenate	 two	 strings	 using	 the	 ‘+’	 operator.	 The	 following
example	prints	a	string	and	then	concatenates	two	single-letter	strings:

>>>	'abc'
'abc'
>>>	'a'	+	'b'
'ab'

You	can	use	‘+’	or	‘*’	to	concatenate	identical	strings,	as	shown	here:



>>>	'a'	+	'a'	+	'a'
'aaa'
>>>	'a'	*	3
'aaa'

You	can	assign	strings	to	variables	and	print	them	using	the	print	command:
>>>	print('abc')
abc
>>>	x	=	'abc'
>>>	print(x)
abc
>>>	y	=	'def'
>>>	print(x	+	y)
abcdef

You	can	“unpack”	the	letters	of	a	string	and	assign	them	to	variables,	as	shown	here:
>>>	str	=	"World"
>>>	x1,x2,x3,x4,x5	=	str
>>>	x1
'W'
>>>	x2
'o'
>>>	x3
'r'
>>>	x4
'l'
>>>	x5
'd'

The	 preceding	 code	 snippets	 shows	 you	 how	 easy	 it	 is	 to	 extract	 the	 letters	 in	 a	 text
string.	You	can	extract	substrings	of	a	string	as	shown	in	the	following	examples:

>>>	x	=	"abcdef"
>>>	x[0]
'a'
>>>	x[-1]
'f'
>>>	x[1:3]
'bc'
>>>	x[0:2]	+	x[5:]
'abf'

However,	 you	 will	 cause	 an	 error	 if	 you	 attempt	 to	 “subtract”	 two	 strings,	 as	 you
probably	expect:

>>>	'a'	-	'b'
Traceback	(most	recent	call	last):
  File	"<stdin>",	line	1,	in	<module>
TypeError:	unsupported	operand	type(s)	for	-:	'str'	and	'str'

The	try/except	construct	 in	Python	 (discussed	 later	 in	 this	chapter)	enables	you	to	handle
the	preceding	type	of	exception	more	gracefully.

Comparing	Strings
You	can	use	the	methods	lower()	and	upper()	to	convert	a	string	to	lowercase	and	uppercase,
respectively,	as	shown	here:

>>>	'Python'.lower()
'python'
>>>	'Python'.upper()
'PYTHON'
>>>

The	methods	lower()	and	upper()	are	useful	for	performing	a	case	insensitive	comparison
of	 two	 ASCII	 strings.	 Listing	 1.2	 displays	 the	 contents	 of	 Compare.py	 that	 uses	 the	 lower()
function	in	order	to	compare	two	ASCII	strings.

Listing	1.2:	Compare.py
x	=	'Abc'
y	=	'abc'

if(x	==	y):
  print('x	and	y:	identical')
elif	(x.lower()	==	y.lower()):
  print('x	and	y:	case	insensitive	match')
else:
  print('x	and	y:	different')

Since	x	contains	mixed	case	letters	and	y	contains	lowercase	letters,	Listing	1.2	displays
the	following	output:

x	and	y:	different



Formatting	Strings	in	Python
Python	 provides	 the	 functions	 string.lstring(),	 string.rstring(),	 and	 string.center()	 for
positioning	a	text	string	so	that	it	is	left-justified,	right-justified,	and	centered,	respectively.
As	 you	 saw	 in	 a	 previous	 section,	 Python	 also	 provides	 the	 format()	 method	 for	 advanced
interpolation	features.	Enter	the	following	commands	in	the	Python	interpreter:

import	string

str1	=	'this	is	a	string'
print(string.ljust(str1,	10))
print(string.rjust(str1,	40))
print(string.center(str1,40))

The	output	is	shown	here:
this	is	a	string
                        this	is	a	string
            this	is	a	string

UNINITIALIZED	VARIABLES	AND	THE	VALUE	NONE	IN	PYTHON

Python	 distinguishes	 between	 an	 uninitialized	 variable	 and	 the	 value	 None.	 The	 former	 is	 a
variable	that	has	not	been	assigned	a	value,	whereas	the	value	None	is	a	value	that	indicates
“no	 value.”	Collections	 and	methods	 often	 return	 the	 value	 None,	 and	 you	 can	 test	 for	 the
value	None	in	conditional	logic.
The	next	portion	of	this	chapter	shows	you	how	to	“slice	and	dice”	text	strings	with	built-

in	Python	functions.

SLICING	AND	SPLICING	STRINGS

Python	 enables	 you	 to	extract	 substrings	of	 a	 string	 (called	 “slicing”)	using	array	notation.
Slice	 notation	 is	 start:stop:step,	 where	 the	 start,	 stop,	 and	 step	 values	 are	 integers	 that
specify	 the	 start	 value,	 end	 value,	 and	 the	 increment	 value.	 The	 interesting	 part	 about
slicing	in	Python	is	that	you	can	use	the	value	-1,	which	operates	from	the	right-side	instead
of	the	left-side	of	a	string.	Some	examples	of	slicing	a	string	are	here:

text1	=	"this	is	a	string"
print('First	7	characters:',text1[0:7])
print('Characters	2-4:',text1[2:4])
print('Right-most	character:',text1[-1])
print('Right-most	2	characters:',text1[-3:-1])

The	output	from	the	preceding	code	block	is	here:
First	7	characters:	this	is
Characters	2-4:	is
Right-most	character:	g
Right-most	2	characters:	in

Later	in	this	chapter	you	will	see	how	to	insert	a	string	in	the	middle	of	another	string.

Testing	for	Digits	and	Alphabetic	Characters
Python	 enables	 you	 to	 examine	 each	 character	 in	 a	 string	 and	 then	 test	 whether	 that
character	 is	 a	 bona	 fide	 digit	 or	 an	 alphabetic	 character.	 This	 section	 provides	 a	 simple
introduction	to	regular	expressions.
Listing	 1.3	 displays	 the	 contents	 of	 CharTypes.py	 that	 illustrates	 how	 to	 determine	 if	 a

string	contains	digits	or	characters.	Although	we	have	not	discussed	if	statements	in	Python,
the	examples	in	Listing	1.3	are	straightforward.

Listing	1.3:	CharTypes.py
str1	=	"4"
str2	=	"4234"
str3	=	"b"
str4	=	"abc"
str5	=	"a1b2c3"

if(str1.isdigit()):
  print("this	is	a	digit:",str1)

if(str2.isdigit()):
  print("this	is	a	digit:",str2)

if(str3.isalpha()):
  print("this	is	alphabetic:",str3)

if(str4.isalpha()):
  print("this	is	alphabetic:",str4)



if(not	str5.isalpha()):
  print("this	is	not	pure	alphabetic:",str5)

print("capitalized	first	letter:",str5.title())

Listing	1.3	initializes	some	variables,	followed	by	2	conditional	tests	that	check	whether
or	not	str1	 and	 str2	 are	digits	using	 the	 isdigit()	 function.	 The	next	 portion	 of	 Listing	 1.3
checks	if	str3,	str4,	and	str5	are	alphabetic	strings	using	the	isalpha()	function.	The	output	of
Listing	1.3	is	here:

this	is	a	digit:	4
this	is	a	digit:	4234
this	is	alphabetic:	b
this	is	alphabetic:	abc
this	is	not	pure	alphabetic:	a1b2c3
capitalized	first	letter:	A1B2C3

SEARCH	AND	REPLACE	A	STRING	IN	OTHER	STRINGS
Python	provides	methods	for	searching	and	also	for	replacing	a	string	in	a	second	text	string.
Listing	1.4	displays	the	contents	of	FindPos1.py	that	shows	you	how	to	use	the	find()	function
to	search	for	the	occurrence	of	one	string	in	another	string.

Listing	1.4:	FindPos1.py
item1	=	'abc'
item2	=	'Abc'
text	=	'This	is	a	text	string	with	abc'

pos1	=	text.find(item1)
pos2	=	text.find(item2)

print('pos1=',pos1)
print('pos2=',pos2)

Listing	1.4	initializes	the	variables	item1,	item2,	and	text,	and	then	searches	for	the	index	of
the	contents	of	item1	and	item2	in	the	string	text.	The	Python	find()	function	returns	the	column
number	where	the	first	successful	match	occurs;	otherwise,	the	find()	function	returns	a	-1	if
a	match	is	unsuccessful.

The	output	from	launching	Listing	1.4	is	here:
pos1=	27
pos2=	-1

In	addition	to	the	find()	method,	you	can	use	the	in	operator	when	you	want	to	test	for
the	presence	of	an	element,	as	shown	here:

>>>	lst	=	[1,2,3]
>>>	1	in	lst
True

Listing	1.5	displays	the	contents	of	Replace1.py	that	shows	you	how	to	replace	one	string
with	another	string.

Listing	1.5:	Replace1.py
text	=	'This	is	a	text	string	with	abc'
print('text:',text)
text	=	text.replace('is	a',	'was	a')
print('text:',text)

Listing	1.5	starts	by	initializing	the	variable	text	and	then	printing	its	contents.	The	next
portion	of	Listing	1.5	replaces	the	occurrence	of	“is	a”	with	“was	a”	in	the	string	text,	and
then	prints	the	modified	string.	The	output	from	launching	Listing	1.5	is	here:

text:	This	is	a	text	string	with	abc
text:	This	was	a	text	string	with	abc

REMOVE	LEADING	AND	TRAILING	CHARACTERS
Python	 provides	 the	 functions	 strip(),	 lstrip(),	 and	 rstrip()	 to	 remove	 characters	 in	 a	 text
string.	 Listing	 1.6	 displays	 the	 contents	 of	 Remove1.py	 that	 shows	 you	 how	 to	 search	 for	 a
string.

Listing	1.6:	Remove1.py
text	=	'  	leading	and	trailing	white	space  	'
print('text1:','x',text,'y')

text	=	text.lstrip()
print('text2:','x',text,'y')



text	=	text.rstrip()
print('text3:','x',text,'y')

Listing	1.6	starts	by	concatenating	the	letter	x	and	the	contents	of	the	variable	text,	and
then	printing	the	result.	The	second	part	of	Listing	1.6	removes	the	leading	white	spaces	in
the	 string	 text	 and	 then	 appends	 the	 result	 to	 the	 letter	 x.	 The	 third	 part	 of	 Listing	 1.6
removes	the	trailing	white	spaces	in	the	string	text	(note	that	the	leading	white	spaces	have
already	been	removed)	and	then	appends	the	result	to	the	letter	x.

The	output	from	launching	Listing	1.6	is	here:
text1:	x    leading	and	trailing	white	space    y
text2:	x	leading	and	trailing	white	space    y
text3:	x	leading	and	trailing	white	space	y

If	you	want	to	remove	extra	white	spaces	inside	a	text	string,	use	the	replace()	function	as
discussed	 in	 the	 previous	 section.	 The	 following	 example	 illustrates	 how	 this	 can	 be
accomplished,	which	also	contains	the	re	module	for	regular	expressions:

import	re
text	=	'a    b'
a	=	text.replace('	',	'')
b	=	re.sub('\s+',	'	',	text)

print(a)
print(b)

The	result	is	here:
ab
a	b

PRINTING	TEXT	WITHOUT	NEWLINE	CHARACTERS

If	 you	need	 to	 suppress	white	 space	 and	 a	newline	between	objects	 output	with	multiple
print	statements,	you	can	use	concatenation	or	the	write()	function.
The	first	technique	is	to	concatenate	the	string	representations	of	each	object	using	the

str()	function	prior	to	printing	the	result.	For	example,	execute	the	following	statements	in
Python:

x	=	str(9)+str(0xff)+str(-3.1)
print('x:	',x)

The	output	is	shown	here:
x:  9255-3.1

The	 preceding	 line	 contains	 the	 concatenation	 of	 the	 numbers	 9	 and	 255	 (which	 is	 the
decimal	value	of	the	hexadecimal	number	0xff)	and	-3.1.
Incidentally,	 you	 can	 use	 the	 str()	 function	with	modules	 and	 user-defined	 classes.	 An

example	involving	the	Python	built-in	module	sys	is	here:
>>>	import	sys
>>>	print(str(sys))
<module	'sys'	(built-in)>

The	following	code	snippet	illustrates	how	to	use	the	write()	function	to	display	a	string:
import	sys
write	=	sys.stdout.write
write('123')
write('123456789')

The	output	is	here:
1233
1234567899

TEXT	ALIGNMENT
Python	 provides	 the	methods	 ljust(),	 rjust(),	 and	 center()	 for	 aligning	 text.	 The	 ljust()	 and
rjust()	functions	left	justify	and	right	justify	a	text	string,	respectively,	whereas	the	center()
function	will	center	a	string.	An	example	is	shown	in	the	following	code	block:

text	=	'Hello	World'
text.ljust(20)
'Hello	World	'
>>>	text.rjust(20)
'	Hello	World'
>>>	text.center(20)
'	Hello	World	'

You	can	use	the	Python	format()	function	to	align	text.	Use	the	<,	>,	or	^	characters,	along
with	a	desired	width,	 in	order	to	right	 justify,	 left	 justify,	and	center	the	text,	respectively.
The	following	examples	illustrate	how	you	can	specify	text	justification:



>>>	format(text,	'>20')
'        	Hello	World'
>>>
>>>	format(text,	'<20')
'Hello	World        	'
>>>
>>>	format(text,	'^20')
'    Hello	World    	'
>>>

WORKING	WITH	DATES

Python	provides	a	rich	set	of	date-related	functions	that	are	documented	here:

https://docs.python.org/3/library/datetime.html

Listing	1.7	displays	the	contents	of	the	Python	script	Datetime2.py	that	displays	various	date-
related	values,	such	as	the	current	date	and	time;	the	day	of	the	week,	month,	and	year;	and
the	time	in	seconds	since	the	epoch.

Listing	1.7:	Datetime2.py
import	time
import	datetime

print("Time	in	seconds	since	the	epoch:	%s"	%time.time())
print("Current	date	and	time:	"	,	datetime.datetime.now())
print("Or	like	this:	"	,datetime.datetime.now().strftime("%y-%m-%d-%H-%M"))

print("Current	year:	",	datetime.date.today().strftime("%Y"))
print("Month	of	year:	",	datetime.date.today().strftime("%B"))
print("Week	number	of	the	year:	",	datetime.date.today().strftime("%W"))
print("Weekday	of	the	week:	",	datetime.date.today().strftime("%w"))
print("Day	of	year:	",	datetime.date.today().strftime("%j"))
print("Day	of	the	month	:	",	datetime.date.today().strftime("%d"))
print("Day	of	week:	",	datetime.date.today().strftime("%A"))

Listing	1.8	displays	the	output	generated	by	executing	the	code	in	Listing	1.7.

Listing	1.8:	datetime2.out
Time	in	seconds	since	the	epoch:	1375144195.66
Current	date	and	time:  2013-07-29	17:29:55.664164
Or	like	this:  13-07-29-17-29
Current	year:  2013
Month	of	year:  July
Week	number	of	the	year:  30
Weekday	of	the	week:  1
Day	of	year:  210
Day	of	the	month	:  29
Day	of	week:  Monday

Python	 also	 enables	 you	 to	 perform	 arithmetic	 calculates	 with	 date-related	 values,	 as
shown	in	the	following	code	block:

>>>	from	datetime	import	timedelta
>>>	a	=	timedelta(days=2,	hours=6)
>>>	b	=	timedelta(hours=4.5)
>>>	c	=	a	+	b
>>>	c.days
2  
>>>	c.seconds
37800
>>>	c.seconds	/	3600
10.5
>>>	c.total_seconds()	/	3600
58.5

Converting	Strings	to	Dates
Listing	1.9	displays	the	contents	of	String2Date.py	that	illustrates	how	to	convert	a	string	to	a
date,	and	also	how	to	calculate	the	difference	between	two	dates.

Listing	1.9:	String2Date.py
from	datetime	import	datetime

text	=	'2014-08-13'
y	=	datetime.strptime(text,	'%Y-%m-%d')
z	=	datetime.now()
diff	=	z	-	y
print('Date	difference:',diff)

The	output	from	Listing	1.9	is	shown	here:
Date	difference:	2905	days,	11:12:28.678439



EXCEPTION	HANDLING	IN	PYTHON

Unlike	JavaScript	you	cannot	add	a	number	and	a	string	in	Python.	Fortunately,	you	can	detect
an	illegal	operation	using	the	try/except	construct	in	Python,	which	 is	similar	 to	 the	try/catch
construct	in	languages	such	as	JavaScript	and	Java.
An	example	of	a	try/except	block	is	here:
try:
  x	=	4
  y	=	'abc'
  z	=	x	+	y
except:
  print	'cannot	add	incompatible	types:',	x,	y

When	you	run	the	preceding	code	in	Python,	the	print	statement	in	the	except	code	block	is
executed	because	the	variables	x	and	y	have	incompatible	types.
Earlier	in	the	chapter	you	also	saw	that	subtracting	two	strings	throws	an	exception:
>>>	'a'	-	'b'
Traceback	(most	recent	call	last):
  File	"<stdin>",	line	1,	in	<module>
TypeError:	unsupported	operand	type(s)	for	-:	'str'	and	'str'
A	simple	way	to	handle	this	situation	is	to	use	a	try/except	block:
>>>	try:
...  print('a'	-	'b')
...	except	TypeError:
...  print('TypeError	exception	while	trying	to	subtract	two	strings')
...	except:
...  print('Exception	while	trying	to	subtract	two	strings')
...
The	output	from	the	preceding	code	block	is	here:
TypeError	exception	while	trying	to	subtract	two	strings

As	 you	 can	 see,	 the	 preceding	 code	 block	 specifies	 the	 finer-grained	 exception	 called
TypeError,	followed	by	a	“generic”	except	code	block	to	handle	all	other	exceptions	that	might
occur	during	the	execution	of	your	Python	code.	This	style	resembles	the	exception	handling
in	Java	code.
Listing	1.10	displays	 the	contents	of	 Exception1.py	 that	 illustrates	how	 to	handle	 various

types	of	exceptions,	which	includes	an	exception	due	to	a	missing	file.

Listing	1.10:	Exception1.py
import	sys

try:
    f	=	open('myfile.txt')
    s	=	f.readline()
    i	=	int(s.strip())
except	IOError	as	err:
    print("I/O	error:	{0}".format(err))
except	ValueError:
    print("Could	not	convert	data	to	an	integer.")
except:
    print("Unexpected	error:",	sys.exc_info()[0])
    raise
Listing	1.10	contains	a	try	block	followed	by	three	except	statements.	If	an	error	occurs	in

the	try	block,	the	first	except	statement	is	compared	with	the	type	of	exception	that	occurred.
If	 there	 is	 a	 match,	 then	 the	 subsequent	 print	 statement	 is	 executed,	 and	 the	 program
terminates.	 If	not,	a	 similar	 test	 is	performed	with	 the	second	 except	 statement.	 If	 neither
except	 statement	matches	 the	 exception,	 the	 third	 except	 statement	 handles	 the	 exception,
which	involves	printing	a	message	and	then	“raising”	an	exception.
Note	that	you	can	also	specify	multiple	exception	types	in	a	single	statement,	as	shown

here:
except	(NameError,	RuntimeError,	TypeError):
    print('One	of	three	error	types	occurred')
The	preceding	code	block	is	more	compact,	but	you	do	not	know	which	of	the	three	error

types	occurred.	Python	allows	you	to	define	custom	exceptions,	but	this	topic	 is	beyond	the
scope	of	this	book.

HANDLING	USER	INPUT

Python	enables	you	to	read	user	input	from	the	command	line	via	the	input()	 function	or	the
raw_input()	 function.	 Typically,	 you	 assign	 user	 input	 to	 a	 variable,	 which	 will	 contain	 all
characters	that	users	enter	from	the	keyboard.	User	input	terminates	when	users	press	the
<return>	 key	 (included	 with	 the	 input	 characters).	 Listing	 1.11	 displays	 the	 contents	 of
UserInput1.py	 that	 prompts	 users	 for	 their	 name	 and	 then	 uses	 interpolation	 to	 display	 a
response.

Listing	1.11:	UserInput1.py



•
•

userInput	=	input("Enter	your	name:	")
print	("Hello	%s,	my	name	is	Python"	%	userInput)

The	output	of	Listing	1.11	is	here	(assume	that	the	user	entered	the	word	Dave):
Hello	Dave,	my	name	is	Python

The	print()	 statement	 in	Listing	1.11	uses	 string	 interpolation	 via	 %s,	which	substitutes
the	value	of	the	variable	after	the	%	symbol.	This	functionality	is	obviously	useful	when	you
want	to	specify	something	that	is	determined	at	run-time.
User	input	can	cause	exceptions	(depending	on	the	operations	that	your	code	performs),

so	it’s	important	to	include	exception-handling	code.
Listing	 1.12	 displays	 the	 contents	 of	 UserInput2.py	 that	 prompts	 users	 for	 a	 string	 and

attempts	to	convert	the	string	to	a	number	in	a	try/except	block.

Listing	1.12:	UserInput2.py
userInput	=	input("Enter	something:	")

try:
  x	=	0	+	eval(userInput)
  print('you	entered	the	number:',userInput)
except:
  print(userInput,'is	a	string')
Listing	1.12	adds	the	number	0	to	the	result	of	converting	a	user’s	input	to	a	number.	If

the	 conversion	 was	 successful,	 a	 message	 with	 the	 user’s	 input	 is	 displayed.	 If	 the
conversion	failed,	the	except	code	block	consists	of	a	print	statement	that	displays	a	message.

NOTE
This	code	sample	uses	the	eval()	function,	which	should	be	avoided	so	that	your	code	does
not	evaluate	arbitrary	(and	possibly	destructive)	commands.

Listing	1.13	displays	the	contents	of	UserInput3.py	that	prompts	users	for	two	numbers	and
attempts	to	compute	their	sum	in	a	pair	of	try/except	blocks.

Listing	1.13:	UserInput3.py
sum	=	0

msg	=	'Enter	a	number:'
val1	=	input(msg)

try:
  sum	=	sum	+	eval(val1)
except:
  print(val1,'is	a	string')

msg	=	'Enter	a	number:'
val2	=	input(msg)

try:
  sum	=	sum	+	eval(val2)
except:
  print(val2,'is	a	string')

print('The	sum	of',val1,'and',val2,'is',sum)

Listing	1.13	contains	two	try	blocks,	each	of	which	is	followed	by	an	except	statement.	The
first	try	 block	attempts	 to	 add	 the	 first	 user-supplied	number	 to	 the	 variable	 sum,	 and	 the
second	try	block	attempts	to	add	the	second	user-supplied	number	to	the	previously	entered
number.	An	error	message	occurs	 if	 either	 input	 string	 is	not	a	valid	number;	 if	both	are
valid	numbers,	a	message	is	displayed	containing	the	input	numbers	and	their	sum.	Be	sure
to	read	the	caveat	regarding	the	eval()	function	that	is	mentioned	earlier	in	this	chapter.

COMMAND-LINE	ARGUMENTS

Python	provides	a	getopt	module	to	parse	command-line	options	and	arguments,	and	the	Python
sys	module	provides	access	to	any	command-line	arguments	via	the	sys.argv.	This	serves	two
purposes:

sys.argv	is	the	list	of	command-line	arguments
len(sys.argv)	is	the	number	of	command-line	arguments

Here	sys.argv[0]	is	the	program	name,	so	if	the	Python	program	is	called	test.py,	it	matches
the	value	of	sys.argv[0].
Now	you	can	provide	input	values	for	a	Python	program	on	the	command	line	instead	of

providing	 input	 values	 by	 prompting	 users	 for	 their	 input.	 As	 an	 example,	 consider	 the
script	test.py	shown	here:

#!/usr/bin/python



import	sys
print('Number	of	arguments:',len(sys.argv),'arguments')
print('Argument	List:',	str(sys.argv))

Run	above	script	as	follows:
python	test.py	arg1	arg2	arg3

This	will	produce	following	result:
Number	of	arguments:	4	arguments.
Argument	List:	['test.py',	'arg1',	'arg2',	'arg3']

The	ability	to	specify	 input	values	from	the	command	line	provides	useful	 functionality.
For	example,	suppose	that	you	have	a	custom	Python	class	that	contains	the	methods	add	and
subtract	to	add	and	subtract	a	pair	of	numbers.
You	can	use	command-line	arguments	in	order	to	specify	which	method	to	execute	on	a

pair	of	numbers,	as	shown	here:
python	MyClass	add	3	5
python	MyClass	subtract	3	5

This	 functionality	 is	 very	 useful	 because	 you	 can	 programmatically	 execute	 different
methods	in	a	Python	class,	which	means	that	you	can	write	unit	tests	for	your	code	as	well.
Listing	1.14	displays	the	contents	of	Hello.py	that	shows	you	how	to	use	sys.argv	to	check

the	number	of	command	line	parameters.

Listing	1.14:	Hello.py
import	sys

def	main():
  if	len(sys.argv)	>=	2:
    name	=	sys.argv[1]
  else:
    name	=	'World'
  print('Hello',	name)

#	Standard	boilerplate	to	invoke	the	main()	function
if	__name__	==	'__main__':
  main()

Listing	 1.14	 defines	 the	 main()	 function	 that	 checks	 the	 number	 of	 command-line
parameters:	 if	 this	 value	 is	 at	 least	 2,	 then	 the	 variable	 name	 is	 assigned	 the	 value	 of	 the
second	parameter	(the	first	parameter	is	Hello.py),	otherwise	name	is	assigned	the	value	Hello.
The	print()	statement	then	prints	the	value	of	the	variable	name.
The	 final	portion	of	Listing	1.14	uses	 conditional	 logic	 to	determine	whether	or	not	 to

execute	the	main()	function.

SUMMARY
This	 chapter	 showed	 you	 how	 to	 execute	 Python	 programs,	 as	well	 as	 how	 to	work	with
numbers	and	perform	arithmetic	operations	on	numbers	in	Python.	Next,	you	learned	how
to	work	with	strings	and	use	string	operations.
In	addition,	you	learned	about	the	difference	between	Unicode	and	ASCII	in	Python	3	and

Python	2,	respectively.	Then	you	saw	how	to	slice	and	splice	strings,	how	to	replace	a	string
with	another	string,	and	also	how	to	remove	leading	and	trailing	characters	in	a	string.
Finally,	you	learned	how	to	work	with	dates	in	Python,	and	then	how	to	handle	exceptions

that	can	arise	from	user	input.



CHAPTER	2
CONDITIONAL	LOGIC	IN	PYTHON

This	chapter	is	a	continuation	of	the	previous	chapter,	which	discusses	conditional	logic,	for
loops,	and	while	loops.	Various	code	samples	are	included	to	illustrate	each	of	these	topics	in
Python.

The	 first	 part	 of	 this	 chapter	 briefly	 discusses	 precedence	 of	 operators	 as	 well	 as
reserved	 words	 in	 Python.	 Next	 are	 Python-based	 code	 samples	 of	 various	 types	 of	 loops,
including	nested	loops.

The	second	part	of	this	chapter	discusses	conditional	logic,	as	well	as	control	structures
and	user-defined	functions.	Virtually	every	Python	program	that	performs	useful	calculations
requires	some	type	of	conditional	 logic	or	control	structure	(or	both).	Although	the	syntax
for	these	features	is	slightly	different	from	other	languages,	the	functionality	will	be	familiar
to	you.

NOTE
The	scripts	in	this	book	are	for	Python	3.x.

PRECEDENCE	OF	OPERATORS	IN	PYTHON
When	you	have	an	expression	 involving	numbers,	you	might	remember	that	multiplication
(*)	 and	 division	 (/)	 have	 higher	 precedence	 than	 addition	 (+)	 or	 subtraction	 (-).
Exponentiation	has	even	higher	precedence	than	these	four	arithmetic	operators.

However,	 instead	 of	 relying	 on	 precedence	 rules,	 it’s	 simpler	 (as	well	 as	 safer)	 to	 use
parentheses.	For	example,	 (x/y)+10	 is	 clearer	 than	 x/y+10,	 even	 though	 they	 are	 equivalent
expressions.	 As	 another	 example,	 the	 following	 two	 arithmetic	 expressions	 are	 the
equivalent,	but	the	second	is	less	error	prone	than	the	first:

x/y+3*z/8+x*y/z-3*x
(x/y)+(3*z)/8+(x*y)/z-(3*x)

The	following	website	contains	precedence	rules	for	operators	in	Python:

http://www.mathcs.emory.edu/~valerie/courses/fall10/155/resources/op_precedence.html

PYTHON	RESERVED	WORDS
Every	programming	language	has	a	set	of	reserved	words	that	cannot	be	used	as	identifiers,
and	Python	 is	 no	 exception.	 Python’s	 reserved	words	 are:	 and,	 exec,	 not,	 assert,	 finally,	 or,
break,	for,	pass,	class,	from,	print,	continue,	global,	raise,	def,	if,	return,	del,	import,	try,	elif,
in,	while,	else,	is,	with,	except,	lambda,	and	yield.

If	you	inadvertently	use	a	reserved	word	as	a	variable,	you	will	see	an	“invalid	syntax”
error	 message	 instead	 of	 a	 “reserved	 word”	 error	 message.	 For	 example,	 suppose	 you
create	a	script	test1.py	with	the	following	code:

break	=	2
print('break	=',	break)

If	you	run	the	preceding	code,	you	will	see	the	following	output:

 File	"test1.py",	line	2
  break	=	2
    ^
SyntaxError:	invalid	syntax

However,	 a	 quick	 inspection	 of	 the	 code	 reveals	 that	 you	 are	 attempting	 to	 use	 the
reserved	word	break	as	a	variable.

WORKING	WITH	LOOPS	IN	PYTHON



Python	 supports	 for	 loops,	 while	 loops,	 and	 range()	 statements.	 The	 following	 subsections
illustrate	how	you	can	use	each	of	these	constructs.

Python	for	Loops
Python	supports	the	for	loop	whose	syntax	is	slightly	different	from	other	languages	(such	as
JavaScript	 and	 Java).	 The	 following	 code	 block	 shows	 you	 how	 to	 use	 a	 for	 loop	 to	 iterate
through	the	elements	in	a	list:

>>>	x	=	['a',	'b',	'c']
>>>	for	w	in	x:
...	print(w)
...
a
b
c

The	preceding	code	snippet	prints	three	letters	on	three	separate	lines.	You	can	force	the
output	 to	be	displayed	on	 the	 same	 line	 (which	will	 “wrap”	 if	 you	 specify	a	 large	enough
number	of	characters)	by	appending	a	comma	(“,”)	in	the	print()	statement,	as	shown	here:

>>>	x	=	['a',	'b',	'c']
>>>	for	w	in	x:
...	print(w,	end='	')
...
a	b	c

You	can	use	 this	 type	of	code	when	you	want	 to	display	 the	contents	of	a	 text	 file	 in	a
single	line	instead	of	multiple	lines.

Python	also	provides	the	built-in	reversed()	function	that	reverses	the	direction	of	the	loop,
as	shown	here:

>>>	a	=	[1,	2,	3,	4,	5]
>>>	for	x	in	reversed(a):
...	print(x)
5
4
3
2
1

Note	 that	 reversed	 iteration	 only	 works	 if	 the	 size	 of	 the	 current	 object	 can	 be
determined	or	if	the	object	implements	a	__reversed__()	special	method.

A	For	Loop	with	try/except	in	Python
Listing	2.1	shows	the	content	of	StringToNums.py	that	illustrates	how	to	calculate	the	sum	of	a
set	of	integers	that	have	been	converted	from	strings.

Listing	2.1:	StringToNums.py
line	=	'1	2	3	4	10e	abc'
sum	=	0
invalidStr	=	""

print('String	of	numbers:',line)

for	str	in	line.split("	"):
 try:
  sum	=	sum	+	eval(str)
 except:
  invalidStr	=	invalidStr	+	str	+	'	'

print('sum:',	sum)
if(invalidStr	!=	""):
 print('Invalid	strings:',invalidStr)
else:
 print('All	substrings	are	valid	numbers')

Listing	2.1	initializes	the	variables	line,	sum,	and	invalidStr,	and	then	displays	the	contents
of	line.	The	next	portion	of	Listing	2.1	splits	the	contents	of	line	into	words,	and	then	uses	a
try	block	in	order	to	add	the	numeric	value	of	each	word	to	the	variable	sum.	If	an	exception
occurs,	the	contents	of	the	current	str	are	appended	to	the	variable	invalidStr.

When	the	loop	has	finished	execution,	Listing	2.1	displays	the	sum	of	the	numeric	words,
followed	by	the	list	of	words	that	are	not	numbers.	The	output	from	Listing	2.1	is	here:

String	of	numbers:	1	2	3	4	10e	abc
sum:	10
Invalid	strings:	10e	abc



Numeric	Exponents	in	Python
Listing	2.2	shows	the	content	of	Nth_exponent.py	that	illustrates	how	to	calculate	intermediate
powers	of	a	set	of	integers.

Listing	2.2:	Nth_exponent.py
maxPower	=	4
maxCount	=	4

def	pwr(num):
 prod	=	1
 for	n	in	range(1,maxPower+1):
  prod	=	prod*num
  print(num,'to	the	power',n,	'equals',prod)
print('-----------')

for	num	in	range(1,maxCount+1):
  pwr(num)

Listing	 2.2	 contains	 a	 function	 called	 pwr()	 that	 accepts	 a	 numeric	 value.	 This	 function
contains	a	loop	that	prints	the	value	of	that	number	raised	to	the	power	n,	where	n	 ranges
between	1	and	maxPower+1.

The	second	part	of	Listing	2.2	contains	a	for	loop	that	invokes	the	function	pwr()	with	the
numbers	between	1	and	maxPower+1.	The	output	from	Listing	2.2	is	as	follows:

1	to	the	power	1	equals	1
1	to	the	power	2	equals	1
1	to	the	power	3	equals	1
1	to	the	power	4	equals	1
-----------
2	to	the	power	1	equals	2
2	to	the	power	2	equals	4
2	to	the	power	3	equals	8
2	to	the	power	4	equals	16
-----------
3	to	the	power	1	equals	3
3	to	the	power	2	equals	9
3	to	the	power	3	equals	27
3	to	the	power	4	equals	81
-----------
4	to	the	power	1	equals	4
4	to	the	power	2	equals	16
4	to	the	power	3	equals	64
4	to	the	power	4	equals	256
-----------

NESTED	LOOPS
Listing	 2.3	 shows	 the	 content	 of	 Triangular1.py	 that	 illustrates	 how	 to	 print	 a	 row	 of
consecutive	integers	(starting	from	1),	where	the	length	of	each	row	is	one	greater	than	the
previous	row.

Listing	2.3:	Triangular1.py
max	=	8
for	x	in	range(1,max+1):
 for	y	in	range(1,x+1):
  print(y,	'',	end='')
print()

Listing	 2.3	 initializes	 the	 variable	 max	 with	 the	 value	 8,	 followed	 by	 an	 outer	 for	 loop
whose	loop	variable	x	ranges	from	1	to	max+1.	The	inner	loop	has	a	loop	variable	y	that	ranges
from	1	to	x+1,	and	the	inner	loop	prints	the	value	of	y.	The	output	of	Listing	2.3	is	as	follows:

1
1	2
1	2	3
1	2	3	4
1	2	3	4	5
1	2	3	4	5	6
1	2	3	4	5	6	7
1	2	3	4	5	6	7	8

THE	SPLIT()	FUNCTION	WITH	FOR	LOOPS

Python	supports	various	useful	string-related	functions,	including	the	split()	function	and	the
join()	 function.	The	split()	 function	 is	useful	when	you	want	 to	 tokenize	 (“split”)	 a	 line	of



text	 into	words	and	 then	use	a	 for	 loop	 to	 iterate	 through	 those	words	and	process	 them
accordingly.

The	join()	function	does	the	opposite	of	split():	It	“joins”	two	or	more	words	into	a	single
line.	You	can	easily	remove	extra	spaces	in	a	sentence	by	using	the	split()	function	and	then
by	invoking	the	join()	function,	thereby	creating	a	line	of	text	with	one	white	space	between
any	two	words.

USING	THE	SPLIT()	FUNCTION	TO	COMPARE	WORDS

Listing	2.4	shows	the	content	of	Compare2.py,	which	illustrates	how	to	use	the	split()	function
to	compare	each	word	in	a	text	string	with	another	word.

Listing	2.4:	Compare2.py
x	=	'This	is	a	string	that	contains	abc	and	Abc'
y	=	'abc'
identical	=	0
casematch	=	0

for	w	in	x.split():
 if(w	==	y):
  identical	=	identical	+	1
 elif	(w.lower()	==	y.lower()):
  casematch	=	casematch	+	1

if(identical	>	0):
 print('found	identical	matches:',	identical)
if(casematch	>	0):
 print('found	case	matches:',	casematch)
if(casematch	==	0	and	identical	==	0):
 print('no	matches	found')

Listing	2.4	uses	the	split()	function	to	compare	each	word	in	the	string	x	with	the	word
abc.	 If	 there	 is	 an	 exact	match,	 the	 variable	 identical	 is	 incremented.	 If	 a	match	 does	 not
occur,	a	case-insensitive	match	of	the	current	word	is	performed	with	the	string	abc,	and	the
variable	casematch	 is	 incremented	 if	 the	match	 is	successful.	The	output	 from	Listing	2.4	 is
here:

found	identical	matches:	1
found	case	matches:	1

USING	THE	SPLIT()	FUNCTION	TO	PRINT	JUSTIFIED	TEXT

Listing	2.5	 shows	 the	content	of	 FixedColumnCount.py,	which	 illustrates	 how	 to	 print	 a	 set	 of
words	from	a	text	string	as	justified	text	using	a	fixed	number	of	columns.

Listing	2.5:	FixedColumnCount1.py
import	string

wordCount	=	0
str1	=	'this	is	a	string	with	a	set	of	words	in	it'

print('Left-justified	strings:')
print('-----------------------')
for	w	in	str1.split():
 print('%-10s'	%	w)
 wordCount	=	wordCount	+	1
 if(wordCount	%	2	==	0):
  print("")
print("\n")

print('Right-justified	strings:')
print('------------------------')

wordCount	=	0
for	w	in	str1.split():
 print('%10s'	%	w)
 wordCount	=	wordCount	+	1
 if(wordCount	%	2	==	0):
  print()

Listing	2.5	initializes	the	variables	wordCount	and	str1,	followed	by	two	for	loops.	The	first
for	 loop	prints	the	words	 in	str1	 in	 left-justified	 format,	and	the	second	for	 loop	prints	 the
words	 in	 str1	 in	 right-justified	 format.	 In	 both	 loops,	 a	 linefeed	 is	 printed	 after	 a	 pair	 of
consecutive	words	is	printed.	This	occurs	whenever	the	variable	wordCount	is	even.	The	output



from	Listing	2.5	is	as	follows:

USING	THE	SPLIT()	FUNCTION	TO	PRINT	FIXED	WIDTH	TEXT

Listing	2.6	shows	the	content	of	FixedColumnWidth1.py	that	illustrates	how	to	print	a	text	string
in	a	column	of	fixed	width.

Listing	2.6:	FixedColumnWidth1.py
import	string

left	=	0
right	=	0

Listing	 2.6	 initializes	 the	 integer	 variable	 columnWidth	 and	 the	 string	 variable	 str1.	 The
variable	strLen	is	the	length	of	str1,	and	rowCount	is	strLen	divided	by	columnWidth.

The	next	part	of	Listing	2.6	contains	a	loop	that	prints	rowCount	rows	of	characters,	where
each	row	contains	columnWidth	characters.	The	final	portion	of	Listing	2.6	prints	any	“leftover”
characters	that	comprise	a	partial	row.	The	newspaper-style	output	(but	without	any	partial
whitespace	formatting)	from	Listing	2.6	is	here:

Left-justified	column:
----------------------
this	is



a	strin
 with	a
set	of
ords	in
it	and
t	will
e	split
into	a
ixed	co
umn	wid
th

USING	THE	SPLIT()	FUNCTION	TO	COMPARE	TEXT	STRINGS

Listing	 2.7	 shows	 the	 content	 of	 CompareStrings1.py,	 which	 illustrates	 how	 to	 determine
whether	the	words	in	one	text	string	are	also	words	in	a	second	text	string.

Listing	2.7:	CompareStrings1.py
text1	=	'a	b	c	d'
text2	=	'a	b	c	e	d'

if(text2.find(text1)	>=	0):
 print('text1	is	a	substring	of	text2')
else:
 print('text1	is	not	a	substring	of	text2')

subStr	=	True
for	w	in	text1.split():
 if(text2.find(w)	==	-1):
  subStr	=	False
  break

if(subStr	==	True):
 print('Every	word	in	text1	is	a	word	in	text2')
else:
 print('Not	every	word	in	text1	is	a	word	in	text2')

Listing	 2.7	 initializes	 the	 string	 variables	 text1	 and	 text2,	 and	 uses	 conditional	 logic	 to
determine	whether	text1	is	a	substring	of	text2	(and	then	prints	a	suitable	message).

The	next	part	of	Listing	2.7	is	a	loop	that	iterates	through	the	words	in	the	string	text1
and	checks	if	each	of	those	words	is	also	a	word	in	the	string	text2.	 If	a	nonmatch	occurs,
the	variable	subStr	is	set	to	“False,”	followed	by	the	break	statement	that	causes	an	early	exit
from	the	loop.	The	final	portion	of	Listing	2.7	prints	the	appropriate	message	based	on	the
value	of	subStr.	The	output	from	Listing	2.7	is	as	follows:

text1	is	not	a	substring	of	text2
Every	word	in	text1	is	a	word	in	text2

USING	THE	SPLIT()	FUNCTION	TO	DISPLAY	CHARACTERS	IN	A	STRING

Listing	2.8	shows	the	content	of	StringChars1.py,	which	illustrates	how	to	print	the	characters
in	a	text	string.

Listing	2.8:	StringChars1.py
text	=	'abcdef'
for	ch	in	text:
 print('char:',ch,'ord	value:',ord(ch))
print()

Listing	2.8	is	straightforward:	A	for	loop	iterates	through	the	characters	in	the	string	text
and	then	prints	the	character	and	its	ord	value.	The	output	from	Listing	2.8	is	here:

('char:',	'a',	'ord	value:',	97)
('char:',	'b',	'ord	value:',	98)
('char:',	'c',	'ord	value:',	99)
('char:',	'd',	'ord	value:',	100)
('char:',	'e',	'ord	value:',	101)
('char:',	'f',	'ord	value:',	102)

THE	JOIN()	FUNCTION
Another	way	to	remove	extraneous	spaces	is	to	use	the	join()	function:

text1	=	'   there	are   extra  spaces   '
print('text1:',text1)

text2	=	'	'.join(text1.split())
print('text2:',text2)



text2	=	'XYZ'.join(text1.split())
print('text2:',text2)

The	 split()	 function	 “splits”	 a	 text	 string	 into	 a	 set	 of	 words,	 and	 also	 removes	 the
extraneous	white	spaces.	Next,	the	join()	 function	“joins”	together	the	words	in	the	string
text1,	 using	 a	 single	white	 space	 as	 the	 delimiter.	 The	 last	 code	 portion	 of	 the	 preceding
code	block	uses	the	string	XYZ	as	the	delimiter	instead	of	a	single	white	space.	The	output	of
the	preceding	code	block	is	as	follows:

text1:   there	are   extra   spaces
text2:	there	are	extra	spaces
text2:	thereXYZareXYZextraXYZspaces

PYTHON	WHILE	LOOPS
You	can	define	a	while	 loop	to	 iterate	through	a	set	of	numbers,	as	shown	in	the	following
examples:

>>>	x	=	0
>>>	while	x	<	5:
...  print(x)
...  x	=	x	+	1
...
0
1
2
3
4
5

Python	uses	indentations	instead	of	the	curly	braces	that	are	used	in	other	languages	such
as	JavaScript	 and	 Java.	 Although	 the	 list	 data	 structure	 is	 not	 discussed	 until	 later	 in	 this
chapter,	the	following	simple	code	block	contains	a	variant	of	the	preceding	while	loop	that
you	can	use	when	working	with	lists:

lst  =	[1,2,3,4]

while	lst:
 print('list:',lst)
 print('item:',lst.pop())

The	preceding	while	loop	terminates	when	the	lst	variable	is	empty,	and	there	is	no	need
to	explicitly	test	for	an	empty	list.	The	output	from	the	preceding	code	is	here:

list:	[1,	2,	3,	4]
item:	4
list:	[1,	2,	3]
item:	3
list:	[1,	2]
item:	2
list:	[1]
item:	1

This	 concludes	 the	 examples	 that	 use	 the	 split()	 function	 to	 process	 words	 and
characters	 in	 a	 text	 string.	 The	 next	 part	 of	 this	 chapter	 shows	 examples	 of	 using
conditional	logic.

CONDITIONAL	LOGIC	IN	PYTHON
If	 you	 have	 written	 code	 in	 other	 programming	 languages,	 you	 have	 undoubtedly	 seen
if/then/else	 (or	 if-elseif-else)	 conditional	 statements.	 Although	 the	 syntax	 varies	 between
languages,	 the	 logic	 is	essentially	 the	same.	The	following	example	shows	you	how	to	use
if/elif	statements:

>>>	x	=	25
>>>	if	x	<	0:
...  print('negative')
...	elif	x	<	25:
...  print('under	25')
...	elif	x	==	25:
...  print('exactly	25')
...	else:
...  print('over	25')
...
exactly	25

The	preceding	 code	block	 illustrates	 how	 to	use	multiple	 conditional	 statements,	 and	 the
output	is	exactly	what	you	expected.

THE	BREAK/CONTINUE/PASS	STATEMENTS



•
•
•

The	break	statement	enables	you	to	perform	an	“early	exit”	from	a	loop,	whereas	the	continue
statement	essentially	returns	to	the	top	of	the	loop	and	continues	with	the	next	value	of	the
loop	variable.	The	pass	statement	is	essentially	a	“do	nothing”	statement.

Listing	2.9	shows	the	content	of	BreakContinuePass.py	that	illustrates	the	use	of	these	three
statements.

Listing	2.9:	BreakContinuePass.py
print('first	loop')
for	x	in	range(1,4):
 if(x	==	2):
  break
 print(x)

print('second	loop')
for	x	in	range(1,4):
 if(x	==	2):
  continue
 print(x)

print('third	loop')
for	x	in	range(1,4):
 if(x	==	2):
  pass
 print(x)

The	output	of	Listing	2.9	is	as	follows:
first	loop
1
second	loop
1
3
third	loop
1
2
3

COMPARISON	AND	BOOLEAN	OPERATORS

Python	supports	a	variety	of	Boolean	operators,	such	as	in,	not	in,	is,	is	not,	and,	or,	and	not.	The
next	 several	 sections	 discuss	 these	 operators	 and	 provide	 some	 examples	 of	 how	 to	 use
them.

The	in/not	in/is/is	not	Comparison	Operators
The	in	 and	 not	in	 operators	 are	 used	with	 sequences	 to	 check	whether	 a	 value	 occurs	 or
does	not	occur	in	a	sequence.	The	operators	is	and	is	not	determine	whether	two	objects	are
the	 same	 object,	 which	 is	 important	 for	 mutable	 objects	 such	 as	 lists.	 All	 comparison
operators	 have	 the	 same	 priority,	 which	 is	 lower	 than	 that	 of	 all	 numerical	 operators.
Comparisons	can	also	be	chained.	For	example,	a	<	b	==	c	tests	whether	a	is	less	than	b	and
moreover	b	equals	c.

The	and,	or,	and	not	Boolean	Operators
The	 Boolean	 operators	 and,	 or,	 and	 not	 have	 lower	 priority	 than	 comparison	 operators.	 The
Boolean	and	and	or	are	binary	operators	whereas	the	Boolean	or	operator	 is	a	unary	operator.
Here	are	some	examples:

A	and	B	can	only	be	true	if	both	A	and	B	are	true
A	or	B	is	true	if	either	A	or	B	is	true
not(A)	is	true	if	and	only	if	A	is	false

You	can	also	assign	the	result	of	a	comparison	or	other	Boolean	expression	to	a	variable,	as
shown	here:

>>>	string1,	string2,	string3	=	'',	'b',	'cd'
>>>	str4	=	string1	or	string2	or	string3
>>>	str4
'b'

The	 preceding	 code	 block	 initializes	 the	 variables	 string1,	 string2,	 and	 string3,	 where
string1	 is	 an	 empty	 string.	 Next,	 str4	 is	 initialized	 via	 the	 or	 operator,	 and	 since	 the	 first
nonnull	value	is	string2,	the	value	of	str4	is	equal	to	string2.



•
•
•

LOCAL	AND	GLOBAL	VARIABLES
Python	variables	can	be	local	or	global.	A	variable	 is	 local	to	a	function	if	 the	following	are
true:

a	parameter	of	the	function
on	the	left-side	of	a	statement	in	the	function
bound	to	a	control	structure	(such	as	for,	with,	and	except)

A	variable	that	is	referenced	in	a	function	but	is	not	local	(according	to	the	previous	list)
is	a	nonlocal	variable.	You	can	specify	a	variable	as	nonlocal	with	this	snippet:

nonlocal	z

A	variable	can	be	explicitly	declared	as	global	with	this	statement:
global	z

The	following	code	block	illustrates	the	behavior	of	a	global	versus	a	local	variable:
global	z
z	=	3

def	changeVar(z):
 z	=	4
 print('z	in	function:',z)
 print('first	global	z:',z)

if	__name__	==	'__main__':
 changeVar(z)
 print('second	global	z:',z)

The	output	from	the	preceding	code	block	is	here:
first	global	z:	3
z	in	function:	4
second	global	z:	3

SCOPE	OF	VARIABLES
The	accessibility	or	scope	of	a	variable	depends	on	where	that	variable	has	been	defined.
Python	provides	 two	scopes:	global	and	 local,	with	 the	added	“twist”	 that	global	 is	actually
module-level	 scope	 (i.e.,	 the	 current	 file),	 and	 therefore	 you	can	have	a	 variable	with	 the
same	name	in	different	files	and	they	will	be	treated	differently.

