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Preface to the Fourth Edition

The Penguin Dictionary of Mathematics aims to provide school and
university students with concise explanations of mathematical
terms. It tries to cover all the branches of mathematics, both pure
and applied, and to include entries and examples that will be helpful
to scientists and others who use mathematics in their work. It is
hoped that it will also be a useful reference source for non-
specialists. Terms used in computer science are not included unless
they are of particular mathematical interest.

The dictionary now contains over 3750 headwords, including over
200 biographies of important mathematicians. Chinese names are
given in both the modern Pinyin and the older Wade-Giles form
(e.g. Beijing/Peking). Diagrams are provided where they help with
the understanding of a term.

There is a network of cross-references. Some entries simply refer
the reader to another entry. This may indicate that the terms are
synonyms, as with ‘prime pair See twin primes’. Alternatively it
may indicate that the �rst term is more conveniently discussed or
de�ned within the entry for the second term, in which case the �rst
term is printed in italics within the entry for the second term, as
with ‘bisector See bisect’. An asterisk placed before a term, as in
‘*prime’, indicates that this term has its own entry in the dictionary
which will provide additional information. Reference is also made to
the tables in the Appendix. One of these, Table 7, is designed to help
the reader �nd entries where common signs or symbols such as ≠
or ∑ are explained.

The �rst edition of the dictionary had ten specialist contributors:
Jane Farrill Southern, George Galfalvi, Derek Gjertsen, Valerie
Illingworth, Alan Isaacs, Terence Jackson, Richard Maunder,
Margaret Preece, Peter Sprent and Ian Stewart; and it was co-edited
by John Daintith and the present editor. Each subsequent edition
has had the team of six specialist contributors listed on the previous



page, and been edited by the present editor. The preparation of each
of these editions has provided an opportunity to revise, update, and
expand the work in accordance with its overall aims, taking into
account the many helpful comments and suggestions made by
reviewers and correspondents. In particular, for this fourth edition,
increased coverage is given to the area of coding theory.

The editor is deeply grateful to the present team of specialist
contributors, three of whom have worked on every edition, for their
cooperative dedication to the project. As well as cheerfully drafting
and redrafting new or revised entries they have also commented
helpfully on the editor’s own contributions. He is also thankful for
help, advice, and comments from Francis Coghlan, Philip Davis,
Raymond Lickorish, James McKee, Peter Milligan, Peter Neumann
and Je� Paris. Thanks are also due to two former editors at Penguin,
Donald McFarlan and Ravi Mirchandani, for their support of the
�rst two editions, and to David Duguid, Caroline Pretty, Ellie Smith
and Ruth Stimson for seeing the four books through the press.
Finally, we are greatly indebted to our copy-editor, John Woodru�,
whose expertise and unwavering tenacity have improved every
edition.

David Nelson, 2008
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A

An Symbol for the *alternating group for a set of n elements.

Abel, Niels Henrik (1802–29) Norwegian mathematician noted for
his proof (1824) that the general quintic equation is unsolvable
algebraically. Also important were his work in the �eld of elliptic
and transcendental functions, and on the convergence of in�nite
series, and his publication of the �rst rigorous proof of the binomial
theorem.

Abelian group A *set associated with a *binary operation (usually
denoted by +) that forms a *group and also satis�es the
commutative law x + y = y + x. Examples of such groups are the
set of integers with the operation of addition, and the set of integers
modulo n with the operation of addition modulo n, where n ( 1) is
itself an integer.

Abelian groups are of central importance in abstract algebra and
other branches of modern mathematics, notably algebraic topology,
where they provide a starting point for homology and cohomology
theory. They are named after Niels Abel, although he did not make
explicit use of the concept.

Abel Prize A major prize awarded annually by the Norwegian
Government for achievement in mathematical research, and
regarded as having the same status as a Nobel Prize. It was �rst
awarded in 2003 to the French mathematician J.-P. Serre for his
fundamental contributions to several branches of mathematics,
especially number theory and algebraic geometry.

Abel’s test A test for *convergence of a *series. Let Σan be a
convergent series. If the numbers bn constitute a positive decreasing
sequence (i.e. b1 b2 …>0) then the in�nite series



a1b1. + a2b2 + anbn + …

converges. This test can also be used to determine whether a
functional series has *uniform convergence. See also Dirichlet’s test.

abridged multiplication Multiplication to give a product of a
required accuracy, in which digits that do not a�ect the accuracy
are dropped in each part of the multiplication. For example, if
5.6982 is to be multiplied by 23, the full multiplication would be
(5.6982 × 3) + (5.6982 × 20) = 17.0946 + 113.9640 =
131.0586. To two decimal places the result is 131.06. Under
abridged multiplication in which the result is required to two
decimal places, only the third decimal place is needed in each part.
So (5.6982× 3) is abridged to 17.094 and (5.6982 × 20) to
113.964. The product is 131.058, which to two decimal places is
131.06.

abscissa (plural abscissae) The x-coordinate, measured parallel to
the x-axis in a *Cartesian coordinate system. Compare ordinate.

absolute error The magnitude (ignoring sign) of the deviation of an
observation from its true or predicted value. See error; relative error.

absolute frequency See frequency.

absolutely convergent series See convergent series.

absolutely normal number See normal number.

absolute maximum or minimum See turning point.

absolute number A number that has a single value; a number
represented by �gures – for example, 2, √5, 2/3, 1.976 – as
distinguished from a number represented by a letter or other
symbol, which might take more than one value.

absolute term A constant term in an expression; a term that does
not contain a variable.



absolute value 1. A positive number that has the same magnitude
as a given number. Thus, the absolute value of 6 is 6, and the
absolute value of –6 is 6. The absolute value of a number a is
written using the notation |a|.
2. (of a complex number) See modulus.
3. The length of a *vector. For a vector xi + yj + zk, the absolute
value is given by

√(x2 + y2 + z2)

The absolute value is written as

|xi + yj + zk|

absorbing barrier See random walk.

absorbing state See Markov chain.

absorption laws The two laws
x  (x  y) = x and x  (x  y) = x

See Boolean algebra.

abstract algebra The theory of algebraic structures seen from the
modern viewpoint as sets equipped with various operations,
assumed to satisfy some speci�ed system of axiomatic laws. In
abstract algebra it is the consequences of these laws, rather than the
speci�c objects that make up the set, that are emphasized. The
commonest types of structure involved are the *group, the *ring,
and the *�eld, but there are many others. See axiom.

abstraction 1. The process of considering certain features of objects
while discounting other features that are not relevant. Abstraction is
the basis of classi�cation. It is a procedure that results in the
formation of a set whose members have a certain property. Such a
set is often denoted by {x: P(x)}, where P is the property that
members of the set must satisfy. For example, {x: x is a man}
denotes the set that includes all men and only men.



2. See axiom of abstraction.

abstract space A set of entities, together with a set of *axioms for
operations on and relationships between these entities. Examples are
*metric spaces, *topological spaces, and *vector spaces.

abundant number See perfect number.

Acceleration Symbol: a. The rate of change of *velocity with
respect to time, expressed in metres per second per second (ms–2) or
similar units. The rate of decrease of velocity with time, i.e.
‘negative acceleration’, is called deceleration. The average
acceleration during some interval is equal to the change of velocity
during this interval divided by the elapsed time. If this time interval
is made to approach zero, then the average acceleration approaches
the instantaneous acceleration.

Thus, when a point or particle moves in space its acceleration is
the �rst derivative of the velocity v (and the second derivative of
the position vector r) with respect to time:

a = dv/dt=d2r/dt2

= d2x/dt2i + =d2y/dt2 + d2z/dt2k

where i, j, and k are unit vectors.
Since velocity is a *vector quantity, so too is acceleration. The

velocity and acceleration of a point or particle moving along a
straight line will both be directed along the line, so that v =
(ds/dt)i and a = (d2s/dt2)i, where s is the distance from some
origin.

The acceleration of a point which moves in a plane curved path is
conveniently described by two components. One component is
directed along the tangent to the curve and is equal in magnitude to
the rate of change of speed at that point, dv/dt; this tangential
component is zero for uniform circular motion. The second
component is normal to the tangent, directed inwards towards the
centre of *curvature; this centripetal (or normal) component has



magnitude v2/ρ, where ρ is the radius of curvature. The resultant is
given by the vector sum of the components.

Alternatively, if the moving point has *polar coordinates (r,θ), the
acceleration can be described by two perpendicular components: a
radial component of r ̈rθ̇2 (directed away from the origin) and a
transverse component of rθ̈ + 2ṙθ̈ (anticlockwise), where ṙ, θ̇, r,̈ and
θ̇ represent �rst and second derivatives with respect to time.

acceleration of free fall (acceleration due to gravity) Symbol: g.
The acceleration with which an object falls freely to earth (or to
another speci�ed celestial body), unimpeded by air resistance or
other disturbing forces. It is mainly a result of the gravitational
attraction of the body. If the earth is assumed to be an isotropic
solid sphere, then the acceleration is directed towards the earth’s
centre, and its value can be obtained from Newton’s law of
*gravitation. In practice, the acceleration is to the earth’s surface;
the standard value is 9.806 65 metres per second per second, but
the magnitude varies slightly with locality, owing mainly to the
non-spherical shape of the earth and also to geological variations. At
the poles and the equator it is 9.8321 ms–2 and 9.7799ms–2,
respectively; in the UK it varies from 9.81 to 9.82ms–2.

accent See prime symbol.

acceptance region See hypothesis testing.

acceptance sampling A *quality control procedure in which a
sample is taken from a batch of items and a decision to accept or
reject the batch is based on the number of defectives in that sample.

In practice, a producer will not want a batch with a small number
of defectives to be rejected, and a consumer (or buyer) will not want
to accept a batch with a large number of defectives. Thus the choice
of dmax, the maximum number of defectives, d, in the sample for
which a batch is acceptable, is made �rst to ensure that there is a
small probability, α, of a buyer rejecting a batch having a very small
number of defectives which would be acceptable to that buyer or
consumer. This probability is called the producer’s risk. Second, the



choice of dmax is made also so that there is a small probability, β, of a
buyer accepting a batch with a number of defectives which that
buyer would regard as unacceptable. This probability is called the
consumer’s risk.