Local	variables	are	straightforward:	They	are	defined	inside	a	function,	and	they	can	only
be	 accessed	 inside	 the	 function	where	 they	 are	 defined.	 Any	 variables	 that	 are	 not	 local
variables	 have	 a	 global	 scope,	 which	 means	 that	 those	 variables	 are	 “global”	 only	with
respect	to	the	file	where	it	has	been	defined,	and	they	can	be	accessed	anywhere	in	a	file.

There	 are	 two	 scenarios	 to	 consider	 regarding	 variables.	 First,	 suppose	 two	 files	 (aka
modules)	file1.py	and	file2.py	have	a	variable	called	x,	and	file1.py	also	imports	file2.py.	The
question	is	how	to	disambiguate	between	the	x	in	the	two	different	modules.	As	an	example,
suppose	that	file2.py	contains	the	following	two	lines	of	code:

x	=	3
print('unscoped	x	in	file2:',x)

Suppose	that	file1.py	contains	the	following	code:
import	file2	as	file2

x	=	5
print('unscoped	x	in	file1:',x)
print('scoped	x	from	file2:',file2.x)

Launch	file1.py	from	the	command	line,	and	you	will	see	the	following	output:
unscoped	x	in	file2:	3
unscoped	x	in	file1:	5
scoped	x	from	file2:	3

The	 second	 scenario	 involves	 a	 program	 that	 contains	 a	 local	 variable	 and	 a	 global
variable	with	the	same	name.	According	to	the	earlier	rule,	the	local	variable	is	used	in	the
function	where	it	is	defined,	and	the	global	variable	is	used	outside	of	that	function.

The	following	code	block	illustrates	the	use	of	a	global	and	local	variable	with	the	same
name:

#!/usr/bin/python
#	a	global	variable:
total	=	0;

def	sum(x1,	x2):



1.
2.
3.
4.

 #	this	total	is	local:
 total	=	x1+x2;

 print("Local	total	:	",	total)
 return	total

#	invoke	the	sum	function
sum(2,3);
print("Global	total	:	",	total)

When	the	above	code	is	executed,	it	produces	following	result:
Local	total	:  5
Global	total	: 0

What	 about	 unscoped	 variables,	 such	 as	 specifying	 the	 variable	 x	 without	 a	 module
prefix?	The	answer	consists	of	the	following	sequence	of	steps	that	Python	will	perform:

Check	the	local	scope	for	the	name.
Ascend	the	enclosing	scopes	and	check	for	the	name.
Perform	Step	2	until	you	reach	the	global	scope	(i.e.,	the	module	level).
If	x	still	hasn’t	been	found,	Python	checks	builtins_

As	a	simple	illustration,	launch	the	Python	interpreter	and	type	the	text	shown	in	bold:
Python	3.9.1	(v3.9.1:1e5d33e9b9,	Dec  7	2020,	12:44:01)
[Clang	12.0.0	(clang-1200.0.32.27)]	on	darwin
Type	"help",	"copyright",	"credits"	or	"license"	for
more	information.
>>>	x	=	1
>>>	g	=	globals()
>>>	g
{'g':	{...},	'__builtins__':	<module	'__builtin__'
(built-in)>,	'__package__':	None,	'x':	1,	'__name__':
'__main__',	'__doc__':	None}
>>>	g.pop('x')
1

NOTE
You	can	access	the	dicts	that	Python	uses	to	track	local	and	global	scope	by	invoking	locals()
and	globals(),	respectively.

PASS	BY	REFERENCE	VERSUS	VALUE
All	parameters	in	the	Python	language	are	passed	by	reference.	Therefore,	if	you	change	the
value	of	a	parameter	 inside	a	function,	the	change	is	reflected	in	the	calling	function.	For
example:

def	changeme(mylist):
 #This	changes	a	passed	list	into	this	function
 mylist.append([1,2,3,4])
 print("Values	inside	the	function:	",	mylist)
 return

#	Now	you	can	call	changeme	function
mylist	=	[10,20,30]
changeme(mylist)
print("Values	outside	the	function:	",	mylist)

Here	 we	 are	 maintaining	 reference	 of	 the	 passed	 object	 and	 appending	 values	 in	 the
same	object,	and	the	result	is	shown	here:

Values	inside	the	function:  [10,	20,	30,	[1,	2,	3,	4]]
Values	outside	the	function:  [10,	20,	30,	[1,	2,	3,	4]]

The	fact	that	values	are	passed	by	reference	gives	rise	to	the	notion	of	mutability	versus
immutability	that	is	discussed	in	Chapter	3.

ARGUMENTS	AND	PARAMETERS

Python	 differentiates	 between	 arguments	 to	 functions	 and	 parameter	 declarations	 in
functions:	 a	 positional	 (mandatory)	 and	 keyword	 (optional/default	 value).	 This	 concept	 is
important	 because	 Python	 has	 operators	 for	 packing	 and	 unpacking	 these	 kinds	 of
arguments.

Python	unpacks	positional	arguments	from	an	iterable,	as	shown	here:
>>>	def	foo(x,	y):
...  return	x	-	y
...



>>>	data	=	4,5
>>>	foo(data)	#	only	passed	one	arg
Traceback	(most	recent	call	last):
 File	"<stdin>",	line	1,	in	<module>
TypeError:	foo()	takes	exactly	2	arguments	(1	given)
>>>	foo(*data)	#	passed	however	many	args	are	in	tuple
-1

USING	A	WHILE	LOOP	TO	FIND	THE	DIVISORS	OF	A	NUMBER

Listing	2.10	contains	a	while	loop,	conditional	logic,	and	the	%	(modulus)	operator	in	order	to
find	the	factors	of	any	integer	greater	than	1.

Listing	2.10:	Divisors.py
def	divisors(num):
 div	=	2

 while(num	>	1):
  if(num	%	div	==	0):
   print("divisor:	",	div)
   num	=	num	/	div
  else:
   div	=	div	+	1
print("**	finished	**")

divisors(12)

Listing	 2.10	 defines	 a	 function	 divisors()	 that	 takes	 an	 integer	 value	 num	 and	 then
initializes	 the	 variable	 div	 with	 the	 value	 2.	 The	 while	 loop	 divides	 num	 by	 div	 and	 if	 the
remainder	is	0,	 it	prints	the	value	of	div	and	then	it	divides	num	by	div;	 if	the	value	is	not	0,
then	div	is	incremented	by	1.	This	while	loop	continues	as	long	as	the	value	of	num	is	greater
than	1.

The	output	from	Listing	2.10	passing	in	the	value	12	to	the	function	divisors()	is	as	follows:
divisor:  2
divisor:  2
divisor:  3
**	finished	**

Listing	2.11	shows	the	content	of	Divisors2.py,	which	contains	a	while	loop,	conditional	logic,
and	the	%	(modulus)	operator	in	order	to	find	the	factors	of	any	integer	greater	than	1.

Listing	2.11:	Divisors2.py
def	divisors(num):
 divList=	""
 primes	=	""
 div	=	2

 while(num	>	1):
  if(num	%	div	==	0):
   divList	=	divList	+	str(div)	+	'	'
   num	=	num	/	div
  else:
   div	=	div	+	1
   return	divList

result	=	divisors(12)
print('The	divisors	of',12,'are:',result)

Listing	 2.11	 is	 very	 similar	 to	 Listing	 2.10.	 The	 main	 difference	 is	 that	 Listing	 2.11
constructs	the	variable	divList	(which	is	a	concatenated	list	of	the	divisors	of	a	number)	in
the	while	loop,	and	then	returns	the	value	of	divList	when	the	while	loop	has	completed.	The
output	from	Listing	2.11	is	as	follows:

The	divisors	of	12	are:	2	2	3

Using	a	while	Loop	to	Find	Prime	Numbers
Listing	2.12	shows	the	content	of	Divisors3.py,	which	contains	a	while	loop,	conditional	logic,
and	the	%	 (modulus)	operator	to	count	the	number	of	prime	factors	of	any	 integer	greater
than	1.	If	there	is	only	one	divisor	for	a	number,	then	that	number	is	a	prime	number.

Listing	2.12:	Divisors3.py
def	divisors(num):



•

•
•

•
•

•

 count	=	1
 div	=	2
 while(div	<	num):
  if(num	%	div	==	0):
   count	=	count	+	1
  div	=	div	+	1
 return	count

result	=	divisors(12)

if(result	==	1):
 print('12	is	prime')
else:
 print('12	is	not	prime')

Launch	the	code	in	Listing	2.12	and	you	will	see	the	following	output:
12	is	not	prime

USER-DEFINED	FUNCTIONS	IN	PYTHON
Python	provides	built-in	functions	and	also	enables	you	to	define	your	own	functions.	You	can
define	 functions	 to	 provide	 the	 required	 functionality.	 Here	 are	 simple	 rules	 to	 define	 a
function:

Function	blocks	begin	with	the	keyword	def	followed	by	the	function	name	and
parentheses.
Any	input	arguments	should	be	placed	within	these	parentheses.
The	first	statement	of	a	function	can	be	an	optional	statement—the	documentation	string
of	the	function	or	docstring.
The	code	block	within	every	function	starts	with	a	colon	(:)	and	is	indented.
The	statement	return	[expression]	exits	a	function,	optionally	passing	back	an	expression
to	the	caller.	A	return	statement	with	no	arguments	is	the	same	as	return	None.
If	a	function	does	not	specify	return	statement,	the	function	automatically	returns	None,
which	is	a	special	type	of	value.

A	very	simple	custom	Python	function	is	here:
>>>	def	func():
...  print	3
...
>>>	func()
3

The	 preceding	 function	 is	 trivial,	 but	 it	 does	 illustrate	 the	 syntax	 for	 defining	 custom
functions.	The	following	example	is	slightly	more	useful:

>>>	def	func(x):
...   for	i	in	range(0,x):
...     print(i)
...
>>>	func(5)
0
1
2
3
4

SPECIFYING	DEFAULT	VALUES	IN	A	FUNCTION

Listing	2.13	 shows	 the	 content	 of	 DefaultValues.py,	which	 illustrates	 how	 to	 specify	 default
values	in	a	function.

Listing	2.13:	DefaultValues.py
def	numberFunc(a,	b=10):
 print	(a,b)

def	stringFunc(a,	b='xyz'):
 print	(a,b)

def	collectionFunc(a,	b=None):
 if(b	is	None):
  print('No	value	assigned	to	b')

numberFunc(3)
stringFunc('one')
collectionFunc([1,2,3])



Listing	2.13	defines	three	functions,	followed	by	an	invocation	of	each	of	those	functions.
The	 functions	 numberFunc()	 and	 stringFunc()	 print	 a	 list	 contain	 the	 values	 of	 their	 two
parameters,	 and	 collectionFunc()	 displays	 a	 message	 if	 the	 second	 parameter	 is	 None.	 The
output	from	Listing	2.13	is	here:

(3,	10)
('one',	'xyz')
No	value	assigned	to	b

Returning	Multiple	Values	From	a	Function
This	 task	 is	 accomplished	 by	 the	 code	 in	 Listing	 2.14,	 which	 shows	 the	 content	 of
MultipleValues.py.

Listing	2.14:	MultipleValues.py
def	MultipleValues():
 return	'a',	'b',	'c'
 x,	y,	z	=	MultipleValues()

 print('x:',x)
 print('y:',y)
 print('z:',z)

The	output	from	Listing	2.14	is	as	follows:

 x:	a
 y:	b
 z:	c

FUNCTIONS	WITH	A	VARIABLE	NUMBER	OF	ARGUMENTS

Python	 enables	 you	 to	 define	 functions	 with	 a	 variable	 number	 of	 arguments.	 This
functionality	is	useful	in	many	situations,	such	as	computing	the	sum,	average,	or	product	of
a	set	of	numbers.	For	example,	the	following	code	block	computes	the	sum	of	two	numbers:

def	sum(a,	b):
  return	a	+	b

values	=	(1,	2)
s1	=	sum(*values)
print('s1	=	',	s1)

The	output	of	the	preceding	code	block	is	as	follows:
s1	=  3

However,	the	sum()	function	in	the	preceding	code	block	can	only	be	used	for	two	numeric
values.	Listing	2.15	shows	the	content	of	VariableSum1.py,	which	 illustrates	how	 to	compute
the	sum	of	a	variable	number	of	numbers.

Listing	2.15:	VariableSum1.py
def	sum(*values):
 sum	=	0
 for	x	in	values:
  sum	=	sum	+	x
 return	sum

values1	=	(1,	2)
s1	=	sum(*values1)
print('s1	=	',s1)

values2	=	(1,	2,	3,	4)
s2	=	sum(*values2)
print('s2	=	',s2)

Listing	2.15	defines	the	function	sum()	whose	parameter	values	can	be	an	arbitrary	list	of
numbers.	The	next	portion	of	this	function	initializes	the	variable	sum	to	0,	and	then	a	for	loop
iterates	through	values	and	adds	each	of	its	elements	to	the	variable	sum.	The	last	line	in	the
function	sum()	returns	the	value	of	the	variable	sum.	The	output	from	Listing	2.15	is	here:

s1	=  3
s2	=  10

SUMMARY
This	chapter	showed	you	how	to	work	with	numbers	and	perform	arithmetic	operations	on



numbers,	and	then	you	learned	how	to	work	with	strings	and	how	to	use	string	operations.
(The	 next	 chapter	 shows	 you	 how	 to	 work	 with	 conditional	 statements,	 loops,	 and	 user-
defined	functions.)

Next,	you	learned	about	condition	logic,	such	as	if/elif	statements.	You	also	learned	how
to	work	with	loops,	including	for	loops	and	while	loops.	In	addition,	you	saw	how	to	compute
various	 values,	 such	 as	 the	 factorial	 value	 of	 a	 positive	 integer	 and	 a	 set	 of	 Fibonacci
numbers.



CHAPTER	3
DATA	STRUCTURES	IN	PYTHON

This	 chapter	 introduces	 an	 assortment	 of	 Python	 data	 structures;	 including	 lists,	 vectors,
matrices,	queues,	tuples,	dictionaries,	and	functional	programming.

The	first	part	of	this	chapter	discusses	lists	and	operations	such	as	splicing	and	updating
lists.	 The	 second	 portion	 of	 the	 chapter	 shows	 you	 how	 to	 work	 vectors,	 matrices,	 and
queues.

The	third	portion	of	the	chapter	discusses	tuples,	sets,	and	dictionaries.	The	final	part	of
this	 chapter	 discusses	 functional	 programming	 in	 Python.	 You	 will	 see	 Python	 code	 samples
that	 illustrate	 how	 to	 define	 lambda	 expressions	 and	 how	 to	 use	 the	 map()	 function	 and
filter()	function	in	Python.

NOTE
The	scripts	in	this	book	are	for	Python	3.x.

With	the	preceding	points	in	mind,	let’s	take	a	look	at	the	list	data	type	in	Python,	which	is
discussed	in	the	next	section.

WORKING	WITH	LISTS

Python	supports	a	list	data	type,	along	with	a	rich	set	of	list-related	functions.	Since	lists	are
not	typed,	you	can	create	a	list	of	different	data	types,	as	well	as	multidimensional	lists.	The
next	several	sections	show	you	how	to	manipulate	list	structures.

Lists	and	Basic	Operations
A	 list	 consists	 of	 comma-separated	 values	 enclosed	 in	 a	 pair	 of	 square	 brackets.	 The
following	examples	illustrate	the	syntax	for	defining	a	list,	and	also	how	to	perform	various
operations	on	a	list:

>>>	list	=	[1,	2,	3,	4,	5]
>>>	list
[1,	2,	3,	4,	5]
>>>	list[2]
3
>>>	list2	=	list	+	[1,	2,	3,	4,	5]
>>>	list2
[1,	2,	3,	4,	5,	1,	2,	3,	4,	5]
>>>	list2.append(6)
>>>	list2
[1,	2,	3,	4,	5,	1,	2,	3,	4,	5,	6]
>>>	len(list)
5
>>>	x	=	['a',	'b',	'c']
>>>	y	=	[1,	2,	3]
>>>	z	=	[x,	y]
>>>	z[0]
['a',	'b',	'c']
>>>	len(x)
3

You	 can	 assign	 multiple	 variables	 to	 a	 list,	 provided	 that	 the	 number	 and	 type	 of	 the
variables	match	the	structure.	Here	is	an	example:

>>>	point	=	[7,8]
>>>	x,y	=	point
>>>	x
7
>>>	y
8
The	following	example	shows	you	how	to	assign	values	to	variables	from	a	more	complex

data	structure:



>>>	line	=	['a',	10,	20,	(2023,01,31)]
>>>	x1,x2,x3,date1	=	line
>>>	x1
'a'
>>>	x2
10
>>>	x3
20
>>>	date1
(2023,	1,	31)

If	 you	 want	 to	 access	 the	 year/month/date	 components	 of	 the	 date1	 element	 in	 the
preceding	code	block,	you	can	do	so	with	the	following	code	block:

>>>	line	=	['a',	10,	20,	(2023,01,31)]
>>>	x1,x2,x3,(year,month,day)	=	line
>>>	x1
'a'
>>>	x2
10
>>>	x3
20
>>>	year
2023
>>>	month
1
>>>	day
31

If	the	number	and/or	structure	of	the	variables	do	not	match	the	data,	an	error	message
is	displayed,	as	shown	here:

>>>	point	=	(1,2)
>>>	x,y,z	=	point
Traceback	(most	recent	call	last):
  File	"<stdin>",	line	1,	in	<module>
ValueError:	need	more	than	2	values	to	unpack

If	the	number	of	variables	that	you	specify	is	less	than	the	number	of	data	items,	you	will
see	an	error	message,	as	shown	here:

>>>	line	=	['a',	10,	20,	(2023,01,31)]
>>>	x1,x2	=	line
Traceback	(most	recent	call	last):
  File	"<stdin>",	line	1,	in	<module>
ValueError:	too	many	values	to	unpack

Reversing	and	Sorting	a	List
The	reverse()	method	reverses	the	contents	of	a	list:

>>>	a	=	[4,	1,	2,	3]
>>>	a.reverse()
[3,	2,	1,	4]

The	sort()	method	sorts	a	list:
>>>	a	=	[4,	1,	2,	3]
>>>	a.sort()
[1,	2,	3,	4]

You	can	sort	a	list	and	then	reverse	its	contents:
>>>	a	=	[4,	1,	2,	3]
>>>	a.reverse(a.sort())
[4,	3,	2,	1]

Another	way	to	reverse	a	list:
>>>	L	=	[0,10,20,40]
>>>	L[::-1]
[40,	20,	10,	0]

Keep	in	mind	is	that	reversed(array)	is	an	iterable	and	not	a	list.	However,	you	can	convert
the	reversed	array	to	a	list	with	this	code	snippet:

list(reversed(array))	or	L[::-1]

Listing	3.1	contains	a	while	 loop	whose	logic	 is	the	opposite	of	the	code	in	the	previous
section:	If	num	is	divisible	by	multiple	numbers	(each	of	which	is	strictly	less	than	num),	then
num	is	not	prime.

Listing	3.1:	Uppercase1.py
list1	=	['a',	'list',	'of',	'words']
list2	=	[s.upper()	for	s	in	list1]
list3	=	[s	for	s	in	list1	if	len(s)	<=2	]
list4	=	[s	for	s	in	list1	if	'w'	in	s	]



print('list1:',list1)
print('list2:',list2)
print('list3:',list3)
print('list4:',list4)

The	output	from	launching	the	code	in	Listing	3.1	is	as	follows:
list1:	['a',	'list',	'of',	'words']
list2:	['A',	'LIST',	'OF',	'WORDS']
list3:	['a',	'of']
list4:	['words']

Lists	and	Arithmetic	Operations
The	minimum	value	of	a	list	of	numbers	is	the	first	number	in	the	sorted	list	of	numbers.	If
you	reverse	the	sorted	list,	the	first	number	is	the	maximum	value.	There	are	several	ways
to	reverse	a	list,	starting	with	the	technique	shown	in	the	following	code:

x	=	[3,1,2,4]
maxList	=	x.sort()
minList	=	x.sort(x.reverse())

min1	=	min(x)
max1	=	max(x)
print	min1
print	max1

The	output	of	the	preceding	code	block	is	here:
1
4

A	second	(and	better)	way	to	sort	a	list	is	as	follows:
minList	=	x.sort(reverse=True)

A	third	way	to	sort	a	list	involves	the	built-in	functional	version	of	the	sort()	method,	as
shown	here:

sorted(x,	reverse=True)
The	preceding	code	snippet	is	useful	when	you	do	not	want	to	modify	the	original	order

of	the	list	or	you	want	to	compose	multiple	list	operations	on	a	single	line.

Lists	and	Filter-Related	Operations
Python	enables	you	to	filter	a	list	(also	called	list	comprehension)	as	shown	here:

mylist	=	[1,	-2,	3,	-5,	6,	-7,	8]
pos	=	[n	for	n	in	mylist	if	n	>	0]
neg	=	[n	for	n	in	mylist	if	n	<	0]

print	pos
print	neg

You	can	also	specify	if/else	logic	in	a	filter,	as	follows:
mylist	=	[1,	-2,	3,	-5,	6,	-7,	8]
negativeList	=	[n	if	n	<	0	else	0	for	n	in	mylist]
positiveList	=	[n	if	n	>	0	else	0	for	n	in	mylist]

print	positiveList
print	negativeList

The	output	of	the	preceding	code	block	is	here:
[1,	3,	6,	8]
[-2,	-5,	-7]
[1,	0,	3,	0,	6,	0,	8]
[0,	-2,	0,	-5,	0,	-7,	0]

Calculating	Squares	and	Cubes	in	Lists
The	 following	 construct	 is	 similar	 to	 a	 for	 loop	 but	 without	 the	 colon	 (“:”)	 character	 that
appears	at	the	end	of	a	loop	construct.	Consider	the	following	example:

nums	=	[1,	2,	3,	4]
cubes	=	[	n*n*n	for	n	in	nums	]

print	'nums:	',nums



print	'cubes:',cubes

The	output	from	the	preceding	code	block	is	here:
nums:  [1,	2,	3,	4]
cubes:	[1,	8,	27,	64]

SORTING	LISTS	OF	NUMBERS	AND	STRINGS
Listing	3.2	shows	the	content	of	the	script	Sorted1.py	that	determines	whether	two	lists	are
sorted.

Listing	3.2:	Sorted1.py
list1	=	[1,2,3,4,5]
list2	=	[2,1,3,4,5]

sort1	=	sorted(list1)
sort2	=	sorted(list2)

if(list1	==	sort1):
  print(list1,'is	sorted')
else:
  print(list1,'is	not	sorted')

if(list2	==	sort2):
  print(list2,'is	sorted')
else:
print(list2,'is	not	sorted')

Listing	3.2	initializes	the	lists	list1	and	list2,	and	the	sorted	lists	sort1	and	sort2	based	on
the	 lists	 list1	 and	 list2,	 respectively.	 If	 list1	 equals	 sort1	 then	 list1	 is	 already	 sorted;
similarly,	if	list2	equals	sort2	then	list2	is	already	sorted.

The	output	from	Listing	3.2	is	as	follows:
[1,	2,	3,	4,	5]	is	sorted
[2,	1,	3,	4,	5]	is	not	sorted

Note	 that	 if	 you	 sort	 a	 list	 of	 character	 strings,	 the	 output	 is	 case	 sensitive,	 and	 that
uppercase	letters	appear	before	lowercase	letters.	This	is	due	to	the	fact	that	the	collating
sequence	 for	 ASCII	 places	 uppercase	 letters	 (decimal	 65	 through	 decimal	 91)	 before
lowercase	 letters	 (decimal	 97	 through	 decimal	 127).	 The	 following	 example	 provides	 an
illustration:

>>>	list1	=	['a',	'A',	'b',	'B',	'Z']
>>>	print	sorted(list1)
['A',	'B',	'Z',	'a',	'b']

You	can	also	specify	the	reverse	option	so	that	the	list	is	sorted	in	reverse	order:
>>>	list1	=	['a',	'A',	'b',	'B',	'Z']
>>>	print	sorted(list1,	reverse=True)
['b',	'a',	'Z',	'B',	'A']

You	can	even	sort	a	list	based	on	the	length	of	the	items	in	the	list:
>>>	list1	=	['a',	'AA',	'bbb',	'BBBBB',	'ZZZZZZZ']
>>>	print	sorted(list1,	key=len)
['a',	'AA',	'bbb',	'BBBBB',	'ZZZZZZZ']
>>>	print	sorted(list1,	key=len,	reverse=True)
['ZZZZZZZ',	'BBBBB',	'bbb',	'AA',	'a']

You	can	specify	str.lower	if	you	want	treat	uppercase	letters	as	though	they	are	lowercase
letters	during	the	sorting	operation,	as	shown	here:

>>>	print	sorted(list1,	key=str.lower)
['a',	'AA',	'bbb',	'BBBBB',	'ZZZZZZZ']

CONCATENATING	A	LIST	OF	WORDS
Python	 provides	 the	 join()	 method	 for	 concatenating	 text	 strings,	 and	 some	 examples	 are
here:

>>>	parts	=	['Is',	'SF',	'In',	'California?']
>>>	'	'.join(parts)
'Is	SF	In	California?'
>>>	','.join(parts)
'Is,SF,In,California?'
>>>	''.join(parts)
'IsSFInCalifornia?'
There	are	several	ways	to	concatenate	a	set	of	strings	and	then	print	the	result.	Either	of

the	following	is	preferred:



print	"%s	%s	%s	%s"	%	("This",	"is",	"a",	"sentence")  
print	"	".join(["This","is","a","sentence"])

The	following	is	the	most	inefficient	way	to	do	so:
print	"This"	+	"	is"	+	"	a"	+	"	sentence"              

THE	PYTHON	RANGE()	FUNCTION
In	this	section,	we	discuss	the	range()	function	that	you	can	use	to	iterate	through	a	list,	as
shown	here:

>>>	for	i	in	range(0,5):
...  	print	i
...
0
1
2
3
4

You	can	use	a	for	loop	to	iterate	through	a	list	of	strings,	as	shown	here:
>>>	x
['a',	'b',	'c']
>>>	for	w	in	x:
...  	print	w
...
a
b
c
You	can	use	a	for	loop	to	iterate	through	a	list	of	strings	and	provide	additional	details,	as

shown	here:
>>>	x
['a',	'b',	'c']
>>>	for	w	in	x:
...  	print	len(w),	w
...
1	a
1	b
1	c

The	preceding	output	displays	the	length	of	each	word	in	the	list	x,	followed	by	the	word
itself.

Counting	Digits,	Uppercase,	and	Lowercase	Letters
Listing	3.3	shows	the	content	of	the	Python	script	CountCharTypes.py	that	counts	the	occurrences
of	digits	and	letters	in	a	string.

Listing	3.3:	Counter1.py
str1	=	"abc4234AFde"
digitCount	=	0
alphaCount	=	0
upperCount	=	0
lowerCount	=	0

for	i	in	range(0,len(str1)):
  char	=	str1[i]
  if(char.isdigit()):
  	#print("this	is	a	digit:",char)
    digitCount	+=	1
  elif(char.isalpha()):
  	#print("this	is	alphabetic:",char)
    alphaCount  +=	1
    if(char.upper()	==	char):
      upperCount  +=	1
    else:
      lowerCount  +=	1

print('Original	String:  	',str1)
print('Number	of	digits:  ',digitCount)
print('Total	alphanumeric:',alphaCount)
print('Upper	Case	Count:  ',upperCount)
print('Lower	Case	Count:  ',lowerCount)

Listing	3.3	initializes	counter-related	variables,	followed	by	a	loop	(with	loop	variable	i)
that	iterates	from	0	to	the	length	of	the	string	str1.	The	string	variable	char	is	initialized	with
the	letter	at	index	i	of	the	string	str1.

The	next	portion	of	the	loop	uses	conditional	logic	to	determine	whether	char	is	a	digit	or
an	 alphabetic	 character;	 in	 the	 latter	 case,	 the	 code	 checks	 whether	 the	 character	 is
uppercase	or	lowercase.	In	all	cases,	the	values	of	the	appropriate	counter-related	variables



are	incremented.	The	output	of	Listing	3.3	is	here:
Original	String:    abc4234AFde
Number	of	digits:  	4
Total	alphanumeric:	7
Upper	Case	Count:  	2
Lower	Case	Count:  	5

LISTS	AND	THE	APPEND()	FUNCTION
Although	Python	does	have	an	array	type	(import	array),	which	is	essentially	a	heterogeneous
list,	the	array	type	has	no	advantages	over	the	list	type	other	than	a	slight	saving	in	memory
use.	You	can	also	define	heterogeneous	lists:

a	=	[10,	'hello',	[5,	'77']]

You	can	append	a	new	element	to	an	element	inside	a	list:
>>>	a	=	[10,	'hello',	[5,	'77']]
>>>	a[2].append('abc')
>>>	a
[10,	'hello',	[5,	'77',	'abc']]

You	can	assign	simple	variables	to	the	elements	of	a	list,	as	shown	here:
myList	=	[	'a',	'b',	91.1,	(2014,	01,	31)	]
x1,	x2,	x3,	x4	=	myList
print('x1:',x1)
print('x2:',x2)
print('x3:',x3)
print('x4:',x4)

The	output	of	the	preceding	code	block	is	here:
x1:	a
x2:	b
x3:	91.1
x4:	(2014,	1,	31)

The	 split()	 function	 is	 more	 convenient	 (especially	 when	 the	 number	 of	 elements	 is
unknown	or	variable)	 than	the	preceding	sample,	and	you	will	see	examples	of	 the	split()
function	in	the	next	section.

WORKING	WITH	LISTS	AND	THE	SPLIT()	FUNCTION
You	can	use	the	split()	 function	to	split	the	words	in	a	text	string	and	populate	a	 list	with
those	words.	An	example	is	here:

>>>	x	=	"this	is	a	string"
>>>	list	=	x.split()
>>>	list
['this',	'is',	'a',	'string']

A	simple	way	to	print	the	list	of	words	in	a	text	string	is	as	follows:
>>>	x	=	"this	is	a	string"
>>>	for	w	in	x.split():
...  	print	w
...
this
is
a
string

You	can	also	search	for	a	word	in	a	string:
>>>	x	=	"this	is	a	string"
>>>	for	w	in	x.split():
...  	if(w	==	'this'):
...    	print	"x	contains	this"
...
x	contains	this
...

COUNTING	WORDS	IN	A	LIST
Python	 provides	 the	 Counter	 class	 that	 enables	 you	 to	 count	 the	 words	 in	 a	 list.	 Listing	 3.4
shows	 the	 content	 of	 CountWord2.py	 that	 displays	 the	 top	 three	 words	 with	 the	 greatest
frequency.

Listing	3.4:	CountWord2.py
from	collections	import	Counter



mywords	=	['a',	'b',	'a',	'b',	'c',	'a',	'd',	'e',	'f',	'b']

word_counts	=	Counter(mywords)
topThree	=	word_counts.most_common(3)
print(topThree)

Listing	3.4	initializes	the	variable	mywords	with	a	set	of	characters	and	then	initializes	the
variable	word_counts	by	passing	mywords	as	an	argument	 to	Counter.	 The	variable	 topThree	 is	an
array	 containing	 the	 three	most	 common	 characters	 (and	 their	 frequency)	 that	 appear	 in
mywords.	The	output	from	Listing	3.4	is	here:

[('a',	3),	('b',	3),	('c',	1)]

ITERATING	THROUGH	PAIRS	OF	LISTS
Python	 supports	operations	on	pairs	of	 lists,	which	means	 that	you	can	perform	vector-like
operations.	Let’s	first	look	at	the	following	snippet	that	multiplies	every	list	element	by	3:

>>>	list1	=	[1,	2,	3]
>>>	[3*x	for	x	in	list1]
[3,	6,	9]

Create	 a	 new	 list	 with	 pairs	 of	 elements	 consisting	 of	 the	 original	 element	 and	 the
original	element	multiplied	by	3:

>>>	list1	=	[1,	2,	3]
>>>	[[x,	3*x]	for	x	in	list1]
[[1,	3],	[2,	6],	[3,	9]]

Compute	the	product	of	every	pair	of	numbers	from	two	lists:
>>>	list1	=	[1,	2,	3]
>>>	list2	=	[5,	6,	7]
>>>	[a*b	for	a	in	list1	for	b	in	list2]
[5,	6,	7,	10,	12,	14,	15,	18,	21]

Calculate	the	sum	of	every	pair	of	numbers	from	two	lists:
>>>	list1	=	[1,	2,	3]
>>>	list2	=	[5,	6,	7]
>>>	[a+b	for	a	in	list1	for	b	in	list2]
[6,	7,	8,	7,	8,	9,	8,	9,	10]

Calculate	the	pair-wise	product	of	two	lists:
>>>	[list1[i]*list2[i]	for	i	in	range(len(list1))]
[8,	12,	-54]

LIST	SLICES

Python	enables	you	to	extract	a	“slice”	of	a	list	and	also	update	portions	of	a	list.	Listing	3.5
displays	the	content	of	list_slices1.py	that	illustrates	how	to	extract	a	substring	from	a	Python
list.

Listing	3.5:	list_slices1.py
list1	=	list(range(0,8))
print("list1:",list1)

list1[:4]	=	[20,20,20,20]
print("list1:",list1)

list1[:4]	=	[400,300,200,100]
print("list1:",list1)

list1[-1]	=	[5000]
print("list1:",list1)

Listing	 3.5	 initializes	 the	 variable	 list1	 with	 the	 integers	 from	 0	 to	 7	 and	 displays	 its
contents.	The	next	code	snippet	inserts	four	occurrences	of	the	value	20	at	the	beginning	of
list1,	 followed	by	a	code	snippet	 that	appends	the	values	400,	300,	200,	and	100	to	list1.
The	final	code	snippet	appends	the	item	[5000]	to	list1.	Launch	Listing	3.5	and	you	will	see
the	following	output:  

list1:	[0,	1,	2,	3,	4,	5,	6,	7]
List1:	[20,	20,	20,	20,	4,	5,	6,	7]
list1:	[400,	300,	200,	100,	4,	5,	6,	7]
list1:	[400,	300,	200,	100,	4,	5,	6,	[5000]]

Listing	3.6	displays	the	content	of	substrings1.py	that	illustrates	how	to	split	a	text	string
into	substrings	and	recombine	the	substrings	with	a	new	character.



Listing	3.6:	substrings1.py
my_str	=	"I	love	Chicago	deep	dish	pizza"
str1	=	my_str[:5]
str2	=	my_str[6:20]
str3	=	my_str[-5:]

print("my_str:",my_str)
print("str1:  ",str1)
print("str2:  ",str2)
print("str3:  ",str3)

idx1	=	my_str.find("love")
idx2	=	idx1+15
str4	=	my_str[idx1:idx2]
print("str4:  ",str4)

Listing	3.6	 initializes	 the	variable	my_str	as	a	 text	string,	 followed	by	 the	variables	 str1,
str2,	and	str3.	Launch	Listing	3.6	and	you	will	see	the	following	output:  

my_str:	I	love	Chicago	deep	dish	pizza
str1:  	I	lov
str2:    Chicago	deep
str3:  	pizza
str4:  	love	Chicago	de

Listing	3.7	displays	the	content	of	substrings2.py	that	illustrates	how	to	split	a	text	string
into	substrings	and	recombine	the	substrings	with	a	new	character.

Listing	3.7:	substrings2.py
my_str	=	"I	love	Chicago	deep	dish	pizza"
idx1	=	my_str.find("d")
str1	=	my_str[0:idx1]
str2	=	my_str[idx1+1:]
char	=	"l"
str3	=	str1+char+str2

print("my_str:",my_str)
print("str1:  ",str1)
print("str2:  ",str2)
print("str3:  ",str3)

Listing	3.7	 initializes	 the	variable	my_str	as	a	 text	string,	 followed	by	 the	variables	 str1,
str2,	and	str3.	Launch	Listing	3.7	and	you	will	see	the	following	output:  

my_str:	I	love	Chicago	deep	dish	pizza
str1:  	I	love	Chicago
str2:  	eep	dish	pizza
str3:  	I	love	Chicago	leep	dish	pizza

OTHER	LIST-RELATED	FUNCTIONS
Python	 provides	 additional	 functions	 that	 you	 can	 use	 with	 lists,	 such	 as	 append(),	 insert(),
delete(),	pop(),	and	extend().	It	also	supports	the	functions	index(),	count(),	sort(),	and	reverse().
Examples	of	these	functions	are	illustrated	in	the	following	code	block.

Define	a	list	(notice	that	duplicates	are	allowed):
>>>	a	=	[1,	2,	3,	2,	4,	2,	5]

Display	the	number	of	occurrences	of	1	and	2:
>>>	print	a.count(1),	a.count(2)

1	3

Insert	-8	in	position	3:
>>>	a.insert(3,-8)
>>>	a
[1,	2,	3,	-8,	2,	4,	2,	5]

Remove	occurrences	of	3:
>>>	a.remove(3)
>>>	a
[1,	2,	-8,	2,	4,	2,	5]

Remove	occurrences	of	1:
>>>	a.remove(1)
>>>	a
[2,	-8,	2,	4,	2,	5]

Append	19	to	the	list:
>>>	a.append(19)



>>>	a
[2,	-8,	2,	4,	2,	5,	19]

Print	the	index	of	19	in	the	list:
>>>	a.index(19)
6

Reverse	the	list:
>>>	a.reverse()
>>>	a
[19,	5,	2,	4,	2,	-8,	2]

Sort	the	list:
>>>	a.sort()
>>>	a
[-8,	2,	2,	2,	4,	5,	19]

Extend	list	a	with	list	b:
>>>	b	=	[100,200,300]
>>>	a.extend(b)
>>>	a
[-8,	2,	2,	2,	4,	5,	19,	100,	200,	300]

Remove	the	first	occurrence	of	2:
>>>	a.pop(2)
2
>>>	a
[-8,	2,	2,	4,	5,	19,	100,	200,	300]

Remove	the	last	item	of	the	list:
>>>	a.pop()
300
>>>	a
[-8,	2,	2,	4,	5,	19,	100,	200]

Now	that	you	understand	how	to	use	list-related	operations,	the	next	section	shows	you
how	to	work	with	vectors.

WORKING	WITH	VECTORS
A	vector	is	a	one-dimensional	array	of	values,	and	you	can	perform	vector-based	operations,
such	 as	 addition,	 subtraction,	 and	 the	 inner	 product.	 Listing	 3.8	 shows	 the	 content	 of
MyVectors.py	that	illustrates	how	to	perform	vector-based	operations.

Listing	3.8:	MyVectors.py
v1	=	[1,2,3]
v2	=	[1,2,3]
v3	=	[5,5,5]

s1	=	[0,0,0]
d1	=	[0,0,0]
p1	=	0

print("Initial	Vectors"
print('v1:',v1)
print('v2:',v2)
print('v3:',v3)

for	i	in	range(len(v1)):
    d1[i]	=	v3[i]	-	v2[i]
    s1[i]	=	v3[i]	+	v2[i]
    p1    =	v3[i]	*	v2[i]	+	p1

print("After	operations")
print('d1:',d1)
print('s1:',s1)
print('p1:',p1)

Listing	3.8	starts	with	the	definition	of	three	lists,	each	of	which	represents	a	vector.	The
lists	d1	 and	 s1	 represent	 the	 difference	 of	 v2	 and	 the	 sum	 v2,	 respectively.	 The	 number	 p1
represents	 the	 inner	product	 (also	called	 the	“dot	product”)	of	v3	and	v2.	The	output	 from
Listing	3.8	is	here:

Initial	Vectors
v1:	[1,	2,	3]
v2:	[1,	2,	3]
v3:	[5,	5,	5]
After	operations
d1:	[4,	3,	2]
s1:	[6,	7,	8]
p1:	30



WORKING	WITH	MATRICES

A	 two-dimensional	 matrix	 is	 a	 two-dimensional	 array	 of	 values.	 The	 following	 code	 block
illustrates	how	to	access	different	elements	in	a	2D	matrix:

mm	=	[["a","b","c"],["d","e","f"],["g","h","i"]];
print	'mm:      ',mm
print	'mm[0]:  	',mm[0]
print	'mm[0][1]:',mm[0][1]

The	output	from	the	preceding	code	block	is	as	follows:
mm:      	[['a',	'b',	'c'],	['d',	'e',	'f'],	['g',	'h',	'i']]
mm[0]:    ['a',	'b',	'c']
mm[0][1]:	b
Listing	3.9	shows	the	content	of	My2DMatrix.py	that	illustrates	how	to	create	and	populate	2

two-dimensional	matrices.

Listing	3.9:	My2DMatrix.py
rows	=	3
cols	=	3

my2DMatrix	=	[[0	for	i	in	range(rows)]	for	j	in	range(rows)]
print('Before:',my2DMatrix)

for	row	in	range(rows):
  for	col	in	range(cols):
    my2DMatrix[row][col]	=	row*row+col*col
print('After:	',my2DMatrix)

Listing	3.9	initializes	the	variables	rows	and	columns	and	then	uses	them	to	create	the
rows	x	cols	matrix	my2DMatrix	whose	values	are	initially	0.	The	next	part	of	Listing	3.9	contains
a	 nested	 loop	 that	 initializes	 the	 element	 of	 my2DMatrix	 whose	 position	 is	 (row,col)	with	 the
value	row*row+col*col.	The	last	line	of	code	in	Listing	3.9	prints	the	contents	of	my2DArray.	The
output	from	Listing	3.9	is	here:

Before:	[[0,	0,	0],	[0,	0,	0],	[0,	0,	0]]
After:  [[0,	1,	4],	[1,	2,	5],	[4,	5,	8]]

QUEUES

A	 queue	 is	 a	 FIFO	 (“First	 In,	 First	 Out”)	 data	 structure.	 The	 oldest	 item	 in	 a	 queue	 is
removed	when	a	new	item	is	added	to	a	queue	that	is	already	full.

Earlier	in	the	chapter	you	learned	how	to	use	a	list	to	emulate	a	queue.	However,	there	is
also	a	queue	object	in	Python.	The	following	code	snippets	illustrate	how	to	use	a	queue.

>>>	from	collections	import	deque
>>>	q	=	deque('',maxlen=10)
>>>	for	i	in	range(10,20):
...  	q.append(i)
...
>>>	print	q
deque([10,	11,	12,	13,	14,	15,	16,	17,	18,	19],	maxlen=10)

TUPLES	(IMMUTABLE	LISTS)

Python	supports	a	data	type	called	a	tuple	that	consists	of	comma-separated	values	without
brackets	(square	brackets	are	for	lists,	round	brackets	are	for	arrays,	and	curly	braces	are
for	dictionaries).	Various	examples	of	tuples	can	be	found	online:

https://docs.python.org/3.6/tutorial/datastructures.html#tuples-and-sequences

The	following	code	block	illustrates	how	to	create	a	tuple	and	create	new	tuples	from	an
existing	type.

Define	a	tuple	t	as	follows:
>>>	t	=	1,'a',	2,'hello',3
>>>	t
(1,	'a',	2,	'hello',	3)

Display	the	first	element	of	t:
>>>	t[0]
1

Create	a	tuple	v	containing	10,	11,	and	t:
>>>	v	=	10,11,t
>>>	v
(10,	11,	(1,	'a',	2,	'hello',	3))



Try	modifying	an	element	of	t	(which	is	immutable):
>>>	t[0]	=	1000
Traceback	(most	recent	call	last):
  File	"<stdin>",	line	1,	in	<module>
TypeError:	'tuple'	object	does	not	support	item	assignment

Python	deduplication	is	useful	because	you	can	remove	duplicates	from	a	set	and	obtain	a
list:

>>>	lst	=	list(set(lst))

NOTE
The	in	operator	on	a	list	to	search	is	O(n)	whereas	the	in	operator	on	set	is	O(1).

SETS
A	set	is	an	unordered	collection	that	does	not	contain	duplicate	elements.	Use	curly	braces
or	 the	 set()	 function	 to	 create	 sets.	 Set	 objects	 support	 set-theoretic	 operations	 such	 as
union,	intersection,	and	difference.

NOTE
set()	is	required	in	order	to	create	an	empty	set	because	{}	creates	an	empty	dictionary.

The	following	code	snippets	illustrate	how	to	work	with	a	set.

Create	a	list	of	elements:
>>>	l	=	['a',	'b',	'a',	'c']

Create	a	set	from	the	preceding	list:
>>>	s	=	set(l)
>>>	s
set(['a',	'c',	'b'])

Test	if	an	element	is	in	the	set:
>>>	'a'	in	s
True
>>>	'd'	in	s
False
>>>

Create	a	set	from	a	string:
>>>	n	=	set('abacad')
>>>	n
set(['a',	'c',	'b',	'd'])
>>>

Subtract	n	from	s:
>>>	s	-	n
set([])

Subtract	s	from	n:
>>>	n	-	s
set(['d'])
>>>

The	union	of	s	and	n:
>>>	s	|	n
set(['a',	'c',	'b',	'd'])

The	intersection	of	s	and	n:
>>>	s	&	n
set(['a',	'c',	'b'])

The	exclusive-or	of	s	and	n:
>>>	s	^	n
set(['d'])

DICTIONARIES

Python	has	a	key/value	structure	called	a	dictionary	(dict)	 that	 is	a	hash	table.	A	dictionary
(and	hash	tables	in	general)	can	retrieve	the	value	of	a	key	in	constant	time,	regardless	of
the	number	of	entries	in	the	dictionary	(and	the	same	is	true	for	sets).	You	can	think	of	a	set
as	essentially	just	the	keys	(not	the	values)	of	a	dict	implementation.



The	contents	of	dict	can	be	written	as	a	series	of	key:value	pairs,	as	shown	here:
dict1	=	{key1:value1,	key2:value2,	...	}

The	“empty	dict”	is	just	an	empty	pair	of	curly	braces	{}.

Creating	a	Dictionary
A	dictionary	(or	hash	table)	contains	of	colon-separated	key/value	bindings	inside	a	pair	of
curly	braces:

dict1	=	{}
dict1	=	{'x'	:	1,	'y'	:	2}

The	 preceding	 code	 snippet	 defines	 dict1	 as	 an	 empty	 dictionary,	 and	 then	 adds	 two
key/value	bindings.

Displaying	the	Contents	of	a	Dictionary
You	can	display	the	contents	of	dict1	with	the	following	code:

>>>	dict1	=	{'x':1,'y':2}
>>>	dict1
{'y':	2,	'x':	1}
>>>	dict1['x']
1
>>>	dict1['y']
2
>>>	dict1['z']
Traceback	(most	recent	call	last):
  File	"<stdin>",	line	1,	in	<module>
KeyError:	'z'

NOTE
The	key/value	bindings	for	dict	and	a	set	are	not	necessarily	stored	in	the	same	order	that
you	defined	them.

Dictionaries	also	use	the	get	method	to	retrieve	key	values:
>>>	dict1.get('x')
1
>>>	dict1.get('y')
2
>>>	dict1.get('z')

The	get()	method	returns	None	(which	is	displayed	as	an	empty	string)	instead	of	an	error
when	referencing	a	key	that	is	not	defined	in	a	dictionary.

You	can	also	use	dict	comprehensions	to	create	dictionaries	from	expressions,	as	shown
here:

>>>	{x:	x**3	for	x	in	(1,	2,	3)}
{1:	1,	2:	8,	3:	37}

Checking	for	Keys	in	a	Dictionary
You	can	check	for	the	presence	of	a	key	in	a	dictionary:

>>>	'x'	in	dict1
True
>>>	'z'	in	dict1
False

Use	square	brackets	for	finding	or	setting	a	value	in	a	dictionary.	For	example,	dict['abc']
finds	the	value	associated	with	the	key	'abc'.	You	can	use	strings,	numbers,	and	tuples	work
as	key	values,	and	you	can	use	any	type	as	the	value.

If	you	access	a	value	that	is	not	in	the	dict,	Python	throws	a	KeyError.	Consequently,	use	the
in	 operator	 to	 check	 if	 the	 key	 is	 in	 the	 dictionary.	 Alternatively,	 use	 dict.get(key),	 which
returns	the	value	or	None	if	the	key	is	not	present.	You	can	even	use	the	expression	get(key,
not-found-string)	to	specify	the	value	to	return	if	a	key	is	not	found.

Deleting	Keys	From	a	Dictionary
Launch	the	Python	interpreter	and	enter	the	following	commands:

>>>	MyDict	=	{'x'	:	5,  'y'	:	7}
>>>	MyDict['z']	=	13
>>>	MyDict
{'y':	7,	'x':	5,	'z':	13}
>>>	del	MyDict['x']



>>>	MyDict
{'y':	7,	'z':	13}
>>>	MyDict.keys()
['y',	'z']
>>>	MyDict.values()
[13,	7]
>>>	'z'	in	MyDict
True

Iterating	Through	a	Dictionary
The	following	code	snippet	shows	you	how	to	iterate	through	a	dictionary:

MyDict	=	{'x'	:	5,  'y'	:	7,	'z'	:	13}

for	key,	value	in	MyDict.iteritems():
    print	key,	value

The	output	from	the	preceding	code	block	is	as	follows:
y	7
x	5
z	13

Interpolating	Data	From	a	Dictionary
The	 %	 operator	 substitutes	 values	 from	 a	 dictionary	 into	 a	 string	 by	 name.	 Listing	 3.10
contains	an	example	of	doing	so.

Listing	3.10:	InterpolateDict1.py
hash	=	{}
hash['beverage']	=	'coffee'
hash['count']	=	3

#	%d	for	int,	%s	for	string
s	=	'Today	I	drank	%(count)d	cups	of	%(beverage)s'	%	hash
print('s:',	s)

The	output	from	Listing	3.10	is	here:
Today	I	drank	3	cups	of	coffee

DICTIONARY	FUNCTIONS	AND	METHODS

Python	provides	various	functions	and	methods,	such	as	cmp(),	len(),	and	str(),	 that	compare
two	dictionaries,	return	the	length	of	a	dictionary,	and	display	a	string	representation	of	a
dictionary,	respectively.