By appropriate statistical arguments it can be shown that if the
sample size is 200, and the rule is to accept batches for which d  3,
then the probability of the buyer rejecting batches with 0.5 percent
or less defective is α = 0.019 (producer’s risk), and the probability
of the buyer accepting batches with 5 percent or more defective is β
= 0.009 (consumer’s risk). Economic factors such as production
costs, the cost of rectifying (where possible) faulty items, or
scrapping or selling rejected batches at a lower price are taken into
account in determining sampling schemes with acceptable
characteristics. The probabilities α and β are equivalent to the
probabilities of errors of the �rst and second kind in *hypothesis
testing.

For a given sampling procedure, a graph showing the probability
of accepting a batch as a function of the proportion of defectives in
the batch is called the operating characteristic curve.

accumulation factor See interest.

accumulation point See limit point.

acnode See isolated point.

acoustical property The *focal property of a conic. See ellipse;
hyperbola; parabola.

action 1. A quantity in *dynamics, de�ned by the line integral

where qi are the *generalized coordinates of the system and pi are
the corresponding generalized *momenta for a given segment, from
point A to point B, on the trajectory of the system. This is equivalent



to twice the mean kinetic energy of the system over a given time
interval multiplied by the time interval. See also least action,
principle of.
2. The force applied to a body, producing an equal but opposite
*reaction. See Newton’s laws of motion; least action, principle of.
3. (of a group on a set) If G is a *group with identity e and X is a
set, then the action of G on X is a *map (often written as
juxtaposition) whose domain is the Cartesian product G × X and
whose range is X, i.e. given g ∈ G and x ∈ X, the map produces an
element of X denoted by gx.
The map satis�es

ex = x for every x ∈ X

and

g1(g2x) = (g1g2)x for every x ∈ X and g1, g2 ∈ G

The group is said to act on the set. For example, the n-element
*cyclic group whose elements are e, a, a2, …, an–1 acts on the
vertices of a *regular polygon by the map for which ex is x for each
vertex x, and akx is the vertex obtained when x is rotated through
2πk/n radians about the centre of the polygon.

action at a distance The concept of action being initiated or
transmitted without direct contact of the interacting entities. An
early explanation involved the existence of aethers, which were
thought to be weightless �uids pervading matter and allowing
optical, electromagnetic, or heat disturbances to be propagated.
Since the late 18th century the idea has been developed of a *�eld
of force surrounding and under the in�uence of some physical
agency, such as charge or mass. Thus a mass a�ects the space
around it, producing a gravitational �eld. Another mass placed in
this �eld of force interacts with the �eld and experiences a force.
The remote e�ect of one body on another is thereby explained by a



local interaction. Another model for such interactions is that of
exchange (absorption and emission) of virtual particles.

acute angle An angle between 0° and 90°.

acute triangle A triangle that has all three interior angles less than
90°.

acyclic Not cyclic; having no cycles. For example, an acyclic *graph
is one in which there are no *paths (or directed paths in a directed
graph) that start and end at the same vertex.

adaptive quadrature A *numerical integration algorithm, designed
for use on a computer, in which the points at which the integrand f
is evaluated are chosen adaptively, based on the behaviour of the
function If f changes rapidly around a point x in the interval of
integration, then the algorithm will choose small subintervals near
x, but if f changes slowly, larger subintervals will be chosen. There
are many adaptive quadrature algorithms, varying in the basic
numerical integration rule used and the strategy for determining the
subintervals.

addend One of the numbers combined in forming a sum. See
addition.

addition A mathematical operation performed on two numbers
(addends) to give a third (the sum). It can also be regarded as the
process of increasing one number (the addend) by another (the
augend). Addition of integers is equivalent to the process of
accumulating sets of objects. Addition of fractions is performed by
putting each in terms of a common denominator, and adding the
numerators. To de�ne addition of irrational numbers, a more formal
de�nition is required (see Dedekind cut).

Addition of numbers is both commutative and associative:

a + b = b + a

a + (b + c) = (a + b) + c



Complex numbers are added by adding the real and imaginary parts
separately:

(a + ib) + (c + id) = (a + c) + i(b + d)

Similarly, polynomials are added by accumulating terms of the same
degree, for example

(x2 + 2x + 3) + (2x2 + x + 5)

= (x2 + 2x2) + (2x + x) + (3 + 5)

= 3x2 + 3x + 8

The concept of addition can also be applied to other entities, such as
*vectors, *matrices, and *sets.

addition formulae Formulae in plane trigonometry that express a
trigonometric function of a sum in terms of trigonometric functions,
as follows:

sin(x + y) = sin x cos y + cos x sin y

cos(x + y) = cos x cos y – sin x sin y

tan(x + y) = tan x + tan y/1 – tan xtan y

The subtraction formulae are similar, but with the signs reversed:

sin(x – y) = sin x cos y – cos x sin y

cos(x – y) = cos x cos y + sin x sin y

tan(x – y) = tan x – tan y/1 + tan xtan y

The addition and subtraction formulae were originally derived from
*Ptolemy’s theorem on cyclic quadrilaterals and are sometimes
known as Ptolemy’s formulae. See also double-angle formulae;
multiple-angle formulae.



additive function A *function f such that f(x + y) = f(x) + f(y),
for all x and y in its domain. If

f(x + y)  f(x) + f(y)

the function is subadditive; if

f(x + y) f(x) + f(y)

it is superadditive. Compare multiplicative function.

additive group A *group for which the result of combining a and b
is written as a + b, and the group identity is denoted by 0. In a
*ring the term is often used to refer to the group obtained by
considering all the elements and just the ring’s addition operation.

additive inverse See inverse; ring.

ad in�nitum Continuing without end. [Latin]

adj See adjoint.

adjacency matrix (vertex matrix) A*matrix representing a *graph.
If the vertices of the graph are v1, v2, …, the matrix has elements aij,
where aij equals the number of edges joining vertex vi to vertex vj,
and aij = 0 if there is no edge. For a directed graph, aij equals the
number of edges directed from vertex vi to vertex vj, and aij = 0 if
there are no edges.

adjacency matrix of a graph.

adjacent 1. Describing an angle, side, or plane lying next to another
angle, side, or plane.



2. Describing a pair of vertices of a *graph joined by an edge.
3. Describing a pair of edges of a *graph with a vertex in common.

adjoined number A number that does not lie in a given *�eld F but
which together with F generates a larger �eld G, said to be obtained
by adjoining the new number to F. For example, adjoining the
number √2 to the �eld F of rational numbers generates the �eld G
consisting of all numbers p + q√2 where p and q are rational.

adjoint (of a matrix) The *transpose of the *matrix formed by
taking the *cofactors of the given matrix. It is de�ned only for
square matrices. When divided by the *determinant it yields the
*inverse matrix. The adjoint of a square matrix A is denoted by adj
A. The adjoint is sometimes called the adjugate. In quantum
mechanics the term adjoint is sometimes used for the *Hermitian
conjugate.

adjugate See adjoint.

AE Abbreviation for *almost everywhere.

AES Abbreviation for Advanced Encryption Standard. A *cipher
developed in 1998 by two Belgian cryptographers, Joan Daemen
and Vincent Rijmen, and adopted by the US Government in 2002 as
an encryption standard.

a�ne geometry The study of those properties and types of
geometric �gure that are unchanged by an *a�ne transformation.
Examples are parallel lines, mid-points of line segments, and
ellipses. However, some familiar geometric concepts such as the
circle are not relevant to a�ne geometry, because a circle can be
transformed to an ellipse by certain a�ne transformations.

a�ne transformation A mapping of a *vector space that is the
composition of a *translation and a *linear transformation. An a�ne
transformation of Euclidean space may not conserve angle or length,
but it will preserve many geometrical properties.



A map f: V → W between vector spaces V and W is an a�ne
transformation if f(sv1 + tv2) = sf(v1) + tf(v2) for all v1, v2 ∈ V and
real numbers s and t satisfying s + t = 1. If f is a�ne, then the map
Lf de�ned by Lf (v)=f(v) – f (0) is a linear transformation; f is the
composition of the linear transformation Lf and translation by the
vector f(0).

a�rmation of the consequent The *fallacy of inferring from A ⊃
B and B that A, or an argument of this form. It is so called since the
second premise B is the *consequent of the *conditional statement
forming the �rst premise. See also denial of the antecedent.

aggregation The process of collecting terms together in an
expression and treating them as a single term. Thus, in 3(6 – 4). 6 –
4 is ‘aggregated’, as indicated by the brackets, before multiplying by
3. Various forms of brackets are commonly used to indicate this. In
addition, a long bar (called a vinculum) over the aggregated terms is
sometimes employed. The most frequent use of this is in writing
square roots. √25 – 9 is the square root of the whole expression 25 –
9 and is equal to √16 = 4. This can also be written as √(25 – 9).
Note that this di�ers from √25–9 (= –4).

Agnesi, Maria Gaetana (1718–99) Italian mathematician who
worked on di�erential calculus. Her book Instituzioni analitiche
(1748; Analytical Institutions, 1801) contains a discussion of the
curve known as the *witch of Agnesi.

Airy functions Special functions �rst used to describe features of
the appearance of a star in a telescope and named after the English
astronomer George Biddell Airy (1801–92). They are solutions of
the di�erential equation

d2y/dx2 = xy

The Airy function of the �rst kind is



aleph-null Symbol: ℵ0. The *cardinal number of any *set that may
be put into *one-to-one correspondence with the natural numbers 1,
2, 3, 4, … . It is the smallest in�nite cardinal number and forms the
basis of *Cantor’s theory of sets. Any set having cardinality aleph-
null is said to be countably in�nite or *countable.

Alexander-Conway polynomial See knot polynomial.

Alexander polynomial See knot polynomial.

algebra 1. The branch of mathematics that deals with the general
properties of numbers, and generalizations arising therefrom. The
name comes from the Arabic al-jabr w’al-muqabala, meaning
‘restoration and reduction’, which �rst occurs in the works of al-
Khwarizmi (c.780–c.850). In algebra, letters are used to denote
arbitrary numbers and to state generally valid properties: for
example, the relation

(x + y)2 = x2 + 2xy + y2

holds for any two numbers x and y. In modern times, the scope has
been widened enormously with the development of *abstract
algebra and *linear algebra.
2. A *vector space V over a *�eld F, which has a *binary operation °
on V (so that x°y ∈ V for all x, y ∈ V) that is *distributive over
vector addition, i.e. x ° (y + z) = x°y + x°z for vectors x, y, and z;
and also (ax)° y = a(x°y) = x°(ay) for all a ∈ F and x, y ∈ V. A
simple example of an algebra is the space of geometrical vectors in
three-dimensional space with the *vector product as binary
operation.