You	can	also	manipulate	the	contents	of	a	dictionary	using	the	functions	clear()	to	remove
all	elements,	copy()	to	return	a	copy,	get()	to	retrieve	the	value	of	a	key,	items()	to	display	the
(key,value)	 pairs	 of	 a	 dictionary,	 keys()	 to	 display	 the	 keys	 of	 a	 dictionary,	 and	 values()	 to
return	the	list	of	values	of	a	dictionary.

ORDERED	DICTIONARIES

Regular	dictionaries	 iterate	over	key/value	pairs	 in	arbitrary	order.	Python	2.7	introduced	a
new	 OrderedDict	 class	 in	 the	 collections	 module.	 The	 OrderedDict	 API	 provides	 the	 same
interface	 as	 regular	 dictionaries	 but	 iterates	 over	 keys	 and	 values	 in	 a	 guaranteed	 order
depending	on	when	a	key	was	first	inserted:

>>>	from	collections	import	OrderedDict
>>>	d	=	OrderedDict([('first',	1),
...                  ('second',	2),
...                  ('third',	3)])
>>>	d.items()
[('first',	1),	('second',	2),	('third',	3)]

If	 a	 new	 entry	 overwrites	 an	 existing	 entry,	 the	 original	 insertion	 position	 is	 left
unchanged:

>>>	d['second']	=	4
>>>	d.items()
[('first',	1),	('second',	4),	('third',	3)]

Deleting	an	entry	and	reinserting	it	will	move	it	to	the	end:
>>>	del	d['second']
>>>	d['second']	=	5
>>>	d.items()
[('first',	1),	('third',	3),	('second',	5)]



Sorting	Dictionaries
Python	enables	you	 to	support	 the	entries	 in	a	dictionary.	For	example,	you	can	modify	 the
code	 in	 the	 preceding	 section	 to	 display	 the	 alphabetically	 sorted	 words	 and	 their
associated	word	count.

Dictionary	Formatting
The	%	 operator	 works	 conveniently	 to	 substitute	 values	 from	 a	 dictionary	 into	 a	 string	 by
name:

#create	a	dictionary
>>>	h	=	{}
#add	a	key/value	pair
>>>	h['item']	=	'beer'
>>>	h['count']	=	4
#interpolate	using	%d	for	int,	%s	for	string
>>>	s	=	'I	want	%(count)d	bottles	of	%(item)s'	%	h
>>>	s
'I	want	4	bottles	of	beer'

Python	Multi	Dictionaries
You	 can	 define	 entries	 in	 a	 dictionary	 so	 that	 they	 reference	 lists	 or	 other	 types	 of
structures.	Listing	3.11	shows	the	content	of	MultiDictionary1.py	that	illustrates	how	to	define
more	complex	dictionaries.

Listing	3.11:	MultiDictionary1.py
from	collections	import	defaultdict

d	=	{'a'	:	[1,	2,	3],	'b'	:	[4,	5]}
print	'firsts:',d

d	=	defaultdict(list)
d['a'].append(1)
d['a'].append(2)
d['b'].append(4)
print	'second:',d

d	=	defaultdict(set)
d['a'].add(1)
d['a'].add(2)
d['b'].add(4)
print	'third:',d

Listing	3.11	starts	by	defining	the	dictionary	d	and	printing	its	contents.	The	next	portion
of	Listing	3.11	specifies	a	list-oriented	dictionary,	and	then	modifies	the	values	for	the	keys	a
and	b.	The	final	portion	of	Listing	3.11	specifies	a	set-oriented	dictionary,	and	then	modifies
the	values	for	the	keys	a	and	b	as	well.

The	output	from	Listing	3.11	is	here:
first:	{'a':	[1,	2,	3],	'b':	[4,	5]}
second:	defaultdict(<type	'list'>,	{'a':	[1,	2],	'b':	[4]})
third:	defaultdict(<type	'set'>,	{'a':	set([1,	2]),	'b':	set([4])})

OTHER	SEQUENCE	TYPES	IN	PYTHON
Python	supports	seven	sequence	types:	str,	unicode,	list,	tuple,	bytearray,	buffer,	and	xrange.

You	can	 iterate	 through	a	 sequence	and	 retrieve	 the	position	 index	and	corresponding
value	at	the	same	time	using	the	enumerate()	function.

>>>	for	i,	v	in	enumerate(['x',	'y',	'z']):
...    	print	i,	v
...
0	x
1	y
2	z

Bytearray	objects	are	created	with	the	built-in	function	bytearray().	Although	buffer	objects
are	 not	 directly	 supported	 by	 Python	 syntax,	 you	 can	 create	 them	 via	 the	 built-in	 buffer()
function.

Objects	of	type	xrange	are	created	with	the	xrange()	function.	An	xrange	object	is	similar	to	a
buffer	in	the	sense	that	there	is	no	specific	syntax	to	create	them.	Moreover,	xrange	objects
do	not	support	operations	such	as	slicing,	concatenation,	or	repetition.

At	this	point,	you	have	seen	all	the	Python	types	that	you	will	encounter	in	the	remaining
chapters	of	this	book.	In	addition,	it	makes	sense	to	discuss	mutable	and	immutable	types,
which	is	the	topic	of	the	next	section.



MUTABLE	AND	IMMUTABLE	TYPES	IN	PYTHON

Python	represents	 its	data	as	objects.	Some	of	these	objects	 (such	as	 lists	and	dictionaries)
are	mutable,	 which	 means	 you	 can	 change	 their	 content	 without	 changing	 their	 identity.
Objects	such	as	integers,	floats,	strings,	and	tuples	are	objects	that	cannot	be	changed.

There	 is	 a	 difference	 between	 changing	 the	 value	 versus	 assigning	 a	 new	 value	 to	 an
object;	you	cannot	change	a	string,	but	you	can	assign	it	a	different	value.	This	detail	can	be
verified	by	checking	the	id	value	of	an	object,	as	shown	in	Listing	3.12.

Listing	3.12:	Mutability.py
s	=	"abc"
print('id	#1:',	id(s))
print('first	char:',	s[0])

try:
  s[0]	=	"o"
except:
  print('Cannot	perform	reassignment')

s	=	"xyz"
print('id	#2:',id(s))
s	+=	"uvw"
print('id	#3:',id(s))

The	output	of	Listing	3.12	is	here:
id	#1:	4297972672
first	char:	a
Cannot	perform	reassignment
id	#2:	4299809336
id	#3:	4299777872

A	type	is	immutable	if	its	value	cannot	be	changed	(even	though	it’s	possible	to	assign	a
new	value	to	such	a	type),	otherwise	a	type	is	mutable.	The	immutable	objects	are	of	type
bytes,	complex,	float,	int,	str,  or	tuple.	Dictionaries,	lists,	and	sets	are	mutable.	The	key	in
a	hash	table	must	be	an	immutable	type.

Since	 strings	 are	 immutable	 in	 Python,	 you	 cannot	 insert	 a	 string	 in	 the	 “middle”	 of	 a
given	 text	 string	 unless	 you	 construct	 a	 second	 string	 using	 concatenation.	 For	 example,
suppose	you	have	the	string

"this	is	a	string"

and	you	want	to	create	the	following	string:
"this	is	a	longer	string"

The	following	code	block	illustrates	how	to	perform	this	task:
text1	=	"this	is	a	string"
text2	=	text1[0:10]	+	"longer"	+	text1[9:]
print	'text1:',text1
print	'text2:',text2

The	output	of	the	preceding	code	block	is	as	follows:
text1:	this	is	a	string
text2:	this	is	a	longer	string

PACKING/UNPACKING	SEQUENCES

Python	 supports	 useful	 functionality	 regarding	 sequence	 types	 that	 simplify	 the	 task	 of
assigning	variables	 to	values,	which	can	be	assigned	directly	or	as	 the	 return	values	of	a
function.	 One	 type	 is	 called	 direct	 assignment	 and	 another	 type	 pertains	 to	 assigning
variables	 to	 the	 return	 values	 of	 a	 function,	 both	 of	which	 are	discussed	 in	 the	 following
subsections.

Automatic	Packing	(Direct	Assignment)
The	following	code	snippet	illustrates	direct	assignment	and	is	called	automatic	packing	of	a
tuple:

tens	=	10,20,30,40,50

The	 variable	 tens	 in	 the	 preceding	 code	 snippet	 is	 a	 tuple.	 Another	 example	 of	 direct
assignment	is	shown	here:

x,y,z	=	range(0,3)



The	variables	x,	y,	and	z	in	the	preceding	code	snippet	are	assigned	the	values	0,	1,	and
2,	respectively.

Unpacking	Return	Values	of	Functions
The	 following	 code	 block	 illustrates	 how	 to	 assign	 variables	 to	 the	 return	 values	 of	 a
function:

def	myfunc():
  #	do	various	things
  return	1,2
x,y	=	myfunc()

As	you	can	see,	the	variables	x	and	y	are	initialized	with	the	values	1	and	2,	respectively.
A	more	interesting	example	is	the	following	code	block	that	is	a	variation	of	the	preceding
code	block:

def	myfunc2():
  #	do	various	things
  return	[1,2,3],	4,	5
x,y,z	=	myfunc2()

In	 the	 preceding	 code	 sample	 the	 variables	 x,	 y,	 and	 z	 are	 initialized	 with	 the	 values
[1,2,3],	4,	and	5,	respectively.

Swapping	Pairs	of	Values
Python	makes	it	very	easy	to	swap	the	values	of	two	variables,	as	shown	in	the	following	code
block:

#	x	is	5	and	y	is	8:
x	=	5
y	=	8
#	now	x	=	8	and	y	=	5:
y,x	=	x,y

Iterating	Sequences	in	Loops
The	following	code	snippet	shows	you	how	to	iterate	over	a	list	whose	elements	are	pairs	of
values:

for	x,	y	in	[	(1,	2),	(30,	60),	(40,	80)	]:
  print("x:",x,"y:",y)

The	 following	 code	 snippet	 shows	you	how	 to	 extract	 values	 from	a	 list	 in	which	each
element	is	a	pair	of	values:

xlist	=	list()
ylist	=	list()
for	x,	y	in	[	(1,	2),	(30,	60),	(40,	80)	]:
  xlist.append(x)
  ylist.append(y)

print("xlist:",xlist)
print("ylist:",ylist)

Launch	the	preceding	code	block	and	you	will	see	the	following	output:
xlist:	[1,	30,	40]
ylist:	[2,	60,	80]

LAMBDA	EXPRESSIONS

Listing	3.13	shows	the	content	of	Lambda1.py,	which	illustrates	how	to	create	a	simple	lambda
function.

Listing	3.13:	Lambda1.py
add	=	lambda	x,	y:	x	+	y

x1	=	add(5,7)
x2	=	add('Hello',	'Python')

print(x1)
print(x2)

Listing	 3.13	 defines	 the	 lambda	 expression	 add	 that	 accepts	 two	 input	 parameters	 and
then	returns	their	sum	(for	numbers)	or	their	concatenation	(for	strings).

The	output	from	Listing	3.13	is	as	follows:



12
HelloPython

FUNCTIONAL	PROGRAMMING	IN	PYTHON:	THE	MAP()	FUNCTION

This	 section	 contains	 code	 samples	 that	 show	you	how	 to	use	 the	 map()	 function,	 some	 of
which	involve	lambda	expressions	that	were	discussed	in	the	previous	section.	A	subsequent
section	illustrates	how	to	use	the	filter()	function	and	also	how	to	combine	the	filter()	and
map()	functions	in	Python.

Listing	 3.14	 displays	 the	 contents	 of	 map1.py	 that	 illustrates	 how	 to	 use	 the	 Python	 map()
function.

Listing	3.14:	map1.py
def	remainder(num):
  return	num	%	4

numbers	=	[-10,	11,	-20,	55,	100,	201]
print("numbers:",numbers)
print()

iterator	=	map(remainder,	numbers)
#	option	#1:
print("Mapped	results:	#1:")
print(list(iterator))
print()

#	option	#2:
iterator	=	map(remainder,	numbers)
print("Mapped	results:	#2:")
for	iter	in	iterator:
  print("value:",iter)

Listing	3.14	starts	with	the	Python	function	remainder()	that	returns	the	integer	remainder
of	dividing	an	integer	by	4.	The	next	code	snippet	initializes	the	variable	numbers	with	a	list	of
six	numbers	and	displays	their	values.

Next,	the	variable	iterator	is	initialized	as	the	result	of	invoking	the	built-in	map()	function
with	parameters	remainder	and	numbers.	The	result	of	doing	so	initializes	iterator	is	a	list	of	the
integer-based	remainder	of	division	by	4	of	all	the	values	in	numbers.

The	 next	 code	 block	 displays	 the	 contents	 of	 iterator	 as	 a	 list,	 followed	 by	 a	 loop	 that
iterates	through	the	values	 in	iterator	and	prints	 them.	The	output	 from	Listing	3.14	 is	as
follows:

numbers:	[-10,	11,	-20,	55,	100,	201]

Mapped	results:	#1:
[2,	3,	0,	3,	0,	1]

Mapped	results:	#2:
value:	2
value:	3
value:	0
value:	3
value:	0
value:	1

Listing	 3.15	 displays	 the	 contents	 of	 map2.py	 that	 illustrates	 how	 to	 use	 the	 Python	 map()
function.

Listing	3.15:	map2.py
numbers	=	[-10,	11,	-20,	55,	100,	201]
print("numbers:",numbers)
print()

iterator	=	map(lambda	num:	num	%	4,	numbers)
print("Mapped	results:")
print(list(iterator))
print()

Listing	 3.15	 initializes	 the	 variable	 numbers	 as	 a	 list	 of	 six	 numbers	 and	 displays	 its
contents.	The	next	block	 is	a	variation	of	 the	code	 in	Listing	3.14:	The	variable	iterator	 is
initialized	as	the	result	of	invoking	the	built-in	map()	function	with	a	lambda	expression	that
divides	 its	 input	 by	 4,	 followed	 by	 the	 variable	 numbers.	 The	 result	 of	 doing	 so	 initializes
iterator	 is	a	 list	of	 the	 integer-based	remainder	of	division	by	4	of	all	 the	values	 in	numbers.
The	output	from	Listing	3.15	is	as	follows:

numbers:	[-10,	11,	-20,	55,	100,	201]
Mapped	results:
[2,	3,	0,	3,	0,	1]

Listing	 3.16	 displays	 the	 contents	 of	 map3.py	 that	 illustrates	 how	 to	 define	 a	 lambda



expression	with	the	Python	map()	function	to	display	the	uppercase	version	of	a	list	of	strings.

Listing	3.16:	map3.py
my_str	=	["I",	"love",	"Chicago",	"deep",	"dish",	"pizza"]
print("my_str:",my_str)
print()

iterator	=	map(lambda	str:	str.upper(),	my_str)
print("Mapped	results:")
print(list(iterator))
print()

iterator	=	map(lambda	str:	str.lower(),	my_str)
print("Mapped	results:")
print(list(iterator))

Listing	3.16	involves	strings	instead	of	integers,	and	initializes	the	variable	iterator	 in	a
slightly	different	manner	 than	what	you	saw	 in	Listing	3.14	and	Listing	3.15.	Specifically,
notice	the	snippets	shown	in	bold:	you	must	pass	the	function	name	with	parentheses	as	the
first	parameter	to	map	because	they	are	the	“target”	of	a	lambda	expression,	which	in	turn
requires	a	function	that	will	be	executed	with	the	data.	The	output	from	Listing	3.16	is	as
follows:

my_str:	['I',	'love',	'Chicago',	'deep',	'dish',	'pizza']

Mapped	results:
['I',	'LOVE',	'CHICAGO',	'DEEP',	'DISH',	'PIZZA']

Mapped	results:
['i',	'love',	'chicago',	'deep',	'dish',	'pizza']

Listing	3.17	displays	the	contents	of	map4.py	that	illustrates	how	to	invoke	the	Python	map()
function	with	the	upper()	function	to	display	the	lowercase	version	of	a	list	of	strings.

Listing	3.17:	map4.py
my_str	=	["I",	"love",	"Chicago",	"deep",	"dish",	"pizza"]
print("my_str:",my_str)
print()

print("Mapped	results:")
words_lower	=	list(map(str.lower,	my_str))
print("lower:	",words_lower)
print()

print("Mapped	results:")
words_lower2	=	tuple(map(str.lower,	my_str))
print("lower:	",words_lower2)

Listing	 3.17	 is	 a	 variant	 of	 Listing	 3.16:	 The	 latter	 contains	 lambda	 functions	 in	 the
definition	of	the	variable	operator,	whereas	the	former	specifies	the	map()	function	without
lambda	expressions.	Again,	notice	the	code	snippets	shown	in	bold:	pass	the	function	name
without	 parentheses	 (so	 it’s	not	 a	 function	 invocation)	 as	 the	 first	 parameter	 to	 the	 map()
function.	The	output	from	Listing	3.17	is	as	follows:

my_str:	['I',	'love',	'Chicago',	'deep',	'dish',	'pizza']

Mapped	results:
lower:  ['i',	'love',	'chicago',	'deep',	'dish',	'pizza']

Mapped	results:
lower:  ('i',	'love',	'chicago',	'deep',	'dish',	'pizza')

Listing	3.18	displays	the	contents	of	map5.py	that	illustrates	how	to	calculate	the	mean	of	a
2D	array	of	random	values.

Listing	3.18:	map5.py
import	numpy	as	np
  
def	find_mean(x):
  mean	=	sum(x)/len(x)
  return	mean

#	generate	some	random	numbers:
rand_vals	=	np.random.randint(1,50,	size=(3,4))
print("Random	values:")
print(rand_vals)

mean_vals	=	list(map(find_mean,	rand_vals))
print("Row-based	mean	values:")
print(mean_vals)



Listing	3.18	defines	 the	 function	find_mean()	 that	calculates	 the	mean	of	a	 list	of	values,
followed	by	 the	variable	rand_vals	 that	 is	 initialized	as	a	3x4	array	of	 random	 integers.  
The	 variable	 mean_vals	 is	 initialized	 as	 a	 list	 of	 values	 that	 is	 returned	 from	 invoking	 the
find_mean()	 function	 with	 the	 contents	 of	 rand_vals	 (via	 the	 map()	 function).	 The	 output	 from
Listing	3.18	is	as	follows:

Random	values:
[[32  7	36  7]
[	8  3	36	19]
[29	27	19	35]]
Row-based	mean	values:
[20.5,	16.5,	27.5]

If	you	want	the	column-based	mean	values,	simply	specify	the	array	rand_vals.T,	which	is
the	transpose	of	the	array	rand_vals,	as	shown	in	the	following	code	snippet:

mean_vals	=	list(map(find_mean,	rand_vals.T))

Listing	3.19	displays	the	contents	of	map6.py	that	illustrates	how	to	invoke	the	Python	map()
function	with	an	array	arrays	of	string	values.

Listing	3.19:	map6.py
import	numpy	as	np
  
def	single_line(data):
  return	"	".join(data)

friends	=	[["Sara",	"Smith",	"San	Francisco",	"CA"],
          	["John",	"Stone",	"Chicago",      	"IL"],
          	["Dave",	"Aster",	"Los	Angeles",  	"CA"],
          	["Jane",	"Davis",	"Seattle",      	"WA"]]

print("=>	Friends:")
for	friend	in	friends:
  print(friend)
print()

print("=>	Friend	details:")
friend_details	=	list(map(single_line,	friends))
for	friend	in	friend_details:
  print(friend)
print()

Listing	 3.19	 follows	 a	 similar	 pattern	 that	 you	 have	 seen	 in	 the	 previous	 five	 code
samples.	The	variation	in	this	code	sample	involves	the	function	single_line()	that	returns	a
single	 string,	 via	 the	 join()	 function,	 based	 on	 the	 strings	 in	 the	 variable	 friends	 that	 is
initialized	as	an	array	of	strings.

Next,	 the	 contents	 of	 friends	 are	 displayed	 via	 a	 print()	 statement,	 followed	 by	 the
contents	of	the	variable	friend_details	that	is	initialized	with	the	result	of	invoking	the	built-in
map()	function	with	the	parameters	single_line	and	friends.	The	output	from	Listing	3.19	is	as
follows:

=>	Friends:
['Sara',	'Smith',	'San	Francisco',	'CA']
['John',	'Stone',	'Chicago',	'IL']
['Dave',	'Aster',	'Los	Angeles',	'CA']
['Jane',	'Davis',	'Seattle',	'WA']

=>	Friend	details:
Sara	Smith	San	Francisco	CA
John	Stone	Chicago	IL
Dave	Aster	Los	Angeles	CA
Jane	Davis	Seattle	WA

Listing	3.20	displays	 the	contents	of	 map_lambda_cond.py	 that	 illustrates	how	 to	 invoke	 the
Python	map()	function	and	a	lambda	function	with	conditional	logic.

Listing	3.20:	map_lambda_cond.py
import	numpy	as	np

arr	=	[13,	60,	0,	2,	17,	19]
print("arr:",arr)

mult_5	=	list(map(lambda	x:	True	if	x	%	5	==	0	else	False,	arr))
print("Multiples	of	5:",mult_5)

Listing	3.20	is	similar	to	Listing	3.15	in	that	both	of	them	involve	a	lambda	function:	in
this	 code	 sample	 the	 lambda	 function	 contains	 conditional	 logic	 of	 the	 form	 if/else.	 The
output	from	Listing	3.20	is	as	follows:

arr:	[13,	60,	0,	2,	17,	19]
Multiples	of	5:	[False,	True,	True,	False,	False,	False]



Listing	3.21	displays	the	contents	of	simple_comprehension.py	that	illustrates	how	to	achieve
the	same	results	as	the	Listing	3.20	without	using	a	map()	function	or	a	lambda	expression.

Listing	3.21:	simple_comprehension.py
arr	=	[13,	60,	0,	300,	17,	19]
print("array:",arr)

mult5	=	[True	if	x	%	5	==	0	else	False	for	x	in	arr]
print("Multiples	of	5:",mult5)

Listing	3.21	initializes	arr	as	a	list	of	six	numbers	and	then	displays	its	contents.	The	next
code	snippet	initializes	the	variable	mult5	as	the	numbers	in	arr	that	are	multiples	of	5.	The
output	from	Listing	3.21	is	as	follows:

array:	[13,	60,	0,	300,	17,	19]
Multiples	of	5:	[False,	True,	True,	True,	False,	False]

FUNCTIONAL	PROGRAMMING	IN	PYTHON:	THE	FILTER()	FUNCTION

This	section	illustrates	how	to	use	the	filter()	function	and	also	how	to	combine	the	filter()
and	map()	functions	in	Python.

Listing	 3.22	 displays	 the	 contents	 of	 filter1.py	 that	 illustrates	 how	 to	 use	 the	 Python
filter()	function.

Listing	3.22:	filter1.py
numbers	=	[-10,	11,	-20,	55,	100,	201]
even_vals	=	list(filter(lambda	x:	x	%	2	==	0,	numbers))

print("numbers:",numbers)
print("even:  	",even_vals)

Listing	3.22	initializes	the	variable	numbers	with	a	list	of	 integers	and	then	initializes	the
variable	 even_vals	 as	 a	 list	 of	 values	 that	 is	 returned	 by	 the	 filter()	 function	 that	 uses	 a
lambda	expression	to	return	only	even	integers	from	the	integers	in	the	variable	numbers.	The
output	from	Listing	3.22	is	as	follows:

numbers:	[-10,	11,	-20,	55,	100,	201]
even:    [-10,	-20,	100]

Combining	the	filter()	and	map()	Functions
Listing	3.23	displays	the	contents	of	filter_map1.py	that	illustrates	how	to	combine	the	Python
filter()	and	map()	functions.

Listing	3.23:	filter_map1.py
square_even_nums	=	map(lambda	num:	num	**	2,
filter(lambda	num:	num	%	2	==	0,	range(1,10)))
print("square	of	even	numbers:")
print(list(square_even_nums))
print()

even_squared_nums	=	filter(lambda	num:	num	%	4	==	0,
map(lambda	num:	num	**	2,	range(1,10)))
print("even	squared	numbers:")
print(list(even_squared_nums))

Listing	 3.23	 defines	 the	 variable	 square_even_nums	 that	 returns	 the	 square	 of	 the	 even
numbers	 in	 the	 range	 of	 integers	 from	 1	 to	 10.	 Next,	 the	 variable	 even_squarer_n	 ms	 is
initialized	as	the	list	of	numbers	between	1	and	10	whose	squared	value	is	a	multiple	of	4.
The	output	from	Listing	3.23	is	as	follows:

square	of	even	numbers:
[4,	16,	36,	64]

even	squared	numbers:
[4,	16,	36,	64]

Listing	 3.24	 displays	 the	 contents	 of	 filter_map2.py	 that	 illustrates	 how	 to	 combine	 the
Python	filter()	and	map()	functions.

Listing	3.24:	filter_map2.py
square_div4_nums	=	map(lambda	num:	num	**	2,
filter(lambda	num:	num	%	4	==	0,	range(1,10)))
print("square	of	multiples	of	4:")
print(list(square_div4_nums))
print()



even_div4_nums	=	filter(lambda	num:	num	%	4	==	0,
map(lambda	num:	num	**	2,	range(1,10)))
print("multiple	of	4	of	squared	numbers:")
print(list(even_div4_nums))

Listing	3.35	is	similar	to	Listing	3.23,	with	the	new	criterion	that	specifies	numbers	that
are	multiples	of	4	instead	of	multiples	of	2.	The	output	from	Listing	3.35	is	as	follows:

square	of	multiples	of	4:
[16,	64]

multiple	of	4	of	squared	numbers:
[4,	16,	36,	64]

SUMMARY
This	 chapter	 started	 with	 an	 explanation	 of	 lists	 and	 operations	 such	 as	 splicing	 and
updating	lists.	Then	you	learned	how	to	work	with	vectors,	matrices,	and	queues.

Next	you	 learned	about	tuples,	sets,	and	dictionaries.	You	also	saw	Python	code	samples
that	 illustrate	 how	 to	 define	 lambda	 expressions	 and	 how	 to	 use	 the	 map()	 function	 and
filter()	function	in	Python.



•

CHAPTER	4
STRINGS	AND	ARRAYS

This	 chapter	 shows	 you	 how	 to	 use	 Python	 to	 perform	 various	 tasks	 involving	 strings	 and
arrays.	The	code	samples	 in	this	chapter	consist	of	the	following	sequence:	examples	that
involve	scalars	and	strings,	followed	by	examples	involving	vectors	(explained	further	at	the
end	of	this	introduction),	and	then	examples	involving	2D	matrices.

The	 first	 part	 of	 this	 chapter	 contains	 a	 quick	 review	 of	 the	 time	 complexity	 of
algorithms,	 followed	by	various	 Python	 code	 samples	 for	 solving	well-known	 tasks,	 such	as
finding	 palindromes,	 reversing	 strings,	 and	 determining	 if	 the	 characters	 in	 a	 string	 are
unique.

The	second	part	of	this	chapter	discusses	2D	arrays,	along	with	NumPy-based	code	samples
that	 illustrate	various	operations	that	can	be	performed	on	2D	matrices.	This	section	also
discusses	2D	matrices,	which	are	2D	arrays,	along	with	some	tasks	that	you	can	perform	on
them.	This	section	also	discusses	multidimensional	arrays,	which	have	properties	 that	are
analogous	to	lower-dimensional	arrays.

The	 third	part	 of	 this	 chapter	 introduces	 search	algorithms,	 such	as	 linear	 search	and
binary	search,	followed	by	some	well-known	sorting	algorithms,	such	as	the	bubble	sort,	the
merge	sort,	and	the	quick	sort.

One	 other	 detail	 to	 keep	 in	 mind	 pertains	 to	 the	 terms	 vectors	 and	 arrays.	 In
mathematics,	 a	vector	 is	 a	 one-dimensional	 construct,	whereas	 an	array	 has	 at	 least	 two
dimensions.	 In	 software	development,	 an	 array	 can	 refer	 to	 a	 one-dimensional	 array	 or	 a
higher-dimensional	array	(depending	on	the	speaker).	In	this	book	a	vector	is	always	a	one-
dimensional	construct.	However,	the	term	array	always	refers	 to	a	one-dimensional	array;
higher	 dimensional	 arrays	 will	 be	 referenced	 as	 “2D	 array,”	 “3D	 array,”	 and	 so	 forth.
Therefore,	 the	 tasks	 involving	 2D	 arrays	 start	 from	 the	 section	 titled	 “Working	 With	 2D
Arrays.”

There	are	several	points	 to	keep	 in	mind	before	you	read	 this	chapter.	First,	 the	 Python
code	samples	 typically	also	contain	simple	NumPy	 functionality,	such	as	NumPy	 arrays.	 If	 need
be,	you	can	find	many	free	online	tutorials	that	provide	an	introduction	to	NumPy.

Second,	 the	 Python	 code	 samples	 involving	 recursion	 assume	 that	 you	 have	 an
understanding	of	recursion	(possibly	in	a	different	programming	language).	However,	if	you
are	unfamiliar	(or	uncomfortable)	with	recursion,	consider	reading	the	first	half	of	Chapter
6	that	contains	a	gentler	introduction	to	this	topic,	along	with	simpler	code	samples.

Third,	the	code	samples	in	this	chapter	are	intended	to	solve	an	interesting	yet	diverse
set	 of	 tasks;	 however,	 feel	 free	 to	 focus	 on	 the	 code	 samples	 in	 this	 chapter	 that	 are	 of
immediate	 interest,	and	you	can	always	read	the	other	code	samples	at	some	point	 in	the
future.

TIME	AND	SPACE	COMPLEXITY

Algorithms	 are	 assessed	 in	 terms	 of	 the	 amount	 of	 space	 (based	 on	 input	 size)	 and	 the
amount	 of	 time	 required	 for	 the	 algorithms	 to	 complete	 their	 execution,	 which	 is
represented	 by	 “big	 O”	 notation.	 There	 are	 three	 types	 of	 time	 complexity:	 best	 case,
average	 case,	 and	worst	 case.	 Keep	 in	mind	 that	 an	 algorithm	with	 very	 good	 best	 case
performance	can	have	a	relatively	poor	worst	case	performance.

Recall	that	O(n)	means	that	an	algorithm	executes	in	linear	time	because	its	complexity	is
bounded	above	and	below	by	a	linear	function.	For	example,	if	three	algorithms	require	2*n,
5*n,	or	n/2	operations,	respectively,	then	all	of	them	have	O(n)	complexity.

Moreover,	if	the	best,	average,	and	worst	time	performance	for	a	linear	search	is	1,	n/2,
and	n	operations,	respectively,	which	in	turn	equals	O(1),	O(n),	and	O(n),	respectively.

The	time-space	trade-off	refers	to	reducing	either	the	amount	of	 time	or	the	amount	of
memory	 that	 is	 required	 for	 executing	 an	 algorithm,	 which	 involves	 choosing	 one	 of	 the
following:

execute	in	less	time	and	more	memory



•

•
•

execute	in	more	time	and	less	memory

Although	reducing	both	time	and	memory	is	desirable,	it’s	also	a	more	challenging	task.
For	example,	 the	calculation	of	Fibonacci	numbers	 is	much	more	efficient	via	an	 iterative
algorithm	 than	 a	 recursive	 solution,	 but	 the	 former	 also	 requires	 an	 array	 to	 store
intermediate	 values.	 The	 iterative	 solution	 has	 a	 higher	 memory	 requirement	 than	 a
recursive	solution.

Another	point	to	keep	in	mind	is	the	following	inequalities	(logarithms	can	be	in	any	base
that	is	greater	than	or	equal	to	2)	for	any	positive	integer	n	>	1:

O(log	n)	<	O(n)	<	O(n*log	n)

In	addition,	the	following	inequalities	with	powers	of	n,	powers	of	2,	and	factorial	values
are	also	valid:

O(n**2)	<	O(n**3)	<	O(2**n)	<	O(n!)

If	you	are	unsure	about	any	of	the	preceding	inequalities,	perform	an	online	search	for
tutorials	that	provide	the	necessary	details.

TASK:	MAXIMUM	AND	MINIMUM	POWERS	OF	AN	INTEGER

Listing	 4.1	 displays	 the	 contents	 of	 max_min_power_k2.py	 that	 illustrate	 how	 to	 calculate	 the
largest	(smallest)	power	of	a	number	whose	base	is	k	that	is	less	than	(greater	than)	a	given
number.	So,	if	num	and	k	are	positive	integers,	the	task	is	two-fold:

find	the	largest	number	such	that	k**powk	<=	num
find	the	smallest	number	such	that	k**powk	>=	num

For	example,	16	 is	the	 largest	power	of	 two	that	 is	 less	than	24	and	32	 is	 the	smallest
power	of	two	that	is	greater	than	24.

As	another	example,	625	is	the	largest	power	of	five	that	is	less	than	1000	and	3125	is
the	smallest	power	of	five	that	is	greater	than	1000.

Listing	4.1:	max_min_power_k2.py
def	max_min_powerk(num,k):
  powk	=	1
  while(powk	<=	num):
    powk	*=	k
  if(powk	>	num):
    powk	/=	k
  return	int(powk),	int(powk*k)

nums	=	[24,17,1000]
powers	=	[2,3,4,5]

for	num	in	nums:
  for	k	in	powers:
    lowerk,upperk	=	max_min_powerk(num,	k)
    print("num:",num,"power:",k,"lower",lowerk,"upper:",upperk)
  print()

Listing	4.1	 starts	with	 the	 function	 max_min_powerk()	 that	 contains	 a	 loop	 that	 repeatedly
multiplies	the	local	variable	powk	(initialized	with	the	value	1)	by	k.	When	the	value	of	powk	is
greater	than	the	current	value	of	num,	powk	 is	divided	by	k	so	that	we	have	the	lower	bound
solution.

Note	that	this	function	returns	powk	and	powk*k	that	are	the	lower	bound	and	higher	bound
solutions	for	this	task.	Launch	the	code	in	Listing	4.1	and	you	will	see	the	following	output:

num:	24	power:	2	lower	16	upper:	32
num:	24	power:	3	lower	9	upper:	27
num:	24	power:	4	lower	16	upper:	64
num:	24	power:	5	lower	5	upper:	25

num:	17	power:	2	lower	16	upper:	32
num:	17	power:	3	lower	9	upper:	27
num:	17	power:	4	lower	16	upper:	64
num:	17	power:	5	lower	5	upper:	25

num:	1000	power:	2	lower	512	upper:	1024
num:	1000	power:	3	lower	729	upper:	2187
num:	1000	power:	4	lower	256	upper:	1024
num:	1000	power:	5	lower	625	upper:	3125

TASK:	BINARY	SUBSTRINGS	OF	A	NUMBER

Listing	 4.2	 displays	 the	 contents	 of	 the	 binary_numbers.py	 that	 illustrates	 how	 to	 display	 all
binary	substrings	whose	length	is	less	than	or	equal	to	a	given	number.



Listing	4.2:	binary_numbers.py
import	numpy	as	np
def	binary_values(width):
  print("=>	binary	values	for	width=",width,":")
  for	i	in	range(0,2**width):
    bin_value	=	bin(i)
    str_value	=	str(bin_value)
    print(str_value[2:])
  print()

max_width	=	4
for	ndx	in	range(1,max_width):
  binary_values(ndx)

Listing	4.2	starts	with	the	function	binary_values()	whose	loop	iterates	from	0	to	2**width,
where	 width	 is	 the	 parameter	 for	 this	 function.	 The	 loop	 variable	 is	 i	 and	 during	 each
iteration,	bin_value	is	initialized	with	the	binary	value	of	i.

Next,	the	variable	str_value	is	the	string-based	value	of	bin_value,	which	is	stripped	of	the
two	 leading	 characters	 0b.	 Launch	 the	 code	 in	 Listing	 4.2	 and	 you	will	 see	 the	 following
output:

=>	binary	values	for	width=	1	:
0
1

=>	binary	values	for	width=	2	:
0
1
10
11

=>	binary	values	for	width=	3	:
0
1
10
11
100
101
110
111

TASK:	COMMON	SUBSTRING	OF	TWO	BINARY	NUMBERS
Listing	 4.3	 displays	 the	 contents	 of	 common_bits.py	 that	 illustrates	 how	 to	 find	 the	 longest
common	substring	of	two	binary	strings.

Listing	4.3:	common_bits.py
def	common_bits(num1,	num2):
    bin_num1	=	bin(num1)
    bin_num2	=	bin(num2)
    bin_num1	=	bin_num1[2:]
    bin_num2	=	bin_num2[2:]

    if(len(bin_num2)	<	len(bin_num1)):
      while(len(bin_num2)	<	len(bin_num1)):
        bin_num2	=	"0"	+	bin_num2

    print(num1,"=",bin_num1)
    print(num2,"=",bin_num2)

    common_bits2	=	0
    for	i	in	range(0,len(bin_num1)):
      if((bin_num1[i]	==	bin_num2[i])	and	(bin_num1[i]	=='1')):
        common_bits2	+=	1
    return	common_bits2

nums1	=	[61,28,	7,100,189]
nums2	=	[51,14,28,110,	14]

for	idx	in	range(0,len(nums1)):
  num1	=	nums1[idx]
  num2	=	nums2[idx]
  common	=	common_bits(num1,	num2)

  print(num1,"and",num2,"have",common,"bits	in	common")
  print()

Listing	4.3	starts	with	the	function	common_bits()	that	initializes	the	binary	numbers	bin_num1
and	bin_num2	with	the	binary	values	of	the	two	input	parameters,	after	which	the	initial	string
“0b”	is	removed	from	both	numbers.

Next,	 a	 loop	 iterates	 from	0	 to	 the	 length	of	 the	 string	 bin_num1	 in	 order	 to	 check	each
digit	 to	 see	whether	 or	 not	 it	 equals	 1.	 Each	 time	 that	 the	 digit	 1	 is	 found,	 the	 value	 of



common_bits2	 (initialized	 with	 the	 value	 0)	 is	 incremented.	 When	 the	 loop	 terminates,	 the
variable	common_bits2	 equals	 the	 number	 of	 times	 that	 bin_num1	 and	 bin_num2	 have	 a	 1	 in	 the
same	position.

The	 final	portion	of	Listing	4.3	 iterates	 through	a	pair	 of	 arrays	with	positive	 integers
values	and	 invokes	common_bits()	during	each	 iteration	of	 the	 loop.	Now	 launch	 the	code	 in
Listing	4.3	and	you	will	see	the	following	output:

61	=	111101
51	=	110011
61	and	51	have	3	bits	in	common

28	=	11100
14	=	01110
28	and	14	have	2	bits	in	common

7	=	111
28	=	11100
7	and	28	have	3	bits	in	common

100	=	1100100
110	=	1101110
100	and	110	have	3	bits	in	common

189	=	10111101
14	=	00001110
189	and	14	have	2	bits	in	common

TASK:	MULTIPLY	AND	DIVIDE	VIA	RECURSION
Listing	4.4	displays	the	contents	of	the	recursive_multiply.py	 that	 illustrates	how	to	compute
the	product	of	two	positive	integers	via	recursion.

Listing	4.4:	recursive_multiply.py
import	numpy	as	np
  
def	add_repeat(num,	times,	sum):
  if(times	==	0):
    return	sum
  else:
    return	add_repeat(num,	times-1,	num+sum)

arr1	=	np.array([5,13,25,17,100])
arr2	=	np.array([9,10,25,10,100])

for	i	in	range(0,len(arr1)):
  num1	=	arr1[i]
  num2	=	arr2[i]
  prod	=	add_repeat(num1,	num2,	0)
  print("product	of",num1,"and",num2,"=",prod)

Listing	 4.4	 starts	 with	 the	 function	 add_repeat(num,times,sum)	 that	 performs	 repeated
addition	 by	 recursively	 invokes	 itself.	 Note	 that	 this	 function	 uses	 tail	 recursion:	 Each
invocation	of	the	function	replaces	times	with	times-1	and	also	replaces	sum	with	num+sum	(the
latter	is	the	tail	recursion).	The	terminating	condition	is	when	times	equals	0,	at	which	point
the	 function	 returns	 the	value	of	 sum.	 Launch	 the	 code	 in	Listing	4.4	and	you	will	 see	 the
following	output:

product	of	5	and	9	=	45
product	of	13	and	10	=	130
product	of	25	and	25	=	625
product	of	17	and	10	=	170
product	of	100	and	100	=	10000

Listing	4.5	displays	the	contents	of	the	recursive_divide.py	that	illustrates	how	to	compute
the	quotient	of	two	positive	integers	via	recursion.

Listing	4.5:	recursive_divide.py
import	numpy	as	np
def	sub_repeat(num1,	num2,	remainder):
  if(num1	<	num2):
    return	num1
  else:
    #print("num1-num2:",num1-num2,"num2:",num2)
    return	sub_repeat(num1-num2,	num2,	remainder)

arr1	=	np.array([9,13,25,17,100])
arr2	=	np.array([5,10,25,10,100])

for	i	in	range(0,len(arr1)):
  num1	=	arr1[i]
  num2	=	arr2[i]
  prod	=	sub_repeat(num1,	num2,	0)



  print("remainder	of",num1,"/",num2,"=",prod)

Listing	 4.5	 contains	 code	 that	 is	 very	 similar	 to	 Listing	 4.4:	 The	 difference	 involves
replacing	 addition	with	 subtraction.	 Launch	 the	 code	 in	 Listing	 4.5	 and	 you	will	 see	 the
following	output:

remainder	of	9	/	5	=	4
remainder	of	13	/	10	=	3
remainder	of	25	/	25	=	0
remainder	of	17	/	10	=	7
remainder	of	100	/	100	=	0

TASK:	SUM	OF	PRIME	AND	COMPOSITE	NUMBERS
Listing	4.6	displays	 the	 contents	 of	 the	 pair_sum_sorted.py	 that	 illustrates	 how	 to	 determine
whether	or	not	a	sorted	array	contains	the	sum	of	two	specified	numbers.

Listing	4.6:	pair_sum_sorted.py
import	numpy	as	np

PRIME_NUM	=	1
COMPOSITE	=	0
prime_sum	=	0
comp_sum  =	0
prime_list	=	np.array([])
comp_list  =	np.array([])
arr1	=	np.array([5,10,17,23,30,47,50])

def	is_prime(num):
  div	=	2

  while(div	<	num):
  	if(	num	%	div	!=	0):
      div	+=	1
  	else:
      return	COMPOSITE
  return	PRIME_NUM

for	ndx	in	range(0,len(arr1)):
  num	=	arr1[ndx]

  if(is_prime(num)	==	PRIME_NUM):
    prime_list	=	np.append(prime_list,	num)
    prime_sum	+=	num
  else:
    comp_list	=	np.append(comp_list,	num)
    comp_sum	+=	num

print("prime	list:",prime_list)
print("comp  list:",comp_list)
print("prime	sum:	",prime_sum)
print("comp	sum:  ",comp_sum)

Listing	 4.6	 starts	with	 the	 function	 is_prime()	 that	 determines	whether	 or	 not	 its	 input
parameter	is	a	prime	number.	The	next	portion	of	code	in	Listing	4.6	is	a	loop	that	ranges
from	0	 to	 the	number	of	elements.	During	each	 iteration,	 the	current	number	 is	added	to
the	variable	prime_sum	if	that	number	is	a	prime;	otherwise,	it	is	added	to	the	variable	comp_sum.

The	final	portion	of	Listing	4.6	displays	the	sum	of	the	even	numbers	and	the	sum	of	the
odd	numbers	 in	 the	 input	array	 arr1.	 Launch	 the	 code	 in	Listing	4.6	 and	 you	will	 see	 the
following	output:

prime	list:	[	5.	17.	23.	47.]
comp  list:	[10.	30.	50.]
prime	sum:  92
comp	sum:  	90

The	 next	 portion	 of	 this	 chapter	 contains	 various	 examples	 of	 string-related	 tasks.	 As
needed,	you	can	review	the	relevant	portion	of	Chapter	1	regarding	some	of	the	Python	built-
in	string	functions,	such	as	int()	and	len().

TASK:	COUNT	WORD	FREQUENCIES
Listing	4.7	displays	the	contents	of	the	word_frequency.py	that	illustrates	how	to	determine	the
frequency	of	each	word	in	an	array	of	words.

Listing	4.7:	word_frequency.py
import	numpy	as	np

def	word_count(words,check_word):
  count	=	0



  for	word	in	words:
    if(word.lower()	==	check_word.lower()):
      count	+=	1
  return	count

sents	=	np.array([["I",	"love",	"thick",	"pizza"],
                	["I",	"love",	"deep",	"dish","pizza"],
                	["Pepperoni","and","sausage","pizza"],
                	["Pizza",	"with",	"mozzarrella"]],dtype=object)

words	=	np.array([])
for	sent	in	sents:
  for	word	in	sent:
    words	=	np.append(words,word)

word_counts	=	{}
for	word	in	words:
  count	=	word_count(words,word)
  word_counts[word]	=	count

print("word_counts:")
print(word_counts)

Listing	4.7	starts	with	the	function	word_count()	that	counts	the	number	of	occurrences	of
a	 given	word	 in	 a	 sentence.	 The	 next	 portion	 of	 Listing	 4.7	 contains	 a	 loop	 that	 iterates
through	each	sentence	of	an	array	of	 sentences.	For	each	sentence,	 the	code	 invokes	 the
function	word_count()	with	each	word	in	the	current	sentence.	Launch	the	code	in	Listing	4.7
and	you	will	see	the	following	output:

word_counts:
{'I':	2,	'love':	2,	'thick':	1,	'pizza':	4,	'deep':	1,	'dish':	1,	'Pepperoni':	1,	'and':	1,
'sausage':	1,	'Pizza':	4,	'with':	1,	'mozzarrella':	1}

Listing	4.8	displays	 the	contents	of	 the	 word_frequency2.py	 that	 illustrates	another	way	 to
determine	the	frequency	of	each	word	in	an	array	of	words.

Listing	4.8:	word_frequency2.py
import	numpy	as	np

sents	=	np.array([["I",	"love",	"thick",	"pizza"],
                	["I",	"love",	"deep",	"dish","pizza"],
                	["Pepperoni","and","sausage","pizza"],
                	["Pizza",	"with",	"mozzarrella"]],dtype=object)

word_counts	=	dict()
for	sent	in	sents:
  for	word	in	sent:
    word	=	word.lower()
    #print("word:",word)

    if(word	not	in	word_counts.keys()):
      	word_counts[word]	=	0
    word_counts[word]	+=	1

print("word_counts:")
print(word_counts)

Listing	 4.8	 concatenates	 all	 the	 sentences	 and	 then	 populates	 a	 Python	 dictionary	with
word	 frequencies	 whereas	 Listing	 4.7	 directly	 populates	 a	 Python	 dictionary	 with	 word
frequencies.	Launch	the	code	in	Listing	4.8	and	you	will	see	the	following	output:

word_counts:
{'i':	2,	'love':	2,	'thick':	1,	'pizza':	4,	'deep':	1,	'dish':	1,	'pepperoni':	1,	'and':	1,
'sausage':	1,	'with':	1,	'mozzarrella':	1}

TASK:	CHECK	IF	A	STRING	CONTAINS	UNIQUE	CHARACTERS
Listing	 4.9	 displays	 the	 contents	 of	 the	 unique_str.py	 that	 illustrates	 how	 to	 determine
whether	 or	 not	 a	 string	 contains	 unique	 letters:	 note	 that	 the	 solution	 is	 for	 ASCII-based
characters.

Listing	4.9:	unique_chars.py
import	numpy	as	np

def	unique_chars(str):
  if	(len(str)	>	128):
    return	false

  str	=	str.lower()

  char_set	=	np.zeros([128])



for	i	in	range	(0,len(str)):
    char	=	str[i]
    val	=	ord('z')	-	ord(char)
    #print("val:",val)

    if	(char_set[val]	==	1):
      #	found	duplicate	character
      return	False
    else:
      char_set[val]	=	1

  return	True

arr1	=	np.array(["a	string",	"second	string",	"hello	world"])

for	str	in	arr1:
  print("string:",str)
  result	=	unique_chars(str)
  print("unique:",result)
  print()

Listing	 4.9	 starts	 with	 the	 function	 unique_chars()	 that	 converts	 its	 parameter	 str	 to
lowercase	letters	and	then	initializes	the	1×128	integer	array	char_set	whose	values	are	all
0.	 The	 next	 portion	 of	 this	 function	 iterates	 through	 the	 characters	 of	 the	 string	 str	 and
initializes	 the	 integer	 variable	 val	 with	 the	 offset	 position	 of	 each	 character	 from	 the
character	‘z’.

If	this	position	in	char_set	equals	1,	then	a	duplicate	character	has	been	found;	otherwise,
this	position	is	initialized	with	the	value	1.	Note	that	the	value	False	is	returned	if	the	string
str	 contains	duplicate	 letters,	whereas	 the	value	 True	 is	 returned	 if	 the	 string	 str	 contains
unique	characters.	Now	launch	the	code	in	Listing	4.9	and	you	will	see	the	following	output:

string:	a	string
unique:	True

string:	second	string
unique:	False

string:	hello	world
unique:	False

TASK:	INSERT	CHARACTERS	IN	A	STRING
Listing	 4.10	 displays	 the	 contents	 of	 the	 insert_chars.py	 that	 illustrates	 how	 to	 insert	 each
character	of	one	string	in	every	position	of	another	string.