An associative algebra is one in which the binary operation is
*associative. A division algebra is one in which the binary operation
has an *identity element, and every nonzero vector has an *inverse.
See linear algebra; Frobenius’s theorem; Cayley algebra.



algebraic curve A curve de�ned by a set of *polynomial equations
and an example of an *algebraic variety. For example, in the plane
with coordinates x, y,

ax + by + c = 0 is a line,
x2 + y2 = 4 is a circle,
quadratic polynomials in x, y, de�ne conics, and

y2 = x3 + ax + b de�nes an elliptic curve.

The degree of a plane algebraic curve is the highest degree of the
terms in the polynomial that de�nes it. For some purposes, curves
are best considered in the projective plane. See Bézout’s theorem.

algebraic expression Any algebraic formula obtained by combining
letters or other symbols together with the arithmetic operations +,
–, ×, ÷ (and possibly square or higher roots, √2, ). For example,
a3 + b3 + (xy + pq)2 is an algebraic expression.

algebraic function See function.

algebraic geometry See algebraic variety; geometry.

algebraic number A number, real or complex, that is the *root of a
*polynomial equation with *integer coe�cients. Examples of
algebraic numbers are –7, 5/2, 1/2(1 + √5),3 – i, 3√6, and 1/3(1 +
i√2), since they are zeroes of the polynomials x + 7, 2x – 5, x2 – ×
– 1, x2 – 6x + 10, x3 – 6, and 3x2 – 2x + 1, respectively. An
algebraic number is an algebraic integer when the term of highest
*degree in its polynomial equation has coe�cient 1. Of the above
examples, only 5/2 and 1/3 (1 + i√2) are not algebraic integers.

A number that is not an algebraic number is a transcendental
number. Examples of transcendental numbers are π and e. See
irrational number.

algebraic operation A rule assigning to elements x1,…, xn of a
given *set another element M(x1, …, xn) of the set. Usually M is
chosen to satisfy certain desired properties. In most cases the



number of elements n is either 1 or 2. When n = 2, M is said to be a
*binary operation. For example, the arithmetical operation of
addition assigns to any two numbers x and y their sum x + y.

algebraic structure A *set equipped with one or more *algebraic
operations, usually required to satisfy a system of *axioms.
Examples are *groups, *rings, and *�elds.

algebraic topology The study of problems in *topology by
algebraic methods.

The usual line of attack is to construct a *group G(X)
corresponding to each *topological space X, and a *homomorphism
G(f): G(X) → G(Y) corresponding to each continuous map f: X → Y
between topological spaces, with the following properties:
(1) If f: X → X is the identity map (that is, f(x)= x for all x ∈ X),
then
G(f):G(X) → G(X) is the identity isomorphism.
(2) Given topological spaces X, Y, and Z, and continuous maps f: X
→ Y and g: Y → Z, then we have that G(gf) = G(g)G(f): G(X)→
G(Z).
It then follows that, if f: X → Y is a *homeomorphism,
G(f):G(X)→G(Y) is an *isomorphism; it is possible to distinguish
between nonhomeomorphic spaces by showing that their
corresponding groups are not isomorphic. (The converse must not
be assumed to be true: it is perfectly possible for G(X) and G(Y) to
be isomorphic even though X and Y are not homeomorphic.)

Various ways of constructing such groups G(X) have been
developed, notably the *homology groups and the *homotopy
groups. They have proved very fruitful, for example in the
topological classi�cation of *manifolds and *knots, and in
establishing important *�xed-point theorems.

algebraic variety The *set of all solutions (x1, …, xn) of a system of
simultaneous *polynomial equations



For example, a circle is the set of solutions (x1, x2) of the single
equation

x1
2 + x2

2 – r2 = 0

where r is the radius. More generally, an algebraic variety is any set
that can be formed by patching together sets of the above type in a
particular manner. The study of algebraic varieties, algebraic
geometry, plays a central role in modern mathematics.

algorithm A mechanical procedure for solving a problem in a �nite
number of steps (a mechanical procedure is one that requires no
ingenuity). An example is the *Euclidean algorithm for �nding the
highest common factor of two numbers. The term derives from the
name of the Arab mathematician *al-Khwarizmi.

al-Haytham, Abu ‘Ali al-Hasan ibn (Westernized form Alhazen)
(c.965–1038) Arab scientist, born in present-day Iraq, who is best
known for his work in optics. This included detailed measurements
of angles of incidence and refraction, and a careful geometrical
analysis of the formation of images in spherical and parabolic
mirrors. His major work was �rst published in the West as Opticae
thesaurus in 1572.

aliasing The phenomenon that sometimes arises when samples
taken at regular intervals are out of phase, and so give the wrong
impression. A familiar example is that of �lm clips that appear to
show wheels turning backwards.

Alice The name conventionally used for the sender of an encrypted
message.

alignment chart See nomogram.



aliquot part See proper divisor.

al-Khwarizmi, Muhammad ibn Musa (c.780–c.850) Arab
mathematician from Khiva, in present-day Uzbekistan. In his Al-jam’
w’al-tafriq ib hisab al-hind (Addition and Subtraction in Indian
Arithmetic), al-Khwarizmi introduced the Indian system of numerals
to the West. He also wrote a treatise on algebra, Hisab al-jabr w’al-
muqabala (Calculation by Restoration and Reduction); from al-jabr
comes the word ‘algebra’. From al-Khwarizmi’s name was derived
the term ‘algorism’ (referring originally to the Hindu-Arabic decimal
number system, but later to computation in a wider sense), from
which in turn comes ‘algorithm’. His arithmetic survives only in a
mediaeval Latin translation with the title Algorithmi de numero
indorum (Calculation with Indian Numbers).

almost everywhere (AE) A property is said to hold almost
everywhere if it holds except on a set of zero *measure.

alphabet A set of symbols used to construct words (also called
strings). For example, if the alphabet is A = {a, b, x, y} then xbbay
is a word or string from A. An alphabet can consist of any symbols,
e.g. {0,1,2}.

alternant A *determinant in which the element in the ith row and
jth column is fi(rj), where the fi are n functions f1, f2, …, fn, and the
rj are n quantities r1, r2,…, rn. The order of the determinant is n. The
*transpose of such a determinant is also called an alternant. An
example of a third-order alternant is

alternate angles See transversal.

alternate segment theorem See circle.



alternating group The *permutation group consisting of all *even
permutations of the elements of a given *set. It forms a subgroup of
the *symmetric group on the set. If the set has �ve or more
elements, the alternating group on it is a simple group.

The alternating group for a set of n elements is denoted by An.

alternating series A *series whose terms (an) are alternately
positive and negative. If each term of an in�nite alternating series is
numerically less than the one preceding it, and if an → 0 as an →
∞, then the series is convergent. The alternating series

1 – 1/2 + 1/3–1/4 + …

is therefore convergent.

alternation See disjunction.

alternative hypothesis See hypothesis testing.

altitude 1. A line segment, or the length of a line segment, giving
the height of a polygon polyhedron, cone, cylinder, or other
geometric �gure. It is the distance between the bases of the �gure
(e.g. in a prism) or the distance from the base to the vertex (e.g. in a
pyramid).
2. Symbol: h. The angular distance of a point on the *celestial
sphere from the horizon taken along a great circle passing through
the zenith, the point, and the nadir. Altitude is measured from 0° to
90° north (taken as positive) or south (taken as negative) of the
ecliptic. Sometimes its complement, the *zenith distance, is used.
See horizontal coordinate system.

ambiguous case A case in the *solution of triangles in which the
known values can give two possible solutions. In plane trigonometry
the ambiguous case may occur when two sides and a non-included
acute angle are known. There may be two possible triangles
satisfying these conditions: one acute triangle and one obtuse
triangle. If a, b,and A are the given sides and the non-included
angle, then the case is ambiguous when b>a>b sin A. The same



ambiguity occurs in solving spherical triangles. In spherical
trigonometry the case in which two angles and a side opposite one
of them are known is also ambiguous.

ambiguous case If a, b, and A are known, then ABC and AB’C are
both solutions.

amicable numbers Two numbers such that each is equal to the sum
of the *proper divisors of the other. Amicable numbers were �rst
studied by the Pythagoreans.
The smallest pair of such numbers is 220 and 284:220 has proper
divisors 1,2,4,5, 10,11,20,22,44, 55, and 110, which have a sum of
284; 284 has proper divisors 1, 2, 4, 71, and 142, which have a sum
of 220. See also perfect number.

Ampère, André-Marie (1775–1836) French mathematician and
physicist who in 1827 published the �rst comprehensive
mathematical treatment of the newly discovered interactions
between electricity and magnetism, a subject to which he gave the
name ‘électrodynamique’. In the course of his work he formulated
Ampère’s rule on the relation between the direction of a current and
its associated magnetic �eld, and Ampère’s law on the strength of the
magnetic �eld induced by an electric current. The unit of electric
current is named after him.

ampere Symbol:A. The *SI unit of electric current, equal to the
constant current that, when maintained in two parallel rectilinear



conductors of in�nite length and negligible circular section and
placed 1 metre apart in a vacuum, will produce a force of 2 × 10–7

newton per metre between the conductors. [After A.-M. Ampère]

amplitude 1. See argument.
2. (of a periodic function or a system undergoing periodic motion)
The maximum displacement from a reference level in either a
positive or a negative direction. The periodic function can represent
a vibration or a wave, or can describe the motion of a point on a
pendulum or on a spring balance.
3. The azimuth in a *polar coordinate system.

analysis The branch of mathematics concerned with the use of
*limits; for example, in the treatment of in�nite series or in
*calculus.

analysis of covariance An extension of the *analysis of variance
allowing adjustment for concomitant variables, which are not
in�uenced by treatments. By using *regression techniques the
sensitivity of the analysis is improved by a reduction in the *error
mean square. For example, in an experiment to test the e�ect of
several insecticides in reducing a pest on fruit trees, an appropriate
concomitant variable might be a measure of the level of infestation
on each experimental unit immediately prior to the application of
the insecticides. The technique adjusts for the e�ect of di�ering
initial infestation on the response to the insecticides.

analysis of variance (ANOVA) (R.A. Fisher, 1921) The partitioning
of *variance into two or more components, each associated with a
particular source of variation such as treatments, design groupings,
or error.

The simplest ANOVA is that for the one-way classi�cation in which
treatments are allocated at random to experimental units. For
example, 3 treatments A, B, and C may be allocated to 13 available
units, 5 chosen at random receiving treatment A, 4 treatment B, and
4 treatment C. The sum of squares of deviations from the mean is
partitioned into (1) a between-treatments sum of squares and (2) an



error (or residual) sum of squares. The former is what the sum of
squares of deviations from the mean would have been if the
response for each unit had equalled the mean response for all units
receiving that treatment, and the latter is the sum of squares of
deviations of individual responses from the mean for all units
receiving that treatment. The between-treatments mean square and
*error mean square are obtained by dividing the respective sums of
squares by their *degrees of freedom. The ratio of the between-
treatments mean square to the error mean square is called the
*variance ratio. If the errors are independently normally distributed
with mean zero and equal variances, then under the *null
hypothesis of no di�erence between treatment means, the variance
ratio has an *F-distribution. High values of the ratio indicate
rejection of the null hypothesis.

For a *randomized block design there is an additional additive
component sum of squares corresponding to blocks. The associated
*degrees of freedom are also additive. For Latin squares there are
additive component sums of squares corresponding to treatments
(Latin letters), rows, columns, and error. The method extends to
more complicated designs such as *balanced incomplete blocks with
greater computational and interpretational complexity.

In the analysis of *factorial experiments the treatment sum of
squares may be further partitioned into additive components, often
those representing main e�ects and interactions.

analysis situs An obsolete term for the branch of mathematics now
known as *topology. [Latin: analysis of position]

analytic continuation A method of extending the domain of
de�nition of an *analytic function. It is based on the fact that an
analytic function is completely determined by its values on any
open set of its *domain. The method can often lead to a *multiple-
valued function, as, for example, for the (complex) logarithmic
function.



analytic function (holomorphic function, regular function) A
(single-valued) *function f(z), with a *domain D that is a subset of
the *complex plane and a *codomain that is the complex plane,
which is deined and di�erentiable at a point z0, is said to be analytic
(or regular) at z = z0. If the function is analytic at all points of the
domain D, it is said to be analytic (or holomorphic or regular) on D.
If it is analytic in some circle |z – z0| <r, then in this region the
function can be expanded as the Taylor series

See also entire function; singular point.

analytic geometry See coordinate geometry.

anchor ring See torus.

and A truth-functional connective (see truth function), often
symbolized in a *for mal system as &, ∧, or · . Its meaning i given by
the *truth table

The connective is both *commutative and *associative, and thus
obeys the following laws:

A&B ↔ B&A
A&(B&C) ↔ (A&B)&C

It can also be expressed in terms of *disjunction (∨) and *negation
(˜), in accordance with *De Morgan’s laws, by the following
equivalence:



A&B ↔ ˜(˜A∨˜B)

The use of ‘&’ between two statement indicates that the statements
are both true. Thus, in everyday English the sentence ‘London is a
city and Manchester is a city’ asserts that both statements are true.
Note, however, that the use of ‘and’ in everyday English can be
somewhat anomalous. It is not, for example, always taken as
commutative. The statement ‘He fell out of bed and broke his leg’ is
not equivalent to the statement ‘He broke his leg and fell out of
bed.’ In these examples, ‘and’ stands for ‘and consequently’; in ‘He
got out of bed and got dressed,’ ‘and’ stands for the weaker
connective ‘and then’. See also conjunction; Boolean algebra.

angle Types of angle.

angle A con�guration of two lines (the sides or arms) meeting at a
point (the vertex). Often an angle is regarded as the measure of the
rotation involved in moving from one initial axis to coincide with
another �nal axis (termed a direction angle). If the amount and sense
of the rotation are speci�ed, the angle is a rotation angle, and is
positive if measured in an anticlockwise sense and negative if in a
clockwise sense.

Angles are classi�ed according to their measure (see diagram):
Null (or zero) angle: zero rotation (0°)
Right angle: a quarter of a complete turn (90°)
Flat (or straight) angle:half a complete turn (180°)
Round angle (or perigon): one complete turn (360°)



Acute angle: between 0° and 90°

Obtuse angle:between 90°and 180°
Re�ex angle: between 180° and 360°
The angle of elevation of a point A from another point B is the angle
between the line AB and the horizontal plane through B, with A
lying above the plane. The angle of depression is similarly de�ned
with A lying below the plane.

The angle at point B made by lines AB and CB is denoted by ABC,
or .

angle bisector theorem The theorem that each *bisector of the
angles of a triangle meets the opposite side at a point which divides
the side in the ratio of the other two sides (see division in a given
ratio). Thus, in the diagram, BD: DC = AB: AC.

The bisectors of the *exterior angles of the triangle have a similar
property. Each bisector of the exterior angles of a triangle meets the
opposite side produced at a point which divides the side externally
in the ratio of the other two sides. So in the diagram, BE: EC = AB:
AC.

angle bisector theorem



angle of contingence See contingence, angle of.

angstrom Symbol: Å. A unit of length equal to 10–10 metre. It was
formerly used in measurements of wavelength and intramolecular
distances, but it is now more usual to use the *SI unit, the
nanometre. 1 nanometre = 10 Å.[After A.J. Ångström (1814–74)]

angular acceleration The rate of increase with time of *angular
velocity.

angular data See directional data.

angular distance See distance.

angular frequency Symbol: ω. A measure of the rate of *oscillation
of a physical quantity or phenomenon that varies sinusoidally. It is
equal to 2πv, where v is the *frequency of the motion, and is usually
expressed in radians per second. Trigonometric functions with
argument ωt (cosωt, sin ωt, etc.) occur in equations describing
*harmonic motion. Angular frequency is sometimes also called
pulsatance.

angular measure Measurement of angles. The most common
system is degree (or sexagesimal) measure in which one complete turn
is divided into 360 degrees, the degree is divided into 60 minutes,
and the minute is divided into 60 seconds.

Radian (or circular) measure of angles is based on an arc of a circle
with centre at the vertex of the angle. If r is the radius of the circle
and l the length of arc subtending the angle, then the angle is l/r
radians. The size of a complete turn (360°) is thus the circumference
of a circle (2πr) divided by the radius r, i.e. 2π radians. 180° = π
radians and 90° = π/2 radians. To convert degrees into radians,
multiply by π/180.

A much less common system of angular measure is centesimal
measure, in which the right angle is divided into 100 degrees, the
degree into 100 minutes, and the minute into 100 seconds. In this
system, the degree is also called the grade (or grad), the minute
being the centigrade.



angular momentum (moment of momentum) Symbol: L. A
property of any revolving or rotating particle or system of particles.
The angular momentum, relative to (or about) a point O, of a
particle of mass m moving with velocity v is the *vector product of
the *position vector r of the particle relative to O and the
*momentum p:

L = r × p = m(r × v)

For a particle of mass m moving with constant speed v in a circle of
radius r, the angular momentum about the centre is mvr in
magnitude.

The angular momentum of a system of particles is the sum of the
angular momenta of the individual particles. For a *rigid body
rotating about an axis with angular velocity ω, the angular
momentum about a point on the axis is Iω, where I is the *moment
of inertia of the body about the axis. The rate of change of this
angular momentum is equal to the sum of the *moments of the
external forces about the axis. In the absence of external forces, the
angular momentum of a system remains constant – no change in
con�guration can alter the system’s angular momentum; there is
thus conservation of angular momentum. For example, if a rotating
cloud of gas in space is contracting under its own gravitation, then
it must rotate more rapidly as it contracts so that its angular
momentum is conserved.

Angular momentum is important not only in classical mechanics
but also in quantum mechanics: an elementary particle, such as an
electron, is considered to have intrinsic angular momentum, or spin, in
addition to its orbital angular momentum arising from translational
motion.

angular speed See angular velocity.

angular velocity Symbol: ω. A property that is usually associated
with *rotational motion: it is a *vector ω whose magnitude ω is
equal to the number of radians or degrees swept out in unit time;



this is known as the angular speed. The direction of the vector is that
along which a right-handed screw would advance if turned in the
same direction as the rotational motion. For a rigid body rotating
about an axis, the velocity v of any point P relative to any point O
on the axis as origin is the *vector product

v = ω × r

where ω is the instantaneous angular velocity and r is the *position
vector of P with respect to the origin O. A particle moving with
constant speed v in a circle of radius r has angular speed v/r.

angular velocity: v = ωxr.

anharmonic Neither undergoing nor involving simple *harmonic
motion, yet still periodic.

annulus A plane �gure bounded by two concentric circles, i.e. that
part of a plane lying between two concentric circles. In topology,
any *topological space *homeomorphic to such a plane �gure is
referred to loosely as an annulus.

The area of an annulus is the area of the larger circle (πR2) minus
that of the smaller circle (πr2), i.e. the area is

π(R2 – r2)



annulus

anomaly The azimuth in a *polar coordinate system.

ANOVA Acronym for *analysis of variance. The table setting out the
results of an analysis in a standard form is often called an ANOVA
table.

Ansari–Bradley test See homogeneity of variance.

antecedent 1. The �rst term in a ratio. Thus, in the ratio 5: 7, 5 is
the antecedent (7 is the consequent).
2. The part of a *conditional statement that expresses the condition.
For example, in the conditional ‘if p then q’, p stands for the
antecedent (q is the consequent).

antiderivative An integral. See integration.

antidiagonal See matrix.

antidi�erentiation See integration.

anti-Hermitian matrix See Hermitian conjugate.

antilogarithm (antilog) A number that has a *logarithm equal to a
given number. If logx y = z, then

antilogx z = y



antinomy A *paradox or *contradiction.

antiparallel vectors *Vectors that have the same or parallel lines of
action but point in opposite directions. Two antiparallel vectors
have a vector product of zero and a negative scalar product.

antipodal points Two points at opposite ends of a diameter of a
*sphere or *ellipsoid.

antiprism A *prismatoid that has two identical bases, one rotated
with respect to the other such that the lateral faces are triangles. For
example, consider a prism with two square bases – one with its
centre directly above that of the other and rotated through 45° with
respect to the other. There are eight edges joining the corners of
these bases, and the solid has eight lateral triangular faces.

antiprism A symmetrical square antiprism, viewed from above.

antisymmetric matrix See symmetric matrix.

antisymmetric relation See symmetric relation.

antitrigonometric functions See inverse trigonometric functions.

aperiodic Nonperiodic. See aperiodic tiling.

aperiodic tiling A set of tiles which tile the plane but can never
form a *periodic tiling is said to be aperiodic. A tiling with such a set
is an aperiodic tiling. See Penrose tiles.



apex (plural apices) The highest point of a geometric �gure with
respect to some side or plane taken as a base, for example the vertex
of a cone or pyramid, or the vertex of a triangle, opposite the base.