Listing	4.10:	insert_chars.py
def	insert_char(str1,	chr):
  result	=	str1

  result	=	chr	+	str1
  for	i	in	range(0,len(str1)):
    left	=	str1[:i+1]
    right	=	str1[i+1:]
    #print("left:",left,"right:",right)
    inserted	=	left	+	chr	+	right

    result	=	result	+	"	"	+	inserted
  return	result

str1	=	"abc"
str2	=	"def"
print("str1:",str1)
print("str2:",str2)

insertions	=	""
for	i	in	range(0,len(str2)):
  new_str	=	insert_char(str1,	str2[i])
  #print("new_str:",new_str)
  insertions	=	insertions+	"	"	+	new_str

print("result:",insertions)

Listing	4.10	starts	with	the	function	insert_char()	that	has	a	string	str1	and	a	character	chr
as	input	parameters.	The	next	portion	of	code	is	a	loop	whose	loop	variable	is	i	and	is	used
to	split	the	string	str1	into	two	strings:	the	left	substring	from	positions	0	to	i,	and	the	right
substring	 from	 position	 i+1.	 A	 new	 string	 with	 three	 components	 is	 constructed:	 the	 left
string,	the	character	chr,	and	the	right	string.

The	next	portion	of	Listing	4.10	contains	a	loop	that	iterates	through	each	character	of
str2;	 during	 each	 iteration,	 the	 code	 invokes	 insert_char()	with	 string	 str1	 and	 the	 current
character.	 The	 number	 of	 new	 strings	 generated	 bytes	 this	 code	 equals	 the	 following



product:	(len(str1)+1)*len(str2).
Launch	the	code	in	Listing	4.10	and	you	will	see	the	following	output:
str1:	abc
str2:	def
result:  dabc	adbc	abdc	abcd	eabc	aebc	abec	abce	fabc	afbc	abfc	abcf

TASK:	STRING	PERMUTATIONS
There	are	several	ways	to	determine	whether	or	not	two	strings	are	permutations	of	each
other.	One	way	involves	sorting	the	strings	alphabetically:	If	the	resulting	strings	are	equal,
then	they	are	permutations	of	each	other.

A	 second	 technique	 is	 to	 determine	 whether	 or	 not	 they	 have	 the	 same	 number	 of
occurrences	for	each	character.	A	third	way	is	to	add	the	numeric	counterpart	of	each	letter
in	the	string:	If	the	numbers	are	equal	and	the	strings	have	the	same	length,	then	they	are
permutations	of	each	other.

Listing	4.11	displays	the	contents	of	the	string_permute.py	that	illustrates	how	to	determine
whether	or	not	two	strings	are	permutations	of	each	other.

Listing	4.11:	string_permute.py
import	numpy	as	np

def	permute(str1,str2):
  str1d	=	sorted(str1)
  str2d	=	sorted(str2)
  permute	=	(str1d	==	str2d)

  print("string1:	",str1)
  print("string2:	",str2)
  print("permuted:",permute)
  print()

strings1	=	["abcdef",	"abcdef"]
strings2	=	["efabcf",	"defabc"]

for	idx	in	range(0,len(strings1)):
  str1	=	strings1[idx]
  str2	=	strings2[idx]
  permute(str1,str2)

Listing	4.11	starts	with	the	function	permute()	 that	takes	the	two	strings	str1	and	str2	as
parameters.	Next,	 the	 strings	 str1d	 and	 str2d	 are	 initialized	with	 the	 result	 of	 sorting	 the
characters	in	the	strings	str1	and	str2,	respectively.	At	this	point,	we	can	determine	whether
or	not	str1	and	str2	are	permutations	of	each	other	by	checking	whether	or	not	the	strings
str1d	 and	 str2d	 are	 equal.	 Launch	 the	 code	 in	 Listing	 4.11	 and	 you	will	 see	 the	 following
output:

string1:  abcdef
string2:  efabcf
permuted:	False

string1:  abcdef
string2:  defabc
permuted:	True

TASK:	FIND	ALL	SUBSETS	OF	A	SET

Listing	4.12	displays	the	contents	of	the	powerset.py	that	illustrates	how	to	list	all	the	subsets
of	a	given	set.

Listing	4.12:	powerset.py
import	numpy	as	np
  
#	strings	of	the	form:
#	[a0,	a1,	...,	an]
def	create_array(width):
  arr1	=	np.array([])
  for	i	in	range(0,width):
    str1	=	"a"+str(i)
    arr1	=	np.append(arr1,str1)
  return	arr1

def	binary_values(arr1,width):
  print("=>	binary	values	for	width=",width,":")
  for	num	in	range(0,2**width):
    bin_value	=	bin(num)
    str_value	=	bin_value[2:]

    #	left-pad	with	"0"	characters:



    for	i	in	range(0,width-len(str_value)):
      str_value	=	"0"	+	str_value

    subset	=	""
    #	check	for	'1'	in	a	right-to-left	loop:
    for	ndx	in	range(len(str_value)-1,-1,-1):
      chr	=	str_value[ndx]
      if(chr	==	'1'):
        subset	=	subset	+	"	"	+arr1[ndx]

    if(subset	==	""):
      print("{}")
    else:
      if(subset[0]	==	"	"):
        subset	=	subset[1:]
      print(subset)

width	=	4
arr1	=	create_array(width)
print("arr1:",arr1)
binary_values(arr1,width)

Listing	4.12	starts	with	the	function	create_array	that	creates	(and	returns)	the	array	arr1
of	strings	of	the	form	a1,	a2,	.	.	.	,	an,	where	n	is	the	value	of	the	input	parameter.	The	next
portion	of	Listing	4.12	defines	the	function	binary_values	that	constructs	all	the	subsets	of	arr1
that	is	constructed	in	the	function	create_array().

The	 function	 binary_values	 contains	 a	 loop	 whose	 loop	 variable	 num	 iterates	 through	 the
numbers	1	through	2**width,	where	width	is	the	value	of	the	input	parameter.	For	each	value
of	num,	the	variable	bin_value	is	its	binary	equivalent,	and	the	variable	str_value	skips	the	first
two	character	positions	(i.e.,	“0b”)	of	bin_value.

The	next	portion	of	Listing	4.12	contains	a	 loop	 that	pads	 str_value	with	 the	 string	 “0”
until	its	length	equals	width,	followed	by	another	loop	that	creates	a	string	called	subset	that
consists	of	the	ith	character	of	arr1	and	whose	length	equals	the	number	of	occurrences	of
“1”	 in	 the	variable	 str_value.	 If	 this	 logic	 is	 not	 clear	 to	 you,	 perform	a	 “desk	 check”	 that
iterates	through	the	code	in	create_array().

The	final	portion	of	Listing	4.12	invokes	the	function	create_array()	with	the	value	4	for	the
parameter	width,	after	which	all	the	subsets	of	a	set	of	4	elements	is	displayed.	Launch	the
code	in	Listing	4.12	and	you	will	see	the	following	output:

arr1:	['a0'	'a1'	'a2'	'a3']
=>	binary	values	for	width=	4	:
{}
a3
a2
a3	a2
a1
a3	a1
a2	a1
a3	a2	a1
a0
a3	a0
a2	a0
a3	a2	a0
a1	a0
a3	a1	a0
a2	a1	a0
a3	a2	a1	a0

TASK:	CHECK	FOR	PALINDROMES
One	way	to	determine	whether	or	not	a	given	string	is	a	palindrome	is	to	compare	the	string
with	the	reverse	of	the	string:	If	the	two	strings	are	equal,	then	the	string	is	a	palindrome.
Moreover,	 there	 are	 two	 ways	 to	 reverse	 a	 string:	 One	 way	 involves	 the	 Python	 reverse()
function,	and	another	way	is	to	process	the	characters	in	the	given	string	in	a	right-to-left
fashion,	and	to	append	each	character	to	a	new	string.

Another	technique	involves	iterating	through	the	characters	in	a	left-to-right	fashion	and
comparing	 each	 character	 with	 its	 corresponding	 character	 that	 is	 based	 on	 iterating
through	the	string	in	a	right-to-left	fashion.

Listing	4.13	displays	 the	contents	of	 the	palindrome1.py	 that	 illustrates	how	 to	determine
whether	or	not	a	string	or	a	positive	integer	is	a	palindrome.

Listing	4.13:	palindrome1.py
import	numpy	as	np

def	palindrome1(str):
  full_len	=	int(len(str))
  half_len	=	int(len(str)/2)

  for	i	in	range	(0,half_len):
    lchar	=	str[i]



    rchar	=	str[full_len-1-i]
    if(lchar	!=	rchar):
      return	False
  return	True

arr1	=	np.array(["rotor",	"tomato",	"radar","maam"])
arr2	=	list([123,	12321,	555])

#	CHECK	FOR	STRING	PALINDROMES:
for	str	in	arr1:
  print("check	string:",str)
  result	=	palindrome1(str)
  print("palindrome:  ",result)
  print()

#	CHECK	FOR	NUMERIC	PALINDROMES:
for	num	in	arr2:
  print("check	number:",num)
  str1	=	np.str(num)
  str2	=	""
  for	digit	in	str1:
    str2	+=	digit

  result	=	palindrome1(str2)
  print("palindrome:  ",result)
  print()

Listing	 4.13	 defines	 the	 function	 palindrome1()	 that	 contains	 a	 loop	 that	 compares	 the
elements	from	opposite	directions	of	the	string	str.	Specifically,	the	character	in	position	0
is	 compared	 with	 the	 right-most	 character	 of	 str:	 if	 they	 are	 different,	 then	 str	 is	 not	 a
palindrome,	and	the	value	False	is	returned.

However,	if	the	two	characters	are	the	same,	then	the	process	is	repeated,	this	time	with
the	character	in	position	1	and	the	character	that	is	to	the	left	of	the	right-most	character	of
str.	Repeat	this	process	using	the	same	conditional	logic:	If	we	reach	the	end	of	this	loop,
then	str	is	a	palindrome	and	the	value	True	is	returned.

The	 next	 portion	 of	 Listing	 4.13	 initializes	 the	 variables	 arr1	 and	 arr2	 with	 strings	 and
numbers,	respectively,	followed	by	two	loops.	The	first	loop	invokes	the	function	palindrome1()
with	 each	 element	 in	 arr1,	 and	 the	 second	 loop	 initializes	 the	 string-based	 counterpart	 to
each	number	in	arr2,	and	then	invokes	the	function	palindrome1()	with	that	string.	Launch	the
code	in	Listing	4.13	and	you	will	see	the	following	output:

check	string:	rotor
palindrome:  	True

check	string:	tomato
palindrome:  	False

check	string:	radar
palindrome:  	True

check	string:	maam
palindrome:  	True

check	number:	123
palindrome:  	False

check	number:	12321
palindrome:  	True

check	number:	555
palindrome:  	True

TASK:	CHECK	FOR	LONGEST	PALINDROME
This	 section	 extends	 the	 code	 in	 the	previous	 section	by	 examining	 substrings	 of	 a	 given
string.	Listing	4.14	displays	 the	 contents	 of	 the	 longest_palindrome.py	 that	 illustrates	how	 to
determine	the	longest	palindrome	in	a	given	string.	Note	that	a	single	character	is	always	a
palindrome,	which	means	that	every	string	has	a	substring	that	is	a	palindrome	(in	fact,	any
single	character	in	any	string	is	a	palindrome).

Listing	4.14:	longest_palindrome.py
import	numpy	as	np

def	check_string(str):
  result	=	0
  str_len  =	len(str)
  str_len2	=	int(len(str)/2)

  for	i	in	range(0,str_len2):
    if(str[i]	!=	str[str_len-i-1]):



•
•
•

      result	=	1
      break

  if(result	==	0):
    #print(str,	"is	a	palindrome")
    return	str
  else:
    #print(str,	"is	not	a	palindrome")
    return	None

my_strings	=	["abc","abb","abccba","azaaza","abcdefgabccbax"]
max_pal_str	=	""
max_pal_len	=	0

for	my_str	in	my_strings:
  max_pal_str	=	""
  max_pal_len	=	0
  for	i	in	range(0,len(my_str)-1):
    for	j	in	range(0,len(my_str)-i+1):
      sub_str	=	my_str[i:i+j]
      #print("checking:",sub_str,"in	=>",my_str)
      a_str	=	check_string(sub_str)
  
      if(a_str	!=	None):
        if(max_pal_len	<	len(a_str)):  
          max_pal_len	=	len(a_str)
          max_pal_str	=	a_str
  
  print("string:",my_str)
  print("maxpal:",max_pal_str)
  print()

Listing	4.14	starts	with	the	function	check_string()	that	performs	the	same	functionality	as
the	function	palindrome1()	in	Listing	4.13.

The	next	portion	of	Listing	4.14	initializes	the	variable	my_strings	as	a	list	of	strings,	each
of	which	will	be	processed	to	determine	which	strings	(if	any)	are	palindromes.	Next,	a	loop
iterates	through	each	element	of	my_strings,	followed	by	a	nested	loop	via	the	loop	variables	i
and	j.	The	loop	variable	i	iterates	from	left	to	right,	starting	from	the	left-most	character	in
the	string	my_str.	However,  the	loop	variable	j	iterates	from	right	to	left,	starting	from	the
right-most	character	in	my_str.

During	each	iteration	through	the	nested	loop,	the	substring	sub_str	is	constructed,	which
consists	 of	 the	 characters	 in	 position	 i	 through	 i+j	 of	 my_str,	 after	 which	 the	 function
check_string()	is	invoked	to	determine	whether	or	not	sub_str	is	a	palindrome.

If	 the	 result	 is	 true,	 then	 the	 length	 of	 a_str	 (which	 is	 returned	 from	 check_string())	 is
compared	 with	 the	 length	 of	 the	 longest	 palindrome	 that	 has	 been	 found	 thus	 far.	 If
necessary,	 update	 the	 values	 of	 the	 variables	 max_pal_len	 and	 max_pal_str	whose	 values	 are
displayed	when	the	nested	loop	has	completed	execution.	Launch	the	code	in	Listing	4.14
and	you	will	see	the	following	output:

string:	abc
maxpal:	a

string:	abb
maxpal:	bb

string:	abccba
maxpal:	abccba

string:	azaaza
maxpal:	azaaza

string:	abcdefgabccbax
maxpal:	abccba

WORKING	WITH	SEQUENCES	OF	STRINGS
This	section	contains	Python	code	samples	that	search	strings	to	determine	the	following:

the	maximum	length	of	a	sequence	of	consecutive	1s	in	a	string
find	a	given	sequence	of	characters	in	a	string
the	maximum	length	of	a	sequence	of	unique	characters

After	 you	 complete	 this	 section	 you	 can	 explore	 variations	 of	 these	 tasks	 that	 you	 can
solve	using	the	code	samples	in	this	section.

The	Maximum	Length	of	a	Repeated	Character	in	a	String
Listing	 4.15	 displays	 the	 contents	 of	 max_char_sequence.py	 that	 illustrates	 how	 to	 rotate	 the
elements	in	an	array.



Listing	4.15:	max_char_sequence.py
import	numpy	as	np

def	max_seq(my_str,char):
  max	=	0
  left	=	0
  right	=	0
  counter	=	0
  for	i	in	range(0,len(my_str)):
    curr_char	=	my_str[i]
    if(curr_char	==	char):
      counter	+=	1
      right	=	i
      if(	max	<	counter):
        max	=	counter
        #print("new	max:",max)
    else:
      counter	=	0
      left	=	i
      right	=	i

  print("my_str:",my_str)
  print("max	sequence	of",char,":",max)
  print()

str_list	=	np.array(["abcdef","aaaxyz","abcdeeefghij"])
char_list	=	np.array(["a","a","e"])

for	idx	in	range(0,len(str_list)):
  my_str	=	str_list[idx]
  char	=	char_list[idx]
  max_seq(my_str,char)

Listing	4.15	defines	the	function	max_seq()	that	initializes	several	scalar	variables	to	keep
track	of	the	left	 index	and	right	 index	positions	of	 the	parameter	my_str.	The	next	block	of
code	is	a	loop	that	iterates	from	0	to	the	length	of	my_str,	and	updates	counter	to	keep	track	of
the	 number	 of	 consecutive	 occurrences	 of	 the	 current	 character,	 where	 the	 latter	 starts
from	index	0.

When	a	different	 character	 is	 encountered,	 the	values	of	 left	and	right	 are	 updated	 so
that	 they	start	 from	the	 index	position	of	 the	unequal	character	 that	was	encountered.	 In
addition,	the	value	of	counter	 is	compared	with	max	 in	order	 to	ensure	 that	 the	 latter	 is	 the
length	of	the	longest	sequence	of	equal	characters.	Launch	the	code	in	Listing	4.15	and	you
will	see	the	following	output:

my_str:	abcdef
max	sequence	of	a	:	1

my_str:	aaaxyz
max	sequence	of	a	:	3

my_str:	abcdeeefghij
max	sequence	of	e	:	3

Find	a	Given	Sequence	of	Characters	in	a	String
Listing	 4.16	 displays	 the	 contents	 of	 max_substr_sequence.py	 that	 illustrates	 how	 to	 find	 the
longest	right-most	sequence	of	characters	that	matches	a	given	string.

Listing	4.16:	max_substr_sequence.py
import	numpy	as	np

def	rightmost_substr(my_str,substr):
  left	=	-1
  len_substr	=	len(substr)

  #	check	for	substr	from	right	to	left:
  for	i	in	range(len(my_str)-len_substr,-1,-1):
    curr_str	=	my_str[i:i+len_substr]
    #print("checking	curr_str:",curr_str)

    if(substr	==	curr_str):
      left	=	i
      break

  if(left	>=	0):
    print(substr,"is	in	index",left,"of:",my_str)
  else:
    print(substr,"does	not	appear	in",my_str)
  print()

str_list	=	np.array(["abcdef","aaaxyz","abcdeeefghij"])



•
•
•

substr_list	=	np.array(["bcd","aaa","cde"])

for	idx	in	range(0,len(str_list)):
  my_str	=	str_list[idx]
  substr	=	substr_list[idx]
  print("checking:",substr,"in:",my_str)
  rightmost_substr(my_str,substr)

Listing	 4.16	 defines	 the	 function	 rightmost_substr()	 that	 contains	 a	 loop	 that	 performs	 a
right-to-left	comparison	of	the	parameter	substr	with	the	parameter	my_str.	If	a	match	occurs,
then	the	index	i	of	substr	in	which	the	match	occurred	is	printed,	otherwise	a	message	to	the
contrary	is	printed.

The	next	portion	of	Listing	4.16	 initializes	 the	NumPy	array	str_list	with	multiple	strings,
along	with	the	variable	substr_list	as	a	NumPy	array	of	strings.	The	final	portion	of	Listing	4.16
contains	a	loop	that	iterates	through	the	elements	of	str_list,	along	with	the	corresponding
elements	 of	 substr_list,	 and	 then	 invokes	 the	 function	 rightmost_substr()	 with	 this	 pair	 of
strings.	Launch	the	code	in	Listing	4.16	and	you	will	see	the	following	output:

checking:	bcd	in:	abcdef
bcd	is	in	index	1	of:	abcdef

checking:	aaa	in:	aaaxyz
aaa	is	in	index	0	of:	aaaxyz

checking:	cde	in:	abcdeeefghij
cde	is	in	index	2	of:	abcdeeefghij

TASK:	LONGEST	SEQUENCES	OF	SUBSTRINGS
This	section	contains	Python	code	samples	that	search	strings	to	determine	the	following:

the	maximum	length	of	a	sequence	of	consecutive	1s	in	a	string
find	a	given	sequence	of	characters	in	a	string
the	maximum	length	of	a	sequence	of	unique	characters

After	you	complete	 this	section,	you	can	explore	variations	of	 these	 tasks	 that	you	can
solve	using	the	code	samples	in	this	section.

The	Longest	Sequence	of	Unique	Characters
Listing	4.17	displays	the	contents	of	longest_unique.py	that	illustrates	how	to	find	the	longest
sequence	of	unique	characters	in	a	string.

Listing	4.17:	longest_unique.py
import	numpy	as	np

def	rightmost_substr(my_str):
  left	=	0
  right	=	0
  sub_str	=	""
  longest	=	""
  my_dict	=	dict()

  for	pos	in	range(0,len(my_str)):
    char	=	my_str[pos]
    if(char	not	in	my_dict.keys()):
      my_dict[char]	=	1
      unique	=	my_str[left:pos+1]
      #print("new	unique:",	unique)

      if(len(longest)	<	len(unique)):
        longest	=	unique
        right	=	pos
    else:
      my_dict	=	dict()
      left	=	pos+1
      right	=	pos+1

  print("longest	unique:",longest)
  print()

str_list	=	np.array(["abcdef","aaaxyz","abcdeeefghij"])

for	idx	in	range(0,len(str_list)):
  my_str	=	str_list[idx]
  print("checking:",my_str)
  rightmost_substr(my_str)

Listing	4.17	defines	 the	 function	 rightmost_substr()	 that	 contains	 a	 loop	 that	 stores	 each



character	of	my_str	in	a	Python	dictionary	my_dict.	If	a	character	is	encountered	already	exists
in	my_dict,	 the	 length	 of	 the	 longest	 current	 sequence	 is	 compared	with	 the	 length	 of	 the
string	unique	(which	is	always	the	longest	unique	sequence	found	thus	far).

If	 the	current	sequence	 is	 longer,	 then	longest	 is	updated;	otherwise,	a	new	 instance	of
the	 Python	 dictionary	 my_dict	 is	 created	 and	 the	 process	 begins	 anew	 until	 the	 end	 of	 the
string	 my_str	 is	 reached.	 Launch	 the	 code	 in	 Listing	 4.17	 and	 you	 will	 see	 the	 following
output:

checking:	abcdef
longest	unique:	abcdef

checking:	aaaxyz
longest	unique:	axyz

checking:	abcdeeefghij
longest	unique:	efghij

The	Longest	Repeated	Substring
Listing	 4.18	 displays	 the	 contents	 of	 max_repeated_substr.py	 that	 illustrates	 how	 to	 find	 the
longest	sequence	of	unique	characters	in	a	string.

Listing	4.18:	max_repeated_substr.py
def	check_string(my_str,	sub_str,	pos):
  str_len	=	len(my_str)
  sub_len	=	len(sub_str)
  #print("my_str:",my_str,"sub_str:",sub_str)
  match	=	None
  part_str	=	""
  left	=	0
  right	=	0

  for	i	in	range(0,str_len-sub_len-pos):
    left  =	pos+sub_len+i
    right	=	left+sub_len
    #print("left:",left,"right:",right)
    part_str	=	my_str[left:right]

    if(part_str	==	sub_str):
      match	=	part_str
      break

  return	match,left

print("==>	Check	for	repeating	substrings	of	length	at	least	2")
my_strings	=	["abc","abb","abccba","azaaza","abcdefgabccbaxyz"]

for	my_str	in	my_strings:
  half_len	=	int(len(my_str)/2)
  max_len	=	0
  max_str	=	""
  for	i	in	range(0,half_len+1):
    for	j	in	range(2,half_len+1):
      sub_str	=	my_str[i:i+j]
      a_str,left	=	check_string(my_str,	sub_str,i)
  
      if(a_str	!=	None):
        print(a_str,"appears	in	pos",i,"and	pos",left,"in	=>",my_str)
        if(max_len	<	len(a_str)):
          max_len	=	len(a_str)
          max_str	=	a_str

  if(max_str	!=	""):
    print("=>	Maximum	repeating	substring:",max_str)
  else:
    print("No	maximum	repeating	substring:",my_str)
  print()
Listing	4.18	defines	the	function	check_string()	that	checks	whether	or	not	the	parameter

substr	appears	in	the	string	mystr,	that	is	offset	by	the	value	of	the	parameter	pos.	If	a	match
is	successful,	the	function	check_string()	returns	the	matching	string	and	the	position	where
the	match	occurred.

The	 next	 portion	 of	 Listing	 4.18	 initializes	 the	 variable	 my_strings	 as	 a	 list	 of	 strings,
followed	by	a	loop	that	iterates	through	the	elements	of	my_strings.	During	each	iteration	of
the	loop,	a	nested	loop	is	executed	that	involves	loop	variables	i	for	the	outer	loop	and	j	for
the	inner	loop.

The	outer	(nested)	loop	iterates	from	index	0	to	the	midpoint	of	the	current	element	of
my_strings,	 whereas	 the	 inner	 (nested)	 loop	 iterates	 from	 index	 2	 to	 the	 midpoint	 of	 the
current	element	of	my_strings.	During	each	iteration	of	the	nested	loop,	the	string	sub_str	 is
initialized	with	the	sequence	of	characters	from	index	position	i	through	index	position	i+j.

Next,	the	function	check_string()	is	invoked	with	my_str,	sub_str,	and	index	ii,	and	the	result



is	used	to	determine	whether	or	not	to	update	the	values	of	max_len	and	max_str.	Launch	the
code	in	Listing	4.18	and	you	will	see	the	following	output:

==>	Check	for	repeating	substrings	of	length	at	least	2
No	maximum	repeating	substring:	abc

No	maximum	repeating	substring:	abb

No	maximum	repeating	substring:	abccba

az	appears	in	pos	0	and	pos	3	in	=>	azaaza
aza	appears	in	pos	0	and	pos	3	in	=>	azaaza
za	appears	in	pos	1	and	pos	4	in	=>	azaaza
=>	Maximum	repeating	substring:	aza

ab	appears	in	pos	0	and	pos	7	in	=>	abcdefgabccbaxyz
abc	appears	in	pos	0	and	pos	7	in	=>	abcdefgabccbaxyz
bc	appears	in	pos	1	and	pos	8	in	=>	abcdefgabccbaxyz
=>	Maximum	repeating	substring:	abc

This	 concludes	 the	 portion	 of	 the	 chapter	 regarding	 strings-related	 code	 samples.	 The
next	section	introduces	you	to	arrays	and	various	code	samples.

WORKING	WITH	1D	ARRAYS
A	 one-dimensional	 array	 in	 Python	 is	 a	 one-dimensional	 construct	 whose	 elements	 are
homogeneous	(i.e.,	mixed	data	types	are	not	permitted).	Given	two	arrays	A	and	B,	you	can
add	or	subtract	them,	provided	that	they	have	the	same	number	of	elements.	You	can	also
compute	the	 inner	product	of	 two	vectors	by	calculating	the	sum	of	their	component-wise
products.

Now	 that	 you	 understand	 some	 of	 the	 rudimentary	 operations	 with	 one-dimensional
matrices,	 the	 following	subsections	 illustrate	how	to	perform	various	 tasks	on	matrices	 in
Python.

Rotate	an	Array
Listing	 4.19	 displays	 the	 contents	 of	 the	 Python	 script	 rotate_list.py	 that	 illustrates	 how	 to
rotate	the	elements	in	a	list.

Listing	4.19:	rotate_list.py
import	numpy	as	np
list	=	[5,10,17,23,30,47,50]
print("original:",list)

shift_count	=	2
for	ndx	in	range(0,shift_count):
  item	=	list.pop(0)
  arr1	=	list.append(item)

print("rotated:	",list)

Listing	4.19	 initializes	 the	variable	list	with	a	 list	of	 integers	and	prints	 its	contents.	The
next	portion	of	Listing	4.19	contains	a	loop	that	iterates	from	0	to	shift_count	(initialized	with
the	value	2)	that	is	the	number	of	times	to	shift	the	contents	of	the	variable	list.	The	shift	is
performed	by	 invoking	 the	 pop()	method	 to	 remove	 the	 left-most	 element	of	 list	 and	 then
immediately	 appending	 the	 “popped”	 element	 to	 the	 variable	 list.	 Launch	 the	 code	 in
Listing	4.19	and	you	will	see	the	following	output:

original:	[5,	10,	17,	23,	30,	47,	50]
rotated:  [17,	23,	30,	47,	50,	5,	10]

TASK:	INVERT	ADJACENT	ARRAY	ELEMENTS

Listing	4.20	displays	 the	contents	of	 the	 Python	 script	invert_items.py	 that	 illustrates	 how	 to
invert	(“swap”)	adjacent	pairs	of	elements	in	an	array.

Listing	4.20:	invert_items.py
import	numpy	as	np
arr1	=	np.array([5,10,17,23,30,47,50])
print("original:",arr1)

mid_point	=	int(len(arr1)/2)

for	ndx	in	range(0,mid_point+2,2):
  temp	=	arr1[ndx]
  arr1[ndx]	=	arr1[ndx+1]



  arr1[ndx+1]	=	temp

print("inverted:",arr1)

Listing	4.20	initializes	the	Numpy	array	arr1	and	displays	 its	contents.	The	next	portion	of
Listing	4.20	contains	a	loop	that	uses	the	variable	ndx	to	iterate	from	0	to	the	midpoint	of	the
array	arr1.

During	 each	 iteration,	 the	 variable	 temp	 is	 initialized	 as	 the	 contents	 of	 the	 current
element	of	arr1	in	order	to	switch	the	values	of	the	elements	in	arr1	in	index	positions	ndx	and
ndx+1.	Notice	that	the	loop	variable	ndx	is	incremented	by	two	instead	of	one	because	we	are
processing	pairs	of	adjacent	elements	in	arr1.	Launch	the	code	in	Listing	4.20	and	you	will
see	the	following	output:

original:	[	5	10	17	23	30	47	50]
inverted:	[10  5	23	17	47	30	50]

Listing	4.21	displays	the	contents	of	the	Python	script	swap.py	that	illustrates	how	to	invert
adjacent	values	in	an	array	without	using	an	intermediate	temporary	variable.

Listing	4.21:	swap.py
import	numpy	as	np
def	swap(num1,num2):
  delta	=	num2	-	num1
  #print("num1:",num1,"num2:",num2)

  num2	=	delta
  num1	=	num1+delta
  num2	=	num1-delta
  #print("num1:",num1,"num2:",num2)
  return	num1,num2

arr1	=	np.array([15,4,23,35,80,50])
print("BEFORE	arr1:",arr1)

for	idx	in	range(0,len(arr1),2):
  num1,	num2	=	swap(arr1[idx],arr1[idx+1])
  arr1[idx]  	=	num1
  arr1[idx+1]	=	num2
  #print("arr1:",arr1)

print("AFTER  arr1:",arr1)

Listing	 4.21	 defines	 the	 function	 swap()	 that	 swaps	 the	 values	 of	 two	 integer	 variables
without	using	a	loop.	Perform	a	manual	check	with	a	pair	of	integers	to	confirm	that	swap()
does	indeed	swap	the	values	of	its	two	parameters.

The	next	 portion	 of	 Listing	4.21	 initializes	 the	 Numpy	 array	 arr1,	 followed	by	 a	 loop	 that
iterates	through	adjacent	pairs	of	elements	of	arr1,	During	each	iteration,	the	function	swap()
is	 invoked	 and	 the	 returned	 values	 are	 used	 to	 swap	 adjacent	 value	 sin	 the	 array	 arr1.
Launch	the	code	in	Listing	4.21	and	you	will	see	the	following	output:

BEFORE	arr1:	[15  4	23	35	80	50]
AFTER  arr1:	[	4	15	35	23	50	80]

WORKING	WITH	2D	ARRAYS
A	 two-dimensional	 array	 in	 Python	 is	 a	 two-dimensional	 construct	 whose	 elements	 are
homogeneous	(i.e.,	mixed	data	types	are	not	permitted).	Given	two	arrays	A	and	B,	you	can
add	or	subtract	them,	provided	that	they	have	the	same	number	of	rows	and	columns.

Multiplication	of	matrices	works	differently	 from	addition	or	subtraction:	 if	A	 is	an	mxn
matrix	that	you	want	to	multiply	(on	the	right	of	A)	by	B,	then	B	must	be	an	nxp	matrix.	The
rule	 for	 matrix	 multiplication	 is	 as	 follows:	 the	 number	 of	 columns	 of	 A	 must	 equal	 the
number	of	rows	of	B.

In	addition,	the	transpose	of	matrix	A	is	another	matrix	At	such	that	the	rows	and	columns
are	 interchanged.	 Thus,	 if	 A	 is	 an	 mxn	 matrix	 then	 At	 is	 an	 nxm	 matrix.	 The	 matrix	 A	 is
symmetric	if	A	=	At.	The	matrix	A	is	the	identity	matrix	I	 if	 the	values	in	the	main	diagonal
(upper	left	to	lower	right)	are	1	and	the	other	values	are	0.

The	matrix	A	is	invertible	if	there	is	a	matrix	B	such	that	A*B	=	B*A	=	I.	Based	on	the	earlier
discussion	regarding	the	product	of	two	matrices,	both	A	and	B	must	be	square	matrices	with
the	same	number	of	rows	and	columns.

Now	 that	 you	 understand	 some	 of	 the	 rudimentary	 operations	 with	 matrices,	 the
following	subsections	illustrate	how	to	perform	various	tasks	on	matrices	in	Python.

THE	TRANSPOSE	OF	A	MATRIX
As	a	reminder,	the	transpose	of	matrix	A	is	matrix	At,	where	the	rows	and	columns	of	A	are



the	columns	and	rows,	respectively,	of	matrix	At.
Listing	4.22	displays	 the	contents	of	 the	 mat_transpose.py	 that	 illustrates	 how	 to	 find	 the

transpose	of	an	mxn	matrix.

Listing	4.22:	mat_transpose.py
import	numpy	as	np

#	the	transpose	of	a	matrix	is	a	90	degree	rotation
def	transpose(A,rows,cols):
  	for	i	in	range(0,rows):
    	for	j	in	range(i,cols):
      	#print("switching",A[i,j],"and",A[j,i])
      	temp	=	A[i,j]
      	A[i,j]	=	A[j,i]
      	A[j,i]	=	temp
  	return	A

A	=	np.array([[100,3],[500,7]])
print("=>	original:")
print(A)
At	=	transpose(A,	2,	2)
print("=>	transpose:")
print(At)
print()

#	example	2:
A	=	np.array([[100,3,-1],[30,500,7],[123,456,789]])
print("=>	original:")
print(A)
At	=	transpose(A,	3,	3)
print("=>	transpose:")
print(At)

Listing	4.22	defines	the	function	transpose()	that	takes	three	parameters:	an	array	A,	 the
number	of	rows	of	A,	and	the	number	of	number	of	columns	of	A.	This	 function	contains	a
nested	 loop	 that	 swaps	 the	 rows	 and	 columns	 of	 A,	 using	 a	 temporary	 variable	 temp
whenever	a	swap	is	performed,	in	order	to	find	(and	return)	the	transpose	of	A.

The	next	portion	of	Listing	4.22	contains	 two	examples	of	an	array	whose	 transpose	 is
calculated	via	the	function	transpose().	Launch	the	code	in	Listing	4.22	and	you	will	see	the
following	output:

=>	original:
[[100  	3]
[500  	7]]
=>	transpose:
[[100	500]
[  3  	7]]

=>	original:
[[100  	3  -1]
[	30	500  	7]
[123	456	789]]
=>	transpose:
[[100  30	123]
[  3	500	456]
[	-1  	7	789]]
In	case	you	didn’t	notice,	the	transpose	At	of	a	matrix	A	is	actually	a	90	degree	rotation	of

matrix	A.	Hence,	 if	 A	 is	 a	 square	matrix	 of	 pixels	 values	 for	 a	 PNG,	 then	 At	 is	 a	 90	 degree
rotation	of	the	PNG.	However,	if	you	take	the	transpose	of	At,	the	result	is	the	original	matrix
A.

SEARCH	ALGORITHMS

A	linear	search	algorithm	checks	each	element	in	an	array	in	a	linear	fashion,	which	means
the	 the	 search	 starts	 from	 the	 first	 element	 in	 the	 array	 and	 proceeds	 through	 the
remaining	 elements	 until	 either	 1)	 the	 element	 is	 found	 or	 2)	 the	 end	 of	 the	 array	 is
reached.	Here	is	an	example	of	a	linear	search	in	an	array	of	numbers.

Linear	Search
Listing	 4.23	 displays	 the	 contents	 of	 the	 linear_search.py	 that	 illustrates	 how	 to	 perform	 a
linear	search	with	an	array	of	numbers.

Listing	4.23:	linear_search.py
import	numpy	as	np

found	=	-1
item	=	123
arr1	=	np.array([1,3,5,123,400])



•

◦
◦

◦

for	i	in	range(0,len(arr1)):
  if	(item	==	arr1[i]):
    	found	=	i
    	break
      
if	(found	>=	0):
  print("found",item,"in	position",found)
else:
  print(item,"not	found")
Listing	4.23	 is	 straightforward:	A	 loop	 iterates	 through	 the	elements	of	 the	 Numpy	 array

arr1	and	if	 it	contains	any	element	that	equals	the	value	of	item,	the	code	sets	the	value	of
found	equal	to	i	 (the	 loop	variable)	and	then	exits	 the	 loop.	A	message	 is	printed	based	on
whether	or	not	the	value	of	found	is	greater	than	0.	Launch	the	code	in	Listing	4.23	and	you
will	see	the	following	output:

found	123	in	position	3

Binary	Search	Walkthrough
A	binary	search	requires	a	sorted	array	and	also	involves	a	recursion-based	algorithm.	The
intuition	is	as	follows:

Step	1:	Given	a	number	and	the	middle	value	of	a	non-empty	array,	one	of	the	following
can	happen:

Case	1—The	number	equals	the	middle	value	of	the	sorted	array:	we	are	finished.
Case	2—The	number	is	greater	than	the	middle	value	of	the	sorted	array:	Go	to	Step	1
with	the	left	half	of	the	array.
Case	3—The	number	is	less	than	the	middle	value	of	the	sorted	array:	Go	to	Step	1
with	the	right	half	of	the	array.

If	the	array	in	question	is	empty,	then	the	item	does	not	appear	in	the	array.
Here	 are	 some	 examples	 that	 illustrate	 each	 of	 the	 possibilities	 described	 in	 the

preceding	list.

Example	#1	(Case	1):
Item	=	25
arr1	=	np.array([10,	20,	25,	40,	100]);

We	found	the	item	in	the	middle	of	the	array

Example	#2	(Case	2):
Item	=	25
arr1	=	np.array([1,5,10,	15,	20,	25,	40]);

First	iteration:	25	and	[10,20,25]
Second	iteration:	25	and	[25]
Third	iteration:	we	found	item	25

Example	#3	(Case	3):
Item	=	25
arr1	=	np.array([10,	20,	25,	40,	100,150,400]);

First	iteration:	25	and	[10,20,25,40]
Second	iteration:	25	and	[25,40]
Third	iteration:	25	and	[25]
Fourth	iteration:	we	found	item	25

Example	#4	(no	match):
Item	=	25
arr1	=	np.array([1,5,10,	15,	20,	30,	40]);

First	iteration:	25	and	[20,30,40]
Second	iteration:	25	and	[20]
Third	iteration:	25	and	[]
Item	not	found

If	necessary,	you	can	create	your	own	test	examples	and	then	perform	a	manual	iteration
through	each	test	case.

Binary	Search	(Iterative	Solution)
Listing	 4.24	 displays	 the	 contents	 of	 the	 binary_search.py	 that	 illustrates	 how	 to	 perform	 a
binary	search	with	an	array	of	numbers.



Listing	4.24:	binary_search.py
import	numpy	as	np

arr1	=	np.array([1,3,5,123,400])
left	=	0
right	=	len(arr1)-1
found	=	-1
item	=	123

while(left	<=	right):
  mid	=	int(left	+	(right-left)/2)

  if(arr1[mid]	==	item):
    found	=	mid
    break
  elif	(arr1[mid]	<	item):
    left	=	mid+1
  else:
    right	=	mid-1

print("array:",arr1)

if(	found	>=	0):
  print("found",item,"in	position",found)
else:
print(item,"not	found")

Listing	 4.24	 initializes	 the	 Numpy	 array	 arr1	 with	 five	 integer	 values,	 along	with	 several
scalar	variables,	 including	left	and	right	 that	keep	 track	of	 the	 left	 index	and	right	 index,
respectively,	of	arr1.

The	 next	 portion	 of	 Listing	 4.24	 is	 a	 loop	 that	 executes	 as	 long	 as	 the	 value	 of	 left
(initially	 0)	 is	 less	 than	 or	 equal	 to	 the	 value	 of	 right	 (whose	 initial	 value	 is	 len(arr1)-1).
During	each	iteration,	the	variable	mid	is	set	equal	to	the	integer-based	average	of	the	sum
of	left	and	right.

If	 the	 element	 in	 arr1	 at	 position	 mid	 equals	 item,	 the	 variable	 found	 is	 initialized	 to	 the
value	of	mid	and	the	loop	exits.	Although,	if	the	value	of	arr1[mid]	is	less	than	item,	then	the
value	of	left	is	set	equal	to	mid+1,	which	means	the	next	iteration	through	the	loop	will	check
the	right	half	of	the	elements	between	arr1[left]	and	arr1[right].

However,	if	the	value	of	arr1[mid]	is	greater	than	item,	then	the	value	of	right	is	set	equal	to
mid-1,	 which	 means	 the	 next	 iteration	 through	 the	 loop	 will	 check	 the	 left	 half	 of	 the
elements	between	arr1[left]	and	arr1[right].	Launch	the	code	in	Listing	4.24	and	you	will	see
the	following	output:

array:	[  1  	3  	5	123	400]
found	123	in	position	3

Binary	Search	(Recursive	Solution)
Listing	 4.25	 displays	 the	 contents	 of	 the	 binary_search_recursive.py	 that	 illustrates	 how	 to
perform	a	binary	search	recursively	with	an	array	of	numbers.

Listing	4.25:	binary_search_recursive.py
import	numpy	as	np

def	binary_search(data,	item,	left,	right):
  if	left	>	right:
    return	False
  else:
    #	incorrect	(can	result	in	overflow):
    #	mid	=	(left	+	right)	/	2
    mid	=	int(left	+	(right-left)/2)

    if	item	==	data[mid]:
      return	True
    elif	item	<	data[mid]:
      #	recursively	search	the	left	half
      return	binary_search(data,	item,	left,	mid-1)
    else:
      #	recursively	search	the	right	half
      return	binary_search(data,	item,	mid+1,	right)

arr1  =	np.array([1,3,5,123,400])
item  =	123
left  =	0
right	=	len(arr1)-1
result	=	binary_search(arr1,	item,	left,	right)

print("array:	",arr1)
print("item:  ",item)
print("found",item,":",result)



•
•
•

Listing	 4.25	 defines	 the	 function	 binary_search()	 that	 is	 invoked	 recursively	 in	 order	 to
determine	 whether	 or	 not	 a	 given	 number	 is	 an	 element	 of	 an	 array.	 Notice	 that	 this
function	 takes	 four	 parameters:	 the	 array	 data	 of	 numbers,	 the	 item	 to	 check,	 the	 left
position,	and	the	right	position.

The	conditional	logic	in	this	function	is	the	same	as	the	conditional	logic	in	Listing	4.24:
the	difference	is	that	the	function	is	invoked	recursively	with	the	updated	value	of	either	left
or	right	instead	of	executing	the	code	in	a	while	loop.	The	recursion	continues	until	either	(1)
the	value	of	left	is	greater	than	the	value	of	right,	or	(2)	item	is	found	in	arr1,

The	next	portion	of	Listing	4.25	 initializes	the	NumPy	array	arr1	with	 five	numbers,	along
with	values	for	item,	left,	and	right,	and	then	invokes	the	function	binary_search()	to	determine
whether	or	not	item	appears	in	the	array	arr1.	Launch	the	code	in	Listing	4.25	and	you	will
see	the	following	output:

array:	[  1  	3  	5	123	400]
found	123	in	position	3

WELL-KNOWN	SORTING	ALGORITHMS
There	are	numerous	sorting	algorithms,	each	of	which	have	a	best	case,	average	case,	and
worst	case	in	terms	of	performance.	Interestingly,	some	algorithms	can	perform	the	worst
when	a	given	array	is	already	sorted.

The	 following	 subsections	 contain	 code	 samples	 for	 the	 following	 well-known	 sort
algorithms:

bubble	sort
merge	sort
quick	sort

If	you	want	to	explore	sorting	algorithms	in	more	depth,	perform	an	internet	search	for
additional	sorting	algorithms.

Bubble	Sort
A	bubble	sort	involves	a	nested	loop	whereby	each	element	of	an	array	is	compared	with	the
elements	 to	 the	 right	 of	 the	 given	 element.	 If	 an	 array	 element	 is	 less	 than	 the	 current
element,	 the	 values	 are	 “swapped,”	 which	 means	 that	 the	 contents	 of	 the	 array	 will
eventually	be	sorted	from	smallest	to	largest	value.

Here	is	an	example:
arr1	=	np.array([40,	10,	30,	20]);
Item	=	40;
Step	1:	40	>	10	so	switch	these	elements:
arr1	=	np.array([10,	40,	30,	20]);
Item	=	40;
Step	2:	40	>	30	so	switch	these	elements:
arr1	=	np.array([10,	30,	40,	20]);
Item	=	40;
Step	3:	40	>	20	so	switch	these	elements:
arr1	=	np.array([10,	30,	20,	40]);

As	you	can	see,	 the	smallest	element	 is	 in	 the	 left-most	position	of	 the	array	arr1.	Now
repeat	this	process	by	comparing	the	second	position	(which	is	index	1)	with	the	right-side
elements.

arr1	=	np.array([10,	30,	20,	40]);
Item	=	30;
Step	4:	30	>	20	so	switch	these	elements:
arr1	=	np.array([10,	20,	30,	40]);
Item	=	30;
Step	4:	30	<	40	so	do	nothing

As	you	can	see,	the	smallest	elements	two	elements	occupy	the	first	two	positions	in	the
array	arr1.	Now	repeat	this	process	by	comparing	the	third	position	(which	is	index	2)	with
the	right-side	elements.

arr1	=	np.array([10,	20,	30,	40]);
Item	=	30;
Step	4:	30	<	40	so	do	nothing

The	array	arr1	is	now	sorted	in	increasing	order	(in	a	left-to-right	fashion).	If	you	want	to
reverse	the	order	so	that	the	array	is	sorted	in	decreasing	order	(in	a	left-to-right	fashion),
simply	replace	the	“>”	operator	with	the	“<”	operator	in	the	preceding	steps.

Listing	4.26	displays	 the	contents	of	 the	 bubble_sort.py	 that	 illustrates	how	to	perform	a
bubble	sort	on	an	array	of	numbers.

Listing	4.26:	bubble_sort.py



import	numpy	as	np
arr1	=	np.array([40,	10,	30,	20]);

for	i	in	range(1,arr1.length-1):
  for	j	in	range(i+1,arr1.length):
    if(arr1[i]	>	arr1[j]):
      temp	=	arr1[i];
      arr1[i]	=	arr1[j];
      arr1[j]	=	temp;

You	can	manually	perform	 the	code	execution	 in	Listing	4.26	 to	convince	yourself	 that
the	 code	 is	 correct.	 (Hint:	 It’s	 the	 same	 sequence	 of	 steps	 that	 you	 saw	 earlier	 in	 this
section.)	Launch	the	code	in	Listing	4.26	and	you	will	see	the	following	output:

initial:	[40	10	30	20]
sorted:  [10	20	30	40]

Find	Anagrams	in	a	List	of	Words
Recall	that	the	word	word1	is	an	anagram	of	word2	if	the	letters	in	word2	are	a	permutation	of
the	letters	in	word1.	Listing	4.27	displays	the	contents	of	the	anagrams.py	that	illustrates	how	to
check	if	two	words	are	anagrams	of	each	other.

Listing	4.27:	anagrams.py
import	numpy	as	np

words	=	np.array([["abc"],["evil"],["Z"],["cab"],["live"],["Z"],["xyz"],["zyx"],["bac"],["Z"]])
print("=>	Initial	words:")
print(words)
print()

marked	=	np.zeros(len(words))
marked	=	marked.astype(int)

switched	=	np.array([])
for	i	in	range(0,len(words)-1):
  if(marked[i]	==	0):
    sorti	=	sorted(words[i][0])
    switched	=	np.append(switched,words[i])
    #print("2switched:",switched)

    for	j	in	range(i+1,len(words)):
      if(marked[j]	==	0):
        sortj	=	sorted(words[j][0])
        #print("wordi:",words[i],"sorti:",sorti,"sortj:",sortj)
        if(sorti	==	sortj):
          #print(sorti,"and",sortj,"are	anagrams")
          switched	=	np.append(switched,words[j])
          #print("3switched:",switched)
          marked[i]	=	1
          marked[j]	=	1
          #print("3marked:",	marked)

print("=>	Adjacent	anagrams:")
print(switched)

Listing	4.27	initializes	the	variable	words	as	a	NumPy	array	of	one-dimensional	strings,	and
then	displays	 its	contents.	Next,	 the	variable	 marked	 is	 initialized	as	a	 NumPy	 array	of	 length
len(words),	where	each	element	contains	the	value	0,	after	which	the	elements	of	marked	are
treated	as	 integer	 values.	 In	 addition,	 the	 variable	 switched	 is	 initialized	 as	 an	 empty	 NumPy
array.

The	next	portion	of	Listing	4.27	contains	a	loop	that	ranges	from	0	to	len(words)-1	with	the
loop	variable	 ii.	The	main	block	of	 this	 loop	 is	 controlled	by	conditional	 logic	 that	 checks
whether	or	not	marked[i]	equals	0:	if	so,	then	the	variables	sort	and	switched	are	initialized,
followed	by	another	loop	is	executed	from	i+1	to	len(words)	with	the	loop	variable	j.

The	preceding	loop	contains	similar	condition	logic	as	the	outer	loop:	If	marked[j]	equals	0,
then	the	variable	sorta	is	initialized	and	compared	with	sorti	that	was	previously	initialized.
If	the	two	variables	are	equal,	then	marked[i]	and	marked[j]	are	set	equal	to	0.