Apollonius of Perga (c.260–c.190BC) Greek mathematician noted
for his Conics, of which seven of the original eight books are extant.
In about 400 propositions he de�ned the parabola, hyperbola, and
ellipse, and went on to explore some of their more important
properties. See conic; see also problem of Apollonius.

Apollonius’ circle (circle of Apollonius) The locus of a point
which moves so that its distances from two �xed coplanar points are
in a constant ratio not equal to unity is a circle. The locus is
sometimes named after Apollonius since the result �rst appears in
his Plane Loci.

a posteriori Describing a proposition for which the truth or falsity
can be known only through experience. Compare: a priori. [Latin:
from what comes after]

apothecaries’ system 1. A system of units of mass based on the
troy ounce (see troy system) and formerly used in pharmacy. In this
system

20
grains = 1 scruple

3
scruples = 1 drachm (US: dram)

8
drachms =

1 troy ounce (of 480
grains)

12
ounces = 1 troy pound



2. A system of units of �uid volume formerly used in pharmacy. In
this system

60 minims = 1 �uid drachm

8 �uid
drachms =

1 �uid ounce (of
480 minims)

20 �uid
ounces = 1 pint

apothem See polygon.

applied mathematics See mathematics.

approach See limit.

approximation An estimate of a quantity, usually one for which
something is known about the accuracy of the estimate. The
notation a≈b (or a ≈ b) denotes that b is an approximation to a.
For example, π≈&22/7 gives an approximation to π. Similarly, sin x≈x
is an approximation to sin x for small values of x in radians.

approximation theory The branch of *numerical analysis
concerned with approximation of a *function f(x) over an interval
(a, b) by a simpler function A(X), often a *polynomial. The di�erence
f(x) – A(x) is the approximation error; in broad terms the aim of an
approximation is to keep this error small over the interval (a, b).

Approximations are often based on known values yi = f(xi) at
points x0, xl, x2, …, xn (see interpolation), and A(x) is chosen so as to
give zero error at these points. This does not guarantee small errors
at intermediate x values, and considerable improvement may be
achieved by �tting polynomials Pj(often cubics) piece-wise to
subintervals of (a, b) so that there is matching not only between Pj

(xi) and f(xi) at selected points called nodes, but also between the



�rst derivatives of these functions (if that for f(x) is known) at the
nodes. Polynomials �tted piecewise that pass through the nodes and
whose �rst derivatives agree at the nodes (though not necessarily
with f’(x)) are called splines.

apriori Describing a proposition for which the truth or falsity can be
known independently of experience. Logical truths are of ten held to
be a priori. Compare: a posteriori. [Latin: from what comes before]

apse See apsis.

apsidal distance See apsis.

apsidal point See apsis.

apsis (plural apsides) A point in an *orbit at which the value r of
the radius vector r is stationary and at which the orbiting body
moves perpendicular to the radius vector. It is sometimes called an
apsidal point or apse. The direction of r at such a point is called a line
of apsides or apse line, and r is the apsidal distance.

In an elliptical orbit there are two apsides, one nearest and the
other farthest from the centre of gravitational attraction. The
pre�xes peri-and apo-(or ap-) are used to distinguish the two points,
as in perihelion (nearest point) and aphelion (farthest point) for a
solar orbit.

Arabic numerals (Hindu–Arabic numerals) The numerals 0, l, 2,
3, etc. See number system.

arbitrary origin See data coding.

arc 1. A part of a curve(i.e. a segment). The term is also used to
mean a complete *open curve. If the circumference of a circle or
other closed curve is divided into two unequal parts, the longer of
the arcs is the major arc (or long arc) and the shorter is the minor arc
(or short arc). The two form a pair of conjugate arcs.
2. An edge of a directed *graph.
3. See path.



arccos, arcsin, arctan, etc. See inverse trigonometric functions.

arccosh, arcsinh, arctanh, etc. See inverse hyperbolic functions.

Archimedean property See Archimedes, axiom of.

Archimedean solid See polyhedron.

Archimedean spiral See spiral.

Archimedes of Syracuse (c.287–212BC) Greek mathematician who
in his Measurement of a Circle, Quadrature of the Parabola, and On
Spirals tackled di�cult problems of description and mensuration in
plane geometry. comparable work in solid geometry was displayed
in his On the Sphere and Cylinder and On Conoids and Spheroids.
Equally original was Archimedes’ On Floating Bodies, the �rst
application of mathematics to hydrostatics, and his work on the
lever, speci�c gravity, and the centre of gravity of a variety of
bodies. In pure mathematics he succeeded in solving cubic
equations, squaring a parabola, and summing higher series as well
as, in The Sand Reckoner, providing a notation for the representation
of very large numbers. In The Method, an important work discovered
only in 1906, Archimedes described how the use of mechanical
principles �rst led him to consider such propositions as ‘the area of
any segment of a parabola is 4/3 times that of the triangle with the
same base and height’. His mathematical proof, by the method of
*exhaustion, came later.

Archimedes, axiom of In the introduction to his Quadrature of the
Parabola, Archimedes formulated the following principle, since
known as the axiom of Archimedes: ‘The more by which the greater
of two unequal areas exceeds the less can, by being added to itself,
be made to exceed any given area.’ This is equivalent to saying that,
given any positive real numbers a and b such that a<b, there exists
an integer n such that na>b. It is sometimes called the Archimedean
property of the real numbers.



Archimedes’ principle The principle that if a body is wholly or
partially submerged in a �uid (liquid or gas) it experiences an
upward force (upthrust) equal to the weight of �uid that it
displaces.

Archytas of Tarentum (c.428–c.365BC) Greek mathematician who,
much to the disgust of Pythagoreans and Platonists alike, was one of
the �rst to apply his skills to practical problems in mechanics. He
was also the �rst to o�er a solution to the problem of *duplicating
the cube.

arc length See length.

are Symbol: a. A unit of area in the *metric system, equal to 100
square metres. It is most commonly used in the form of the *hectare.
1 are = 119.60 square yards.

area A measure of a surface. For a rectangle, the area is the product
of two adjacent sides. A triangle has an area equal to the product of
half its base and its altitude. Areas of other rectilinear �gures can be
found as a combination of triangles. For plane curved �gures, the
area is found by integration. In Cartesian coordinates, it is possible
to �nd the area between a curve y = f(x) and the x-axis. The
*element of area is f(x)dx, and the area between x = a and x = b,
where a<b, is given by the de�nite integral

In using this integral, care must be taken if the curve y = f(x)
crosses the x-axis since the integral determines the algebraic value
of the area, i.e. it gives negative values for areas below the axis.
Area can also be determined by using a double integral (see multiple
integral).

In polar coordinates, the area between the rays θ = θl and θ =
θ2, and the curve r = f(y), where θ1<θ2, is given by



area sampling A sampling method in which a geographical area is
divided into small sub-areas by a grid of squares or rectangles, or by
other de�nable means. Sub-areas are selected at random, and all
units in them are included in the sample. For example, in a study of
farming, a grid of 5 × 5 km squares might be used, and all farms
lying completely within the selected squares included in the sample.
See cluster sample; sample survey; sampling theory.

arg See argument (of a complex number).

Argand diagram (complex plane) Any plane with a pair of
mutually perpendicular axes which is used to represent *complex
numbers by identifying the complex number a + ib with the point
in the plane whose coordinates are (a, b)(see diagram). It is named
after Jean Robert Argand (1768–1822), although the method’s �rst
exposition, in 1797, was by Caspar Wessel (1745–18l8), and the
idea can be found earlier in the work of John Wallis. See also
extended complex plane.

argument 1. (amplitude) (of a complex number) The angle that
the line representing a *complex number makes with the positive
horizontal axis in an *Argand diagram. If the complex number is
written in polar (modulus–argument) form as r(cos θ + isin θ), the
argument is the angle θ. In the form a + ib, the argument is one



Argand diagram

of the values of tan–1(b/a). The principal value of the argument of a
complex number z is the value lying in the range

0  arg z < 2π

Some mathematicians use the range

– π < arg z  π

2. A set of statements that serve as premises, together with a
statement as the conclusion, such that the conclusion is supposed to
follow from the premises. If the conclusion does so follow, the
argument is said to be valid; otherwise, it is invalid. Note that the
premises need not be true; an *indirect proof, for example, uses a
false premise. See consequence; deduction; logic; logical form;
syllogism; valid.
3. The *independent variable of a *function.
4. The *azimuth in a *polar coordinate system.

argumentum ad hominem See fallacy.

Aristarchus of Samos (c.310–c.250BC) Greek mathematician and
astronomer best known for his claim, in a lost work, that the sun
and not the earth lies at the centre of the cosmos. He regarded



astronomy as a mathematical rather than a descriptive science. In an
extant work, On the Sizes and Distances of the Sun and Moon,
Aristarchus used simple trigonometrical arguments to calculate that
the sun is 18–20 times as far from the earth as the moon is.
Although his argument was essentially sound, he relied upon
inaccurate observational data and consequently reached inaccurate
conclusions; the same applies to his estimates of the sizes of the sun
and the moon.

arithmetic computation using numbers and simple operations such
as addition, subtraction, multiplication, and division.

arithmetic function A *function whose domain is the *natural
numbers and whose range is a subset of the *complex numbers. An
arithmetic function f is multiplicative if f(ab) = f(a)f(b) whenever a
and b are *relatively prime. It is completely multiplicative i� (ab) =
f(a)f(b) for every a and b. For example, *Euler’s phi function is an
arithmetic function that is multiplicative but not completely
multiplicative. See also divisor function; Möbius function; partition
function; sigma function.

arithmetic-geometric mean See mean.

arithmetic-geometric mean inequality The arithmetic *mean of
any number of nonnegative numbers is never less than their
geometric mean. Thus for two numbers a and b,

1/2(a + b) √ab

and for n numbers a1, a2, …, an,

1/n(a1 + a2 + … + an) (a1a2…an)1/n

The means are equal if and only if all the numbers are equal.

arithmetic mean See mean.

arithmetic modulo n Modular arithmetic; i.e. arithmetic involving
*congruences modulo n.



arithmetic progression (arithmetic sequence) A *sequence in
which each term (except the �rst) di�ers from the previous one by a
constant amount, the common di�erence. If the �rst term is a and the
common di�erence is d, then the progression takes the form

a, a + d, a + 2d, a + 3d, …

and the nth term is

a + (n – 1)d

A sum of the terms of such a progression is an arithmetic series:

a + (a + d) + (a + 2d) + …

The sum of the �rst n terms is given by

na + 1/2n(n – 1)d

or alternatively by

1/2n[2a + (n – 1)d]

Compare geometric progression.

arithmetic series See arithmetic progression.

arm (side) One of the two lines forming an angle.

array 1. An ordered collection of elements of the same type
(integers, real numbers, etc.). A one-dimensional array (e.g. a
*vector) is a list of elements ai, where i is the index value (an
integer). A two-dimensional array (e.g. a *matrix) has elements aij,
where i is the number of the row and j that of the column. Three-
and higherdimensional arrays are similarly de�ned. In computing,
an array is often called a subscripted variable.
2. A display of a set of observations, often in some explicit order
such as increasing or decreasing magnitude, or in increasing order



of frequency. The observations 3, 7, 2, 9, 1 in increasing order give
the array {1,2,3,7,9}.