The	final	code	snippet	in	Listing	4.27	displays	the	contents	of	switched,	which	contains	a
list	of	adjacent	anagrams.	Launch	 the	code	 in	Listing	4.27	and	you	will	 see	 the	 following
output:

=>	Initial	words:
[['abc']
['evil']
['Z']
['cab']
['live']
['Z']
['xyz']
['zyx']



['bac']
['Z']]

=>	Adjacent	anagrams:
['abc'	'cab'	'bac'	'evil'	'live'	'Z'	'Z'	'Z'	'xyz'	'zyx']

MERGE	SORT
A	merge	sort	is	a	divide-and-conquer	algorithm	that	merges	two	arrays	of	sorted	values.	In
the	 following	subsections,	you	will	 see	 three	different	ways	 to	perform	a	merge	sort.	The
first	code	sample	involves	a	third	array,	whereas	the	second	and	third	code	samples	do	not
require	a	third	array.	Moreover,	the	third	code	sample	involves	one	while	loop	whereas	the
second	code	sample	involves	a	pair	of	nested	loops,	which	means	that	the	third	code	sample
is	simpler	and	also	more	memory	efficient.

Merge	Sort	With	a	Third	Array
The	simplest	way	to	merge	two	arrays	involves	copying	elements	from	those	two	arrays	to	a
third	array,	as	shown	here:

      	A          B          	C
    +-----+    +-----+    	+-----+
    |  20	|    |  50	|    	|  20	|  	A
    |  80	|    |  70	|    	|  50	|  	B
    |	200	|  +	|	100	|  =  |  70	|  	B
    |	300	|    +-----+    	|  80	|  	A
    |	500	|                |	100	|  	B
    +-----+                |	200	|  	A
                          	|	300	|  	A
                          	|	500	|  	A
                          	+-----+

The	 right-most	 column	 in	 the	 preceding	 diagram	 lists	 the	 array	 (either	 A	 or	 B)	 that
contains	each	number.	As	you	can	see,	the	order	ABBABAAA	switches	between	array	A	and	array
B.	However,	 the	 final	 three	elements	are	 from	array	 A	 because	all	 the	elements	of	array	 B
have	been	processed.	Two	other	possibilities	exist:	Array	A	is	processed	and	B	still	has	some
elements,	or	both	A	and	B	have	the	same	size.	Of	course,	even	if	A	and	B	have	the	same	size,
it’s	still	possible	that	the	final	sequence	of	elements	are	from	a	single	array.

For	example,	array	B	is	longer	than	array	A	 in	the	example	below,	which	means	that	the
final	values	in	array	C	are	from	B:

A	=	[20,80,200,300,500]
B	=	[50,70,100]

The	following	example	involves	array	A	and	array	B	with	the	same	length:
A	=	[20,80,200]
B	=	[50,70,300]

The	next	example	also	involves	list	A	and	list	B	with	the	same	length,	but	all	the	elements
of	A	are	copied	to	B	and	then	all	the	elements	of	B	are	copied	to	C:

A	=	[20,30,40]
B	=	[50,70,300]

Listing	4.28	displays	 the	contents	of	 the	 merge_sort1.py	 that	 illustrates	how	to	perform	a
merge	sort	on	two	arrays	of	numbers.

Listing	4.28:	merge_sort1.py
import	numpy	as	np

items1	=	np.array([20,	30,	50,	300])
items2	=	np.array([80,	100,	200])

def	merge_items():
  items3	=	np.array([])
  ndx1	=	0
  ndx2	=	0

  #	1)	always	add	the	smaller	element	first:
  while(ndx1	<	len(items1)	and	ndx2	<	len(items2)):
    #print("items1	data:",items1[ndx1],"items2	data:",items2[ndx2])

    data1	=	items1[ndx1]
    data2	=	items2[ndx2]
    if(data1	<	data2):
      #print("adding	data1:",data1)
      items3	=	np.append(items3,data1)
      ndx1	+=	1
    else:



      #print("adding	data2:",data2)
      items3	=	np.append(items3,data2)
      ndx2	+=	1

  #	2)	append	any	remaining	elements	of	items1:
  while(ndx1	<	len(items1)):
      #print("MORE	items1:",items1[ndx1])
      items3	=	np.append(items3,data1)
      ndx1	+=	1

  #	3)	append	any	remaining	elements	of	items2:
  while(ndx2	<	len(items2)):
      #print("MORE	items2:",items2[ndx2])
      items3	=	np.append(items3,data2)
      ndx2	+=	1
  return	items3

#	display	the	merged	list:
items3	=	merge_items()
print("items1:",items1)
print("items2:",items2)
print("items3:",items3)

Listing	 4.28	 initializes	 the	 NumPy	 arrays	 items1	 and	 items2,	 followed	 by	 the	 function
merge_items()	 that	 creates	 an	empty	 NumPy	 array	 items3	 and	 the	 scalar	 variables	 ndx1	 and	 ndx2
that	keep	track	of	the	current	index	position	in	items1	and	items2,	respectively.

The	key	 idea	 is	 to	compare	 the	value	of	items1[ndx1]	with	 the	value	of	items2[ndx2].	 If	 the
smaller	value	 is	items1[ndx1],	 then	 this	value	 is	appended	 to	 items3	 and	 ndx1	 is	 incremented.
Otherwise,	items2[ndx2]	is	appended	to	items3	and	ndx2	is	incremented.

The	second	part	of	the	function	merge_items()	contains	a	loop	that	appends	any	remaining
items	in	items1	to	items3,	followed	by	another	loop	that	appends	any	remaining	items	in	items2
to	items3.	The	final	portion	of	Listing	4.28	invokes	the	merge_items()	function	and	then	displays
the	contents	of	items1,	items2,	and	items3.

There	are	several	points	 to	keep	 in	mind	regarding	 the	code	 in	Listing	4.28.	First,	 the
initial	 loop	 in	 merge_items()	 iterates	 through	both	 items1	and	items2	 until	 the	 final	 element	 is
reached	in	one	of	these	two	arrays:	consequently,	only	one	of	these	two	arrays	can	be	non-
empty	 (and	possibly	both	are	empty),	which	means	 that	only	 the	second	 loop	or	 the	 third
loop	is	executed,	but	not	both.

Second,	 this	 algorithm	 will	 only	 work	 if	 the	 elements	 in	 arrays	 items1	 and	 items2	 are
sorted:	To	convince	yourself	that	this	is	true,	change	the	elements	in	items1	(or	in	items2)	so
that	 they	 are	 no	 longer	 sorted	 and	 you	 will	 see	 that	 the	 output	 is	 incorrect.	 Third,	 this
algorithm	 populates	 the	 array	 items3	 with	 the	 sorted	 list	 of	 values;	 later	 you	 will	 see	 an
example	 of	 a	merge	 sort	 that	 does	 not	 require	 the	 array	 items3.	 Now	 launch	 the	 code	 in
Listing	4.28	and	you	will	see	the	following	output:

items1:	[	20  30  50	300]
items2:	[	80	100	200]
items3:	[	20  30  50  80	100	200	300]

Merge	Sort	Without	a	Third	Array
Listing	 4.29	 displays	 the	 contents	 of	 the	 merge_sort2.py	 that	 illustrates	 how	 to	 perform	 a
merge	sort	on	two	sorted	arrays	without	using	a	third	array.

Listing	4.29:	merge_sort2.py
import	numpy	as	np

items1	=	np.array([20,	30,	50,	300,	0,	0,	0,	0])
items2	=	np.array([80,	100,	200])

print("merge	items2	into	items1:")
print("INITIAL	items1:",items1)
print("INITIAL	items2:",items2)

def	merge_arrays():
  ndx1	=	0
  ndx2	=	0
  last1	=	4	#	do	not	count	the	0	values

  #	merge	elements	of	items2	into	items1:
  while(ndx2	<	len(items2)):
    #print("items1	data:",items1[ndx1],"items2	data:",items2[ndx2])
    data1	=	items1[ndx1]
    data2	=	items2[ndx2]

    while(data1	<	data2):
      prev1	=	ndx1
      #print("incrementing	ndx1:",ndx1)
      ndx1  +=	1
      data1	=	items1[ndx1]



      for	idx3	in	range(last1,ndx1,-1):
        #print("shift",items1[idx3],"to	the	right")
        items1[idx3]	=	items1[idx3-1]

      #	insert	data2	into	items1:
      items1[ndx1]	=	data2
      ndx1  	=	0
      ndx2  +=	1
      last1	+=	1
      #print("=>	shifted	items1:",items1)

merge_arrays()
print("UPDATED	items1:",items1)

Although	 Listing	 4.29	 is	 an	 implementation	 of	 a	 merge	 sort	 algorithm,	 it	 differs	 from
Listing	4.28	because	a	third	array	(such	as	items3	in	Listing	4.28)	is	not	required.	As	you	can
see,	Listing	4.28	starts	by	initializing	two	Numpy	arrays	items1	and	items2	with	integer	values,
and	then	displays	their	contents.

However,	 there	 is	a	key	difference:	The	right-most	 four	elements	of	items1	are	0:	 these
values	will	be	replaced	by	 the	elements	 in	items2,	whose	 length	 is	3	 (i.e.,	 smaller	 than	the
number	of	available	“zero”	slots).

The	next	portion	of	Listing	4.29	defines	the	function	merge_arrays()	that	starts	by	defining
the	scalar	variables	ndx1	and	ndx2	that	keep	track	of	the	current	index	position	in	items1	and
items2,	respectively.	The	variable	last1	is	initialized	as	4,	which	is	the	right	nonzero	element
in	items1.

Listing	4.29	then	defines	a	 loop	that	 iterates	through	the	elements	of	items2	 in	order	 to
determine	 where	 to	 insert	 each	 of	 its	 elements	 in	 items1.	 Specifically,	 for	 each	 element
items2[ndx2],	another	loop	determines	determines	the	index	position	ndx1	to	insert	items2[ndx2].
Note	that	before	the	insertion	can	be	performed,	the	code	shifts	non-zero	values	to	the	right
by	one	index	position.	As	a	result,	an	“open	slot”	becomes	available	for	inserting	items2[ndx2].
The	final	portion	of	Listing	4.29	invokes	the	function	and	then	prints	the	contents	of	items1.

Keep	 in	mind	 the	 following	 point:	 This	 code	 sample	 relies	 on	 the	 assumption	 that	 the
right-most	 four	values	are	0	and	 that	none	of	 these	values	 is	a	 “legal”	 value	 in	 the	array
items1.	However,	the	code	sample	in	the	next	 ​section	removes	this	assumption.	Now	launch
the	code	in	Listing	4.29	and	you	will	see	the	following	output:

merge	items2	into	items1:
INITIAL	items1:	[	20  30  50	300  	0  	0  	0  	0]
INITIAL	items2:	[	80	100	200]
UPDATED	items1:	[	20  30  50  80	100	200	300  	0]

Merge	Sort:	Shift	Elements	From	End	of	Lists
In	this	scenario	we	assume	that	matrix	A	has	enough	uninitialized	elements	at	the	end	of	the
matrix	in	order	to	accommodate	all	the	values	of	matrix	B,	as	shown	here:

      	A          B          	A
    +-----+    +-----+    	+-----+
    |  20	|    |  50	|    	|  20	|  	A
    |  80	|    |  70	|    	|  50	|  	B
    |	200	|  +	|	100	|  =  |  70	|  	B
    |	300	|    +-----+    	|  80	|  	A
    |	500	|                |	100	|  	B
    |	xxx	|                |	200	|  	A
    |	xxx	|                |	300	|  	A
    |	xxx	|                |	500	|  	A
    +-----+                +-----+          

Listing	4.30	displays	 the	contents	of	 the	 merge_sort3.py	 that	 illustrates	how	to	perform	a
merge	sort	on	two	sorted	arrays	without	using	a	third	array.

Listing	4.30:	merge_sort3.py
import	numpy	as	np

items1	=	np.array([20,	30,	50,	300])
items2	=	np.array([80,	100,	200])
last1	=	len(items1)
last2	=	len(items1)

print("=>	merge	items2	into	items1	<=")
print("INITIAL	items1:",items1)
print("INITIAL	items2:",items2)

#	append	None	to	items1	for	"empty	slots":
for	i	in	range(0,len(items2)):
  items1	=	np.append(items1,None)
#print("AFTER  items1:",items1)

len1	=	len(items1)



•
•
•

•
•
•

len2	=	len(items2)

#	start	from	the	end	of	items1	and	items2
#	and	shift	items	to	the	end	of	items1
def	merge_arrays(items1,items2,len1,len2):
  ndx1	=	len1-1
  ndx2	=	len2-1
  last1	=	len(items1)-1
  last2	=	len(items2)-1

  #	merge	elements	of	items2	into	items1:
  while(ndx1	>=0	and	ndx2	>=0):
    #print("ndx1:",ndx1,	"ndx2:",ndx2)
    data1	=	items1[ndx1]
    data2	=	items2[ndx2]
    #print("Bitems1	data:",data1,"ndx1:",ndx1)
    #print("Bitems2	data:",data2,"ndx2:",ndx2)

    if(data1	>	data2):
      items1[last1]	=	data1
      ndx1	-=	1
      last1	-=	1
    else:
      items1[last1]	=	data2
      ndx2	-=	1
      last1	-=	1
    #print("Citems1:",items1)
    #print("Citems2:",items2)

merge_arrays(items1,items2,last1,len2)
print("MERGED	items1:",items1)

The	code	 for	Listing	4.30	does	not	 require	an	 inner	 loop,	and	 therefore	Listing	4.30	 is
simpler	 than	 Listing	 4.29.	 The	 code	 starts	 with	 two	 sorted	 arrays	 items1	 and	 items2,	 after
which	items1	 is	 padded	with	 the	 value	 None	 so	 that	 it	 can	 accommodate	 the	 integers	 from
items2.  Launch	the	code	in	Listing	4.30	and	you	will	see	the	following	output:

merge	items2	into	items1:

=>	merge	items2	into	items1	<=
INITIAL	items1:	[	20  30  50	300]
INITIAL	items2:	[	80	100	200]
MERGED	items1:	[20	30	50	80	100	200	300]

Quick	Sort
Quick	sort	is	a	divide-and-conquer	sorting	algorithm	that	selects	a	so-called	“pivot”	element
that	splits	an	array	into	two	parts	(i.e.,	the	elements	on	the	left	side	and	the	elements	on	the
right	side	of	the	pivot	element).	The	pivot	element	can	be	selected	in	various	ways,	such	as:

the	first	element
the	last	element
a	random	element

The	key	idea	regarding	the	quick	sort	algorithm	is	to	select	a	pivot	element	x	and	then
perform	the	following	in	linear	time:

Determine	the	correct	location	for	x	in	the	array.
Place	smaller	elements	on	the	left	side	of	x.
Place	larger	elements	on	the	right	side	of	x.

Listing	 4.31	 displays	 the	 contents	 of	 the	 Python	 file	 quick_sort.py	 that	 illustrates	 how	 to
perform	a	quick	sort	on	an	array	of	numbers.

Listing	4.31:	quick_sort.py
def	partition(left_idx,	right_idx,	array):
  #	initialize	pivot's	index	to	left_idx
  pivot_idx	=	left_idx
  pivot_val	=	array[pivot_idx]
    
  #	when	left_idx	pointer	crosses	right_idx	pointer
  #	then	swap	the	pivot	with	right_idx	pointer
  while	left_idx	<	right_idx:
    #	increment	left_idx	pointer	till	it	exceeds	pivot
    while	left_idx	<	len(array)	and	array[left_idx]	<=	pivot_val:
      left_idx	+=	1
          
    #	decrement	right_idx	pointer	till	it's	less	than	pivot
    while	array[right_idx]	>	pivot_val:
      right_idx	-=	1
      
    #	if	left_idx	and	right_idx	have	not	crossed
    #	swap	the	numbers	on	left_idx	and	right_idx



    if(left_idx	<	right_idx):
      array[left_idx],array[right_idx]=array[right_idx],array[left_idx]
    
  #	swap	pivot	with	right_idx	pointer:
  array[right_idx],	array[pivot_idx]=array[pivot_idx],array[right_idx]
  
  #	right_idx	pointer	divides	the	array	into	2	subarrays
  return	right_idx
      
def	quick_sort(left_idx,	right_idx,	array):
  if	(left_idx	<	right_idx):
    #	part_idx	is	partitioning	index
    #	array[part_idx]	is	at	right_idx
    part_idx	=	partition(left_idx,	right_idx,	array)
      
    #	sort	both	sides	of	partition:
    quick_sort(left_idx,	part_idx	-	1,	array)
    quick_sort(part_idx	+	1,	right_idx,	array)
      

array	=	[	10,	7,	8,	9,	1,	5	]
print(f'Initial	array:	{array}')

quick_sort(0,	len(array)	-	1,	array)
print(f'Sorted	array:  {array}')

Listing	 4.31	 starts	 with	 the	 definition	 of	 the	 partition()	 function	 that	 takes	 three
parameters	left_idx,	right_idx,	and	array,	which	represent	the	left	index,	the	right	index,	and
an	array	variable,	respectively.

The	 next	 portion	 of	 Listing	 4.31	 is	 an	 outer	 loop	 that	 executes	while	 the	 value	 of	 the
left_idx	variable	is	less	than	the	right_idx	variable.	During	each	iteration	of	the	outer	loop,
another	while	loop	executes	and	increment	left_idx	by	1	as	long	as	the	value	of	left_idx	is	less
than	 the	 length	 of	 array	and	 the	 value	 of	 array[left_idx]	 is	 less	 than	 or	 equal	 to	 the	 pivot
value.

Next,	another	loop	decrements	the	value	of	the	variable	eight_idx	as	long	as	the	value	of
array[right_idx]	is	greater	than	the	value	of	the	value	of	right_idx	value.	Thus,	left_idx	moves
in	a	left-to-right	fashion	through	the	elements	of	array,	whereas	right_idx	moves	in	a	right-to-
left	fashion	through	the	elements	of	array.

The	next	snippet	of	conditional	logic	checks	if	left_idx	is	less	than	right_idx,	and	if	so,	then
array	“swaps”	the	values	in	index	left_idx	and	index	right_idx,	as	shown	here:

array[left_idx],	array[right_idx]	=	array[right_idx],	array[left_idx]
After	the	outer	loop	has	completed	execution,	the	next	portion	of	the	partition()	function

swaps	 the	values	of	 the	 index	position	 right_idx	 and	 the	 index	position	 pivot_idx,	 as	 shown
here:

array[right_idx],array[pivot_idx]	=	array[pivot_idx],array[right_idx]
The	 final	 code	 snippet	 in	 the	 partition()	 function	 returns	 the	 value	 of	 the	 right_idx

variable.
The	next	portion	of	Listing	4.31	is	the	quick_sort()	function	that	has	the	same	parameters

as	the	partition()	function,	along	with	conditional	logic	checks	if	left_idx	is	less	than	right_idx.
If	 the	 latter	 is	 true,	 then	 the	variable	 part_idx	 is	 initialized	with	 the	 result	 of	 invoking	 the
partition()	 function,	 after	 which	 the	 quick_sort()	 function	 is	 recursively	 invoked	 twice,	 as
shown	here:

quick_sort(start,	part_idx	-	1,	array)
quick_sort(part_idx	+	1,	end,	array)
The	 final	 portion	 of	 Listing	 4.31	 initializes	 the	 variable	 array	 with	 a	 list	 of	 integers,

invokes	the	quick_sort()	function,	and	then	displays	the	sorted	array.	Now	launch	the	code	in
Listing	4.31	and	you	will	see	the	following	output:

Initial	array:	[10,	7,	8,	9,	1,	5]
Sorted	array:  [1,	5,	7,	8,	9,	10]

SUMMARY

This	chapter	started	with	an	introduction	to	one-dimensional	vectors	and	how	to	calculate
their	 length	or	magnitude,	as	well	as	 the	 inner	product	of	pairs	of	vectors.	Then	you	saw
how	 to	 perform	 various	 tasks	 involving	 numbers,	 such	 as	 multiplying	 and	 dividing	 two
positive	integers	via	recursive	addition	and	subtraction,	respectively.

In	addition,	you	learned	about	working	with	strings,	and	how	to	check	a	string	for	unique
characters,	how	to	insert	characters	in	a	string,	and	how	to	find	permutations	of	a	string.
Next,	you	learned	about	determining	whether	or	not	a	string	is	a	palindrome.

Moreover,	you	learned	how	to	calculate	the	transpose	of	a	matrix,	which	is	the	equivalent
of	rotating	a	bitmap	of	an	image	by	90	degrees.

Then	 you	 learned	 about	 search	 algorithms	 such	 as	 linear	 search	 and	 binary	 search
(iterative	and	recursive).	Finally,	you	learned	about	well-known	sort	algorithms,	such	as	the
bubble	sort,	the	merge	sort	(with	three	variations),	and	the	quick	sort.



CHAPTER	5
BUILT-IN	FUNCTIONS	AND	CUSTOM	CLASSES

This	chapter	introduces	you	to	some	Python	built-in	functions,	how	to	create	custom	classes
in	Python,	and	object-oriented	concepts	such	as	inheritance	and	polymorphism.

The	first	part	of	this	chapter	discusses	the	Python	functions	such	as	the	filter()	 function,
the	 map()	 function,	 and	 the	 reduce()	 function.	 You	 will	 also	 learn	 something	 about	 lambda
functions,	which	are	often	used	in	conjunction	with	these	same	Python	functions.	The	second
part	of	 this	 chapter	 shows	you	how	 to	define	custom	classes,	and	how	 to	manage	 lists	of
objects	that	are	instances	of	your	custom	Python	classes.

The	final	portion	of	this	chapter	contains	a	light	introduction	to	encapsulation,	single	and
multiple	 inheritance,	 and	 polymorphism	 in	 Python.	 There	 are	many	 subtle	 points	 involving
inheritance	and	object-oriented	programming,	and	after	you	have	read	this	chapter	you	can
perform	a	“deep	dive”	into	this	topics	in	order	to	write	object-oriented	Python	code.

A	PYTHON	MODULE	VERSUS	PACKAGE

A	module	generally	 contains	definitions,	 functions,	 and	 Python	 code,	and	 it	 “lives”	 in	a	 file
with	a	.py	extension.	A	module	can	also	import	other	modules,	and	by	convention,	the	import
statements	are	placed	at	the	top	of	the	file	(but	this	is	not	a	strict	requirement).	Note	that
zip	files	and	DLL	files	can	also	be	modules.

However,	 when	 a	 module	 imports	 a	 directory,	 the	 presence	 of	 the	 file	 __init__.py	 is
significant	because	Python	will	then	treat	the	directory	as	a	package.	The	file	__init__.py	can
contain	some	initialization	code	for	the	package	(in	fact,	it	can	even	be	empty),	and	such	a
file	appears	in	each	subdirectory	that	must	be	treated	as	a	package	by	Python.

As	you	have	seen	 in	previous	chapters,	a	module	uses	 the	import	 statement	 to	 import	a
module,	and	this	can	be	accomplished	in	various	ways.	You	can	import	a	single	module	from
a	package,	as	shown	here:

import	myutils.xmlparse

The	preceding	code	imports	the	xml	submodule	myutils.xml,	and	it	must	be	fully-qualified	in
your	code:

myutils.xmlparse(xmlDoc)

Another	way	to	import	the	submodule	xmlparse	is	here:
from	myutils	import	xmlparse

Although	 the	preceding	code	 imports	 the	 xml	 submodule	 xmlparse,	 the	 latter	 is	 available
without	the	package	prefix,	as	shown	here:

xmlparse(xmlDoc)

You	can	even	import	a	single	function	from	a	module,	as	shown	here:
from	myutils.xmlparse	import	parseDOM

PYTHON	FUNCTIONS	VERSUS	METHODS

A	method	is	a	function,	but	a	function	is	not	necessarily	a	method.	A	method	is	a	function
that	 is	“attached”	 to	an	object	or	Class.	Thus,	str.upper()	 is	a	method,	whereas	sorted()	 is	a
function.

In	addition,	functions	can	be	available	as	methods,	which	happens	to	be	the	case	for	the
functions	 in	 the	 re	 module:  re.sub	 is	 a	 function,	 and	 if	 you	 make	 a	 regex	 object	 by
compiling	 a	 pattern,	many	 of	 the	module	 functions	 are	 also	 available	 as	methods	 on	 the
resulting	object.	An	example	is	here:

>>>	import	re
>>>	regex	=	re.compile("\d+")
>>>	regex.sub	#	this	is	a	method



>>>	re.sub	#	this	is	a	function

The	distinction	between	function	and	method	is	whether	the	function	is	defined	in	a	class
or	not.	Functions	in	a	module	are	just	functions,	functions	in	class	are	methods	of	the	class
or	methods	of	the	resulting	objects.

In	 addition,	 function	 is	 a	 more	 general	 term	 (all	 methods	 are	 functions	 but	 not	 all
functions	are	methods).	Thus,	 the	word	 function	 is	used	as	a	“generic	term,”	whereas	the
word	method	 is	used	specifically	with	 regard	 to	classes	or	objects	 (the	method	of	 the	 list
type,	the	methods	of	the	str	type,	and	so	forth).

FUNCTIONALLY	ORIENTED	PROGRAMMING	IN	PYTHON
Python	supports	methods	(called	iterators	in	Python	3),	such	as	filter(),	map(),	and	reduce()	that
are	 very	 useful	when	 you	 need	 to	 iterate	 over	 the	 items	 in	 a	 list,	 create	 a	 dictionary,	 or
extract	a	subset	of	a	list.	These	iterators	are	discussed	in	the	following	subsections.

The	Python	filter()	Function
The	filter	function	enables	you	to	extract	a	subset	of	values	based	on	conditional	logic.	The
following	 example	 returns	 a	 list	 of	 odd	 numbers	 between	 0	 and	 15	 inclusive	 that	 are
multiples	of	3:

>>>	range(0,15)
[0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	11,	12,	13,	14]
>>>	def	f(x):	return	x	%	2	!=	0	and	x	%	3	==	0
...
>>>	filter(f,	range(0,	15))
[3,	9]
>>>

The	Python	map()	Function
The	Python	map()	command	is	a	built-in	 function	that	applies	a	 function	to	each	 item	in	an
iterable.	The	map(func,	seq)	calls	func(item),	where	item	 is	an	element	 in	a	sequence	 seq,	 and
returns	a	list	of	the	return	values.

Listing	5.1	displays	the	contents	of	Map1.py	that	illustrates	how	to	use	the	map()	function	to
compute	the	cube	and	fourth	power	of	a	set	of	numbers.

Listing	5.1:	Map1.py
def	cube(x):	return	x*x*x
def	fourth(x):	return	x*x*x*x

x1	=	map(cube,  range(1,	5))
x2	=	map(fourth,	range(1,	5))

print	(x1)
print	(x2)

Listing	5.1	starts	with	the	definition	of	 two	functions	called	cube()	and	fourth(),	each	of
which	 takes	a	single	numeric	value.	The	 cube()	 function	 returns	 the	cube	of	 its	 argument,
and	the	fourth()	function	returns	the	fourth	power	of	its	argument.

The	next	portion	of	Listing	5.1	contains	 two	 invocations	of	 the	 map()	 function.	The	 first
invocation	specifies	 the	cube()	 function	as	 the	 first	parameter,	and	 the	 integers	between	1
and	 4	 inclusive	 as	 the	 second	 parameter	 via	 the	 range()	 function.	 The	 second	 invocation
specifies	the	fourth()	function	as	the	first	parameter,	along	with	the	integers	between	1	and
4	inclusive.	The	output	from	Listing	5.1	is	here:

[1,	8,	27,	64]
[1,	16,	81,	256]

The	Python	lambda	Operator
The	lambda	operator	(or	lambda	function)	enables	you	to	define	“anonymous”	functions	that
are	often	used	in	combination	with	the	functions	filter(),	map(),	and	reduce().	An	example	of	a
lambda	function	that	adds	two	arguments	is	here:

>>>	f	=	lambda	x,y	:	x	+	y
>>>	f(2,3)
5

The	next	section	shows	you	how	to	use	this	lambda	function	with	the	reduce()	function	in
Python.



The	Python	reduce()	Function
The	 reduce(func,	 seq)	 function	 returns	 a	 single	 value	 constructed	 by	 calling	 the	 binary
function	func	on	the	first	two	items	of	the	sequence	seq	to	compute	a	result,	and	then	applies
func	on	that	result	and	the	next	item	in	seq,	and	so	on	until	a	single	value	is	returned.	Thus
the	reduce()	 function	 repeatedly	performs	a	pair-wise	 reduction	 (and	hence	 its	name)	on	a
sequence	until	a	single	value	is	computed.

As	 an	 illustration,	 the	 following	 example	 defines	 a	 lambda	 function	 that	 adds	 two
numbers	and	a	range(1,6)	that	calculates	the	sum	of	the	numbers	1	through	6:

>>>	f	=	lambda	x,y:	x+y
>>>	reduce(f,	range(1,6))
15

In	case	the	functionality	of	the	reduce()	function	is	new	to	you,	there	are	other	scenarios
that	 have	 similar	 functionality.	 For	 example,	 recall	 that	 multiplication	 of	 two	 numbers	 is
implemented	as	repeated	addition	(along	with	a	shift	operator).	As	a	second	example,	NoSQL
databases	perform	operations	using	map/reduce	algorithms	and	 the	 reduce	portion	has	 a
similar	implementation.

IMPORTING	CUSTOM	PYTHON	MODULES

In	 addition	 to	 importing	 Python	 Standard	 Library	 modules,	 you	 can	 import	 your	 custom
modules	 into	 other	 custom	 modules.	 Listing	 5.2	 and	 Listing	 5.3	 display	 the	 contents	 of
Double.py	and	CallDouble.py	that	illustrate	this	functionality.

Listing	5.2:	Double.py
def	double(num):
    return	2*num

result	=	double(5)
print	'double	5	=',	result

Listing	5.2	defines	the	function	double()	that	returns	2	times	its	argument,	followed	by	the
variable	result	that	is	assigned	the	value	of	double(5).	If	you	invoke	Listing	5.2	from	the	Python
interpreter	or	launch	the	program	from	the	command	line,	you	will	see	the	following	output:

double	5	=	10

Listing	5.3:	CallDouble.py
import	Double

Listing	5.3	contains	one	line	of	code:	an	import	statement	that	imports	the	Double	module
that	is	displayed	in	Listing	5.2.	Launch	Listing	5.3	from	the	command	line	and	the	output	is
shown	here:

double	5	=	10
The	combination	of	Listing	5.2	and	Listing	5.3	demonstrates	how	easy	 it	 is	 to	 import	a

custom	 Python	 module.	 However,	 you	 obviously	 need	 the	 flexibility	 of	 invoking	 imported
functions	with	different	values.

Listing	5.4	and	Listing	5.5	display	the	contents	of	Triple.py	and	CallTriple.py	that	illustrate
how	to	achieve	this	flexibility.

Listing	5.4:	Triple.py
def	triple(num):
    return	3*num

Listing	 5.4	 contains	 only	 the	 definition	 of	 the	 function	 triple()	 that	 returns	 3	 times	 its
argument,	and	there	are	no	invocations	of	that	function	or	any	print	statements.

Listing	5.5:	CallTriple.py
from	Triple	import	triple

print	'3	times	4	is:',	triple(4)
print	'3	times	9	is:',	triple(9)

Launch	Listing	5.5	from	the	command	line	and	you	will	see	the	following	output:
3	times	4	is:	12
3	times	9	is:	27

Suppose	 that	 Triple.py	 also	 contained	 a	 function	 called	 quadruple()	 and	 you	 wanted	 to
import	that	function.	You	can	do	so	with	the	following	variation	of	the	import	statement:

from	Triple	import	double,	quadruple

If	you	want	to	import	all	the	functions	that	are	defined	in	Triple.py,	use	this	form	of	the



import	statement:
from	Triple	import	*

This	 concludes	 the	 brief	 overview	 regarding	 how	 to	 import	 custom	modules.	 The	 next
section	in	this	chapter	shows	you	how	to	define	your	own	custom	classes	in	Python.

HOW	TO	CREATE	CUSTOM	CLASSES
The	 Python	 language	 supports	 the	 creation	 of	 custom	 classes,	 which	 is	 available	 in	 other
programming	 languages,	 such	 as	 Java	 and	 C++.	 However,	 there	 is	 the	 “Python	 way”	 of
creating	custom	classes,	which	you	will	learn	about	in	this	chapter.

As	a	starting	point,	Listing	5.6	displays	the	contents	of	SimpleClass.py	that	illustrates	how
to	define	a	simple	custom	class	called	BaseClass	in	Python.

Listing	5.6:	SimpleClass.py
#!/usr/bin/env	python

class	BaseClass:
    def	__init__(self):
        self.x	=	3

    def	main(self):
        print	'inside	main'
        print	'x:',self.x

if	__name__	==	'__main__':
    baseClass	=	BaseClass()
    baseClass.main()

Listing	5.6	starts	with	the	definition	of	the	class	BaseClass	that	contains	two	functions.	The
built-in	“magic”	function	__init__	 (explained	 in	the	next	section)	assigns	the	value	3	to	 the
variable	x.	The	main()	 function	contains	two	print	 statements	 that	display	 the	string	“inside
main”	and	also	the	value	of	the	variable	x.

The	next	portion	of	Listing	5.6	uses	conditional	logic	to	instantiate	the	class	BaseClass	and
assign	that	instance	to	the	variable	baseClass,	and	then	invoke	the	main()	method	of	baseClass.
The	output	from	launching	SimpleClass.py	is	here:

inside	main
x:	3

CONSTRUCTION	AND	INITIALIZATION	OF	OBJECTS

In	 the	 previous	 section,	 you	 saw	 an	 example	 of	 the	 __init__	 function,	which	 is	 one	 of	 the
“magic”	methods	that	exist	in	Python.	Three	magic	methods	are	shown	here:

__init__
__new__
__del__

In	brief,	 the	 __new__	method	 is	 invoked	 in	 order	 to	 create	 an	 instance	 of	 a	 class,	which
occurs	when	you	invoke	the	following	type	of	statement:

myObj	=	MyClass()

Next,	any	arguments	during	creation	time	are	passed	to	the	“initializer”	method	__init__,
which	specifies	 the	behavior	of	an	object	during	 initialization.	You	can	think	of	 the	__new__
method	and	the	__init__	methods	as	the	“constructor”	of	an	object.

For	example,	consider	the	following	snippet:
myObj	=	MyClass('pizza',	25);

In	 the	preceding	code	snippet,	 the	values	pizza	and	25	are	passed	as	arguments	 to	 the
__init__	method.

Finally,	 when	 an	 object	 is	 deleted,	 the	 “destructor”	 method	 __del__	 is	 invoked	 and	 it
defines	behavior	during	garbage	collection.	This	method	is	useful	when	additional	resources
need	to	be	deallocated.	However,	there	is	no	guarantee	that	__del__	will	be	executed,	so	it’s
better	 to	 close	 resources	 (such	 as	 database	 connections	 and	 sockets)	 when	 they	 are	 no
longer	needed.

NOTE
If	you	are	a	beginner	you	rarely	(if	ever)	need	to	use	the	__new__	and	__del__	methods.

There	 are	 many	 other	 magic	 methods	 in	 Python	 (for	 comparisons,	 numeric	 functions,
conversions,	and	so	forth),	and	an	extensive	list	of	such	methods	is	here:



•
•
•

•
•

•
•

http://docs.python.org/2/reference/datamodel.html#specialnames

COMPILED	MODULES

The	directory	that	contains	the	module	Triple.py	will	also	contain	the	compiled	version	called
Triple.pyc,	which	is	automatically	generated	by	Python	in	order	to	improve	performance.	The
contents	 of	 Triple.pyc	 are	 platform	 independent,	 and	 therefore	 machines	 of	 different
architectures	can	share	a	Python	module	directory.

You	 can	 also	 invoke	 the	 Python	 interpreter	 with	 the	 -O	 flag,	 and	 Python	 will	 generate
optimized	code	that	is	stored	in	.pyo	files.	In	addition,	.pyc	files	are	ignored	and	.py	files	are
compiled	 to	 optimized	 bytecode	when	 the	 –O	 flag	 is	 used.	 Keep	 in	mind	 that	 there	 is	 no
difference	in	speed	when	a	program	is	read	from	a	.pyc	or	.pyo	file	versus	from	a	.py	file;	the
only	difference	is	the	load	time.

CLASSES,	FUNCTIONS,	AND	METHODS	IN	PYTHON

In	high-level	terms,	a	Python	function	is	a	block	of	code	that:

is	called	by	name
can	be	passed	data	to	operate	on	(i.e.,	the	parameters)
can	optionally	return	data	(the	return	value)

All	 data	 that	 is	 passed	 to	 a	 function	 is	 explicitly	 passed.	 Contrastingly,	 a	method	 is	 a
block	of	code	that

is	called	by	name
is	associated	with	an	object

A	method	differs	from	a	function	in	two	ways:

A	method	is	implicitly	passed	the	object	for	which	it	was	called.
A	method	is	able	to	operate	on	data	that	is	contained	within	the	class.

Keep	in	mind	that	that	an	object	is	always	an	instance	of	a	class.	If	you	think	of	a	class	as
the	“definition,”	then	the	object	is	an	instance	of	that	definition.

Instance	variables	in	an	object	have	values	that	are	local	to	that	object;	in	other	words,
two	instances	of	the	same	class	maintain	distinct	values	for	their	variables.

However,	the	value	of	class	variables	is	the	same	for	all	the	objects	that	are	instances	of
the	same	class.	In	the	Java	world,	a	variable	that	is	declared	as	static	is	a	class	variable:	if
you	 change	 its	 value	 in	 one	 object,	 its	 new	 value	 is	 visible	 among	 all	 objects	 that	 are
instances	of	the	same	class.

By	way	of	comparison,	methods	in	C++	are	called	member	functions,	and	Java	contains
only	methods	 (not	 functions).	 A	method	 can	manipulate	 private	 data	 that	 is	 defined	 in	 a
class.

ACCESSORS	AND	MUTATORS	VERSUS	@PROPERTY

Object-oriented	languages	such	as	Java	encourage	the	use	of	accessors	and	mutators	(often
called	 getters	 and	 setters)	 rather	 than	 direct	 access	 to	 a	 property.	 For	 example,	 if	 x	 is	 a
property	of	a	custom	class,	then	the	accessor	method	getX()	returns	the	value	of	x	and	the
mutator	method	setX()	sets	the	value	of	x	(you	would	also	specify	an	argument	in	the	case	of
the	setX()	method).

By	 contrast,	 Python	 has	 a	 @property	 decorator	 that	 lets	 you	 add	 getters	 and	 setters
retroactively	for	attribute	access.	Consider	the	following	example:

>>>	class	Foo(object):
...  	@property
...  	def	foo(self):
...    	return	4
>>>	obj	=	Foo()
>>>	obj.foo
4

The	preceding	code	defines	a	class	Foo	with	a	method	called	foo().	The	variable	obj	 is	an
instance	of	the	class	Foo,	and	notice	how	it’s	possible	to	write	obj.foo	in	order	to	obtain	the
result	(4).	This	functionality	is	possible	because	of	the	@property	decorator	in	Python.

Consequently,	you	can	define	your	custom	Python	classes	by	“allowing”	attribute	access,
and	if	it	becomes	necessary	to	add	get/set	methods	later	on,	you	can	do	so	without	breaking
any	existing	code.



NOTE
Accessors	 and	 mutators	 are	 common	 in	 languages	 such	 as	 Java,	 whereas	 direct	 access	 is
preferred	in	Python.

CREATING	AN	EMPLOYEE	CUSTOM	CLASS

This	 section	 contains	 an	 example	 of	 defining	 a	 custom	 Python	 class	 to	 keep	 track	 of	 some
employee-related	information.	In	the	OO	world,	this	type	of	class	is	called	a	“value	object”
because	its	only	purpose	is	to	keep	track	of	one	or	more	properties	(such	as	the	properties
of	a	mailing	address	or	a	customer).

The	example	in	this	section	uses	accessors	for	accessing	property	values	as	well	as	direct
access	so	that	you	can	see	how	to	use	both	techniques.

Listing	5.7	displays	the	contents	of	the	custom	Python	class	Employee.py	that	keeps	track	of
an	employee’s	first	name,	last	name,	and	title.

Listing	5.7:	Employee.py
#!/usr/bin/env	python

class	Employee(object):
    def	__init__(self,fname,lname,title):
        self.fname	=	fname
        self.lname	=	lname
        self.title	=	title

    def	firstName(self):
        return	self.fname

    def	lastName(self):
        return	self.lname

    def	theTitle(self):
        return	self.title

    def	main(self):
        print	'fname:',self.fname
        print	'lname:',self.lname
        print	'title:',self.title

if	__name__	==	'__main__':
    emp1	=	Employee('John','Smith','Director')
    emp1.main()
    print	'Last	Name:',(emp1.lastName())
    print

    emp2	=	Employee('Jane','Edwards','VP')
    emp2.main()
    print	'Last	Name:',(emp2.lastName())
    print

Listing	 5.7	 contains	 the	 definition	 of	 the	 Employee	 class,	 which	 defines	 three	 functions
firstName(),	lastName(),  and	thetitle()	 that	 return	 the	 current	 employee’s	 first	 name,	 last
name,	 and	 title,	 respectively.	 In	 addition,	 the	 __init__	 function	 contains	 initialization	 code
that	sets	the	values	of	the	same	three	properties,	and	the	main()	function	prints	the	values	of
these	three	properties.

The	 final	 portion	 of	 Listing	 5.7	 contains	 the	 standard	 Python	 idiom	 for	 distinguishing
between	direct	execution	(such	as	from	the	command	line)	versus	the	situation	in	which	the
module	 is	 simply	 imported	 into	 another	 Python	 module.	 In	 our	 case,	 this	 class	 will	 be
launched	 directly,	which	means	 that	 the	 code	 block	will	 instantiate	 emp1	 and	 emp2,	 both	 of
which	are	instances	of	the	Employee	class.	In	addition,	the	code	initializes	the	properties	for
emp1	and	emp2	and	then	prints	the	values	of	those	properties	by	invoking	the	main()	method.

In	addition,	you	can	retrieve	the	value	of	a	property	by	invoking	its	associated	method	in
much	 the	 same	 way	 that	 you	 would	 in	 other	 programming	 languages	 such	 as	 Java.	 An
example	of	retrieving	and	then	printing	the	last	name	of	the	first	employee	is	here:

print	'Last	Name:',emp1.lastName()

You	can	display	the	first	name	and	title	of	the	first	employee	by	invoking	emp1.firstName()
and	emp1.title(),	respectively.

WORKING	WITH	A	LIST	OF	EMPLOYEES

In	the	previous	section,	you	learned	how	to	create	the	custom	Python	class	Employee	that	keeps
track	of	 three	 attributes	 of	 an	 employee.	 This	 section	 shows	 you	how	 to	 create	 a	 custom
Python	class	called	Employees	that	creates	a	list	of	Employee	objects,	where	each	object	contains
information	 about	 a	 single	 employee.	 Of	 course,	 a	 real-world	 application	 would	 specify



numerous	other	attributes.
Listing	5.8	displays	the	contents	of	the	Python	module	Employees.py	that	uses	a	Python	list	to

keep	track	of	multiple	Employee	objects,	each	of	which	represents	information	about	a	single
employee.

Listing	5.8:	Employees.py
#!/usr/bin/env	python

from	Employee	import	*
    
class	Employees:
    def	__init__(self):
        self.list	=	[]

    def	firstEmp(self):
        return	self.list[0]

    def	addEmp(self,emp):
        self.list.append(emp)

    def	displayAll(self):
        for	i	in	range(0,len(self.list)):
          emp	=	self.list[i]
          print	'First:',emp.firstName()
          print	'Last:',	emp.lastName()
          print	'Title:',emp.theTitle()
          print	'--------------'

if	__name__	==	'__main__':
    emp1	=	Employee('John','Smith','Director')
    emp2	=	Employee('Jane','Edwards','VP')
    emp3	=	Employee('Dave','Jones','Manager')

    allEmps	=	Employees()
        
    allEmps.addEmp(emp1)
    allEmps.addEmp(emp2)
    allEmps.addEmp(emp3)

    allEmps.displayAll()

Listing	5.8	starts	with	an	import	statement	that	imports	the	definition	of	the	Employee	class
that	 was	 defined	 in	 the	 previous	 section.	 Next,	 Listing	 5.8	 contains	 the	 definition	 of	 the
Employee	class	that	defines	several	methods.

The	__init__	method	simply	initializes	an	empty	list	that	will	keep	track	of	each	employee
object.	The	firstEmp()	method	returns	 the	 first	employee	object	 in	 the	 list,	and	the	addEmp()
method	appends	the	current	Employee	instance	to	the	list.

The	 displayAll()	 method	 iterates	 through	 the	 list	 of	 employees	 and	 prints	 the	 three
properties	of	each	Employee	object.	This	 functionality	 is	possible	because	 the	 Employee	 object
was	imported,	and	therefore	its	methods	are	accessible	in	Listing	5.8.

The	output	of	Listing	5.8	is	here:
First:	John
Last:	Smith
Title:	Director
--------------
First:	Jane
Last:	Edwards
Title:	VP
--------------
First:	Dave
Last:	Jones
Title:	Manager
--------------

The	code	sample	 in	this	section	(and	the	previous	section)	provides	an	example	of	how
you	can	use	a	collection	(in	the	English	sense	of	the	word)	of	Python	classes	to	model	a	real-
world	 scenario	 (i.e.,	 tracking	 employees	 in	 a	 company).	 Although	 the	 syntax	 is	 different,
other	object-oriented	languages	(such	as	Java	and	C#)	use	a	similar	approach.

There	are	several	ways	in	which	you	can	enhance	this	code	sample.	First,	you	can	use	a
database	to	persist	employee-related	information.	A	database	can	provide	various	benefits,
such	as	enforcing	transaction-related	integrity	and	also	enable	you	to	deploy	the	application
to	different	platforms.

Second,	 you	 can	provide	Web	 services	 that	 can	perform	 similar	 functionality	 in	 a	Web
browser	instead	of	the	command	line.

WORKING	WITH	LINKED	LISTS	IN	PYTHON
You	can	use	Python	 in	order	to	create	other	data	structures	that	are	not	a	part	of	the	Python



distribution.	 In	 this	 section	 you	will	 learn	how	 to	 create	a	singly	 linked	 list	 using	 custom
Python	classes.

Although	 they	 are	 not	 discussed	 in	 this	 chapter,	 you	 can	 create	 other	 related	 data
structures,	such	as	doubly	 linked	 lists	and	circular	 lists.	Each	node	 in	a	doubly	 linked	 list
contains	a	reference	to	its	predecessor	and	successor,	whereas	each	node	in	a	singly	linked
list	contains	only	a	reference	to	its	successor.

A	circular	list	can	be	a	singly	listed	list	or	a	doubly	linked	list;	 in	addition,	the	“tail”	or
final	node	references	the	“head”	or	root	node,	thereby	making	the	list	circular.

The	next	section	contains	an	example	of	a	singly	linked	list	in	Python.

CUSTOM	CLASSES	AND	LINKED	LISTS

Listing	5.9	 displays	 the	 contents	 of	 LLAndList.py	 that	 illustrates	 how	 to	 ​create	 a	 linked	 list
where	the	nodes	contain	the	values	in	a	Python	list.

Listing	5.9:	LLAndList.py
class	Node:
  def	__init__(self):
    #	contains	the	data
    self.data	=	None

    #	reference	to	the	next	node
    self.next	=	None

#	this	creates	a	tail->head	list
#	instead	of	a	head->tail	list
class	LinkedList:
  def	__init__(self):
      self.curr_node	=	None

  #	create	and	append	a	new	node
  def	add_node(self,	data):
      new_node	=	Node()
      new_node.data	=	data

      #	link	new	node	to	'previous'	node
      new_node.next	=	self.curr_node

      #	current	node	equals	the	new	node
      self.curr_node	=	new_node

  def	print_items(self):
      node	=	self.curr_node
      while	node:
          print	node.data
          node	=	node.next

list1	=	['a',	'12',	'b',	'34',	'c',	'd']
myLL	=	LinkedList()

#	add	items	to	the	linked	list
for	val	in	list1:
  myLL.add_node(val)

print	'List	of	Items:'
myLL.print_items()

Listing	5.9	contains	 the	definition	of	 the	Node	class,	which	creates	a	“value	object”	 that
will	 contain	 the	 value	 of	 each	 element	 in	 list1	 via	 the	 data	 property.	 The	 Node	 class	 also
defines	the	next	property,	whose	value	represents	the	next	element	in	the	list.

The	 next	 portion	 of	 Listing	 5.9	 defines	 the	 LinkedList	 class	 that	 performs	 some
initialization	in	the	__init__	method,	and	also	defines	the	add_node()	and	print_items()	methods.

The	add_node()	method	adds	a	new	node	to	 the	 linked	 list	by	 invoking	the	Node	class	and
then	updating	the	value	of	the	next	property	appropriately.	Finally,	the	print_items()	method
displays	the	data	value	of	each	node	in	the	linked	list.	The	output	from	Listing	5.10	is	here:

List	of	Items:
d
c
34
b
12
a

CUSTOM	CLASSES	AND	DICTIONARIES

Listing	5.10	displays	the	contents	of	LLAndDict.py	 that	 illustrates	how	to	create	a	 linked	 list
where	each	node	references	a	Python	dictionary.