Aryabhata (c.475–c.550) The �rst Indian mathematician of any
consequence. In the section ‘Ganita’ (Calculation) of his
astronomical treatise Aryabhatiya (AD 499), he made the
fundamental advance, in �nding the lengths of chords of circles, of
working with the half-chord rather than the Greek custom of
calculating on the basis of the full chord. His work also contains
rules for �nding π, extracting square roots, and summing arithmetic
series.

ASCII Acronym for American Standard Code for Information
Interchange. A code for converting common typographical symbols
– letters, numerals, punctuation, etc. – into a binary code of length 7
for internal use in a computer, enabling 128 di�erent symbols to be
coded. For example, the ASCII codes of the letter A, the numeral 6,
and the symbol = are 10 00001, 01101 10, and 01111 01,
respectively.

assertion sign The sign  used to indicate assertion (i.e. to say that
something is true). It is used between sentences to indicate that the
sentence on the right of the sign can be deduced (see deduction)
from that on the left. For instance, X  Y indicates that Y may be
deduced from X. The notation S A indicates ‘A is a logical *theorem
of the system S’. The subscript S can be omitted if it is clear which
system is intended.

associate matrix See Hermitian conjugate.

association In statistics, two or more variables that are not
*independent are sometimes described as exhibiting association. The
term is applied most frequently to *categorical variables, but for
numerical variables the *correlation coe�cient is sometimes
described as a measure of association. Association need not imply a
causal relationship. See contingency table; chi-squared test.



associative Describing a *binary operation (°) on a set S which
satis�es the associative law, namely that a°(b°c) = (a°b) ° c for all
elements a, b, c ∈ S, so that the result of combining a number of
elements does not depend on how the elements are grouped. The
associative law for addition is

a + (b + c) = (a + b) + c

and that for multiplication is

a(bc) = (ab)c

Subtraction and division are not associative, because, for example, 5
– (3 – 2) = 4, whereas (5 – 3) – 2 = 0. The composition of
mappings (see function) obeys the associative law.

associative algebra See algebra.

astroid A plane curve that is the *locus of a �xed point P on the
circumference of a circle that rolls on the inside of a �xed circle of
four times its radius. It has four *cusps and is an example of a
*hypocycloid. If the �xed circle has radius a and its centre at the
origin, then the curve has parametric equations x = a cos3 θ and y
= a sin3 θ. In cartesian coordinates the equation is x2/3 + y2/3 = a2/3

The curve has the property that the part of the length of its
tangent intercepted by the coordinate axes is constant and equal to
a. It is thus the *envelope of a line segment of length a which moves
so that its end points lie on the coordinate axes. See also deltoid.



astroid

astronomical coordinate system Asystem used for locating the
positions of celestial objects in the sky. Astronomical
coordinates de�ne positions on the Celestial sphere; as such they do
not indicate distances from the earth. The four main systems in use
are the *ecliptic, *equatorial, *galactic, and *horizontal coordinate
systems. Transformations between systems can be made by using
spherical triangles (see parallactic angle).

astronomical triangle See parallactic angle.

astronomical unit Symbol: AU. A unit of length used in astronomy,
equal to the mean distance between the centre of the earth and the
centre of the sun. 1AU = 1.496 × l011 metres or approximately
92.9 × 106 miles.

asymmetric relation See symmetric relation.

asymmetry See symmetry; skewness.

asymptote A line related to a given curve such that the distance
from the line to a point on the curve approaches zero as the distance
of the point from an origin increases without bound. In other words,
the line gets closer and closer to the curve but does not touch it. For



example, the asymptotes of the curve y = x2 + 1/x are the straight
line x = 0 and the curve y = x2. See hyperbola.

asymptotic 1. Describing a curve that has a line as an *asymptote.
2. Describing two *functions f(x) and g(x) such that f(x)/g(x) tends
to 1 as x tends to in�nity or to a limit. The function f(x) is said to be
asymptotic to g(x), and vice versa. This is sometimes written as
f(x)˜g(x), using the symbol For example, x2 + 1 ˜ x2 as x → ∞, and
sin x˜x as x → 0. The *prime number theorem, concerning π(x), the
number of primes less than or equal to x, can be stated as π(x) *
x/ln x. See also order properties.

asymptotic distribution The limiting *distribution of a random
variable Zn as n → ∞ For example, if Xl, X2, … Xn are n independent
observations from any distribution with mean μ and �nite variance
σ2, then Yn = Xl + X2 + … + Xn has mean nμ and variance nσ2,
both of which tend to in�nity (unless μ = 0). However, the *central
limit theorem implies that

has the standard normal distribution as n→ ∞.

asymptotic relative e�ciency See e�ciency.

asymptotic series A *divergent series of the form

where the coe�cients a0, al, a2, … are constants. This is an
asymptotic representation of a function f(x) if

for any value of n, where sn is the sum of the �rst n + 1 terms of the
series.



Atiyah–Singer index theorem See Riemann–Roch theorem.

atmosphere Symbol: atm. A unit of pressure, equal to the pressure
that will support a column of mercury 760 millimetres high at 0°C
at sea level at latitude 45°.1 atm = 101 325 pascals or
approximately 14.7 pounds per square inch.

atom An element A of a *lattice such that if B<A then B = A (the
null element). For example, in the lattice of all subsets of a given set
X, the atoms are the sets A = {a} consisting of exactly one element
of X, the null element being the empty set Ø.

atomic sentence A sentence(see w�) that contains no logical
*constants, such as & (and) or ν (or). For example, in the
*propositional calculus the atomic sentences are those that do not
contain any truth-functional connectives. Compare compound
sentence.

atto- See SI units.

attractor See chaos.

augend See addition.

augmented matrix A *matrix corresponding to a system of
inhomogeneous linear equations

a11x1 + … + a1nxn = b1

an1x1 + … + annxn = bn

and obtained by adjoining to the matrix of coe�cients aij an
additional column formed by the values bi.



The matrix formed from the coe�cients of the unknowns is the
matrix of coe�cients or coe�cient matrix. The equations are solvable
if and only if this has the same *rank as the augmented matrix.

Aut See automorphism.

autocorrelation If x1, x2, …., xn is a sequence of n observations
ordered in time or space, the product moment *correlation
coe�cient between all pairs (xi, xi–1), i = 2,3, …, n is called the
autocorrelation of lag 1. More generally, the correlation coe�cient
between all pairs (xi, xi–h), i = h + 1, h + 2, …, n is the
autocorrelation of lag h.

automorphic function A *function �s said to be automorphic with
respect to a group of *transformations if.
(1) the function is *analytic except for poles in a *domain D of the
complex plane; and
(2) for every transformation T of the group, if z is in D, then T(z) is
also in D, and

f(T(z)) = T(f(z))

automorphism A *bijective mapping from an algebraic structure to
itself that preserves all algebraic operations. That is, if M is an
operation on the structure A and θ: A → A is an automorphism, then
it must satisfy

θ(M(x1, …, xn)) = M(θ(x1), …, θ(xn))

For example, if A is the set of complex numbers considered as a �eld
under the usual operations + and ×, then complex conjugation
θ(z)= z is an automorphism, because

The set of all automorphisms of A forms a *group under
composition of mappings, usually denoted by Aut(A). The group



Aut(A) may be regarded as describing the symmetries possessed by
the structure A. See also automorphic function.

autumnal equinox See equinoxes.

auxiliary circle One of the two eccentric circles of an *ellipse or
*hyperbola. It is used in obtaining the parametric equations for the
curve.

auxiliary equation An equation similar in form to a linear
*di�erential equation, enabling the solutions of such an equation to
be found. The quadratic equation

am2 + bm + c = 0

is the auxiliary equation for the second- order di�erential equation

average See mean.

avoirdupois A British system of units of mass used in many English-
speaking countries. It is based on the *pound (avoirdupois). In the
UK the system is:

7000 grains = 1 pound (lb)

16 drams = 1 ounce

16 ounces = 1 pound

14 pounds = 1 stone

2 stones = 1 quarter = 28 lb

4 quarters = 1 hundredweight (cwt)

  = 112 lb



20 cwt = 1 ton = 2240 lb

In the USA the system is:

100 pounds = 1 (short) hundredweight

5 cwt = 1 quarter (of 500 lb)

4 quarters = 1 (short) ton (of 2000 lb)

In the UK the system has been replaced by metric units for nearly all
purposes, and by *SI units for scienti�c purposes.

axes Plural of axis.

axiom A statement used in the premises of arguments and assumed
to be true without proof. In some cases axioms are held to be self-
evident, as in *Euclidean geometry, while in others they are
assumptions put forward for the sake of argument.

More precisely, an axiom is a *w� that is stipulated rather than
proved to be so through the application of rules of inference (see
proof). The axioms and the rules of inference jointly provide a basis
for proving all other theorems. As di�erent sets of axioms may
generate the same set of theorems, there may be many alternative
axiomatizations of the formal system. Axioms are often introduced
through axiom *schemata.

Axioms are usually subdivided into logical and nonlogical axioms.
The latter, but not the former, deal with some speci�c subject
matter. For example, *Peano’s postulates are nonlogical axioms
whose symbols are interpreted with respect to a domain of numbers,
while the axioms of the *propositional calculus are logical axioms
whose symbols can be interpreted in a variety of ways. The word
postulate is sometimes used as a synonym for ‘axiom’. The postulates
of *Euclidean geometry are nonlogical axioms.



axiom of abstraction Given any property, there exists a *set whose
members are just those entities possessing that property, i.e.