Listing	5.10:	LLAndDict.py
class	Node:
  def	__init__(self):
    #	contains	the	data
    self.data	=	None

    #	reference	to	the	next	node
    self.next	=	None

#	this	creates	a	tail->head	list
#	instead	of	a	head->tail	list
class	LinkedList:
  def	__init__(self):
      self.curr_node	=	None

  #	create	and	append	a	new	node
  def	add_node(self,	data):
      new_node	=	Node()
      new_node.data	=	data

      #	link	new	node	to	'previous'	node
      new_node.next	=	self.curr_node

      #	current	node	equals	the	new	node
      self.curr_node	=	new_node

  def	print_items(self):
      node	=	self.curr_node
      while	node:
          print	node.data
          node	=	node.next

dict1	=	{'a':'aaa',	'b':'bbb',	'c':	'ccc'}
myLL	=	LinkedList()

#	add	items	to	the	linked	list
for	w	in	dict1:
  myLL.add_node(w+"	"+dict1[w])

print	'List	of	Keys	and	Values:'
myLL.print_items()

Listing	 5.10	 contains	 code	 that	 is	 very	 similar	 to	 the	 previous	 section.	 The	 difference
involves	the	following	code	block	that	uses	a	Python	dict	instead	of	a	Python	list:

dict1	=	{'a':'aaa',	'b':'bbb',	'c':	'ccc'}
myLL	=	LinkedList()

#	add	items	to	the	linked	list
for	w	in	dict1:
  myLL.add_node(w+"	"+dict1[w])

print	'List	of	Keys	and	Values:'
myLL.print_items()

The	preceding	code	block	creates	a	node	consisting	of	the	concatenation	of	the	key/value
pairs	of	each	element	in	the	variable	dict1.	The	output	from	Listing	5.10	is	here:

List	of	Keys	and	Values:
b	bbb
c	ccc
a	aaa

CUSTOM	CLASSES	AND	PRIORITY	QUEUES

In	Chapter	3,	you	learned	about	the	Queue	data	structure.	In	this	section,	you	will	see	how	to
create	 and	 populate	 a	 priority	 queue	 with	 objects.	 Listing	 5.11	 displays	 the	 contents	 of
PriorityQueue.py	 that	 illustrates	how	to	create	a	priority	queue	and	populate	the	queue	with
instances	of	the	custom	Task	class.

Listing	5.11:	PriorityQueue.py
import	Queue
from	random	import	randint

pLevel      =	''
taskCount  	=	4
minPriority	=	3
maxPriority	=	10

q	=	Queue.PriorityQueue()

class	Task(object):



  def	__init__(self,	priority,	name):
      self.priority	=	priority
      self.name=	name
      print	'Added	a	new	task:',	name
  def	__cmp__(self,	other):
      return	cmp(self.priority,	other.priority)

def	displayTasks():
  while	not	q.empty():
    curr_Task	=	q.get()
    print	'Processing	Task:',	curr_Task.name

def	addTasks():
  for	i	in	range(0,taskCount):
    p	=	randint(minPriority,	maxPriority);

    if(p	<	minPriority+maxPriority/4):
      	pLevel	=	'Low	Priority'
    elif(p	<	minPriority+maxPriority/2):
      	pLevel	=	'Medium	Priority'
    else:
      	pLevel	=	'High	Priority'
    q.put(Task(p,	pLevel))
  print

if	__name__	==	'__main__':
  addTasks()
  displayTasks()

Listing	5.11	starts	by	initializing	the	variable	q,	which	 is	an	 instance	of	 the	PriorityQueue
class	in	Python.	Next,	Listing	5.11	defines	a	Task	class	that	performs	some	initialization	in	the
__init__	method	and	defines	how	to	compare	two	items	in	the	__cmp__	method.	In	addition,	the
displayTasks()	method	displays	the	current	set	of	tasks,	and	the	addTasks()	method	adds	a	new
task	in	the	priority	queue.	The	addTasks()	method	generates	a	random	number	for	the	priority
of	each	new	task,	and	 then	uses	conditional	 logic	 to	determine	whether	 the	 task	has	 low,
medium,	or	high	priority.

The	 final	 portion	 of	 Listing	 5.11	 invokes	 the	 addTasks()	 method,	 followed	 by	 the
displayTasks()	method.	The	output	from	Listing	5.11	is	here:

Added	a	new	task:	Low	Priority
Added	a	new	task:	Medium	Priority
Added	a	new	task:	Medium	Priority
Added	a	new	task:	Medium	Priority

Processing	Task:	Low	Priority
Processing	Task:	Medium	Priority
Processing	Task:	Medium	Priority
Processing	Task:	Medium	Priority

OVERLOADING	OPERATORS
By	way	of	illustration,	suppose	that	you	want	to	extend	the	add	operator	in	Python.	You	can	do
so	by	overloading	the	__add__	method	as	follows:

class	Test(object):
    def	__init__(self):	self.prop	=	3
    def	__add__(self,	x):
        return	self.prop	+	x

If	you	enter	the	following	command	at	the	command	line:
Test()	+	4

You	will	see	the	following	output:
7

SERIALIZE	AND	DESERIALIZE	DATA
Pickling	 is	 the	process	whereby	a	 Python	 object	hierarchy	 is	 converted	 into	a	byte	 stream.
Generally	 you	 can	 pickle	 (serialize)	 any	 object	 if	 you	 can	 pickle	 every	 attribute	 of	 that
object.	Keep	in	mind	that	you	cannot	pickle	classes,	functions,	and	methods.

With	 pickle	 protocol	 v1,	 you	 cannot	 pickle	 open	 file	 objects,	 network	 connections,	 or
database	connections;	however,	you	can	pickle	open	file	objects	with	pickle	protocol	v2.

Python	enables	you	to	pickle	data	in	lists,	dictionaries,	and	so	forth,	after	which	you	can
“depickle”	(deserialize)	that	data.

NOTE
Pickle	files	can	be	hacked,	so	be	careful	 if	you	receive	a	raw	pickle	file	over	the	network,
because	it	could	contain	malicious	code	to	run	arbitrary	Python	when	you	attempt	to	depickle



it.

Listing	5.12	displays	the	contents	of	Serialize1.py	that	illustrates	how	to	serialize	and	then
deserialize	a	Python	object.

Listing	5.12:	Serialize1.py
import	pickle

#	Some	Python	object
data	=	[1,2,3,4,5]
print	'original	data:',	data

f	=	open('testfile',	'wb')
pickle.dump(data,	f)

s	=	pickle.dumps(data)

#	Restore	from	a	file
f	=	open('testfile',	'rb')
data	=	pickle.load(f)

#	Restore	from	a	string
data	=	pickle.loads(s)

print	'restored	data:',	data

Listing	5.12	starts	with	an	import	statement,	followed	by	the	data	variable	that	is	initialized
as	a	list	containing	five	numbers.	Next,	the	file	testfile	is	created	and	the	pickled	contents
of	data	are	stored	in	that	file.	The	remainder	of	Listing	5.12	reverses	the	process	and	prints
the	depickled	contents	that	match	the	original	contents	of	the	data	variable.	The	output	from
Listing	5.12	is	here:

original	data:	[1,	2,	3,	4,	5]
restored	data:	[1,	2,	3,	4,	5]

A	minimalistic	example	of	pickling	a	class	is	here:
import	pickle

class	MyClass:
  attribute	=	'a	simple	attribute'

picklestring	=	pickle.dumps(MyClass)

ENCAPSULATION
One	of	 the	main	reasons	 for	public	accessors	and	mutators	 is	 their	ability	 to	retrieve	and
update	the	values	of	private	variables.	The	ability	to	“shield”	instances	of	other	classes	from
the	internal	implementation	details	of	a	given	class	is	called	encapsulation.

The	 advantage	 of	 encapsulation	 is	 the	 ability	 to	 change	 the	 inner	workings	 of	 a	 class
without	changing	the	signature	of	the	API.	As	a	result,	instances	of	other	classes,	as	well	as
public	APIs,	can	continue	working	correctly	without	worrying	about	updating	the	signature
of	 the	API	 (provided	 that	 the	method	 is	not	deprecated	and	 replaced	with	a	new	method
that	has	a	different	signature).

SINGLE	INHERITANCE

There	 are	 two	 types	 of	 single	 inheritance	 that	 you	 will	 encounter	 in	 programming
languages.	 One	 common	 type	 is	 called	 “classical”	 class-based	 inheritance	 that	 you	 will
encounter	 in	 strongly	 typed	 languages	 that	 perform	 compile-time	 checking	 for	 variables
(such	 as	 Java	 and	 C++).	 The	 second	 type	 is	 ​prototype-based	 inheritance	 that	 you	 will
encounter	in	functional	languages	such	as	JavaScript.

Class	 mechanisms	 in	 Python	 are	 slightly	 closer	 to	 C++,	 partly	 because	 both	 support
multiple	 inheritance	(discussed	 in	the	next	section).	On	the	other	hand,	Java	supports	only
single	 class	 inheritance	 (but	 a	 Java	 class	 can	 implement	multiple	 interfaces).	However,	 all
methods	in	Python	and	Java	are	virtual.

Languages	such	as	JavaScript	treat	functions	as	“first	class	citizens”	in	the	sense	that	they
have	 the	 same	 “parity”	 as	 objects,	whereas	methods	 have	 a	 “subordinate”	 role	 in	 classic
languages	such	as	Java	and	C++	because	methods	only	exist	as	part	of	a	class	definition.

Another	 consideration	 is	 whether	 or	 not	 functions	 (and	 methods)	 have	 so-called	 side
effects,	 such	 as	 modifying	 the	 value	 of	 global	 or	 static	 variables.	 In	 the	 XSLT	 world	 all
variables	are	treated	as	read-only	variables,	which	eliminates	the	problems	associated	with
side	 effects,	 but	 at	 the	 same	 time,	 XSLT	 is	 a	 specialized	 functional	 programming	 language
that	is	arguably	more	difficult	to	master	than	imperative	languages	such	as	Java	and	C++.



As	a	simple	example,	Listing	5.13	displays	the	contents	of	SingleInherit1.py	that	illustrates
inheritance	in	Python.

Listing	5.13:	SingleInherit1.py
class	ClassA:
  	def	__init__(self):
    	print	'Hello	from	A'

  	def	func(self):
    	print	'Hello	again	from	A'

class	ClassB(ClassA):
  	def	__init__(self):
    	print	'Hello	from	B'

  #def	func(self):
  #  print	'Hello	again	from	B'

if	__name__	==	'__main__':
    instanceA	=	ClassA()
    instanceB	=	ClassB()

    print
    print	'instanceA:'
    instanceA.func()
    print	'instanceB:'
    instanceB.func()

Listing	5.13	defines	 ClassA	with	a	 print()	 statement	 in	 the	 function	 __init__	 as	well	 as	 a
print()	statement	in	function	func().	Next,	ClassB	is	defined	as	a	subclass	or	derived	class	of
ClassA.	 Notice	 that	 func()	 is	 “commented	 out”	 in	 ClassB,	 and	 that	 the	 __init__	 function	 also
contains	a	print	statement.

The	final	code	block	in	Listing	5.13	instantiates	instanceA	of	ClassA	and	instanceB	of	ClassB,
followed	by	some	print	statements.	The	output	from	Listing	5.13	is	here:

Hello	from	A
Hello	from	B

instanceA:
Hello	again	from	A
instanceB:
Hello	again	from	A

A	CONCRETE	EXAMPLE	OF	INHERITANCE

Listing	 5.14	 displays	 the	 contents	 of	 SingleInherit1.py	 that	 contains	 an	 abstract	 base	 class
(i.e.,	it	cannot	be	instantiated)	and	two	subclasses	Vegetarian	and	Carnivore,	along	with	various
relevant	methods.

Listing	5.14:	SingleInherit1.py
import	numpy	as	np

class	FoodPrefs:
  def	__init__(self):
    print("Inside	__init__	of	FoodPrefs")

  def	add(self,	items):
    raise	NotImplementedError

  def	remove(self,	items):
    raise	NotImplementedError

  def	show_list(self):
    raise	NotImplementedError

  def	blocked_list(self):
    raise	NotImplementedError

class	Vegetarian(FoodPrefs):
  def	__init__(self):
    super().__init__()
    self.myprefs	=	np.array([])
    print("[vegetarian]	myprefs	=	",self.myprefs)
    self.blocked_items	=	np.array(["Steak",	"Chicken",	"Sardines"])

  def	add(self,	items):
    add_list	=	np.array([])
    blocked	=	self.blocked_list()

    for	item	in	items:
      if	item	not	in	blocked:



        add_list	=	np.append(add_list,item)
      else:
        print("=>	Cannot	add	item:	",item)

    self.myprefs	=	np.append(self.myprefs,add_list)
    print(f"[vegetarian]	added	items	to	preferences:	{items}")
    #print("[vegetarian]	updated	list	of	items:	",self.myprefs)

  def	remove(self,	items):
    print(f"[vegetarian]	removed	items:	{items}")

  def	show_list(self):
    print("[vegetarian]	full	list	of	food	items:")
    print(self.myprefs)

  def	blocked_list(self):
    return	self.blocked_items

class	Carnivore(FoodPrefs):
  def	__init__(self):
    super().__init__()
    self.myprefs	=	np.array([])
    print("[carnivore]	myprefs	=	",self.myprefs)

  def	add(self,	items):
    self.myprefs	=	np.append(self.myprefs,items)

    print(f"[carnivore]	added	items	to	preferences:	{items}")
    #print("[carnivore]	updated	list	of	items:	",self.myprefs)

  def	remove(self,	items):
    print(f"[carnivore]	removed	items:	{items}")

  def	show_list(self):
    print("[carnivore]	full	list	of	food	items:")
    print(self.myprefs)

  def	blocked_list(self):
    self.blocked_items	=	[]

print("--------------------------")
veggie	=	Vegetarian()
veggie.add(["Chickpeas",	"Lentils",	"Kale"])
veggie.add(["Tomatoes",	"Garlic"])
veggie.add(["Steak",	"Chicken"])
veggie.show_list()
print("--------------------------\n")

print("--------------------------")
carnie	=	Carnivore()
carnie.add(["Steak",	"Chicken",	"Sardines"])
carnie.show_list()
print("--------------------------\n")

Listing	 5.14	 defines	 FoodPrefs	with	 a	 print()	 statement	 in	 the	 function	 __init__	 simply	 to
show	that	this	method	has	been	executed	later	in	the	code.

The	 next	 portion	 of	 Listing	 5.14	 defines	 the	 Vegetarian	 class	 as	 a	 subclass	 of	 FoodPrefs,
which	 contains	 the	 methods	 add(),	 remove(),	 show_list(),	 and	 blocked_list()	 in	 order	 to	 add,
remove,	display	items,	and	specify	invalid	items;respectively,	for	a	vegetarian	diet.

The	next	portion	of	Listing	5.14	defines	the	Carnivore	class	as	a	subclass	of	FoodPrefs,	which
also	 contains	 the	methods	 add(),	 remove(),	 and	 show_list()	 in	 order	 to	 add,	 remove,	 display
items,	 and	 specify	 invalid	 items,	 respectively,	 for	 the	 diet	 of	 a	 carnivore.	 Note	 that	 the
method	blocked_list()	 is	an	empty	 NumPy	 array,	which	 you	 can	modify	 if	 you	need	 to	 specify
invalid	food	items.

The	final	code	block	in	Listing	5.14	instantiates	veggie	of	type	Vegetarian	and	carnie	of	type
Carnivore,	followed	by	the	invocation	of	several	methods.	Now	launch	the	code	in	Listing	5.15
and	you	will	see	the	following	output:

--------------------------
Inside	__init__	of	FoodPrefs
[vegetarian]	myprefs	=  []
[vegetarian]	added	items	to	preferences:	['Chickpeas',	'Lentils',	'Kale']
[vegetarian]	added	items	to	preferences:	['Tomatoes',	'Garlic']
=>	Cannot	add	item:  Steak
=>	Cannot	add	item:  Chicken
[vegetarian]	added	items	to	preferences:	['Steak',	'Chicken']
[vegetarian]	full	list	of	food	items:
['Chickpeas'	'Lentils'	'Kale'	'Tomatoes'	'Garlic']

--------------------------

--------------------------
Inside	__init__	of	FoodPrefs
[carnivore]	myprefs	=  []



[carnivore]	added	items	to	preferences:	['Steak',	'Chicken',	'Sardines']
[carnivore]	full	list	of	food	items:
['Steak'	'Chicken'	'Sardines']

--------------------------

INHERITANCE	AND	OVERRIDING	METHODS
If	 class	 A	 is	 a	 subclass	 (also	 called	 a	 “derived”	 class)	 of	 class	 B,	 then	 everything	 in	 B	 is
accessible	in	A.	In	addition,	class	A	can	define	methods	that:
1.	 are	unavailable	in	B
2.	 override	methods	in	B

If	 class	 B	 and	 class	 A	 both	 contain	 a	 method	 called	 func(),	 then	 func()	 in	 class	 B	 can
override	 the	 func()	 in	 class	 A.	 As	 strange	 as	 it	 might	 seem,	 a	method	 of	 class	 A	 can	 call
another	method	in	class	A	that	in	turn	can	invoke	a	method	of	class	B	that	overrides	it.	Python
has	two	built-in	functions	that	work	with	inheritance:

*	the	isinstance()	method	checks	the	type	of	an	instance
*	the	issubclass()	method	checks	class	inheritance

For	 example,	 isinstance(myObj,	 int)	 evaluates	 to	 True	 only	 if	 myObj.__class__	 is	 int	 or	 a
subclass	of	int,	whereas	issubclass(bool,	int)	evaluates	to	True	because	bool	is	a	subclass	of	int.
On	the	other	hand,	issubclass(unicode,	str)	evaluates	to	False	because	unicode	is	not	a	subclass
of	str.

MULTIPLE	INHERITANCE
The	 previous	 section	 showed	 you	 how	 to	 work	 with	 single	 inheritance	 and	 this	 section
briefly	discusses	multiple	inheritance	in	Python.	Multiple	inheritance	means	that	a	class	can
have	more	than	one	parent	class.

If	you	do	decide	to	use	multiple	inheritance,	keep	the	following	point	in	mind.	Suppose
that	ClassC	is	a	subclass	of	ClassA	and	ClassB	as	follows:

class	ClassC(ClassA,	ClassB):

In	addition,	suppose	that	Class	A	and	Class	B	both	contain	a	function	called	func()	that	is
not	defined	in	ClassC.	Now	consider	the	following	code	snippet,	where	classC	is	an	instance	of
ClassC.

classC.func()

Since	ClassC	does	not	contain	the	definition	of	the	function	func(),	Python	searches	for	func()
in	the	parent	classes.	Since	the	search	is	performed	in	a	left-to-right	fashion,	the	preceding
code	snippet	execute	the	method	func()	that	is	defined	in	ClassA	and	not	the	method	func()	in
ClassB.

As	another	example,	suppose	that	ClassC	is	a	subclass	(from	left	to	right)	of	ClassA1,	ClassA2,
and	ClassA3	(in	this	order),	and	that	the	method	func()	is	defined	only	in	ClassA2	and	ClassA3	but
not	in	ClassA1	or	in	ClassC.	Again	consider	the	following	snippet,	where	classC	is	an	instance	of
ClassC:

classC.func()

Because	of	the	left-to-right	search	rule,	the	preceding	code	snippet	invokes	the	method
func()	in	ClassA2	and	not	the	function	func()	in	ClassA3.	Make	sure	that	you	remember	this	fact
when	you	define	classes	that	contain	more	than	one	parent	class.

As	 a	 concrete	 example,	 Listing	 5.15	 displays	 the	 contents	 of	 the	 Python	 file
MultipleInherit1.py	that	illustrates	multiple	inheritance	in	Python.

Listing	5.15:	MultipleInherit1.py
class	ClassA:
  	def	__init__(self):
    	print	'Hello	from	A'

  	def	func(self):
    	print	'Hello	again	from	A'

class	ClassB:
  	def	__init__(self):
    	print	'Hello	from	B'

  	def	func(self):
    	print	'Hello	again	from	B'

class	ClassC(ClassA,	ClassB):
  	def	__init__(self):



    	print	'Hello	from	C'

if	__name__	==	'__main__':
    instanceA	=	ClassA()
    instanceB	=	ClassB()
    instanceC	=	ClassC()

    print
    print	'instanceA:'
    instanceA.func()
    print	'instanceB:'
    instanceB.func()
    print	'instanceC:'
    instanceC.func()

Listing	5.15	contains	code	that	is	very	similar	to	the	code	in	the	previous	section,	except
that	in	this	case	ClassC	is	a	derived	class	of	the	custom	classes	ClassA	and	ClassB.	In	addition,
both	ClassA	and	ClassB	contain	a	function	func()	that	is	not	defined	in	ClassC.	The	output	from
Listing	5.15	is	here:

Hello	from	A
Hello	from	B
Hello	from	C

instanceA:
Hello	again	from	A
instanceB:
Hello	again	from	B
instanceC:
Hello	again	from	A

Now	reverse	the	order	of	the	parent	classes	in	the	definition	of	ClassC:
class	ClassC(ClassA,	ClassB):
The	only	difference	in	the	output	is	the	final	print	statement,	as	shown	here:
instanceC:
Hello	again	from	B

Although	there	is	no	reason	for	the	following	class	definition,	Python	allows	you	to	specify
multiple	occurrences	of	the	same	parent	class:

class	ClassC(ClassA,	ClassB,	ClassA,	ClassB):

POLYMORPHISM
In	 very	 simplified	 terms,	 Python	 polymorphism	 allows	 you	 to	 define	methods	 that	 “accept”
instances	 of	 different	 classes	 (as	 parameters)	 and	 yet	 perform	 the	 intended	 calculations
correctly.

As	 another	 concrete	 example,	 Listing	 5.16	 displays	 the	 contents	 of	 Polymorphism1.py	 that
defines	two	custom	Python	classes	and	a	method	that	can	be	invoked	with	instances	of	both
custom	Python	classes.

Listing	5.16:	Polymorphism1.py
class	Rect:
  	def	perimeter(self):
    	print	'Perimeter	of	a	rectangle'

class	Square:
  	def	perimeter(self):
    	print	'Perimeter	of	a	square'

def	calcPerimeter(obj):
    	obj.perimeter()

if	__name__	==	'__main__':
    instanceR	=	Rect()
    instanceS	=	Square()

    print	'instanceR:'
    calcPerimeter(instanceR)
    print	'instanceS:'
    calcPerimeter(instanceS)
Listing	5.16	starts	with	the	definition	of	the	custom	Python	classes	Rect	and	Square,	each	of

which	defines	a	perimeter()	method.	Next	the	function	calcPerimeter()	 is	defined,	which	takes
one	argument	that	can	be	an	instance	of	the	Rect	class	or	the	Square	class.

The	 final	portion	of	Listing	5.16	defines	instanceR	and	instanceS	 that	are	 instances	of	 the
custom	classes	Rect	and	Square,	respectively.	The	calcPerimeter()	method	is	invoke	with	each	of
these	instances,	and	the	correct	method	is	 invoked	in	both	cases.	The	output	from	Listing
5.16	is	here:

instanceR:



Perimeter	of	a	rectangle
instanceS:
Perimeter	of	a	square

There	 are	 several	 points	 to	 keep	 in	 mind	 when	 you	 work	 with	 polymorphism	 in	 your
custom	Python	code.	First,	other	languages	might	require	Rect	and	Square	to	be	derived	classes
of	a	common	class.	In	this	example,	squares	and	rectangles	are	also	parallelograms,	so	you
could	define	the	parent	class	PGram	that	contains	properties	of	a	parallelogram.

Second,	there	is	the	notion	of	“coding	to	an	interface,”	which	essentially	means	that	you
specify	a	base	class	as	the	argument	of	a	method	so	that	you	can	pass	in	any	derived	class
of	the	base	class.	 In	the	Java	world,	you	specify	an	 interface	as	an	argument	 to	a	method,
and	that	way	you	can	pass	in	any	concrete	class	that	implements	the	specified	interface.

A	third	point	is	that	polymorphic	behavior	in	idiomatic	Python	relies	on	“duck-typing”	that
is	described	succinctly	here:

https://en.wikipedia.org/wiki/Duck_typing

THE	PYTHON	ABC	MODULE
Although	 Python	 does	 not	 provide	 interfaces	 (such	 as	 Java)	 or	 contracts,	 the	 Python	 abc
(abstract	 base	 class)	 module	 provides	 abstract	 base	 classes	 a	 mechanism	 for	 specifying
what	methods	must	be	implemented	by	implementation	subclasses.

For	example,	 you	would	expect	 that	 the	 semantics	of	 a	 print()	method	 involve	printing
some	data,	and	not	deleting	data.	The	use	of	ABCs	provides	a	sort	of	“understanding”	about
methods	and	their	expected	behavior.	Thus,	ABCs	provide	an	intermediate	solution	between
the	free-form	of	Python	and	the	stricter	enforcement	of	statically	typed	languages.

Although	this	is	an	advanced	topic	(and	actually	beyond	the	intended	scope	of	this	book),
more	information	about	the	Python	abc	module	is	here:

http://docs.python.org/2/library/abc.html

SUMMARY
This	chapter	 introduced	you	to	some	useful	Python	 functions	 that	can	simplify	your	custom
Python	 code.	Next	 you	 learned	how	 to	 create	 your	own	custom	 Python	 classes	 in	 Python,	and
also	how	to	work	with	 linked	 lists	 in	Python.	You	also	got	an	 introduction	 to	encapsulation,
single	inheritance,	multiple	inheritance,	and	polymorphism	in	Python.



CHAPTER	6
RECURSION	AND	COMBINATORICS

This	chapter	consists	of	 two	main	sections,	 the	 first	of	which	contains	various	 Python	code
samples	 that	 illustrate	 how	 to	 use	 recursion	 in	 Python.	 In	 addition	 to	 the	 typical	 form	 of
recursion	you	will	also	learn	how	to	use	tail	recursion	in	Python.	The	other	significant	section
introduces	you	to	some	concepts	in	combinatorics,	such	as	combination	and	permutations	of
objects.

The	 first	 part	 of	 this	 chapter	 contains	 a	 gentle	 introduction	 to	 recursion	 that	 you	will
learn	through	the	Python	code	samples.	For	example,	you	will	learn	how	to	calculate	the	sum
of	an	arithmetic	series	(e.g.,	the	numbers	from	1	to	n)	as	well	as	a	geometric	series,	along
with	 how	 to	 calculate	 factorial	 values	 and	 Fibonacci	 numbers.	 In	 some	 cases,	 there	 are
closed	form	solutions	and	also	iterative	solutions	for	these	tasks.

If	you	are	new	to	recursion,	some	of	this	material	might	be	slightly	daunting,	but	don’t	be
alarmed.	Usually,	several	iterations	of	reading	the	material	and	code	samples	will	lead	to	a
better	understanding	of	recursion.

The	 second	 part	 of	 this	 chapter	 discusses	 concepts	 in	 combinatorics,	 such	 as
permutations	 and	 combinations.	 Since	 a	 detailed	 coverage	 of	 combinatorics	 can	 fill	 an
entire	 undergraduate	 course	 in	 mathematics,	 this	 section	 focuses	 on	 some	 rudimentary
concepts	in	combinatorics.

If	you	prefer,	you	can	read	the	material	regarding	combinatorics	before	the	material	for
recursion.	Perhaps	you	don’t	need	recursion	 in	your	current	tasks,	so	the	first	half	of	 this
chapter	has	limited	relevance.	However,	keep	in	mind	that	recursion	is	unavoidable	if	you
ever	need	to	work	with	algorithms	for	trees	and	graphs.	In	fact,	almost	every	algorithm	that
creates,	 updates,	 deletes	 elements	 (called	 nodes)	 in	 a	 tree	 structure	 or	 a	 graph	 involves
recursion.

WHAT	IS	RECURSION?

Recursion-based	 algorithms	 can	 provide	 very	 elegant	 solutions	 to	 tasks	 that	 would	 be
difficult	to	implement	via	iterative	algorithms.	For	some	tasks,	such	as	calculating	factorial
values,	the	recursive	solution	and	the	iterative	solution	have	comparable	code	complexity.

As	a	simple	example,	suppose	that	we	want	to	add	the	 integers	 from	1	to	n	 (inclusive),
and	 let	n	=	10	 so	 that	we	have	 a	 concrete	 example.	 If	we	denote	 S	 as	 the	 partial	 sum	of
successively	adding	consecutive	integers,	then	we	have	the	following:

S	=	1
S	=	1	+	2
S	=	1	+	2	+	3
.	.	.
S	=	1	+	2	+	3	+	.	.	.	+	10

Let’s	generalize	the	preceding	sequence	and	denote	S(n)	as	the	sum	of	the	first	n	positive
integers,	which	leads	to	the	following	relationship:

S(1)	=	1
S(n)	=	S(n-1)	+	n	for	n	>	1

With	 the	 preceding	 observations	 in	 mind,	 the	 next	 section	 contains	 code	 samples	 for
calculating	the	sum	of	the	first	n	positive	integers	using	an	iterative	approach	and	then	with
recursion.

ARITHMETIC	SERIES

This	section	shows	you	how	to	calculate	the	sum	of	a	set	of	positive	 integers,	such	as	the
numbers	from	1	to	n	inclusive.	The	first	algorithm	uses	an	iterative	approach	and	the	second
algorithm	uses	recursion.

Before	delving	into	the	code	samples,	there	is	a	simple	way	to	calculate	the	closed	form
sum	of	 the	 integers	 from	1	 to	 n	 inclusive,	which	we	will	 denote	 as	 S.	 Then	 there	 are	 two



ways	to	calculate	S,	as	shown	here:
S	=	1	+	2    	+	3    	+	.	.	.	+	(n-1)	+	n
S	=	n	+	(n-1)	+	(n-2)	+	.	.	.	+	2    	+	1

There	are	n	columns,	and	each	column	has	the	sum	equal	to	(n+1),	and	therefore	the	sum
of	the	right-side	of	the	equals	sign	is	n*(n+1).	Since	the	 left-side	of	the	equals	sign	has	the
sum	2*S,	we	have	the	following	result:

2*S	=	n*(n+1)

Divide	both	sides	by	2	and	we	get	the	well-known	formula	for	the	arithmetic	sum	of	the
first	n	positive	integers:

S	=	n*(n+1)/2

Incidentally,	the	preceding	formula	was	derived	by	a	young	student	who	was	bored	with
performing	the	calculation	manually:	that	student	was	Karl	F	Gauss	(in	third	grade).

Calculating	Arithmetic	Series	(Iterative)
Listing	6.1	displays	the	contents	of	the	arith_sum.py	that	illustrates	how	to	calculate	the	sum
of	the	numbers	from	1	to	n	inclusive	using	an	iterative	approach.

Listing	6.1:	arith_sum.py
def	arith_sum(n):
  sum	=	0
  for	i	in	range(1,n+1):
    sum	+=	i
  return	sum

max	=	20
for	j	in	range(2,max+1):
  sum	=	arith_sum(j)
  print("sum	from	1	to",j,"=",sum)

Listing	6.1	starts	with	the	function	arith_sum()	that	contains	a	loop	that	literately	adds	the
numbers	 from	 1	 to	 n.	 The	 next	 portion	 of	 Listing	 6.1	 also	 contains	 a	 loop	 that	 iterates
through	the	numbers	from	2	to	20	inclusive,	and	then	invokes	arith_sum()	with	each	value	of
the	loop	variable	to	calculate	the	sum	of	the	integers	from	1	to	that	value.	Launch	the	code
in	Listing	6.1	and	you	will	see	the	following	output:

sum	from	1	to	2	=	3
sum	from	1	to	3	=	6
sum	from	1	to	4	=	10
sum	from	1	to	5	=	15
sum	from	1	to	6	=	21
sum	from	1	to	7	=	28
sum	from	1	to	8	=	36
sum	from	1	to	9	=	45
sum	from	1	to	10	=	55
sum	from	1	to	11	=	66
sum	from	1	to	12	=	78
sum	from	1	to	13	=	91
sum	from	1	to	14	=	105
sum	from	1	to	15	=	120
sum	from	1	to	16	=	136
sum	from	1	to	17	=	153
sum	from	1	to	18	=	171
sum	from	1	to	19	=	190
sum	from	1	to	20	=	210

Modify	 the	 code	 in	 Listing	 6.1	 to	 calculate	 the	 sum	 of	 the	 squares,	 cubes,	 and	 fourth
powers	of	the	numbers	from	1	to	n,	along	with	your	own	variations	of	the	code.

Calculating	Arithmetic	Series	(Recursive)
Listing	6.2	displays	the	contents	of	the	arith_sum_recursive.py	that	illustrates	how	to	calculate
the	sum	of	the	numbers	from	1	to	n	inclusive	using	a	recursion.

Listing	6.2:	arith_sum_recursive.py
def	arith_sum(n):
  if(n	==	0):
    return	n
  else:
    return	n	+	arith_sum(n-1)

max	=	20
for	j	in	range(2,max+1):
  sum	=	arith_sum(j)
  print("sum	from	1	to",j,"=",sum)



Listing	 6.2	 starts	 with	 the	 recursive	 function	 arith_sum()	 that	 uses	 conditional	 logic	 to
return	n	if	n	equals	the	value	0	(which	is	the	terminating	case);	otherwise	the	code	returns
the	value	of	n	plus	the	value	of	arith_sum(n-1).	Launch	the	code	in	Listing	6.2	and	you	will	see
the	same	output	as	the	previous	section.

Calculating	Partial	Arithmetic	Series
Listing	6.3	displays	 the	contents	of	 the	 arith_partial_sum.py	 that	 illustrates	how	to	calculate
the	sum	of	the	numbers	from	m	to	n	inclusive,	where	m	and	n	are	two	positive	integers	such
that	m	<=	n,	using	an	iterative	approach.

Listing	6.3:	arith_partial_sum.py
def	arith_partial_sum(m,n):
  if(m	>=	n):
    return	0
  else:
    return	n*(n+1)/	-	m*(m+1)/2

max	=	20
for	j	in	range(2,max+1):
  sum	=	arith_partial_sum(j)
  print("sum	from	1	to",j,"=",sum)

Listing	6.3	is	straightforward:	The	function	arith_partial_sum()	returns	the	sum	of	squares
from	1	to	n	minus	the	sum	of	squares	from	1	to	m.	This	function	is	invoked	in	a	loop	in	the
second	part	of	Listing	6.3,	which	calculates	the	difference	of	the	sum	of	squares	from	2	to
20.	Launch	the	code	in	Listing	6.3	and	you	will	see	the	following	output:

arithmetic	sum	from	2	to	2	=	2
arithmetic	sum	from	2	to	3	=	3
arithmetic	sum	from	2	to	4	=	7
arithmetic	sum	from	2	to	5	=	12
arithmetic	sum	from	2	to	6	=	18
arithmetic	sum	from	3	to	3	=	3
arithmetic	sum	from	3	to	4	=	4
arithmetic	sum	from	3	to	5	=	9
arithmetic	sum	from	3	to	6	=	15
arithmetic	sum	from	4	to	4	=	4
arithmetic	sum	from	4	to	5	=	5
arithmetic	sum	from	4	to	6	=	11
arithmetic	sum	from	5	to	5	=	5
arithmetic	sum	from	5	to	6	=	6

Now	 that	 you	 have	 seen	 some	 examples	 involving	 arithmetic	 expressions,	 let’s	 turn	 to
geometric	series,	which	is	the	topic	of	the	next	section.

GEOMETRIC	SERIES

This	section	shows	you	how	to	calculate	the	geometric	series	of	a	set	of	positive	 integers,
such	as	 the	numbers	 from	1	 to	 n	 inclusive.	The	 first	algorithm	uses	an	 iterative	approach
and	the	second	algorithm	uses	recursion.

Before	delving	into	the	code	samples,	there	is	a	simple	way	to	calculate	the	closed	form
sum	 of	 the	 geometric	 series	 of	 integers	 from	 1	 to	 n	 inclusive,	 where	 r	 is	 the	 ratio	 of
consecutive	terms	in	the	geometric	series.	Let	S	denote	the	sum,	which	we	can	express	as
follows:

S  	=	1+	r	+	r^2	+	r^3	+	.	.	.	+	r^(n-1)	+	r^n
r*S	=    r	+	r^2	+	r^3	+	.	.	.	+	r^(n-1)	+	r^n	+	r^(n+1)

Subtract	each	term	in	the	second	row	above	from	the	corresponding	term  in	the	first
row,	and	we	have	the	following	result:

S	-	r*S	=	1	-	r^(n+1)

Factor	 S	 from	 both	 terms	 on	 the	 left	 side	 of	 the	 preceding	 equation	 and	 we	 get	 the
following	result:

S*(1	-	r)	=	1	-	r^(n+1)

Divide	both	sides	of	the	preceding	equation	by	the	term	(1-r)	to	get	the	formula	for	the
sum	of	the	geometric	series	of	the	first	n	positive	integers:

S	=	[1	-	r^(n+1)]/(1-r)

If	r	=	1	then	the	preceding	equation	returns	an	infinite	value,	which	makes	sense	because
S	is	the	sum	of	an	infinite	number	of	occurrences	of	the	number	1.

Calculating	a	Geometric	Series	(Iterative)



•
•
•
•

Listing	6.4	displays	the	contents	of	the	geom_sum.py	that	illustrates	how	to	calculate	the	sum	of
the	numbers	from	1	to	n	inclusive	using	an	iterative	approach.

Listing	6.4:	geom_sum.py
def	geom_sum(n,ratio):
  partial	=	0
  power  	=	1
  for	i	in	range(1,n+1):
    partial	+=	power
    power	*=	ratio
  return	partial

max	=	10
ratio	=	2
for	j	in	range(2,max+1):
  prod	=	geom_sum(j,ratio)
  print("geometric	sum	for	ratio=",ratio,"from	1	to",j,"=",prod)

Listing	6.4	starts	with	the	function	geom_sum()	that	contains	a	loop	that	calculates	the	sum
of	the	powers	of	the	numbers	from	1	to	n,	where	the	power	is	the	value	of	the	variable	ratio.
The	second	part	of	Listing	6.4	contains	a	loop	that	invokes	the	function	geom_sum()	with	 the
values	2,	3,	.	.	.	,	n	and	a	fixed	value	of	2	for	the	variable	ratio.	Launch	the	code	in	Listing
6.4	and	you	will	see	the	following	output:

geometric	sum	for	ratio=	2	from	1	to	2	=	3
geometric	sum	for	ratio=	2	from	1	to	3	=	7
geometric	sum	for	ratio=	2	from	1	to	4	=	15
geometric	sum	for	ratio=	2	from	1	to	5	=	31
geometric	sum	for	ratio=	2	from	1	to	6	=	63
geometric	sum	for	ratio=	2	from	1	to	7	=	127
geometric	sum	for	ratio=	2	from	1	to	8	=	255
geometric	sum	for	ratio=	2	from	1	to	9	=	511
geometric	sum	for	ratio=	2	from	1	to	10	=	1023

Calculating	Geometric	Series	(Recursive)
Listing	6.5	displays	the	contents	of	the	geom_sum_recursive.py	that	illustrates	how	to	calculate
the	sum	of	the	geometric	series	of	the	numbers	from	1	to	n	 inclusive	using	recursion.	The
following	code	sample	uses	a	technique	called	tail	recursion.

Listing	6.5:	geom_sum_recursive.py
def	geom_sum(n,ratio,term,sum):
  if(n	==	1):	#	this	is	the	terminating	condition
    return	sum
  else:
    term	*=	ratio
    sum	+=	term
    return	geom_sum(n-1,ratio,term,sum)

max	=	10
ratio	=	2
sum	=	1
term	=	1

for	j	in	range(2,max+1):
  prod	=	geom_sum(j,ratio,term,sum)
  print("geometric	sum	for	ratio=",ratio,"from	1	to",j,"=",prod)

Listing	6.5	contains	the	function	geom_sum()	that	takes	four	parameters:	n	(which	is	initially
the	number	of	terms	that	will	be	added),	ratio	(which	is	the	exponent	2	in	this	code	sample),
term	(which	is	the	intermediate	quantity	that	is	added	to	the	variable	sum),	and	the	variable
sum	that	keeps	track	of	the	sum	of	terms	(of	the	form	r^k).

As	you	can	see,	the	code	returns	the	value	1	when	n	equals	1;	otherwise,	the	values	of
term	and	sum	are	updated.	Now	let’s	look	closely	at	the	return	statement	in	the	Python	function
geom_sum()	that	recursively	invokes	the	geom_sum()	function.	First	of	all,	notice	that	n-1	(which	is
also	 shown	 in	 bold)	 is	 specified,	 whereas	 the	 value	 n	 (shown	 in	 bold)	 is	 specified	 in	 the
function	definition.

Next,	 the	 other	 parameters	 in	 the	 function	 geom_sum()	 that	 is	 invoked	 in	 the	 return
statement	 involve	 the	same	 value	 for	 the	 variable	 ratio;  a	newly	updated	value	 for	 the
variable	sum;	and	a	newly	updated	value	for	the	variable	term.

Thus,	we	have	the	following	behavior	for	the	parameters	of	the	geom_sum()	function:

n:	decreases	by	1	during	each	invocation	of	geom_sum()
ratio:	constant	value	during	each	invocation	of	geom_sum()
term:	increases	during	each	invocation	of	geom_sum()
sum:	increases	during	each	invocation	of	geom_sum()

Here	is	the	key	point:	The	recursive	invocation	of	the	function	geom_sum()	terminates	when



n	 is	 decreased	 to	 the	 value	 1,	 at	 which	 point	 the	 variable	 sum	 will	 equal	 the	 sum	 of	 a
geometric	series.

This	code	sample	in	this	section	illustrates	the	concept	of	tail	recursion,	which	 is	more
efficient	than	regular	recursion,	and	perhaps	a	little	more	intuitive	as	well.

The	second	part	of	Listing	6.5	contains	a	loop	that	invokes	the	function	geom_sum()	as	the
loop	 iterates	 from	2	 to	 max	 inclusive.	 Launch	 the	 code	 in	 Listing	 6.5	 and	 you	will	 see	 the
same	output	as	the	previous	section.

FACTORIAL	VALUES

This	section	contains	three	code	samples	for	calculating	factorial	values:	One	code	samples
uses	a	loop	and	the	other	two	code	samples	use	recursion.

As	a	reminder,	the	factorial	value	of	a	positive	integer	n	is	the	product	of	all	the	numbers
from	1	to	n	(inclusive).	Hence,	we	have	the	following	values:

Factorial(2)  =	2*1	=	2
Factorial(3)  =	3*2*1	=	6
Factorial(4)  =	4*3*2*1	=	24
Factorial(5)  =	5*4*3*2*1	=	120
Factorial(6)  =	6*5*4*3*2*1	=	720
Factorial(7)  =	7*6*5*4*3*2*1	=	5040

If	 you	 look	 at	 the	 preceding	 list	 of	 calculations,	 you	 can	 see	 some	 interesting
relationships	among	factorial	numbers:

Factorial(3)	=	3	*	Factorial(2)
Factorial(4)	=	4	*	Factorial(3)
Factorial(5)	=	5	*	Factorial(4)
Factorial(6)	=	6	*	Factorial(5)
Factorial(7)	=	7	*	Factorial(6)

Based	 on	 the	 preceding	 observations,	 it’s	 reasonably	 intuitive	 to	 infer	 the	 following
relationship	for	factorial	numbers:

Factorial(1)	=	1
Factorial(n)	=	n	*	Factorial(n-1)	for	n	>	1
Although	it	might	not	be	obvious,	the	following	is	also	true:
Factorial(0)	=	1

The	next	section	uses	the	preceding	formula	in	order	to	calculate	the	factorial	value	of
various	numbers.

Calculating	Factorial	Values	(Iterative)
Listing	6.6	displays	the	contents	of	the	Factorial1.py	that	illustrates	how	to	calculate	factorial
numbers	using	an	iterative	approach.

Listing	6.6:	Factorial1.py
def	factorial(n):
  prod	=	1
  for	i	in	range(1,n+1):
    	prod	*=	i
  return	prod

max	=	20
for	n	in	range(0,max):
  result	=	factorial(n)
  print("factorial",n,"=",result)

Listing	 6.6	 starts	 with	 the	 function	 factorial()	 that	 contains	 a	 loop	 to	 multiply	 the
numbers	from	1	to	n	and	storing	the	product	 in	the	variable	prod	whose	 initial	value	 is	1.
The	second	part	of	Listing	6.6	contains	a	loop	that	invokes	factorial()	with	the	loop	variable
that	 ranges	 from	 0	 to	 max.	 Launch	 the	 code	 in	 Listing	 6.6	 and	 you	will	 see	 the	 following
output:

factorial	0	=	1
factorial	1	=	1
factorial	2	=	2
factorial	3	=	6
factorial	4	=	24
factorial	5	=	120
factorial	6	=	720
factorial	7	=	5040
factorial	8	=	40320
factorial	9	=	362880
factorial	10	=	3628800
factorial	11	=	39916800
factorial	12	=	479001600
factorial	13	=	6227020800
factorial	14	=	87178291200



factorial	15	=	1307674368000
factorial	16	=	20922789888000
factorial	17	=	355687428096000
factorial	18	=	6402373705728000
factorial	19	=	121645100408832000

Calculating	Factorial	Values	(Recursive)
Listing	6.7	displays	the	contents	of	the	Factorial2.py	that	illustrates	how	to	calculate	factorial
values	using	recursion.	Unlike	the	earlier	recursive	example	of	calculating	factorial	values,
this	code	sample	does	not	use	tail	recursion.

Listing	6.7:	Factorial2.py
def	factorial(n):
  if(n	<=	1):
    return	1
  else:
    return	n	*	factorial(n-1)

max	=	20
for	n	in	range(0,max):
  result	=	factorial(n)
  print("factorial",n,"=",result)

Listing	 6.7	 starts	 with	 the	 function	 factorial()	 whose	 code	 is	 recursive	 (without	 tail
recursion)	instead	of	iterative.	Once	again,	notice	that	the	n	(shown	in	bold)	in	the	definition
of	 factorial()	 is	 decreased	 by	 1	 in	 the	 return	 statement.	 Consequently,	 the	 recursive
invocation	of	the	factorial()	function	will	terminate	when	n	is	decreased	to	the	value	1.

The	second	portion	of	Listing	6.7	is	identical	to	the	second	portion	of	Listing	6.6.	Launch
the	code	in	Listing	6.7	and	you	will	see	the	same	output	as	the	preceding	example.

Calculating	Factorial	Values	(Tail	Recursion)
Listing	6.8	displays	the	contents	of	the	Factorial3.py	that	illustrates	how	to	modify	Listing	6.7
to	use	tail	recursion	during	the	calculation	of	factorial	values.

Listing	6.8:	Factorial3.py
def	factorial(n,	prod):
  if(n	<=	1):
    	return	prod
  else:
    	return	factorial(n-1,	n*prod)

max	=	20
for	n	in	range(0,max):
  result	=	factorial(n,	1)
  print("factorial",n,"=",result)

Listing	6.8	starts	with	the	recursive	function	factorial()	that	uses	tail	recursion,	which	is
somewhat	analogous	to	the	tail	recursion	in	Listing	6.5.	The	second	portion	of	Listing	6.8	is
the	same	as	the	second	portion	of	Listing	6.5.	Launch	the	code	in	Listing	6.8	and	you	will
see	the	same	output	as	the	preceding	example.

FIBONACCI	NUMBERS

Fibonacci	 numbers	 are	 simple	 yet	 interesting,	 and	 also	 appear	 in	 nature	 (such	 as	 the
pattern	of	sunflower	seeds).	Here	is	the	definition	of	the	Fibonacci	sequence:

Fib(0)	=	0
Fib(1)	=	1
Fib(n)	=	Fib(n-1)+Fib(n-2)	for	n	>=	2

Note	 that	 it’s	 possible	 to	 specify	 different	 “seed”	 values	 for	 Fib(0)	 and	 Fib(1),	 but	 the
values	0	and	1	are	the	most	commonly	used	values.

Calculating	Fibonacci	Numbers	(Recursive)
Listing	 6.9	 displays	 the	 contents	 of	 the	 Fibonacci1.py	 that	 illustrates	 how	 to	 calculate
Fibonacci	numbers	using	recursion.

Listing	6.9:	Fibonacci1.py
#	very	inefficient:
def	fibonacci(n):
  if	n	<=	1:
    return	n
  else:



    return	fibonacci(n-2)	+	fibonacci(n-1)

max=20
for	i	in	range(0,max):
  fib	=	fibonacci(i)
  print("fibonacci",i,"=",fib)

Listing	6.9	starts	the	the	recursive	function	fibonacci()	that	returns	1	if	n	equals	1.	If	n	is
greater	than	1,	the	code	returns	the	sum	of	two	invocations	of	fibonacci():	the	first	with	the
value	n-2	and	the	second	invocation	with	the	value	n-1.

The	second	part	of	Listing	6.9	contains	another	loop	that	invokes	the	function	fibonacci()
with	 the	 values	 of	 the	 loop	 variable	 that	 iterates	 from	 0	 to	 max.	 Now	 launch	 the	 code	 in
Listing	6.9	and	you	will	see	the	following	output:

fibonacci	0	=	0
fibonacci	1	=	1
fibonacci	2	=	1
fibonacci	3	=	2
fibonacci	4	=	3
fibonacci	5	=	5
fibonacci	6	=	8
fibonacci	7	=	13
fibonacci	8	=	21
fibonacci	9	=	34
fibonacci	10	=	55
fibonacci	11	=	89
fibonacci	12	=	144
fibonacci	13	=	233
fibonacci	14	=	377
fibonacci	15	=	610
fibonacci	16	=	987
fibonacci	17	=	1597
fibonacci	18	=	2584
fibonacci	19	=	4181

Calculating	Fibonacci	Numbers	(Iterative)
Listing	6.10	displays	the	contents	of	Fibonacci2.py	that	illustrates	how	to	calculate	Fibonacci
numbers	using	an	iterative	solution.

Listing	6.10:	Fibonacci2.py
import	numpy	as	np

max=20
arr1	=	np.zeros(max)
arr1[0]	=	0
arr1[1]	=	1
    
for	i	in	range(2,max):
  arr1[i]	=	arr1[i-1]	+	arr1[i-2]
  print("fibonacci",i,"=",arr1[i])

Listing	 6.10	 uses	 an	 array	 to	 store	 the	 intermediate	 Fibonacci	 numbers	 as	 they	 are
calculated.	Despite	the	overhead	of	an	array,	this	code	is	much	more	efficient	than	the	code
in	Listing	6.9	because	there	is	no	recursion.	Now	launch	the	code	in	Listing	6.10	and	you
will	see	the	same	output	as	the	previous	section.

TASK:	REVERSE	AN	ARRAY	OF	STRINGS	VIA	RECURSION

Listing	 6.11	 displays	 the	 contents	 of	 the	 Python	 file	 reverse.py	 that	 illustrates	 how	 to	 use
recursion	in	order	to	reverse	a	string.

Listing	6.11:	reverse.py
import	numpy	as	np
def	reverser(str):
  	if(str	==	None	or	len(str)	==	0):
      return	str
  	print("all-but-first	chars:",str[1:])
  	return	reverser(str[1:])+list(str[0])

names	=	np.array(["Nancy",	"Dave",	"Dominic"])

for	name	in	names:
  str_list	=	list(name)
  result	=	reverser(str_list)
  print("=>	Word:	",name,"	reverse:	",result)
  print()

Listing	 6.11	 starts	 with	 the	 recursive	 function	 reverser()	 that	 invokes	 itself	 with	 a
substring	 that	 omits	 the	 first	 character,	 which	 is	 appended	 to	 the	 result	 of	 invoking
reverser()	recursively,	as	shown	here:



return	reverser(str[1:])+list(str[0])

The	second	part	of	Listing	6.11	contains	a	 loop	that	 invokes	the	reverser()	method	with
different	strings	that	belong	to	an	array.	Launch	the	code	in	Listing	6.11	and	you	will	see
the	following	output:

all-but-first	chars:	['a',	'n',	'c',	'y']
all-but-first	chars:	['n',	'c',	'y']
all-but-first	chars:	['c',	'y']
all-but-first	chars:	['y']
all-but-first	chars:	[]
=>	Word:  Nancy  reverse:  ['y',	'c',	'n',	'a',	'N']

all-but-first	chars:	['a',	'v',	'e']
all-but-first	chars:	['v',	'e']
all-but-first	chars:	['e']
all-but-first	chars:	[]
=>	Word:  Dave  reverse:  ['e',	'v',	'a',	'D']

all-but-first	chars:	['o',	'm',	'i',	'n',	'i',	'c']
all-but-first	chars:	['m',	'i',	'n',	'i',	'c']
all-but-first	chars:	['i',	'n',	'i',	'c']
all-but-first	chars:	['n',	'i',	'c']
all-but-first	chars:	['i',	'c']
all-but-first	chars:	['c']
all-but-first	chars:	[]
=>	Word:  Dominic  reverse:  ['c',	'i',	'n',	'i',	'm',	'o',	'D']

TASK:	CHECK	FOR	BALANCED	PARENTHESES
This	task	 involves	only	round	parentheses,	and	a	more	challenging	task	 involves	checking
for	 balanced	parentheses	 that	 includes	 square	brackets	 and	 curly	 braces.	Here	 are	 some
example	of	strings	that	contain	round	parentheses:

S1	=	"()()()"
S2	=	"(()()())"
S3	=	"()("
S4	=	"(())"
S5	=	"()()("

As	 you	 can	 see,	 S1,	 S3,	 and	 S4	 have	 balanced	 parentheses,	 whereas	 S2	 and	 S5	 has
unbalanced	parentheses.

Listing	 6.12	 displays	 the	 contents	 of	 the	 Python	 file	 balanced_parentheses.py	 that	 illustrates
how	to	determine	whether	or	not	a	string	consists	of	balanced	parentheses.

Listing	6.12:	balanced_parentheses.py
import	numpy	as	np
  
def	check_balanced(text):
  counter	=	0
  text_len	=	len(text)

  for	i	in	range(text_len):
    if	(text[i]	==	'('):
      counter	+=	1
    else:
      if	(text[i]	==	')'):
        counter	-=	1

    if	(counter	<	0):
      break

  if	(counter	==	0):
    print("balanced	string:",text)
  else:
    print("unbalanced	string:",text)
  print()

exprs	=	np.array(["()()()",	"(()()())","()(","(())","()()("])

for	str	in	exprs:
  check_balanced(str)

Listing	6.12	starts	with	the	iterative	function	check_balanced()	that	uses	conditional	logic	to
check	the	value	of	the	current	variable	in	the	input	string.	The	code	increments	the	variable
counter	 if	 the	 current	 character	 is	 a	 left	 parenthesis	 “(”	 ,	 and	 decrements	 the	 variable
counter	if	the	current	character	is	a	right	parentheses	“)”.	The	only	way	for	an	expression	to
consist	of	a	balanced	set	of	parentheses	is	for	counter	to	equal	0	when	the	loop	has	finished
execution.

The	second	part	of	Listing	6.12	contains	a	loop	that	invokes	the	function	check_balanced()
with	different	strings	that	are	part	of	an	array	of	strings.	Launch	the	code	 in	Listing	6.12
and	you	will	see	the	following	output:



exprs	=	np.array(["()()()",	"(()()())","()(","(())","()()("])
balanced	string:	()()()

balanced	string:	(()()())

unbalanced	string:	()(

balanced	string:	(())

unbalanced	string:	()()(

TASK:	CALCULATE	THE	NUMBER	OF	DIGITS

Listing	 6.13	 displays	 the	 contents	 of	 the	 Python	 file	 count_digits.py	 that	 illustrates	 how	 to
calculate	the	number	of	digits	in	positive	integers.

Listing	6.13:	count_digits.py
import	numpy	as	np
def	count_digits(num,	result):
  if(	num	==	0	):
    return	result
  else:
    #print("new	result:",result+1)
    #print("new	number:",int(num/10))
    return	count_digits(int(num/10),	result+1)

numbers	=	np.array([1234,	767,	1234321,	101])

for	num	in	numbers:
  result	=	count_digits(num,	0)
  print("Digits	in	",num,"	=	",result)

Listing	 6.13	 starts	 with	 the	 Python	 function	 count_digits()	 that	 recursively	 invokes	 itself
with	the	term	int(num/10),	where	num	is	 the	 input	parameter.	Moreover,	each	 invocation	of
count_digits()	increments	the	value	of	the	parameter	result.	Eventually	num	will	be	equal	to	0
(the	terminating	condition),	at	which	point	the	value	of	result	is	returned.	If	the	logic	of	this
code	is	not	clear	to	you,	try	tracing	through	the	code	with	the	numbers	5,	25,	150,	and	you
will	see	that	the	function	count_digits()	returns	the	values	1,	2,	and	3,	respectively.	Launch
the	code	in	Listing	6.13	and	you	will	see	the	following	output:

Digits	in  1234  =  4
Digits	in  767  =  3
Digits	in  1234321  =  7
Digits	in  101  =  3

TASK:	DETERMINE	IF	A	POSITIVE	INTEGER	IS	PRIME

Listing	 6.14	 displays	 the	 contents	 of	 the	 Python	 file	 check_prime.py	 that	 uses	 iteration	 to
calculate	the	number	of	digits	in	positive	integers.

Listing	6.14:	check_prime.py
import	numpy	as	np
PRIME	=	1
COMPOSITE	=	0

def	is_prime(num):
  div	=	2

  while(div*div	<	num):
  	if(	num	%	div	!=	0):
      div	+=	1
  	else:
      return	COMPOSITE
  return	PRIME

upperBound	=	20

for	num	in	range(2,	upperBound):
  result	=	is_prime(num)
  if(result	==	True):
    print(num,":	is	prime")
  else:
    print(num,":	is	not	prime")

Listing	 6.14	 starts	 with	 the	 Python	 function	 is_prime()	 that	 contains	 a	 loop	 that	 checks
whether	or	not	any	integer	in	the	range	of	2	to	sqrt(num)	divides	the	parameter	num,	and	then
returns	the	appropriate	result.

The	 second	 portion	 of	 Listing	 6.14	 contains	 a	 loop	 that	 iterates	 through	 the	 numbers
from	2	to	upperBound	(which	has	the	value	20)	to	determine	which	numbers	are	prime.	Launch



the	code	in	Listing	6.14	and	you	will	see	the	following	output:
2	:	is	prime
3	:	is	prime
4	:	is	not	prime
5	:	is	prime
6	:	is	not	prime
7	:	is	prime
8	:	is	not	prime
9	:	is	not	prime
10	:	is	not	prime
11	:	is	prime
12	:	is	not	prime
13	:	is	prime
14	:	is	not	prime
15	:	is	not	prime
16	:	is	not	prime
17	:	is	prime
18	:	is	not	prime
19	:	is	prime

TASK:	FIND	THE	PRIME	FACTORIZATION	OF	A	POSITIVE	INTEGER
Listing	6.15	displays	the	contents	of	the	Python	file	prime_divisors.py	that	illustrates	how	to	find
the	prime	divisors	of	a	positive	integer.

Listing	6.15:	prime_divisors.py
import	numpy	as	np
PRIME	=	1
COMPOSITE	=	0

def	is_prime(num):
  div	=	2

  while(div	<	num):
    if(	num	%	div	!=	0):  
      div	+=	1
    else:
      return	COMPOSITE

  #print("found	prime:",num)
  return	PRIME

def	find_prime_divisors(num):
  div	=	2
  prime_divisors	=	""

  while(div	<=	num):
    prime	=	is_prime(div)
    
    if(prime	==	True):
      #print("=>	prime	number:",div)
      if(num	%	div	==	0):
        prime_divisors	+=	"	"+str(div)
        num	=	int(num/div)
    	else:
        div	+=	1
    else:
      div	+=	1

  return	prime_divisors

upperBound	=	20

for	num	in	range(4,	upperBound):
  result	=	find_prime_divisors(num)
  print("Prime	divisors	of	",num,":",result)

Listing	 6.15	 starts	with	 the	 Python	 function	 is_prime()	 from	Listing	 6.14	 that	 determines
whether	 or	 not	 a	 positive	 integer	 is	 a	 prime	 number.	 Next,	 the	 Python	 function
find_prime_divisors()	 contains	 a	 loop	 that	 iterates	 through	 the	 integers	 from	 2	 to	 num	 that
checks	which	of	those	numbers	is	a	prime	number.

When	a	prime	number	is	found,	the	code	checks	if	that	prime	number	is	also	a	divisor	of
num:	 If	 so,	 that	prime	divisors	 is	appended	 to	 the	string	 prime_divisors	 .	The	 final	portion	of
Listing	 6.15	 returns	 the	 string	 prime_divisors	 that	 contains	 the	 prime	 factorization	 of	 the
parameter	num.	Now	launch	the	code	in	Listing	6.15	and	you	will	see	the	following	output:

Prime	divisors	of  2	:  2
Prime	divisors	of  4	:  2	2
Prime	divisors	of  5	:  5
Prime	divisors	of  6	:  2	3
Prime	divisors	of  7	:  7
Prime	divisors	of  8	:  2	2	2
Prime	divisors	of  9	:  3	3



Prime	divisors	of  10	:  2	5
Prime	divisors	of  11	:  11
Prime	divisors	of  12	:  2	2	3
Prime	divisors	of  13	:  13
Prime	divisors	of  14	:  2	7
Prime	divisors	of  15	:  3	5
Prime	divisors	of  16	:  2	2	2	2
Prime	divisors	of  17	:  17
Prime	divisors	of  18	:  2	3	3
Prime	divisors	of  19	:  19

TASK:	GOLDBACH’S	CONJECTURE

Goldbach’s	conjecture	states	 that	every	even	number	greater	 than	4	can	be	expressed	as
the	sum	of	 two	odd	prime	numbers:	Despite	 its	simplicity,	 this	conjecture	has	never	been
proven	or	disproven.	However,	we	can	write	Python	code	to	check	whether	or	not	it’s	true	for
some	small	even	numbers.

Listing	 6.16	 displays	 the	 contents	 of	 the	 Python	 file	 goldbach_conjecture.py	 that	 illustrates
how	to	determine	a	pair	of	prime	numbers	whose	sum	equals	a	given	even	number.

Listing	6.16:	goldbach_conjecture.py
import	numpy	as	np
PRIME	=	1
COMPOSITE	=	0

def	prime(num):
  div	=	2

  while(div	<	num):
  	if(	num	%	div	!=	0):
      div	+=	1
  	else:
      return	COMPOSITE
  return	PRIME

def	find_prime_factors(even_num):
  for	num	in	range(3,	int(even_num/2)):
    if(prime(num)	==	1):
      if(prime(even_num-num)	==	1):
        print(even_num	,	"	=	"	,	num	,	"+"	,	(even_num-num))

upperBound	=	30

for	num	in	range(4,	upperBound):
  find_prime_factors(num)

Listing	 6.16	 also	 starts	 with	 the	 function	 prime()	 that	 determines	 whether	 or	 not	 the
parameter	num	is	a	prime	number.	Next,	the	function	find_prime_factors()	contains	a	loop	with
the	loop	variable	num:	This	variable	iterates	from	3	to	half	the	value	of	the	parameter	even_num.
If	num	 is	a	prime	number,	then	the	conditional	 logic	 in	Listing	6.16	invokes	prime()	with	 the
number	even_num-num.

If	 both	 num	 and	 even_num	 are	 prime,	 then	 they	 are	 a	 solution	 to	 Goldbach’s	 conjecture
because	the	sum	of	these	two	numbers	equals	the	parameter	even_num.	Now	launch	the	code
in	Listing	6.16	and	you	will	see	the	following	output:

8  =  3	+	5
10  =  3	+	7
12  =  5	+	7
14  =  3	+	11
16  =  3	+	13
16  =  5	+	11
18  =  5	+	13
18  =  7	+	11
20  =  3	+	17
20  =  7	+	13
22  =  3	+	19
22  =  5	+	17
24  =  5	+	19
24  =  7	+	17
24  =  11	+	13
26  =  3	+	23
26  =  7	+	19
28  =  5	+	23
28  =  11	+	17

As	you	can	see	from	the	preceding	output,	the	numbers	16,	18,	20,	22,	26,	and	28	have
two	solutions	to	Goldbach’s	conjecture,	and	the	number	24	has	three	such	solutions.

TASK:	CALCULATE	THE	GCD	(GREATEST	COMMON	DIVISOR)

Listing	6.17	displays	the	contents	of	the	Python	file	gcd.py,	which	is	the	first	of	two	solutions
for	calculating	the	GCD	of	two	positive	integers	(both	solutions	rely	on	Euclid’s	algorithm).



Listing	6.17:	gcd.py
import	numpy	as	np
def	gcd(num1,	num2):
if(num1	%	num2	==	0):
  return	num2;
elif	(num1	<	num2):
  #print("Switching",num1,"and",num2)
  return	gcd(num2,	num1);
else:
  #print("Reducing",num1,"and",num2)
  return	gcd(num1-num2,	num2)

arr1	=	np.array([24,	36,	50,	100,	200])
arr2	=	np.array([10,	18,	11,  64,	120])

for	i	in	range(0,len(arr1)):
  num1	=	arr1[i]
  num2	=	arr2[i]
  result	=	gcd(num1,num2)
  print("The	GCD	of",num1,"and",num2,"=",result)

Listing	6.17	starts	with	the	Python	function	gcd()	that	takes	two	parameters	and	repeatedly
subtracts	 the	 smaller	 from	 the	 larger,	 and	 simultaneously	 invoking	 itself	 recursively.
Eventually	num1	%	num2	equals	zero,	at	which	point	the	GCD	equals	num2,	which	is	the	value	that
is	returned.

The	second	portion	of	Listing	6.17	contains	a	loop	that	iterates	through	the	values	of	two
arrays	of	positive	integers;	during	each	iteration,	the	function	gcd()	is	invoked	with	a	pair	of
corresponding	numbers	from	the	two	arrays.	Now	launch	the	code	in	Listing	6.17	and	you
will	see	the	following	output:

The	GCD	of	24	and	10	=	2
The	GCD	of	36	and	18	=	18
The	GCD	of	50	and	11	=	1
The	GCD	of	100	and	64	=	4
The	GCD	of	200	and	120	=	40

Listing	6.18	displays	the	contents	of	simple_gcd.py	that	is	a	more	concise	way	to	compute
the	GCD	of	two	positive	integers	(and	also	uses	recursion).

Listing	6.18:	simple_gcd.py
import	numpy	as	np

def	gcd(x1,	x2):
  if	not	x2:
    return	x1
  return	gcd(x2,	x1	%	x2)

arr1	=	np.array([10,	24,	50,	17,	100])
arr2	=	np.array([24,	10,	15,	17,	1250])

for	idx	in	range(0,len(arr1)):
  num1	=	arr1[idx]
  num2	=	arr2[idx]
  result	=	gcd(num1,num2)
  print("gcd	of",num1,"and",num2,"=",result)

Listing	6.18	 is	a	more	compact	 implementation	of	Euclid’s	algorithm	 that	achieves	 the
same	 result	 as	 Listing	 6.17.	 If	 the	 logic	 is	 unclear,	 review	 the	 details	 of	 Listing	 6.17	 to
convince	 yourself	 that	 the	 logic	 in	 both	 code	 samples	 is	 the	 same.	 Launch	 the	 code	 in
Listing	6.18	and	you	will	see	the	following	output:

gcd	of	10	and	24	=	2
gcd	of	24	and	10	=	2
gcd	of	50	and	15	=	5
gcd	of	17	and	17	=	17
gcd	of	100	and	1250	=	50

Listing	6.18	displays	the	contents	of	map_gcd.py	that	illustrates	how	to	invoke	a	recursive
function	 from	 the	 map()	 function	 that	 is	 applied	 to	 a	 list	 of	 numbers.	 Read	 the	 relevant
portion	of	Chapter	3	if	you	need	to	review	how	to	use	the	Python	map()	function.

Listing	6.18:	map_gcd.py
import	numpy	as	np

def	gcd(x,y):
    if	x	<	y:
      x,y	=	y,x
    while(	y	!=	0	):
      x,	y	=	y,	x	%	y
    return	x

x_vals	=	[24,	15,	18,	243,	37]
y_vals	=	[10,  3,	12,  81,	74]



print("x	values:",x_vals)
print("y	values:",y_vals)

gcd_vals	=	map(gcd,	x_vals,	y_vals)
gcds	=	list(gcd_vals)

print("GCD	values:")
print(gcds)

Listing	 6.18	 defines	 the	 Python	 function	 gcd()	 that	 calculate	 the	 GCD	 of	 two	 positive
integers	x	and	y.	This	function	switches	x	and	y	if	x	is	less	than	y,	followed	by	a	while	loop	that
repeatedly	performs	the	following	operation	until	y	equals	0:

      x,	y	=	y,	x	%	y

When	 y	 reaches	 the	 value	 0,	 this	 function	 returns	 the	 value	 of	 x.	 The	 next	 portion	 of
Listing	 6.18	 initializes	 the	 lists	 x_vals	 and	 y_vals	 with	 a	 set	 of	 integers	 and	 displays	 their
contents.

The	next	code	snippet	uses	the	map()	method	to	 invoke	the	gcd()	 function	with	pair-wise
values	from	the	lists	x_vals	and	y_vals,	the	result	of	which	is	assigned	to	the	variable	gcd_vals.
Next,	the	variable	gcds	is	initialized	with	the	result	of	converting	the	contents	of	gcd_vals	to	a
Python	 list,	after	which	 the	GCD	values	are	displayed.	Launch	the	code	 in	Listing	6.18	and
you	will	see	the	following	output:

x	values:	[24,	15,	18,	243,	37]
y	values:	[10,	3,	12,	81,	74]
GCD	values:
[2,	3,	6,	81,	37]

Now	 that	we	 can	 calculate	 the	GCD	 of	 two	 positive	 integers,	we	 can	 use	 this	 code	 to
easily	calculate	the	LCM	(lowest	common	multiple)	of	two	positive	integers,	as	discussed	in
the	next	section.

TASK:	CALCULATE	THE	LCM	(LOWEST	COMMON	MULTIPLE)

Listing	 6.19	 displays	 the	 contents	 of	 the	 Python	 file	 simple_lcm.py	 that	 illustrates	 how	 to
calculate	the	LCM	of	two	positive	integers.

Listing	6.19:	simple_lcm.py
import	numpy	as	np
def	gcd(x1,	x2):
  if	not	x2:
    return	x1
  return	gcd(x2,	x1	%	x2)

def	lcm(num1,	num2):
  gcd1	=	gcd(num1,	num2)
  lcm1	=	num1/gcd1*num2/gcd1

  return	lcm1

arr1	=	np.array([24,	36,	50,	100,	200])
arr2	=	np.array([10,	18,	11,  64,	120])

for	i	in	range(0,len(arr1)):
  num1	=	arr1[i]
  num2	=	arr2[i]
  result	=	lcm(num1,num2)
  print("The	LCM	of",num1,"and",num2,"=",result)

Listing	6.19	contains	the	function	gcd()	to	calculate	the	GCD	of	two	positive	integers.	The
next	function	lcm()	calculates	the	LCM	of	two	numbers	num1	and	num2	by	making	the	following
observation:

LCM(num1,	num2)	=	num1/GCD(num1,num2)*num2/GCD(num1,num2)

The	 final	 portion	 of	 Listing	 6.19	 contains	 a	 loop	 that	 iterates	 through	 two	 arrays	 of
positive	integers	to	calculate	the	LCM	of	pairs	of	integers.	Launch	the	code	in	Listing	6.19
and	you	will	see	the	following	output:

The	LCM	of	24	and	10	=	60.0
The	LCM	of	36	and	18	=	2.0
The	LCM	of	50	and	11	=	550.0
The	LCM	of	100	and	64	=	400.0
The	LCM	of	200	and	120	=	15.0

This	 concludes	 the	 portion	 of	 the	 chapter	 regarding	 recursion.	 The	 next	 section
introduces	 you	 to	 combinatorics	 (a	well-known	 branch	 of	mathematics),	 along	with	 some
code	 samples	 for	 calculating	 combinatorial	 values	 and	 the	 number	 of	 permutations	 of



objects.

WHAT	IS	COMBINATORICS?

In	simple	terms,	combinatorics	involves	finding	formulas	for	counting	the	number	of	objects
in	 a	 set.	 For	 example,	 how	 many	 different	 ways	 can	 five	 books	 can	 be	 ordered	 (i.e.,
displayed)	on	a	book	shelf?	The	answer	involves	permutations,	which	in	turn	is	a	factorial
value;	in	this	case,	the	answer	is	5!	=	120.

As	a	second	example,	suppose	how	many	different	ways	can	you	select	three	books	from
a	shelf	that	contains	five	books?	The	answer	to	this	question	involves	combinations.	Keep	in
mind	that	if	you	select	three	books	labeled	A,	B,	and	C,	then	any	permutation	of	these	three
books	is	considered	the	same	(the	set	A,	B,	and	C	and	the	set	B,	A,	and	C	are	considered	the
same	selection).

As	a	third	example,	how	many	5-digit	binary	numbers	contain	exactly	three	1	values?	The
answer	to	this	question	also	involves	calculating	a	combinatorial	value.	The	answer	is	C(5,3)
=	5!/[3!	*	2!]	=	10,	provided	that	we	allow	for	leading	zeroes.	In	fact,	this	is	also	the	answer
to	the	preceding	question	about	selecting	different	subsets	of	books.

You	can	generalize	the	previous	question	by	asking	how	many	4-digit,	5-digit,	and	6-digit
numbers	 contain	 exactly	 three	 1s?	 The	 answer	 is	 the	 sum	 of	 these	 values	 (provided	 that
leading	zeroes	are	permitted):

C(4,3)	+	C(5,3)	+	C(6,3)	=	4	+	10	+	20	=	34

Working	With	Permutations
Consider	the	following	task:	Given	six	books,	how	many	ways	can	you	display	them	side-by-
side?	The	possibilities	are	listed	here:

position	#1:	six	choices

position	#2:	five	choices

position	#3:	four	choices

position	#4:	three	choices

position	#5:	two	choices

position	#6:	one	choice

The	 answer	 is	 6x5x4x3x2x1	=	6!	=	720.	 In	 general,	 if	 you	have	n	 books,	 there	 are	 n!
different	ways	that	you	can	order	them	(i.e.,	display	them	side-by-side).

Working	With	Combinations
Let’s	look	at	a	slightly	different	question:	How	many	ways	can	you	select	three	books	from
those	six	books?	Here’s	the	first	approximation:

position	#1:	six	choices

position	#2:	five	choices

position	#3:	four	choices

Since	the	number	of	books	in	any	position	is	independent	of	the	other	positions,	the	first
answer	 might	 be	 6x5x4	 =	 120.	 However,	 this	 answer	 is	 incorrect	 because	 it	 includes
different	orderings	of	three	books,	but	the	sequence	of	books	(A,B,C)	is	the	same	as	(B,A,C)
and	every	other	recording	of	the	letters	A,	B,	and	C.

As	a	concrete	example,	suppose	that	the	books	are	labeled	sequentially	as	book	#1,	book
#2,	.	.	.	,	book	#6,	and	suppose	that	you	also	select	book	#1,	book	#2,	and	book	#3	(i.e.,	the
first	three	books).	Here	list	a	list	of	all	the	different	orderings	of	those	three	books:

123
132
213
231
312
321

The	number	of	different	orderings	of	three	books	is	3x2x1	=	3!	=	6.	However,	from	the
standpoint	 of	 purely	 selecting	 three	 books,	 we	 must	 treat	 all	 six	 orderings	 as	 the	 same.
Hence	the	correct	answer	is	6x5x4/[3x2x1]	=	120/3!	=	120/6	=	20.

Now	 let’s	 multiply	 the	 numerator	 and	 the	 denominator	 by	 3x2x1,	 which	 gives	 us	 this
number:	6x5x4x3x2x1/[3x2x1	*	3x2x1]	=	6!/[3!	*	3!]



If	we	perform	the	preceding	task	of	selecting	three	books	from	eight	books	instead	of	six
books,	we	get	this	result:

8x7x6/[3x2x1]	=	8x7x6x5x4x3x2x1/[3x2x1	*	5x4x3x2x1]	=	8!/[3!	*	5!]

Suppose	you	select	12	books	from	a	set	of	30	books.	The	number	of	ways	that	this	can	be
done	is	shown	here:

30x29x28x...x19/[12x11x...x2x1]
=	30x29x28x...x19x18x17x16x...x2x1/[12x11x...x2x1	*	18x17x16x...x2x1]
=	30!/[12!	*	18!]

The	general	formula	for	calculating	the	number	of	ways	to	select	k	books	from	n	books	is
n!/[k!	*	(n-k)!],	which	is	denoted	by	the	term	C(n,k).	Incidentally,	if	we	replace	k	by	n-k	in	the
preceding	formula	we	get	this	result:

n!/[(n-k)!	*	(n-(n-k))!]	=	n!/[(n-k)!	*	k)!]	=	C(n,k)

Notice	that	the	left-side	of	the	preceding	snippet	equals	C(n,n-k),	and	therefore	we	have
shown	that	C(n,n-k)	=	C(n,k)

TASK:	CALCULATE	THE	SUM	OF	BINOMIAL	COEFFICIENTS
Recall	 from	 the	 previous	 section	 that	 the	 value	 of	 the	 binomial	 coefficient	 C(n,k)	 can	 be
computed	as	follows:

C(n,k)	=  n!/[k!	*	(n-k)!]

If	n	is	a	positive	integer,	the	following	is	true	(details	are	in	the	next	section):
2**n	=	C(n,0)+C(n,1)+C(n,2)+.	.	.	+C(n,n-1)+C(n,n)

Listing	6.20	displays	the	contents	of	the	Python	file	sum_binomial.py	that	calculates	the	sum
of	a	set	of	binomial	coefficients.

Listing	6.20:	sum_binomial.py
import	numpy	as	np

def	factorial(num):
  fact	=	1
  for	i	in	range(0,num):
    fact	*=	(i+1)
  return	int(fact)

def	binom_coefficient(n,k):
  global	fact_values
  coeff	=	fact_values[n]/[fact_values[k]	*	fact_values[n-k]]
  #print("calculated	coeff:",coeff)
  return	int(coeff)

def	sum_binomials(exp):
  binomials	=	np.array([]).astype(int)
  coeff_sum	=	0
  for	num	in	range(0,exp+1):
    coeff_value	=	binom_coefficient(exp,num)
    #print("n:",exp-2,"k:",num,"found	coeff_value:",coeff_value)
    coeff_sum	+=	coeff_value
  
  print("sum	of	binomial	coefficients	for",exp,"=",int(coeff_sum))

exponent	=	12
#	populate	an	array	with	factorial	values:
fact_values	=	np.array([]).astype(int)
for	j	in	range(0,exponent):
  fact	=	factorial(j)
  fact_values	=	np.append(fact_values,fact)

for	exp	in	range(1,exponent-1):
  sum_binomials(exp)

Listing	 6.20	 starts	 with	 the	 function	 factorial()	 to	 calculate	 the	 factorial	 value	 of	 a
positive	 integer	 (whose	 code	 you	 saw	 earlier	 in	 this	 chapter).	 Next,	 the	 Python	 function
binom_coefficient()	 calculates	 the	 binomial	 of	 two	 integers	whose	 formula	was	 derived	 in	 a
previous	section.

The	third	function	is	sum_binomials()	that	calculate	the	sum	of	a	range	of	binomial	values	by
invoking	 the	 function	 binom_coefficient(),	 where	 the	 latter	 invokes	 the	 function	 factorial().
Now	launch	the	code	in	Listing	6.20	and	you	will	see	the	following	output:

sum	of	binomial	coefficients	for	1	=	2
sum	of	binomial	coefficients	for	2	=	4
sum	of	binomial	coefficients	for	3	=	8
sum	of	binomial	coefficients	for	4	=	16
sum	of	binomial	coefficients	for	5	=	32



sum	of	binomial	coefficients	for	6	=	64
sum	of	binomial	coefficients	for	7	=	128
sum	of	binomial	coefficients	for	8	=	256
sum	of	binomial	coefficients	for	9	=	512
sum	of	binomial	coefficients	for	10	=	1024

THE	NUMBER	OF	SUBSETS	OF	A	FINITE	SET

In	the	preceding	section,	if	we	allow	k	to	vary	from	0	to	n	inclusive,	then	we	are	effectively
looking	at	all	possible	subsets	of	a	set	of	n	elements,	and	the	number	of	such	sets	equals	2^n.
We	can	derive	the	preceding	result	in	two	ways.

Solution	#1:
The	first	way	is	the	shortest	explanation	(and	might	seem	like	clever	hand	waving)	that

involves	visualizing	a	row	of	n	books.	In	order	to	find	every	possible	subset	of	those	n	books,
we	need	only	consider	 that	 there	are	 two	actions	 for	 the	 first	position:	Either	 the	book	 is
selected	or	it	is	not	selected.

Similarly,	 there	 are	 two	 actions	 for	 the	 second	 position:	 either	 the	 second	 book	 is
selected	or	it	is	not	selected.	In	fact,	for	every	book	in	the	set	of	n	books	there	are	the	same
two	 choices.	 Keeping	 in	mind	 that	 the	 selection	 (or	 not)	 of	 a	 book	 in	 a	 given	 position	 is
independent	of	 the	 selection	of	 the	books	 in	every	other	position,	 the	number	of	possible
choices	equals	2x2x...x2	(n	times)	=	2^n.

Solution	#2:

Recall	the	following	formulas	from	algebra:
(x+y)^2	=	x^2	+	2*x*y	+	y^2
        =	C(2,0)*x^2	+	C(2,1)*x*y	+	C(2,2)*y^2

(x+y)^3	=	x^3	+	4*x^2*y	+	6*x^x*y^2	+	4*x*y^2	+	y^3
=	C(3,0)*x^3	+	C(3,0)*x^2*y	+	C(3,0)*x^x*y^2	+	C(3,0)*x*y^2	+	C(3,0)*y^3

In	general,	we	have	the	following	formula:
            n
(x+y)^n	=  SUM	C(n,k)*x^k*y^(n-k)
          	k=0
Now	set	x=y=1	in	the	preceding	formula	and	we	get	the	following	result:
        n
2^n	=  SUM	C(n,k)
      	k=0

The	right-side	of	the	preceding	formula	is	the	sum	of	the	number	of	all	possible	subsets
of	a	set	of	n	elements,	which	the	left	side	shows	is	equal	to	2^n.

SUMMARY
This	chapter	started	with	an	introduction	to	recursion,	along	with	various	code	samples	that
involve	 recursion,	 such	 as	 calculating	 factorial	 values,	 Fibonacci	 numbers,	 the	 sum	of	 an
arithmetic	series,	the	sum	of	a	geometric	series,	the	GCD	of	a	pair	of	positive	integers,	and
the	LCM	of	a	pair	of	positive	integers.

Finally,	you	learned	about	concepts	in	combinatorics,	and	how	to	derive	the	formula	for
the	number	of	permutations	and	the	number	of	combinations	of	sets	of	objects.



APPENDIX

INTRODUCTION	TO	PANDAS

This	appendix	introduces	you	to	Pandas	and	provides	code	samples	that	illustrate	some	of	its
useful	features.	If	you	are	familiar	with	these	topics,	skim	through	the	material	and	peruse
the	code	samples,	just	in	case	they	contain	information	that	is	new	to	you.

The	 first	 part	 of	 this	 appendix	 contains	 a	 brief	 introduction	 to	 Pandas.	 This	 section
contains	code	samples	that	illustrate	some	features	of	data	frames	and	a	brief	discussion	of
series,	which	are	two	of	the	main	features	of	Pandas.

The	 second	 part	 of	 this	 appendix	 discusses	 various	 types	 of	 data	 frames	 that	 you	 can
create,	 such	 as	 numeric	 and	 Boolean	 data	 frames.	 In	 addition,	 we	 discuss	 examples	 of
creating	data	frames	with	NumPy	functions	and	​random	numbers.

NOTE
Several	code	samples	in	this	chapter	reference	the	NumPy	library	for	working	with	arrays	and
generating	random	numbers,	which	you	can	learn	from	online	articles.

WHAT	IS	PANDAS?

Pandas	 is	 a	 Python	 library	 that	 is	 compatible	 with	 other	 Python	 libraries,	 such	 as	 NumPy	 and
Matplotlib.	 Install	Pandas	 by	opening	a	command	shell	 and	 invoking	 this	 command	 for	 Python
3.x:

pip3	install	pandas

In	many	ways,	the	semantics	of	the	APIs	in	the	Pandas	library	are	similar	to	a	spreadsheet,
along	with	support	for	xsl,	xml,	html,	and	csv	 file	 types.	Pandas	provides	a	data	 type	called	a
data	frame	(similar	to	a	Python	dictionary)	with	an	extremely	powerful	functionality.

Pandas	data	frames	support	a	variety	of	input	types,	such	as	ndarray,	list,	dict,	or	series.
The	data	type	series	is	another	mechanism	for	managing	data.	In	addition	to	performing

an	 online	 search	 for	 more	 details	 regarding	 Series,	 the	 following	 article	 contains	 a	 good
introduction:

https://towardsdatascience.com/20-examples-to-master-pandas-series-bc4c68200324

Pandas	Options	and	Settings
You	can	change	the	default	values	of	environment	variables,	an	example	of	which	is	shown
below:

import	pandas	as	pd

display_settings	=	{
    'max_columns':	8,
    'expand_frame_repr':	True,  #	Wrap	to	multiple	pages
    'max_rows':	20,
    'precision':	3,
    'show_dimensions':	True
}

for	op,	value	in	display_settings.items():
pd.set_option("display.{}".format(op),	value)

Include	 the	 preceding	 code	 block	 in	 your	 own	 code	 if	 you	 want	 Pandas	 to	 display	 a
maximum	 of	 20	 rows	 and	 8	 columns,	 and	 floating	 point	 numbers	 displayed	 with	 three
decimal	 places.	 Set	 expand_frame_rep	 to	 True	 if	 you	 want	 the	 output	 to	 “wrap	 around”	 to
multiple	pages.	The	preceding	for	loop	iterates	through	display_settings	and	sets	the	options
equal	to	their	corresponding	values.

In	 addition,	 the	 following	 code	 snippet	 displays	 all	 Pandas	 options	 and	 their	 current
values	in	your	code:

print(pd.describe_option())

There	are	various	other	operations	 that	you	can	perform	with	options	and	 their	values
(such	as	the	pd.reset()	method	for	resetting	values),	as	described	in	the	Pandas	user	guide:



•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•

https://pandas.pydata.org/pandas-docs/stable/user_guide/options.html

Pandas	Data	Frames
In	 simplified	 terms,	 a	 Pandas	 data	 frame	 is	 a	 two-dimensional	 data	 structure,	 and	 it’s
convenient	to	think	of	the	data	structure	in	terms	of	rows	and	columns.	Data	frames	can	be
labeled	 (rows	as	well	as	columns),	and	 the	columns	can	contain	different	data	 types.	The
source	of	the	dataset	for	a	Pandas	data	frame	can	be	a	data	file,	a	database	table,	and	a	Web
service.	The	data	frame	features	include

data	frame	methods
data	frame	statistics
grouping,	pivoting,	and	reshaping
handle	missing	data
join	data	frames

The	code	samples	in	this	appendix	show	you	almost	all	the	features	in	the	preceding	list.

Data	Frames	and	Data	Cleaning	Tasks
The	 specific	 tasks	 that	 you	 need	 to	 perform	 depend	 on	 the	 structure	 and	 contents	 of	 a
dataset.	 In	general,	 you	will	perform	a	workflow	with	 the	 following	steps,	not	necessarily
always	 in	 this	 order	 (and	 some	 might	 be	 optional).	 All	 of	 the	 following	 steps	 can	 be
performed	with	a	Pandas	data	frame:

Read	data	into	a	data	frame
Display	top	of	data	frame
Display	column	data	types
Display	missing	values
Replace	NA	with	a	value
Iterate	through	the	columns
Statistics	for	each	column
Find	missing	values
Total	missing	values
Percentage	of	missing	values
Sort	table	values
Print	summary	information
Columns	with	>	50%	missing
Rename	columns

This	appendix	contains	sections	that	illustrate	how	to	perform	many	of	the	steps	in	the
preceding	list.

Alternatives	to	Pandas
Before	delving	into	the	code	samples,	there	are	alternatives	to	Pandas	that	offer	very	useful
features,	some	of	which	are	shown	in	the	following	list:

PySpark	(for	large	datasets)
Dask	(for	distributed	processing)
Modin	(faster	performance)
Datatable	(R	data.table	for	Python)

The	inclusion	of	these	alternatives	is	not	intended	to	diminish	Pandas.	Indeed,	you	might
not	 need	 any	 of	 the	 functionality	 in	 the	 preceding	 list.	 However,	 you	 might	 need	 such
functionality	in	the	future,	so	it’s	worthwhile	for	you	to	know	about	these	alternatives	now
(and	there	may	be	even	more	powerful	alternatives	at	some	point	in	the	future).

A	PANDAS	DATA	FRAME	WITH	A	NUMPY	EXAMPLE

Listing	 A.1	 shows	 the	 content	 of	 pandas_df.py	 that	 illustrates	 how	 to	 define	 several	 data
frames	and	display	their	contents.

Listing	A.1:	pandas_df.py
import	pandas	as	pd
import	numpy	as	np

myvector1	=	np.array([1,2,3,4,5])



print("myvector1:")
print(myvector1)
print()

mydf1	=	pd.Data	frame(myvector1)
print("mydf1:")
print(mydf1)
print()

myvector2	=	np.array([i	for	i	in	range(1,6)])
print("myvector2:")
print(myvector2)
print()

mydf2	=	pd.Data	frame(myvector2)
print("mydf2:")
print(mydf2)
print()

myarray	=	np.array([[10,30,20],	[50,40,60],[1000,2000,3000]])
print("myarray:")
print(myarray)
print()

mydf3	=	pd.Data	frame(myarray)
print("mydf3:")
print(mydf3)
print()

Listing	 A.1	 starts	 with	 standard	 import	 statements	 for	 Pandas	 and	 NumPy,	 followed	 by	 the
definition	of	two	one-dimensional	NumPy	arrays	and	a	two-dimensional	NumPy	array.	Each	NumPy
variable	is	followed	by	a	corresponding	Pandas	data	frame	(mydf1,	mydf2,	and	mydf3).	Launch	the
code	in	Listing	A.1	to	see	the	following	output,	and	you	can	compare	the	NumPy	arrays	with
the	Pandas	data	frames:

myvector1:
[1	2	3	4	5]

mydf1:
  	0
0  1
1  2
2  3
3  4
4  5

myvector2:
[1	2	3	4	5]

mydf2:
  	0
0  1
1  2
2  3
3  4
4  5

myarray:
[[  10  	30  	20]
[  50  	40  	60]
[1000	2000	3000]]

mydf3:
      0    	1    	2
0    10    30    20
1    50    40    60
2  1000  2000  3000

By	contrast,	the	following	code	block	illustrates	how	to	define	two	Pandas	Series	 that	are
part	of	the	definition	of	a	Pandas	data	frame:

names	=	pd.Series(['SF',	'San	Jose',	'Sacramento'])
sizes	=	pd.Series([852469,	1015785,	485199])
df	=	pd.Data	frame({	'Cities':	names,	'Size':	sizes	})
print(df)

Create	a	Python	file	with	the	preceding	code	(along	with	the	required	import	statement)	and
when	you	launch	that	code,	you	will	see	the	following	output:

    City	name    sizes
0          SF  	852469
1    San	Jose  1015785
2  Sacramento  	485199

DESCRIBING	A	PANDAS	DATA	FRAME



Listing	A.2	shows	the	content	of	pandas_df_describe.py,	which	illustrates	how	to	define	a	Pandas
data	frame	that	contains	a	3×3	NumPy	array	of	integer	values,	where	the	rows	and	columns	of
the	data	frame	are	labeled.	Other	aspects	of	the	data	frame	are	also	displayed.

Listing	A.2:	pandas_df_describe.py
import	numpy	as	np
import	pandas	as	pd

myarray	=	np.array([[10,30,20],	[50,40,60],[1000,2000,3000]])

rownames	=	['apples',	'oranges',	'beer']
colnames	=	['January',	'February',	'March']

mydf	=	pd.Data	frame(myarray,	index=rownames,	columns=colnames)
print("contents	of	df:")
print(mydf)
print()

print("contents	of	January:")
print(mydf['January'])
print()

print("Number	of	Rows:")
print(mydf.shape[0])
print()

print("Number	of	Columns:")
print(mydf.shape[1])
print()

print("Number	of	Rows	and	Columns:")
print(mydf.shape)
print()

print("Column	Names:")
print(mydf.columns)
print()

print("Column	types:")
print(mydf.dtypes)
print()

print("Description:")
print(mydf.describe())
print()

Listing	A.2	 starts	 with	 two	 standard	 import	 statements	 followed	 by	 the	 variable	 myarray,
which	is	a	3×3	NumPy	array	of	numbers.	The	variables	rownames	and	colnames	provide	names	for
the	 rows	and	columns,	 respectively,	 of	 the	 Pandas	 data	 frame	 mydf,	which	 is	 initialized	 as	 a
Pandas	data	frame	with	the	specified	data	source	(i.e.,	myarray).

The	first	portion	of	the	following	output	requires	a	single	print()	statement	(that	simply
displays	the	contents	of	mydf).	The	second	portion	of	the	output	is	generated	by	invoking	the
describe()	method	that	is	available	for	any	Pandas	data	frame.	The	describe()	method	is	useful:
You	will	see	various	statistical	quantities,	such	as	the	mean,	standard	deviation	minimum,
and	maximum	performed	by	columns	(not	rows),	along	with	values	for	the	25th,	50th,	and
75th	percentiles.	The	output	of	Listing	A.2	is	here:

contents	of	df:
        	January  February  March
apples        10        30    	20
oranges      	50        40    	60
beer        1000      2000  	3000

contents	of	January:
apples      	10
oranges      50
beer      	1000
Name:	January,	dtype:	int64

Number	of	Rows:
3

Number	of	Columns:
3

Number	of	Rows	and	Columns:
(3,	3)

Column	Names:
Index(['January',	'February',	'March'],	dtype='object')

Column	types:



January    	int64
February    int64
March      	int64
dtype:	object

Description:
          	January    	February        March
count    	3.000000    	3.000000    	3.000000
mean    353.333333  	690.000000  1026.666667
std    	560.386771  1134.504297  1709.073823
min      10.000000    30.000000    20.000000
25%      30.000000    35.000000    40.000000
50%      50.000000    40.000000    60.000000
75%    	525.000000  1020.000000  1530.000000
max    1000.000000  2000.000000  3000.000000

PANDAS	BOOLEAN	DATA	FRAMES

Pandas	supports	Boolean	operations	on	data	frames,	such	as	the	logical	OR,	the	logical	AND,	and
the	 logical	 negation	 of	 a	 pair	 of	 Data	 frames.	 Listing	 A.3	 shows	 the	 content	 of
pandas_boolean_df.py	that	illustrates	how	to	define	a	Pandas	data	frame	whose	rows	and	columns
are	Boolean	values.

Listing	A.3:	pandas_boolean_df.py
import	pandas	as	pd

df1	=	pd.Data	frame({'a':	[1,	0,	1],	'b':	[0,	1,	1]	},	dtype=bool)
df2	=	pd.Data	frame({'a':	[0,	1,	1],	'b':	[1,	1,	0]	},	dtype=bool)

print("df1	&	df2:")
print(df1	&	df2)

print("df1	|	df2:")
print(df1	|	df2)

print("df1	^	df2:")
print(df1	^	df2)

Listing	A.3	initializes	the	data	frames	df1	and	df2,	and	then	computes	df1	&	df2,	df1	|	df2,	and
df1	 ^	 df2,	 which	 represent	 the	 logical	 AND,	 the	 logical	 OR,	 and	 the	 logical	 negation,
respectively,	of	df1	and	df2.	The	output	from	launching	the	code	in	Listing	A.3	is	as	follows:

df1	&	df2:
      	a      b
0  False  False
1  False  	True
2  	True  False
df1	|	df2:
      a    	b
0  True  True
1  True  True
2  True  True
df1	^	df2:
      	a      b
0  	True  	True
1  	True  False
2  False  	True

Transposing	a	Pandas	Data	Frame
The	T	attribute	(as	well	as	the	transpose	function)	enables	you	to	generate	the	transpose	of
a	Pandas	 data	 frame,	 similar	 to	 the	 NumPy	ndarray.	 The	 transpose	 operation	 switches	 rows	 to
columns	and	columns	to	rows.	For	example,	the	following	code	snippet	defines	a	Pandas	data
frame	df1	and	then	displays	the	transpose	of	df1:

df1	=	pd.Data	frame({'a':	[1,	0,	1],	'b':	[0,	1,	1]	},	dtype=int)

print("df1.T:")
print(df1.T)

The	output	of	the	preceding	code	snippet	is	here:
df1.T:
  	0  1  2
a  1  0  1
b  0  1  1

The	following	code	snippet	defines	Pandas	data	frames	df1	and	df2	and	then	displays	their
sum:

df1	=	pd.Data	frame({'a'	:	[1,	0,	1],	'b'	:	[0,	1,	1]	},	dtype=int)
df2	=	pd.Data	frame({'a'	:	[3,	3,	3],	'b'	:	[5,	5,	5]	},	dtype=int)



print("df1	+	df2:")
print(df1	+	df2)

The	output	is	here:
df1	+	df2:
  	a  b
0  4  5
1  3  6
2  4  6

PANDAS	DATA	FRAMES	AND	RANDOM	NUMBERS
Listing	A.4	shows	the	content	of	pandas_random_df.py	that	illustrates	how	to	create	a	Pandas	data
frame	with	random	integers.

Listing	A.4:	pandas_random_df.py
import	pandas	as	pd
import	numpy	as	np

df	=	pd.Data	frame(np.random.randint(1,	5,	size=(5,	2)),	columns=['a','b'])
df	=	df.append(df.agg(['sum',	'mean']))

print("Contents	of	data	frame:")
print(df)

Listing	A.4	defines	the	Pandas	data	frame	df	that	consists	of	five	rows	and	two	columns	of
random	integers	between	1	and	5.	Notice	that	the	columns	of	df	are	labeled	“a”	and	“b.”	In
addition,	the	next	code	snippet	appends	two	rows	consisting	of	the	sum	and	the	mean	of	the
numbers	in	both	columns.	The	output	of	Listing	A.4	is	here:

a    b
0      1.0  2.0
1      1.0  1.0
2      4.0  3.0
3      3.0  1.0
4      1.0  2.0
sum  	10.0  9.0
mean  	2.0  1.8

Listing	A.5	shows	the	content	of	pandas_combine_df.py	that	illustrates	how	to	combine	Pandas
data	frames.

Listing	A.5:	pandas_combine_df.py
import	pandas	as	pd
import	numpy	as	np

df	=	pd.Data	frame({'foo1'	:	np.random.randn(5),
                    'foo2'	:	np.random.randn(5)})

print("contents	of	df:")
print(df)

print("contents	of	foo1:")
print(df.foo1)

print("contents	of	foo2:")
print(df.foo2)

Listing	A.5	defines	 the	Pandas	data	 frame	df	 that	 consists	of	 five	 rows	and	 two	columns
(labeled	“foo1”	 and	 “foo2”)	 of	 random	 real	 numbers	 between	0	 and	5.	 The	 next	 portion	 of
Listing	A.5	shows	the	content	of	df	and	foo1.	The	output	of	Listing	A.5	is	as	follows:

contents	of	df:
      	foo1      foo2
0  0.274680	_0.848669
1	_0.399771	_0.814679
2  0.454443	_0.363392
3  0.473753  0.550849
4	_0.211783	_0.015014
contents	of	foo1:
0    0.256773
1    1.204322
2    1.040515
3  	_0.518414
4    0.634141
Name:	foo1,	dtype:	float64
contents	of	foo2:
0  	_2.506550
1  	_0.896516
2  	_0.222923
3    0.934574
4    0.527033



Name:	foo2,	dtype:	float64

READING	CSV	FILES	IN	PANDAS

Pandas	 provides	 the	 read_csv()	 method	 for	 reading	 the	 contents	 of	 CSV	 files.	 For	 example,
Listing	 A.6	 shows	 the	 contents	 of	 sometext.csv	 that	 contain	 labeled	 data	 (spam	 or	 ham),	 and
Listing	A.7	shows	the	contents	of	read_csv_file.py	that	illustrate	how	to	read	the	contents	of	a
CSV	file.