(∃y)(∀x)(x ∈ y ↔ F(x))

First explicitly formulated by Frege in 1893, it was soon
demonstrated by Russell to lead to a contradiction. Taking F in the
axiom to be the property of not belonging to itself (x ∉ x) leads to

(∃y)(∀x)(x ∈ y ↔ × ∉ x)

which leads by simple steps to the contradiction

y ∉ y& y ∉ y

It was to avoid this paradox (see Russell’s paradox) that Zermelo
introduced in 1908 his axiom of separation:

(∃y)(∀x)(x ∈ y ↔ x ∉ z& F(x))

in which the existence of the set y is no longer asserted
unconditionally. See also Zermelo–Fraenkel set theory.

axiom of Archimedes See Archimedes, axiom of.

axiom of choice See choice, axiom of.

axiom of extensionality The axiom that two *sets are equal if they
have exactly the same members, i.e. for sets A and B

(∀x)(x ∈ A ↔ × ∉ B)→A = B

For example, if A = {1,2,2,3,6,4} and B = {1,2,3,4,6}, then A and
B contain exactly the same elements (repetition and order are
irrelevant) and therefore the two sets are equal.

axiom of in�nity Although earlier mathematicians had attempted
to prove the existence of an in�nite set of objects, it was left to
Zermelo in 1908 to appreciate that the existence of such a set



needed to be assumed axiomatically. He therefore included in his
system the axiom

(∃A)(0 ∈ A&(∀y)(y ∈ A→{y}∉A))

which allows the construction of the in�nite set of natural numbers.

axis (plural axes) In general, a reference line associated with a
geometric �gure or an object.
1. (reference axis) A line from which distances or angles are taken
in a *coordinate system or *Argand diagram.
2. (axis of symmetry) A line associated with a geometric �gure
such that every point on one side of the line has a corresponding
point on the other side. The axis bisects at right angles the line
segment joining the two points. Axes of �gures such as ellipses,
parabolas, hyperbolas, and ellipsoids are axes of symmetry. See also
symmetry.
3.(axis of revolution or rotation) A line about which a curve or
�gure is rotated in forming a *surface of revolution or a *solid of
revolution.

A line about which an object rotates. See moment of inertia.
4. A line joining a vertex of a cone or pyramid to the centre of the
base, or joining the centres of the bases of a frustum, truncated
solid, cylinder, or prism. Such an axis is not necessarily an axis of
symmetry (e.g. if the solid is oblique).
5. A line along which a *pencil of planes intersect.

See also Cartesian coordinate system; helix.

azimuth 1. (amplitude; anomaly; argument) Symbol: θ. The
angle between the polar axis and the radius vector in a *polar
coordinate system.
2. Symbol: A. The angular distance (measured from 0° to 360o) of a
point on the *celestial sphere from the north point. It is measured
eastwards along the horizon between the north point and the place



at which a great circle through the zenith and the point intersects
the horizon. See horizontal coordinate system.



B

Babbage, Charles (1792–1871) English mathematician best known
for his work on the design and manufacture of the mechanical
computer. Beginning in the 1820s, Babbage devoted much of his life
to the construction of, �rst, his ‘di�erence engine’ and, later, his
more ambitious ‘analytical engine’, which were in theory capable of
performing mechanically any mathematical operation. Owing to a
number of factors – personal, �nancial, and technological – Babbage
failed to develop the machines as he intended; they did, however,
contain in their design a number of essential features used in the
modern electronic computer.

backward di�erence Given *function values yi = f(xi), where xi =
x0 + ih, i = 0, 1, 2, …, the backward di�erence ∇yi is de�ned by
∇yi = yi – yi–1. See �nite di�erences.

backward di�erence formula See Gregory–Newton interpolation.

balanced incomplete block design An *experimental design in
which t treatments are allocated to b blocks, each block containing k
units, where k < t; blocks are thus ‘incomplete’ in the sense that
there are not enough units to receive all treatments. The allocation
is subject to the constraints that each treatment is replicated r times,
and every pair of treatments occurs together in the same number (λ)
of blocks. The total number of units is bk = rt, and λ = r(k – 1)/(t –
1).

For four treatments A, B, C, and D, each replicated three times in
six blocks of two units, an appropriate allocation of treatments to
blocks would be AB, AC, AD, BC, BD, and CD. For a valid analysis
the treatment pairs must be allocated to blocks at random, and
within each block the treatments must be allocated to units at
random. It is possible to compare treatments after eliminating block
e�ects by an appropriate *analysis of variance.



Ball The n-ball Bn (n ≥ 1) is the subspace of n-dimensional
*Euclidean space n of points (x1, …, xn) such that √(x2

1 + … + x2n)
≤ 1. It contains the (n – 1)-sphere Sn–1 (see sphere) as a subspace.
For example, B2 is a circular disc and B1 is the closed interval [–1,1].

Ballistics The study of the propulsion, �ight, and impact of
projectiles. Interior ballistics is concerned with the motion of
projectiles under propulsive power, e.g. with events occurring up to
the instant that a bullet leaves the muzzle of a gun. The rate of
chemical combustion of the propellant, the gas pressure behind the
projectile, and the velocity imparted to the projectile are important
factors. Exterior ballistics is concerned with the motion of projectiles
that are no longer under propulsive power, i.e. with their motion
through the air (or through water, say). Of prime interest is the way
in which a projectile is a�ected by such factors as drag, cross-winds,
and the *Coriolis e�ect (in long-distance �ight), the maintenance of
a stable trajectory, and the e�ects of varying initial velocity, angle
of projection, etc.
Banach, Stefan (1892–1945) Polish mathematician noted for his
work beginning in 1922 on a type of vector space, more general
than Hilbert space, and since commonly known as *Banach space.
He was also responsible, with Tarski, for the *Banach-Tarski
paradox, which implies that any two spheres of di�erent radii can
be divided into the same number of congruent disjoint sets.

Banach contraction principle See contraction mapping.

Banach space A *complete normed *vector space over the real or
complex �eld. Examples are all *Euclidean spaces (with the usual
norm), and the space of all square-integrable real-valued functions.
The major concepts of analysis, such as di�erentiation and
integration, may be generalized to Banach spaces, giving the subject
of functional analysis. This has important applications to the study of
partial di�erential equations and integral equations, and appears to
be a natural abstract setting for many general theories of analysis.



Banach-Tarski paradox A paradox based on the existence of sets
which are non-measurable. Consider two sets in 3-dimen-sional space
such as B3(1) and B3(2), the solid spheres of radii 1 and 2; they can
be broken up into the disjoint union of a �nite number of sets
B3(1)= X1 ∪ X2 ∪ … ∪ Xm and B3 (2) = Y1 ∪ Y2 ∪ … ∪ Ym that have
the remarkable property that, for each k, Xk is isometric to Yk ; that
is, each Yk can be obtained from Xk by a rigid motion (one that
preserves all lengths). However, such decompositions cannot be
constructed directly; their existence relies on the axiom of *choice.
Named after S. Banach and A. Tarski. See measure.

band matrix A *matrix whose elements are zero outside a band of
diagonals around the leading diagonal. An example of a band matrix
is

Another example of a band matrix is a tridiagonal matrix (see sparse
matrix).

bandwidth See kernel density estimation; lowess.

bar A *c.g.s. unit of pressure, equal to a pressure of 106 dynes per
square centimetre. 1 bar = 105 pascals or approximately 0.9869
atmosphere. The millibar is still in use for meteorological purposes.

bar chart A graph consisting of vertical bars with heights
proportional to the frequencies of some event for each of several
categories. The categories may be nominal, such as nationalities of
passengers on an aircraft, or ordinal, such as days of the week (see
diagram). The names bar diagram and bar graph are also used. See
also histogram.



bar chart showing the number of items sold on di�erent days.

bar diagram See bar chart.

bar graph See bar chart.
Barrow, Isaac (1630–77) English mathematician and theologian
who published in his Lectiones geometricae (1670, Geometrical
Lectures) a method of �nding tangents similar to that now used in
di�erential calculus. Barrow himself never developed the method –
in his book he wrote that it is published in an appendix ‘on the
advice of a friend’. The friend, Isaac Newton, was later
recommended by Barrow as his successor to the Lucasian chair of
mathematics at Cambridge.

Bartlett’s test See homogeneity of variance.

barycentre See centre of mass.

barycentric See centre of gravity.

barycentric coordinates A set of numbers that represent the
position of a point in space relative to a set of �xed points. In three-
dimensional space four points are used. p0, p1, p2, and p3 (p0 is the
point (x0, y0, z0), etc.), and the four points are not coplanar. For any
general point p there is a set of numbers λ0, λ1, λ2, and λ3 for which



p = λ0p0 + λ1p1 + λ2p2 + λ3p3

and λ0 + λ1 + λ2 + λ3 = 1

The set {λ0, λ1, λ2, λ3} consists of the barycentric coordinates of p. If
point masses λ0, λ1, λ2, λ3 are placed at p0, p1, p2, p3, then p is the
centre of mass of the system. The system can be generalized to n-
dimensional space.

Base 1. (of a number system) The number represented by the
numeral ‘10’ in a positional *number system. Thus, in the decimal
system the base (ten) is represented by 10; in a binary system the
base (two) is also represented by 10.
2. (of logarithms) The number which, raised to the power of a given
*logarithm, produces a given number. Thus, if the logarithm of x to
base b (written as logb x) is y, then by = x.
3. A line or plane in a geometric �gure relative to which the altitude
of the �gure is measured.

base units A set of *units for dimensionally independent *physical
quantities that form the basis of a system of units. There are seven
base units in *SI units. See also coherent units; derived units;
supplementary units.

basis (plural bases) A *subset of a *vector space that is linearly
independent and spans the space. If x1, …, xt is a basis, then every
element of the vector space has a unique representation as a linear
combination

a1x1 + … + ajxj + … + atxt

where the aj are scalars. This permits the introduction of a
coordinate system (a1, …, at) on the vector space. Bases are in
general not unique. Any two bases for a given vector space must
contain the same number of elements: this number is the dimension
of the vector space and is of fundamental importance.



Baudot code A *code invented by the French telegraph engineer
Émile Baudot in the 1870s and which was widely used in
telegraphy. Its *code length is 5 and allows transmission of letters
and numerals. It superseded Morse code but has now been largely
replaced by *ASCII. It is still used in specialist telephone devices for
the deaf. See also Gray code.

Bayes, Rev. Thomas (1702–61) English mathematician and
theologian best known for An Essay Towards Solving a Problem in the
Doctrine of Chances, published posthumously (1763), which included
both the uncontroversial *Bayes’ theorem and a contentious
postulate that is fundamental to *Bayesian inference. Works
published in his lifetime dealt with the logical foundations of
mathematics.