Listing	A.6:	sometext.csv
type    text
ham    	I'm	telling	the	truth
spam    What	a	deal	such	a	deal!
spam    Free	vacation	for	your	family
ham    	Thank	you	for	your	help
spam    Spring	break	next	week!
ham    	I	received	the	documents
spam    One	million	dollars	for	you
ham    	My	wife	got	covid19
spam    You	might	have	won	the	prize
ham    	Everyone	is	in	good	health

Listing	A.7:	read_csv_file.py
import	pandas	as	pd
import	numpy	as	np

df	=	pd.read_csv('sometext.csv',	delimiter='\t')

print("=>	First	five	rows:")
print(df.head(5))

Listing	A.7	reads	the	contents	of	sometext.csv,	whose	columns	are	separated	by	a	tab	(“\t”)
delimiter.	Launch	the	code	in	Listing	A.7	to	see	the	following	output:

=>	First	five	rows:
  	type                          text
0  	ham         	I'm	telling	the	truth
1  spam     	What	a	deal	such	a	deal!
2  spam  Free	vacation	for	your	family
3  	ham        Thank	you	for	your	help
4  spam        Spring	break	next	week!

The	default	value	for	the	head()	method	is	5,	but	you	can	display	the	first	n	rows	of	a	data
frame	df	with	the	code	snippet	df.head(n).

Specifying	a	Separator	and	Column	Sets	in	Text	Files
The	previous	section	showed	you	how	to	use	the	delimiter	attribute	to	specify	the	delimiter	in
a	text	file.	You	can	also	use	the	sep	parameter	specifies	a	different	separator.	In	addition,	you
can	 assign	 the	 names	 parameter	 the	 column	 names	 in	 the	 data	 that	 you	 want	 to	 read.	 An
example	of	using	delimiter	and	sep	is	here:

df2	=	pd.read_csv("data.csv",sep="|",
                  names=["Name","Surname","Height","Weight"])

Pandas	 also	 provides	 the	 read_table()	 method	 for	 reading	 the	 contents	 of	 CSV	 files,	 which
uses	the	same	syntax	as	the	read_csv()	method.

Specifying	an	Index	in	Text	Files
Suppose	that	you	know	that	a	particular	column	in	a	text	file	contains	the	index	value	for
the	rows	in	the	text	file.	For	example,	a	text	file	that	contains	the	data	in	a	relational	table
would	typically	contain	an	index	column.

Fortunately,	 Pandas	 allows	 you	 to	 specify	 the	 kth	 column	 as	 the	 index	 in	 a	 text	 file,	 as
shown	here:

df	=	pd.read_csv('myfile.csv',	index_col=k)

THE	LOC()	AND	ILOC()	METHODS	IN	PANDAS

If	you	want	to	display	the	contents	of	a	record	in	a	Pandas	data	frame,	specify	the	index	of	the
row	 in	 the	 loc()	 method.	 For	 example,	 the	 following	 code	 snippet	 displays	 the	 data	 by
feature	name	in	a	data	frame	df:

df.loc[feature_name]

Select	the	first	row	of	the	“height”	column	in	the	data	frame:



df.loc([0],	['height'])

The	 following	code	snippet	uses	 the	iloc()	 function	 to	display	 the	 first	eight	 records	of
the	name	column	with	this	code	snippet:

df.iloc[0:8]['name']

CONVERTING	CATEGORICAL	DATA	TO	NUMERIC	DATA
One	common	 task	 in	machine	 learning	 involves	converting	a	 feature	containing	character
data	 into	 a	 feature	 that	 contains	 numeric	 data.	 Listing	 A.8	 shows	 the	 contents	 of
cat2numeric.py	that	illustrate	how	to	replace	a	text	field	with	a	corresponding	numeric	field.

Listing	A.8:	cat2numeric.py
import	pandas	as	pd
import	numpy	as	np

df	=	pd.read_csv('sometext.csv',	delimiter='\t')

print("=>	First	five	rows	(before):")
print(df.head(5))
print("-------------------------")
print()

#	map	ham/spam	to	0/1	values:
df['type']	=	df['type'].map(	{'ham':0	,	'spam':1}	)

print("=>	First	five	rows	(after):")
print(df.head(5))
print("-------------------------")

Listing	A.8	initializes	the	data	frame	df	with	the	contents	of	the	csv	file	sometext.csv,	and
then	 displays	 the	 contents	 of	 the	 first	 five	 rows	 by	 invoking	 df.head(5),	 which	 is	 also	 the
default	number	of	rows	to	display.

The	next	code	snippet	in	Listing	A.8	invokes	the	map()	method	to	replace	occurrences	of
ham	with	0	and	replace	occurrences	of	spam	with	1	in	the	​column	labeled	type,	as	shown	here:

df['type']	=	df['type'].map(	{'ham':0	,	'spam':1}	)

The	 last	portion	of	Listing	A.8	 invokes	 the	 head()	method	again	 to	display	 the	 first	 five
rows	of	the	dataset	after	having	renamed	the	contents	of	the	column	type.	Launch	the	code
in	Listing	A.8	to	see	the	following	output:

=>	First	five	rows	(before):
  	type                          text
0  	ham         	I'm	telling	the	truth
1  spam     	What	a	deal	such	a	deal!
2  spam  Free	vacation	for	your	family
3  	ham        Thank	you	for	your	help
4  spam        Spring	break	next	week!
-------------------------

=>	First	five	rows	(after):
  	type                          text
0    	0         	I'm	telling	the	truth
1    	1     	What	a	deal	such	a	deal!
2    	1  Free	vacation	for	your	family
3    	0        Thank	you	for	your	help
4    	1        Spring	break	next	week!

-------------------------

As	another	example,	Listing	A.9	shows	the	contents	of	shirts.csv	and	Listing	A.10	shows
the	 contents	 of	 shirts.py.	 These	 examples	 illustrate	 four	 techniques	 for	 converting
categorical	data	into	numeric	data.

Listing	A.9:	shirts.csv
type,ssize
shirt,xxlarge
shirt,xxlarge
shirt,xlarge
shirt,xlarge
shirt,xlarge
shirt,large
shirt,medium
shirt,small
shirt,small
shirt,xsmall
shirt,xsmall
shirt,xsmall

Listing	A.10:	shirts.py
import	pandas	as	pd



shirts	=	pd.read_csv("shirts.csv")
print("shirts	before:")
print(shirts)
print()

#	TECHNIQUE	#1:
#shirts.loc[shirts['ssize']=='xxlarge','size']	=	4
#shirts.loc[shirts['ssize']=='xlarge',	'size']	=	4
#shirts.loc[shirts['ssize']=='large',  'size']	=	3
#shirts.loc[shirts['ssize']=='medium',	'size']	=	2
#shirts.loc[shirts['ssize']=='small',  'size']	=	1
#shirts.loc[shirts['ssize']=='xsmall',	'size']	=	1

#	TECHNIQUE	#2:
#shirts['ssize'].replace('xxlarge',	4,	inplace=True)
#shirts['ssize'].replace('xlarge',  4,	inplace=True)
#shirts['ssize'].replace('large',  	3,	inplace=True)
#shirts['ssize'].replace('medium',  2,	inplace=True)
#shirts['ssize'].replace('small',  	1,	inplace=True)
#shirts['ssize'].replace('xsmall',  1,	inplace=True)

#	TECHNIQUE	#3:
#shirts['ssize']	=	shirts['ssize'].apply({'xxlarge':4,	'xlarge':4,	'large':3,	'medium':2,	'small':1,
'xsmall':1}.get)

#	TECHNIQUE	#4:
shirts['ssize']	=	shirts['ssize'].replace(regex='xlarge',	value=4)
shirts['ssize']	=	shirts['ssize'].replace(regex='large',  value=3)
shirts['ssize']	=	shirts['ssize'].replace(regex='medium',	value=2)
shirts['ssize']	=	shirts['ssize'].replace(regex='small',  value=1)

print("shirts	after:")
print(shirts)

Listing	A.10	starts	with	a	code	block	of	six	statements	that	uses	direct	comparison	with
strings	to	make	numeric	replacements.	For	example,	the	following	code	snippet	replaces	all
occurrences	of	the	string	xxlarge	with	the	value	4:

shirts.loc[shirts['ssize']=='xxlarge','size']	=	4

The	second	code	block	consists	of	six	statements	that	use	the	replace()	method	to	perform
the	same	updates,	an	example	of	which	is	shown	here:

shirts['ssize'].replace('xxlarge',	4,	inplace=True)

The	 third	 code	 block	 consists	 of	 a	 single	 statement	 that	 uses	 the	 apply()	 method	 to
perform	the	same	updates,	as	shown	here:

shirts['ssize']	 =	 shirts['ssize'].apply({'xxlarge':4,	 'xlarge':4,	 'large':3,	 'medium':2,	 'small':1,
'xsmall':1}.get)

The	 fourth	 code	 block	 consists	 of	 four	 statements	 that	 use	 regular	 expressions	 to
perform	the	same	updates,	an	example	of	which	is	shown	here:

shirts['ssize']	=	shirts['ssize'].replace(regex='xlarge',	value=4)

Since	 the	 preceding	 code	 snippet	 matches	 xxlarge	 as	 well	 as	 xlarge,	 we	 only	 need	 four
statements	 instead	of	 six	 statements.	 (If	 you	are	unfamiliar	with	 regular	expressions,	 you
can	read	online	tutorials.)	Launch	the	code	in	Listing	A.10	to	see	the	following	output:

shirts	before
    	type    	size
0  	shirt  xxlarge
1  	shirt  xxlarge
2  	shirt  	xlarge
3  	shirt  	xlarge
4  	shirt  	xlarge
5  	shirt    large
6  	shirt  	medium
7  	shirt    small
8  	shirt    small
9  	shirt  	xsmall
10  shirt  	xsmall
11  shirt  	xsmall

shirts	after:
    	type  size
0  	shirt    	4
1  	shirt    	4
2  	shirt    	4
3  	shirt    	4
4  	shirt    	4
5  	shirt    	3
6  	shirt    	2
7  	shirt    	1
8  	shirt    	1
9  	shirt    	1



10  shirt    	1
11  shirt    	1

MATCHING	AND	SPLITTING	STRINGS	IN	PANDAS

Listing	 A.11	 shows	 the	 content	 of	 shirts_str.py,	 which	 illustrates	 how	 to	 match	 a	 column
value	with	an	initial	string	and	how	to	split	a	column	value	based	on	a	letter.

Listing	A.11:	shirts_str.py
import	pandas	as	pd

shirts	=	pd.read_csv("shirts2.csv")
print("shirts:")
print(shirts)
print()

print("shirts	starting	with	xl:")
print(shirts[shirts.ssize.str.startswith('xl')])
print()

print("Exclude	'xlarge'	shirts:")
print(shirts[shirts['ssize']	!=	'xlarge'])
print()

print("first	three	letters:")
shirts['sub1']	=	shirts['ssize'].str[:3]
print(shirts)
print()

print("split	ssize	on	letter	'a':")
shirts['sub2']	=	shirts['ssize'].str.split('a')
print(shirts)
print()

print("Rows	3	through	5	and	column	2:")
print(shirts.iloc[2:5,	2])
print()

Listing	A.11	 initializes	 the	data	 frame	df	with	 the	contents	of	 the	csv	 file	shirts.csv,	and
then	displays	the	contents	of	df.	The	next	code	snippet	in	Listing	A.11	uses	the	startswith()
method	 to	match	 the	shirt	 types	 that	 start	with	 the	 letters	 xl,	 followed	by	a	 code	 snippet
that	displays	the	shorts	whose	size	does	not	equal	the	string	xlarge.

The	next	code	snippet	uses	the	construct	str[:3]	 to	display	the	first	 three	 letters	of	 the
shirt	types,	followed	by	a	code	snippet	that	uses	the	split()	method	to	split	the	shirt	types
based	on	the	letter	“a.”

The	 final	 code	 snippet	 invokes	 iloc[2:5,2]	 to	 display	 the	 contents	 of	 rows	 3	 through	 5
inclusive,	and	only	the	second	column.	The	output	of	Listing	A.11	is	as	follows:

shirts:
    	type    ssize
0  	shirt  xxlarge
1  	shirt  xxlarge
2  	shirt  	xlarge
3  	shirt  	xlarge
4  	shirt  	xlarge
5  	shirt    large
6  	shirt  	medium
7  	shirt    small
8  	shirt    small
9  	shirt  	xsmall
10  shirt  	xsmall
11  shirt  	xsmall

shirts	starting	with	xl:
    type  	ssize
2  shirt  xlarge
3  shirt  xlarge
4  shirt  xlarge

Exclude	'xlarge'	shirts:
    	type    ssize
0  	shirt  xxlarge
1  	shirt  xxlarge
5  	shirt    large
6  	shirt  	medium
7  	shirt    small
8  	shirt    small
9  	shirt  	xsmall
10  shirt  	xsmall
11  shirt  	xsmall

first	three	letters:
    	type    ssize	sub1
0  	shirt  xxlarge  xxl



1  	shirt  xxlarge  xxl
2  	shirt  	xlarge  xla
3  	shirt  	xlarge  xla
4  	shirt  	xlarge  xla
5  	shirt    large  lar
6  	shirt  	medium  med
7  	shirt    small  sma
8  	shirt    small  sma
9  	shirt  	xsmall  xsm
10  shirt  	xsmall  xsm
11  shirt  	xsmall  xsm

split	ssize	on	letter	'a':
    	type    ssize	sub1        sub2
0  	shirt  xxlarge  xxl  [xxl,	rge]
1  	shirt  xxlarge  xxl  [xxl,	rge]
2  	shirt  	xlarge  xla  	[xl,	rge]
3  	shirt  	xlarge  xla  	[xl,	rge]
4  	shirt  	xlarge  xla  	[xl,	rge]
5  	shirt    large  lar    [l,	rge]
6  	shirt  	medium  med    [medium]
7  	shirt    small  sma    [sm,	ll]
8  	shirt    small  sma    [sm,	ll]
9  	shirt  	xsmall  xsm  	[xsm,	ll]
10  shirt  	xsmall  xsm  	[xsm,	ll]
11  shirt  	xsmall  xsm  	[xsm,	ll]

Rows	3	through	5	and	column	2:
2    xlarge
3    xlarge
4    xlarge
Name:	ssize,	dtype:	object

CONVERTING	STRINGS	TO	DATES	IN	PANDAS

Listing	A.12	shows	the	content	of	string2date.py,	which	illustrates	how	to	convert	strings	to
date	formats.

Listing	A.12:	string2date.py
import	pandas	as	pd

bdates1	=	{'strdates':  ['20210413','20210813','20211225'],
          	'people':	['Sally','Steve','Sarah']
          }

df1	=	pd.Data	frame(bdates1,	columns	=	['strdates','people'])
df1['dates']	=	pd.to_datetime(df1['strdates'],	format='%Y%m%d')
print("=>	Contents	of	data	frame	df1:")
print(df1)
print()
print(df1.dtypes)
print()

bdates2	=	{'strdates':	['13Apr2021','08Aug2021','25D	ec2021'],
'people':	['Sally','Steve','Sarah']
          }

df2	=	pd.Data	frame(bdates2,	columns	=	['strdates','people'])
df2['dates']	=	pd.to_datetime(df2['strdates'],	format='%d%b%Y')
print("=>	Contents	of	data	frame	df2:")
print(df2)
print()

print(df2.dtypes)
print()

Listing	A.12	initializes	the	data	frame	df1	with	the	contents	of	bdates1,	and	then	converts
the	 strdates	 column	 to	 dates	 using	 the	 %Y%m%d	 format.	 The	 next	 portion	 of	 Listing	 A.12
initializes	 the	 data	 frame	 df2	 with	 the	 contents	 of	 bdates2,	 and	 then	 converts	 the	 strdates
column	to	dates	using	the	%d%b%Y	format.	Launch	the	code	in	Listing	A.12	to	see	the	following
output:

=>	Contents	of	data	frame	df1:
  	strdates	people      dates
0  20210413  Sally	2021-04-13
1  20210813  Steve	2021-08-13
2  20211225  Sarah	2021-12-25

strdates            object
people              object
dates      	datetime64[ns]
dtype:	object

=>	Contents	of	data	frame	df2:
    strdates	people      dates



0  13Apr2021  Sally	2021-04-13
1  08Aug2021  Steve	2021-08-08
2  25Dec2021  Sarah	2021-12-25

strdates            object
people              object
dates      	datetime64[ns]
dtype:	object

WORKING	WITH	DATE	RANGES	IN	PANDAS

Listing	 A.13	 shows	 the	 content	 of	 pand_parse_dates.py	 that	 shows	 how	 to	 work	 with	 date
ranges	in	a	CSV	file.

Listing	A.13:	pand_parse_dates.py
import	pandas	as	pd

df	=	pd.read_csv('multiple_dates.csv',	parse_dates=['dates'])

print("df:")
print(df)
print()

df	=	df.set_index(['dates'])
start_d	=	"2021-04-30"
end_d  	=	"2021-08-31"

print("DATES	BETWEEN",start_d,"AND",end_d,":")
print(df.loc[start_d:end_d])
print()

print("DATES	BEFORE",start_d,":")
print(df.loc[df.index	<	start_d])

years	=	['2020','2021','2022']
for	year	in	years:
  year_sum	=	df.loc[year].sum()[0]
  print("SUM	OF	VALUES	FOR	YEAR",year,":",year_sum)

Listing	 A.13	 starts	 by	 initializing	 the	 variable	 df	 with	 the	 contents	 of	 the	 CSV	 file
multiple_dates.csv	 and	 then	 displaying	 its	 contents.	 The	 next	 code	 snippet	 sets	 the	 dates
column	as	the	index	column	and	then	initializes	the	variable	start_d	and	end_d	that	contain	a
start	date	and	an	end	date,	respectively.

The	next	portion	of	Listing	A.13	displays	the	dates	between	start_d	and	end_d,	and	then	the
list	of	dates	 that	precede	start_d.	The	 final	code	block	 iterates	 through	a	 list	of	years	and
then	calculates	the	sum	of	the	numbers	in	the	values	field	for	each	year	in	the	list.	Launch
the	code	in	Listing	A.13	to	see	the	following	output:

df:
        dates  values
0  2020-01-31    40.0
1  2020-02-28    45.0
2  2020-03-31    56.0
3  2021-04-30    	NaN
4  2021-05-31    	NaN
5  2021-06-30  	140.0
6  2021-07-31    95.0
7  2022-08-31    40.0
8  2022-09-30    55.0
9  2022-10-31    	NaN
10	2022-11-15    65.0

DATES	BETWEEN	2021-04-30	AND	2021-08-31	:
            values
dates            
2021-04-30    	NaN
2021-05-31    	NaN
2021-06-30  	140.0
2021-07-31    95.0

DATES	BEFORE	2021-04-30	:
            values
dates            
2020-01-31    40.0
2020-02-28    45.0
2020-03-31    56.0

SUM	OF	VALUES	FOR	YEAR	2020	:	141.0
SUM	OF	VALUES	FOR	YEAR	2021	:	235.0
SUM	OF	VALUES	FOR	YEAR	2022	:	160.0

DETECTING	MISSING	DATES	IN	PANDAS



Listing	A.14	shows	the	contents	of	pandas_missing_dates.py	 that	 shows	how	 to	detect	missing
date	values	in	a	CSV	file.

Listing	A.14:	pandas_missing_dates.py
import	pandas	as	pd

#	A	data	frame	from	a	dictionary	of	lists
data	=	{'Date':	['2021-01-18',	'2021-01-20',	'2021-01-21',	'2021-01-24'],
        'Name':	['Joe',	'John',	'Jane',	'Jim']}
df	=	pd.Data	frame(data)

#	Setting	the	Date	values	as	index:
df	=	df.set_index('Date')

#	to_datetime()	converts	string	format	to	a	DateTime	object:
df.index	=	pd.to_datetime(df.index)

start_d="2021-01-18"
end_d="2021-01-25"

#	display	dates	that	are	not	in	the	sequence:
print("MISSING	DATES	BETWEEN",start_d,"and",end_d,":")
dates	=	pd.date_range(start=start_d,	end=end_d).difference(df.index)

for	date	in	dates:
  print("date:",date)
print()

Listing	A.14	 initializes	 the	dictionary	data	with	a	 list	of	values	 for	 the	Date	 field	and	the
Name	field,	after	which	the	variable	df	is	initialized	as	a	data	frame	whose	contents	are	from
the	data	variable.

The	next	code	snippet	sets	the	Date	field	as	the	index	of	the	data	frame	df,	after	which	the
string-based	dates	are	converted	to	DateTime	objects.	Another	pair	of	code	snippets	initialize
the	variable	start_d	and	end_d	with	a	start	date	and	an	end	date,	respectively.

The	final	portion	of	Listing	A.14	initializes	the	variable	dates	with	the	list	of	missing	dates
between  start_d	 and	 end_d,	 after	 which	 the	 contents	 of	 dates	 are	 displayed.	 Launch	 the
code	in	Listing	A.14	to	see	the	following	output:

MISSING	DATES	BETWEEN	2021-01-18	and	2021-01-25	:
date:	2022-01-19	00:00:00
date:	2022-01-22	00:00:00
date:	2022-01-23	00:00:00
date:	2022-01-25	00:00:00

INTERPOLATING	MISSING	DATES	IN	PANDAS

Listing	A.15	shows	the	contents	of	missing_dates.csv	and	Listing	A.16	shows	the	contents	of
pandas_interpolate.py	 that	 shows	how	 to	 replace	 NaN	 values	with	 interpolated	values	 that	 are
calculated	in	several	ways.

Listing	A.15:	missing_dates.csv
"dates","values"
2021-01-31,40
2021-02-28,45
2021-03-31,56
2021-04-30,NaN
2021-05-31,NaN
2021-06-30,140
2021-07-31,95
2021-08-31,40
2021-09-30,55
2021-10-31,NaN
2021-11-15,65

Notice	the	value	140	(shown	in	bold)	in	Listing	A.15:	This	value	is	an	outlier,	which	will
affect	the	calculation	of	the	interpolated	values,	and	potentially	generate	additional	outliers.

Listing	A.16:	pandas_interpolate.py
import	pandas	as	pd
df	=	pd.read_csv("missing_dates.csv")

#	fill	NaN	values	with	linear	interpolation:
df1	=	df.interpolate()

#	fill	NaN	values	with	quadratic	polynomial	interpolation:
df2	=	df.interpolate(method='polynomial',	order=2)

#	fill	NaN	values	with	cubic	polynomial	interpolation:
df3	=	df.interpolate(method='polynomial',	order=3)



print("original	data	frame:")
print(df)
print()
print("linear	interpolation:")
print(df1)
print()
print("quadratic	interpolation:")
print(df2)
print()
print("cubic	interpolation:")
print(df3)
print()

Listing	 A.16	 initializes	 df	 with	 the	 contents	 of	 the	 CSV	 file	 missing_dates.csv	 and	 then
initializes	 the	 three	 data	 frames	 df1,	df2,	and	df3	 that	 are	 based	 on	 linear,	 quadratic,	 and
cubic	 interpolation,	 respectively,	 via	 the	 interpolate()	 method.	 Launch	 the	 code	 in	 Listing
A.16	to	see	the	following	output:

original	data	frame:
        	dates  values
0  	2021-01-31    40.0
1  	2021-02-28    45.0
2  	2021-03-31    56.0
3  	2021-04-30    	NaN
4  	2021-05-31    	NaN
5  	2021-06-30  	140.0
6  	2021-07-31    95.0
7  	2021-08-31    40.0
8  	2021-09-30    55.0
9  	2021-10-31    	NaN
10  2021-11-15    65.0

linear	interpolation:
        	dates  values
0  	2021-01-31    40.0
1  	2021-02-28    45.0
2  	2021-03-31    56.0
3  	2021-04-30    84.0
4  	2021-05-31  	112.0
5  	2021-06-30  	140.0
6  	2021-07-31    95.0
7  	2021-08-31    40.0
8  	2021-09-30    55.0
9  	2021-10-31    60.0
10  2021-11-15    65.0

quadratic	interpolation:
        	dates      values
0  	2021-01-31  	40.000000
1  	2021-02-28  	45.000000
2  	2021-03-31  	56.000000
3  	2021-04-30  	88.682998
4  	2021-05-31  136.002883
5  	2021-06-30  140.000000
6  	2021-07-31  	95.000000
7  	2021-08-31  	40.000000
8  	2021-09-30  	55.000000
9  	2021-10-31  	68.162292
10  2021-11-15  	65.000000

cubic	interpolation:
        	dates      values
0  	2021-01-31  	40.000000
1  	2021-02-28  	45.000000
2  	2021-03-31  	56.000000
3  	2021-04-30  	92.748096
4  	2021-05-31  132.055687
5  	2021-06-30  140.000000
6  	2021-07-31  	95.000000
7  	2021-08-31  	40.000000
8  	2021-09-30  	55.000000
9  	2021-10-31  	91.479905
10  2021-11-15  	65.000000

OTHER	OPERATIONS	WITH	DATES	IN	PANDAS
Listing	A.17	shows	the	contents	of	pandas_misc1.py	that	shows	how	to	extract	a	 list	of	years
from	a	column	in	a	data	frame.

Listing	A.17:	pandas_misc1.py
import	pandas	as	pd
import	numpy	as	np

df	=	pd.read_csv('multiple_dates.csv',	parse_dates=['dates'])
print("df:")
print(df)
print()



year_list	=	df['dates']

arr1	=	np.array([])
for	long_year	in	year_list:
  year	=	str(long_year)
  short_year	=	year[0:4]
  arr1	=	np.append(arr1,short_year)

unique_years	=	set(arr1)
print("unique_years:")
print(unique_years)
print()

unique_arr	=	np.array(pd.Data	frame.from_dict(unique_years))
print("unique_arr:")
print(unique_arr)
print()

Listing	 A.17	 initializes	 df	 with	 the	 contents	 of	 the	 CSV	 file	 multiple_dates.csv	 and	 then
displays	 its	 contents.	 The	 next	 portion	 of	 Listing	 A.17	 initializes	 year_list	 with	 the	 dates
column	of	df.

The	 next	 code	 block	 contains	 a	 loop	 that	 iterates	 through	 the	 elements	 in	 year_list,
extracts	 the	 first	 four	 characters	 (i.e.,	 the	 year	 value),	 and	appends	 that	 substring	 to	 the
NumPy	 array	 arr1.	 The	 final	 code	 block	 initializes	 the	 variable	 unique_arr	 as	 a	 Numpy	 array
consisting	of	the	unique	years	in	the	dictionary	unique_years.	Launch	the	code	in	Listing	A.17
to	see	the	following	output:

df:
        dates  values
0  2020-01-31    40.0
1  2020-02-28    45.0
2  2020-03-31    56.0
3  2021-04-30    	NaN
4  2021-05-31    	NaN
5  2021-06-30  	140.0
6  2021-07-31    95.0
7  2022-08-31    40.0
8  2022-09-30    55.0
9  2022-10-31    	NaN
10	2022-11-15    65.0

unique_years:
{'2022',	'2020',	'2021'}

unique_arr:
[['2022']
['2020']
['2021']]

Listing	A.18	shows	the	contents	of	pandas_misc2.py	 that	shows	how	to	iterate	through	the
rows	of	a	data	frame.	Keep	in	mind	that	row-wise	iteration	is	not	recommended	because	it
can	result	in	performance	issues	in	larger	datasets.

Listing	A.18:	pandas_misc2.py
import	pandas	as	pd

df	=	pd.read_csv('multiple_dates.csv',	parse_dates=['dates'])

print("df:")
print(df)
print()

print("=>	ITERATE	THROUGH	THE	ROWS:")
for	idx,row	in	df.iterrows():
  print("idx:",idx,"	year:",row['dates'])
print()

Listing	A.18	initializes	the	Pandas	data	frame	df,	prints	its	contents,	and	then	processes	the
rows	 of	 df	 in	 a	 loop.	 During	 each	 iteration,	 the	 current	 index	 and	 row	 contents	 are
displayed.	Launch	the	code	in	Listing	A.18	to	see	the	following	output:

df:
        dates  values
0  2020-01-31    40.0
1  2020-02-28    45.0
2  2020-03-31    56.0
3  2021-04-30    	NaN
4  2021-05-31    	NaN
5  2021-06-30  	140.0
6  2021-07-31    95.0
7  2022-08-31    40.0
8  2022-09-30    55.0
9  2022-10-31    	NaN
10	2022-11-15    65.0



=>	ITERATE	THROUGH	THE	ROWS:
idx:	0  	year:	2020-01-31	00:00:00
idx:	1  	year:	2020-02-28	00:00:00
idx:	2  	year:	2020-03-31	00:00:00
idx:	3  	year:	2021-04-30	00:00:00
idx:	4  	year:	2021-05-31	00:00:00
idx:	5  	year:	2021-06-30	00:00:00
idx:	6  	year:	2021-07-31	00:00:00
idx:	7  	year:	2022-08-31	00:00:00
idx:	8  	year:	2022-09-30	00:00:00
idx:	9  	year:	2022-10-31	00:00:00
idx:	10  year:	2022-11-15	00:00:00

Listing	A.19	shows	the	contents	of	pandas_misc3.py	that	shows	how	to	display	a	weekly	set
of	dates	that	are	between	a	start	date	and	an	end	date.

Listing	A.19:	pandas_misc3.py
import	pandas	as	pd

start_d="01/02/2022"
end_d="12/02/2022"
weekly_dates=pd.date_range(start=start_d,	end=end_d,	freq='W')

print("Weekly	dates	from",start_d,"to",end_d,":")
print(weekly_dates)

Listing	A.19	starts	with	initializing	the	variable	start_d	and	end_d	that	contain	a	start	date
and	 an	 end	 date,	 respectively,	 and	 then	 initializes	 the	 variable	 weekly_dates	 with	 a	 list	 of
weekly	dates	between	the	start	date	and	the	end	date.	Launch	the	code	in	Listing	A.19	to
see	the	following	output:

Weekly	dates	from	01/02/2022	to	12/02/2022	:
DatetimeIndex(['2022-01-02',	'2022-01-09',	'2022-01-16',	'2022-01-23',
                  	'2022-01-30',	'2022-02-06',	'2022-02-13',	'2022-02-20',
                  	'2022-02-27',	'2022-03-06',	'2022-03-13',	'2022-03-20',
                  	'2022-03-27',	'2022-04-03',	'2022-04-10',	'2022-04-17',
                  	'2022-04-24',	'2022-05-01',	'2022-05-08',	'2022-05-15',
                  	'2022-05-22',	'2022-05-29',	'2022-06-05',	'2022-06-12',
                  	'2022-06-19',	'2022-06-26',	'2022-07-03',	'2022-07-10',
                  	'2022-07-17',	'2022-07-24',	'2022-07-31',	'2022-08-07',
                  	'2022-08-14',	'2022-08-21',	'2022-08-28',	'2022-09-04',
                  	'2022-09-11',	'2022-09-18',	'2022-09-25',	'2022-10-02',
                  	'2022-10-09',	'2022-10-16',	'2022-10-23',	'2022-10-30',
              '2022-11-06',	'2022-11-13',	'2022-11-20',	'2022-11-27'],
              dtype='datetime64[ns]',	freq='W-SUN')

MERGING	AND	SPLITTING	COLUMNS	IN	PANDAS

Listing	 A.20	 shows	 the	 contents	 of	 employees.csv	 and	 Listing	 A.21	 shows	 the	 contents	 of
emp_merge_split.py.	These	examples	illustrate	how	to	merge	columns	and	split	columns	of	a	CSV
file.

Listing	A.20:	employees.csv
name,year,month
Jane-Smith,2015,Aug
Dave-Smith,2020,Jan
Jane-Jones,2018,Dec
Jane-Stone,2017,Feb
Dave-Stone,2014,Apr
Mark-Aster,,Oct
Jane-Jones,NaN,Jun

Listing	A.21:	emp_merge_split.py
import	pandas	as	pd

emps	=	pd.read_csv("employees.csv")
print("emps:")
print(emps)
print()

emps['year']  =	emps['year'].astype(str)
emps['month']	=	emps['month'].astype(str)

#	separate	column	for	first	name	and	for	last	name:
emps['fname'],emps['lname']	=	emps['name'].str.split("-",1).str

#	concatenate	year	and	month	with	a	"#"	symbol:
emps['hdate1']	=	emps['year'].astype(str)+"#"+emps['month'].astype(str)

#	concatenate	year	and	month	with	a	"-"	symbol:
emps['hdate2']	=	emps[['year','month']].agg('-'.join,	axis=1)



print(emps)
print()

Listing	A.21	initializes	the	data	frame	df	with	the	contents	of	the	CSV	file	employees.csv,	and
then	displays	the	contents	of	df.	The	next	pair	of	code	snippets	invoke	the	astype()	method	to
convert	the	contents	of	the	year	and	month	columns	to	strings.

The	next	code	snippet	in	Listing	A.21	uses	the	split()	method	to	split	the	name	column	into
the	columns	fname	and	lname	that	contain	the	first	name	and	last	name,	respectively,	of	each
employee’s	name:

emps['fname'],emps['lname']	=	emps['name'].str.split("-",1).str

The	next	code	snippet	concatenates	the	contents	of	the	year	and	month	string	with	a	“#”
character	to	create	a	new	column	called	hdate1:

emps['hdate1']	=	emps['year'].astype(str)+"#"+emps['month'].astype(str)

The	final	code	snippet	concatenates	the	contents	of	the	year	and	month	string	with	a	“-”	to
create	a	new	column	called	hdate2,	as	shown	here:

emps['hdate2']	=	emps[['year','month']].agg('-'.join,	axis=1)

Launch	the	code	in	Listing	A.21	to	see	the	following	output:
emps:
        	name    year	month
0  Jane-Smith  2015.0  	Aug
1  Dave-Smith  2020.0  	Jan
2  Jane-Jones  2018.0  	Dec
3  Jane-Stone  2017.0  	Feb
4  Dave-Stone  2014.0  	Apr
5  Mark-Aster    	NaN  	Oct
6  Jane-Jones    	NaN  	Jun

    	name      	year        month	fname	lname    	hdate1    	hdate2
0  Jane-Smith  2015.0  	Aug  Jane  Smith  2015.0#Aug  2015.0-Aug
1  Dave-Smith  2020.0  	Jan  Dave  Smith  2020.0#Jan  2020.0-Jan
2  Jane-Jones  2018.0  	Dec  Jane  Jones  2018.0#Dec  2018.0-Dec
3  Jane-Stone  2017.0  	Feb  Jane  Stone  2017.0#Feb  2017.0-Feb
4  Dave-Stone  2014.0  	Apr  Dave  Stone  2014.0#Apr  2014.0-Apr
5  Mark-Aster    	nan  	Oct  Mark  Aster    	nan#Oct    	nan-Oct
6  Jane-Jones    	nan  	Jun  Jane  Jones    	nan#Jun    	nan-Jun

There	is	one	other	detail	regarding	the	following	commented	out	code	snippet:

#emps['fname'],emps['lname']	=	emps['name'].str.split("-",1).str

The	 following	deprecation	message	 is	 displayed	 if	 you	uncomment	 the	 preceding	 code
snippet:

#FutureWarning:	Columnar	iteration	over	characters
#will	be	deprecated	in	future	releases.

READING	HTML	WEB	PAGES	IN	PANDAS
Listing	A.22	displays	the	contents	of	the	HTML	Web	page	abc.html,	and	Listing	A.23	shows
the	contents	of	read_html_page.py	 that	 illustrates	how	to	read	 the	contents	of	an	HTML	Web
page	from	Pandas.	Note	that	this	code	will	only	work	with	Web	pages	that	contain	at	least	one
HTML	<table>	element.

Listing	A.22:	abc.html
<html>
<head>
</head>
<body>
  <table>
    <tr>
      <td>hello	from	abc.html!</td>
    </tr>
  </table>
</body>
</html>

Listing	A.23:	read_html_page.py
import	pandas	as	pd

file_name="abc.html"
with	open(file_name,	"r")	as	f:
  dfs	=	pd.read_html(f.read())
  
print("Contents	of	HTML	Table(s)	in	the	HTML	Web	Page:")
print(dfs)

Listing	A.23	starts	with	an	import	statement,	followed	by	initializing	the	variable	file_name



to	abc.html	that	is	displayed	in	Listing	A.22.	The	next	code	snippet	initializes	the	variable	dfs
as	a	data	frame	with	the	contents	of	the	HTML	Web	page	abc.html.	The	final	portion	of	Listing
A.19	displays	the	contents	of	the	data	frame	dsf.	Launch	the	code	in	Listing	A.23	to	see	the
following	output:

Contents	of	HTML	Table(s)	in	the	HTML	Web	Page:
[                      0
0  hello	from	abc.html!]

For	more	information	about	the	Pandas	read_html()	method,	navigate	to	this	URL:
https://pandas.pydata.org/pandas-docs/stable/reference/api/

SAVING	A	PANDAS	DATA	FRAME	AS	AN	HTML	WEB	PAGE
Listing	A.24	shows	the	contents	of	read_html_page.py	that	illustrates	how	to	read	the	contents
of	an	HTML	Web	page	from	Pandas.	Note	that	this	code	will	only	work	with	Web	pages	that
contain	at	least	one	HTML	<table>	element.

Listing	A.24:	read_html_page.py
import	pandas	as	pd

emps	=	pd.read_csv("employees.csv")
print("emps:")
print(emps)
print()

emps['year']  =	emps['year'].astype(str)
emps['month']	=	emps['month'].astype(str)

#	separate	column	for	first	name	and	for	last	name:
emps['fname'],emps['lname']	=	emps['name'].str.split("-",1).str

#	concatenate	year	and	month	with	a	"#"	symbol:
emps['hdate1']	=	emps['year'].astype(str)+"#"+emps['month'].astype(str)

#	concatenate	year	and	month	with	a	"-"	symbol:
emps['hdate2']	=	emps[['year','month']].agg('-'.join,	axis=1)

print(emps)
print()

html	=	emps.to_html()
print("Data	frame	as	an	HTML	Web	Page:")
print(html)

Listing	A.24	populates	 the	data	 frame	 temps	with	 the	 contents	 of	 employees.csv,	 and	 then
converts	 the	 year	 and	 month	 attributes	 to	 type	 string.	 The	 next	 code	 snippet	 splits	 the
contents	of	 the	name	 field	with	 the	“-”	symbol	as	a	delimiter.	As	a	result,	 this	code	snippet
populates	 the	 new	 “fname”	 and	 “lname”	 fields	 with	 the	 first	 name	 and	 last	 name,
respectively,	of	the	previously	split	field.

The	next	 code	 snippet	 in	 Listing	A.24	 converts	 the	 year	 and	 month	 fields	 to	 strings,	 and
then	concatenates	them	with	a	“#”	as	a	delimiter.	Yet	another	code	snippet	populates	the
hdate2	field	with	the	concatenation	of	the	year	and	month	fields.

After	displaying	 the	content	of	 the	data	 frame	 emps,	 the	 final	code	snippet	populate	 the
variable	html	 with	 the	 result	 of	 converting	 the	 data	 frame	 emps	 to	 an	 HTML	 web	 page	 by
invoking	the	to_html()	method	of	Pandas.	Launch	the	code	in	Listing	A.24	to	see	the	following
output:

Contents	of	HTML	Table(s)
emps:
        	name    year	month
0  Jane-Smith  2015.0  	Aug
1  Dave-Smith  2020.0  	Jan
2  Jane-Jones  2018.0  	Dec
3  Jane-Stone  2017.0  	Feb
4  Dave-Stone  2014.0  	Apr
5  Mark-Aster    	NaN  	Oct
6  Jane-Jones    	NaN  	Jun

      name      year  	month  fname  lname    hdate1      hdate2
0  Jane-Smith  2015.0  	Aug  Jane  Smith  2015.0#Aug  2015.0-Aug
1  Dave-Smith  2020.0  	Jan  Dave  Smith  2020.0#Jan  2020.0-Jan
2  Jane-Jones  2018.0  	Dec  Jane  Jones  2018.0#Dec  2018.0-Dec
3  Jane-Stone  2017.0  	Feb  Jane  Stone  2017.0#Feb  2017.0-Feb
4  Dave-Stone  2014.0  	Apr  Dave  Stone  2014.0#Apr  2014.0-Apr
5  Mark-Aster    	nan  	Oct  Mark  Aster    	nan#Oct    	nan-Oct

6  Jane-Jones    	nan  	Jun  Jane  Jones    	nan#Jun    	nan-Jun



Data	frame	as	an	HTML	Web	Page:
<table	border="1"	class="data	frame">
  <thead>
    <tr	style="text-align:	right;">
      <th></th>
      <th>name</th>
      <th>year</th>
      <th>month</th>
      <th>fname</th>
      <th>lname</th>
      <th>hdate1</th>
      <th>hdate2</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <th>0</th>
      <td>Jane-Smith</td>
      <td>2015.0</td>
      <td>Aug</td>
      <td>Jane</td>
      <td>Smith</td>
      <td>2015.0#Aug</td>
      <td>2015.0-Aug</td>
    </tr>
    <tr>
      <th>1</th>
      <td>Dave-Smith</td>
      <td>2020.0</td>
      <td>Jan</td>
      <td>Dave</td>
      <td>Smith</td>
      <td>2020.0#Jan</td>
      <td>2020.0-Jan</td>
    </tr>
    //	details	omitted	for	brevity
    <tr>
      <th>6</th>
      <td>Jane-Jones</td>
      <td>nan</td>
      <td>Jun</td>
      <td>Jane</td>
      <td>Jones</td>
      <td>nan#Jun</td>
      <td>nan-Jun</td>
    </tr>
  </tbody>
</table>

SUMMARY
This	 appendix	 introduced	 you	 to	 Pandas	 for	 creating	 labeled	 data	 frames	 and	 displaying
metadata	of	data	frames.	Then	you	learned	how	to	create	data	frames	from	various	sources
of	data,	such	as	random	numbers	and	hard-coded	data	values.	In	addition,	you	saw	how	to
perform	column-based	and	row-based	operations	in	Pandas	data	frames.

You	 also	 learned	 how	 to	 split	 strings	 in	 Pandas	 data	 frames,	 and	 how	 to	 create	 various
types	of	data	 frames,	 such	as	numeric	and	Boolean	data	 frames.	 In	addition,	 you	 learned
how	to	create	data	frames	with	NumPy	functions	and	random	numbers.



INDEX

A
Arguments	and	parameters,	57

B
Boolean	operators,	52–53,	239–240
Built-in	functions

abc	(abstract	base	class)	module,	194–195
accessors	and	mutators,	172
classes,	functions,	and	methods,	171
compiled	modules,	170–171
construction	and	initialization	of	objects,	170
creating	custom	classes,	169
custom	classes

and	dictionaries,	179–180
and	linked	lists,	177–178
and	priority	queues,	180–182

Employee	class,	172–176
encapsulation,	184
filter()	function,	165
functions	vs.	methods,	164–165
import	custom	modules,	167–168
inheritance

multiple,	190–193
and	overriding	methods,	190
Several	of	FoodPreferences.	py,	186–190
single,	184–186

lambda	operator,	166
linked	lists,	176–177
map()	function,	165–166
module	vs.	package,	163–164
overloading	operators,	182
polymorphism,	193–194
@property	decorator,	172
reduce()	function,	166–167
serialize	and	deserialize	data,	183–184

C
Circular	lists,	177
Class-based	inheritance,	184
Combinatorics,	225

number	of	subsets	of	a	finite	set,	229–230
sum	of	binomial	coefficients,	227–229
working	with

combinations,	226–227
permutations,	225

Comparison	operators,	52
Conditional	logic

arguments	and	parameters,	57
Boolean	operators,	52–53
break	statement,	51
comparison	operators,	52
continue	statement,	51
functions	with	a	variable	number	of	arguments,	62–63
join()	function,	49
local	and	global	variables,	53–54
for	loops,	38–39

split()	function,	42–43
with	try/except,	39–40

nested	loops,	42
numeric	exponents	in,	40–42
pass	by	reference	vs.	value,	56–57
pass	statement,	51
precedence	of	operators,	37–38
reserved	words,	38
scope	of	a	variables,	54–56
specify	default	values	in	a	function,	61–62
split()	function

to	compare	text	strings,	47–48
to	compare	words,	43–44
with	for	loops,	42–43



to	print	characters	in	a	text	string,	48
to	print	fixed	width	text,	45–47
to	print	justified	text,	44–45

user-defined	functions,	60
while	loops,	49–50

divisors()	function,	57–59
to	find	prime	numbers,	59

D
Data	frames,	in	Pandas,	233

Boolean	operations,	239–240
describe()	method,	236–239
NumPy	arrays,	234–236
with	random	integers,	241–243
transpose	operation,	240–241

Data	structures
dictionary

checking	for	keys,	88–89
create	and	display,	87–88
data	interpolation,	89–90
deleting	keys,	89
functions	and	methods,	90
iteration,	89
OrderedDict	class,	90–92

lists
APPEND()	function,	75–76
arithmetic	operations,	69–70
concatenating	text	strings,	72–73
CountCharTypes.py,	74–75
counting	words,	77
filter-related	operations,	70
iteration,	77–78
list	slices,	78–80
operations,	65–68
range()	function,	73–74
related	operations,	80–82
reverse()	and	sort()	method,	68–69
sorting,	71–72
split()	function,	76
squares	and	cubes,	calculation	of,	70–71

matrices,	83–84
queues,	84
set()	function,	85–87
tuples,	84–85
vectors,	82–83

Doubly	linked	lists,	177

E
Encapsulation,	184

F
for	loops,	38–39

split()	function,	42–43
with	try/except,	39–40

I
Inheritance

multiple,	190–193
and	overriding	methods,	190
Several	of	FoodPreferences.py,	186–190
single,	184–186

J
join()	function,	49

L
Lists

APPEND()	function,	75–76
arithmetic	operations,	69–70
concatenating	text	strings,	72–73
CountCharTypes.py,	74–75
counting	words,	77
filter-related	operations,	70
iteration,	77–78
list	slices,	78–80
operations,	65–68
range()	function,	73–74
related	operations,	80–82
reverse()	and	sort()	method,	68–69
sorting,	71–72
split()	function,	76
squares	and	cubes,	calculation	of,	70–71



List	comprehension,	70
Local	and	global	variables,	53–54

N
Nested	loops,	42

O
One-dimensional	array,	138

P
Pandas

alternatives	to,	234
categorical	to	numeric	data	conversion,	245–250
in	CSV	file

detect	missing	date	values,	257–258
merge	and	split	columns,	265–267
working	with	date	ranges,	255–256

data	frames,	233
Boolean	operations,	239–240
describe()	method,	236–239
NumPy	arrays,	234–236
with	random	integers,	241–243
transpose	operation,	240–241

description,	231–232
loc()	and	iloc()	method,	245
matching	and	splitting	strings,	250–253
missing	dates	interpolation,	258–261
options	and	settings,	232
pandas_misc1.py,	261–265
read_csv()	method,	243–245
read_html_page.py,	267–271
strings	to	date	conversion,	253–254

Pass	by	reference	vs.	value,	56–57
Pickling,	183
Polymorphism,	193–194
Precedence	of	operators,	37–38
Prototype-based	inheritance,	184
Python

filter()	function,	104–106
lambda	expressions,	96–97
map()	function,	97–104
mutable	and	immutable	types,	93–94
packing/unpacking	sequences,	95–96
sequence	types,	92–93

R
Recursion,	198

arithmetic	series
arith_partial_sum.py,	201–202
iterative	approach,	199–200
recursion,	200–201

balanced	parentheses,	212–213
count_digits()	function,	213–214
factorial	values

iterative	approach,	206–207
recursion,	207
tail	recursion,	208

Fibonacci	numbers
iterative	solution,	210
recursion,	208–210

to	find	prime	divisors	of	a	positive	integer,	216–218
gcd()	function,	220–223
geometric	series

iterative	approach,	202–203
tail	recursion,	203–205

Goldbach’s	conjecture,	218–220
is_prime()	function,	214–216
lcm()	function,	223–224
to	reverse	a	string,	210–212

Reserved	words,	38

S
Scope	of	a	variables,	54–56
Search	algorithms,	143–147
Singly	linked	lists,	176
Sorting	algorithms

bubble	sort,	148–151
merge	sort,	151–159
quick	sort,	159–162

split()	function
to	compare	text	strings,	47–48
to	compare	words,	43–44



with	for	loops,	42–43
to	print	characters	in	a	text	string,	48
to	print	fixed	width	text,	45–47
to	print	justified	text,	44–45

Strings	and	arrays
binary	substrings,	110–111
common_bits()	function,	112–113
insert_char()	function,	120–122
max_min_powerk()	function,	109–110
multiply	and	divide	via	recursion,	113–115
one-dimensional	array,	138
palindrome1()	function,	125–130
prime	and	composite	numbers,	sum	of,	115–117
search	algorithms,	143–147
sequences	of	strings,	130–137
sorting	algorithms

bubble	sort,	148–151
merge	sort,	151–159
quick	sort,	159–162

space	complexity,	108
string	permutations,	122–123
subsets	of	a	set,	123–125
swap()	function,	139–140
time	complexity,	108
transpose()	function,	141–143
two-dimensional	array,	140–141
unique_chars()	function,	119–120
word_count()	function,	117–119

T
Tail	recursion,	203,	205
Time-space	trade-off,	108
Two-dimensional	array,	140–141

U
User-defined	functions,	60

W
while	loops,	49–50

divisors()	function,	57–59
to	find	prime	numbers,	59

word_count()	function,	117–119