Bayes’ factor (H. Je�reys, 1935) In *Bayesian inference, suppose
that we are given a set of data D assumed to have arisen under one
of only two possible models or hypotheses M1 or M2, with prior
probabilities Pr(M1) and Pr(M2) = 1 – Pr(M1). The *posterior
probabilities are then Pr(M1|D) and Pr(M2|D) = 1 – Pr(M1|D).
Applying *Bayes’ theorem, it may be shown that

where

is called the Bayes’ factor.
This result implies that the posterior *odds on M1 are obtained by

multiplying the prior odds on M1 by the Bayes factor, which is
independent of the prior odds. The notion extends easily to pairwise
comparisons of more than two alternative models.

Bayesian inference A method of statistical inference based on
*Bayes’ theorem. The unknown or unknowns (usually *parameters)



to be estimated are assumed to have a *prior probability
distribution. Using Bayes’ theorem, this is combined with the
information from observed data expressed in terms of the
*likelihood to form a *posterior probability distribution for the
unknown(s). If further data become available, this posterior
distribution may be used as a prior distribution for a later analysis.

When the prior distribution is based on empirical data, as in the
examples given in the entry for Bayes’ theorem, the approach is not
controversial. However, there are two other common approaches
that involve subjective probabilities, and these are regarded by
many as controversial.

In the �rst of these approaches, the prior probability distribution
is based on a personal degree of belief. The precise nature of this
distribution in�uences the posterior probability distribution.
Proponents of this approach defend it on the grounds that the
in�uence of any particular prior distribution becomes diluted in the
posterior distribution by the impact of the data.

In the second common approach, the choice of a prior distribution
is such as to indicate a noncommittal attitude about the
unknown(s). Typically, a prior distribution may be in this situation a
uniform distribution over a plausible range of values for the
unknown(s).

Either approach, especially the latter, often but not always leads
to inferences that di�er little from those arrived at using a
*frequential inference approach.

There are possible analytic or computational di�culties
associated with some choices of prior distributions. Some of these
di�culties are alleviated by choosing a conjugate prior distribution,
which is a distribution that gives rise to a posterior distribution
belonging to the same family as the prior; for example, both might
be a *normal distribution or both a *gamma distribution. Bayesian
inference often makes use of the *Gibbs sampler based on *Markov
chain *Monte Carlo simulations. See also Bayes’ factor



Bayes’ theorem (T. Bayes, published posthumously in 1763) A
theorem on *conditional probability that evaluates the probability
of an event (a cause) conditional upon another event (a
consequence) of known probability having taken place. Suppose that
B1, B2, …, Bn are a mutually exclusive and exhaustive set of events
(i.e. a set of non-overlapping events covering the whole *sample
space) and an event A is observed. The probability that the event Bj

is the causal event giving rise to A, i.e. the probability of Bj

conditional upon A, is given by Bayes’ theorem, i.e.

Suppose, for example, that box 1 contains 10 good screws and 2
unslotted screws, and box 2 contains 8 good screws and 4 unslotted
screws. If a box is selected at random and a screw chosen from it is
found to be unslotted, what is the probability that it came from box
2? If A is the event ‘unslotted screw selected’, and B1 and B2 are the
events ‘screw is selected from box 1, box 2’ respectively, then Pr(B1)
= Pr(B2)= ½, Pr(A|B1) = 1/6, and Pr(A|B2) = 1/3, whence, by
Bayes’ theorem,

An important application arises in diagnostic testing. Suppose that
in a population, 6 in every 1000 people have a disease or condition
X. It is known that if a person has X, then there is a 92 percent
chance that a blood test will be positive for X and also a 0.5 percent
chance that a person without X will test positive. If an individual
selected at random tests positive for X, what is the probability that
they have X?, If A is the event tests positive for X, and B1 and B2 the



events has X and does not have X, we seek Pr(B1|A), given that Pr(B1)
= 0.006, Pr(B2) = 0.994, Pr(A|B1) = 0.92, and Pr(A|B2) = 0.005,
whence

So, before the test the probability of an individual having X is 0.006,
but after a positive test the probability that an individual has X is
0.526.

Bearing The angle between a course or direction and a northerly
direction. The bearing of a point B from another point A (i.e. the
bearing of the direction AB) is the angle of clockwise rotation of AB
from a north-pointing line AN (see diagram). The angle is measured
in degrees, and is usually stated in three-digit form (e.g. 045°, 229°).

bearing of B from A.

beats A phenomenon arising when two *waves of slightly di�erent
*frequency occur together: there is a slow �uctuation in he
*amplitude of the resulting composite



beats (a) Two waves of slightly di�erent frequency, and (b) the resultant wave, showing
beats.

wave as the two wavetrains continuously reinforce and then
neutralize each other. Beats can be used in tuning musical
instruments. Audible surges in volume are produced by playing two
notes of approximately equal frequency; these surges are reduced to
zero when the frequencies are made equal. The frequency at which
the amplitude �uctuates is the beat frequency, which is equal to the
di�erence in frequency of the combining waves, |f1 – f2| If the two
frequencies are close, the resulting beat frequency is low. If the two
combining waves have equal amplitude a, the resulting amplitude is
approximately given by

2a cos[л(f1 – f2)t – 1/2 θ]

where θ is the phase di�erence.

Becquerel Symbol: Bq. The *SI unit of activity, equal to the number
of atoms of a radioactive substance that disintegrate in 1 second.
[After A.H. Becquerel (1852–1908)]

Bede, the Venerable (672–735) English scholar who produced
works on the calculation of the date of Easter, �nger-counting, the
sphere, and division. These writings, in Latin, are probably the �rst
mathematical works known to have been produced in England by an
Englishman.

Behrens–Fisher test (W.V. Behrens,1929; R.A. Fisher, 1937) A test
involving two independent samples, which in essence extends the *t-
test by relaxing the requirement of equal population variances. The



test may be justi�ed by *�ducial inference theory, but is often
quoted as a case where �ducial and con�dence-interval theory
di�er. The test is still a subject of controversy and its validity is not
universally accepted.

bei function See Bessel functions.

Bel Symbol: B. A unit for comparing two power levels, equal to the
logarithm to the base ten of the ratio of the two powers. It is most
commonly used in the form of the *decibel. [After A.G. Bell (1847–
1922)]

bell-shaped curve See Cauchy distribution; normal distribution.

Beltrami, Eugenio (1835–99) Italian mathematician who in his
Saggio di interpretazione della geometria non-euclidea (1868, Studies in
the Interpretation of Non-Euclidean Geometry) demonstrated how
the various new geometries of Bolyai, Lobachevsky, and Riemann,
as well as the traditional geometry of Euclid, can all be mapped on
surfaces of constant curvature. Beltrami then succeeded in showing
that if any of the new non-Euclidean geometries proved to be
inconsistent, so too would be Euclidean geometry.

bending moment The algebraic sum of the *moments of the forces
acting on one side of a cross-section of a beam or other structural
member.

bend point A point on a curve at which the ordinate is a maximum
or a minimum.

ber function See Bessel functions.

Bernoulli A family of Swiss mathematicians and physicists. About a
dozen members of the family are remembered, the most important
being:

Jacques Bernoulli (1654–1705; also known as James or Jakob)
Noted for his work on calculus and probability. In 1690 he was the
�rst to introduce the word ‘integral’. Jacques was interested in



applying the calculus to the study of curves, in particular the
logarithmic spiral and the brachistochrone. The lemniscate of
Bernoulli is named after him. He was one of the �rst to use polar
coordinates, in 1691. He also wrote the �rst book concentrating on
probability theory, Ars conjectandi (The Art of Conjecture, published
posthumously in 1713). This contains an account of the *Bernoulli
numbers and *Bernoulli’s theorem.

Jean Bernoulli (1667–1748; also known as John or Johann) The
brother of Jacques, and also known for his work on the calculus. In
1694 he was the discoverer of L’Hôpital’s rule. In 1696 he proposed
the brachistochrone problem and, as a consequence, is often
referred to as the originator of the calculus of variations. Jean
Bernoulli had three sons, all of whom became professors of
mathematics, the most prominent being Daniel.

Daniel Bernoulli (1700–1782) The son of Jean Bernoulli, noted for
his book Hydro-dynamica (1738, Hydrodynamics) in which he laid
the foundations of the modern discipline of hydrodynamics and
introduced *Bernoulli’s equation (2). Daniel Bernoulli, like his uncle
Jacques, worked on probability.

Bernoulli distribution See Bernoulli trial.

Bernoulli numbers Numbers originally introduced by Jacques
Bernoulli in a formula for sums of the powers of integers. They are
now often de�ned by taking the expansion of x/(1 – e–x), giving

1 + 1/2 x + 1/6 x2/2! – 1/30 x4/4! + 1/42 x6/6! –…

The Bernoulli numbers are the coe�cients of xn/n! when n is even,
i.e. the values 1/6, – 1/30, 1/42, ….

Bernoulli’s equation 1. A �rst-order *di�erential equation of the
form

dy/dx + y f(x) = yng(x)



where f(x)andg(x) are functions of x. It was �rst solved by Jacques
and Jean Bernoulli and by Leibniz.
2. An equation in �uid mechanics:

where p is the pressure of the �uid, ρ its density, ν the velocity along
a stream line, V the gravitational potential, and C a constant for a
given stream line (Bernoulli’s constant). The equation, which was
�rst formulated by Daniel Bernoulli in 1738, is a statement of the
principle of conservation of energy for nonviscous incompressible
�uids.

Bernoulli’s theorem Atheoremin*probability introduced by
Jacques Bernoulli in his book Ars conjectandi (1713). If p is the
probability of a given event and m is the number of occurrences of
the event in n trials, then the probability that, for any ε > 0,

|(m/n) – p| < ε

has a limit of 1 as n → ∞

Bernoulli trial (Jacques Bernoulli, 1713) A *trial or experiment
with only two possible outcomes, often called success or failure,
with probabilities p and q = 1 – p, respectively. A Bernoulli variable
X takes the value X = 1 with probability p and X = 0 with
probability q. Its distribution is the Bernoulli distribution which has
*mean p and *variance pq. For example, if scoring either a �ve or a
six when a fair die is cast is a success, denoted by X = 1, then Pr(X
= 1) = 1/3 and Pr(X = 0) = 2/3, and X has a Bernoulli
distribution with *mean 1/3 and *variance2/9. See also binomial
distribution; negative binomial distribution.

Bernoulli variable See Bernoulli trial.

Berry’s paradox A *paradox stated by G.G. Berry in 1906. In
general, the larger a number, the more syllables are needed to form



English names of the number. Consider ‘the least integer not
nameable in fewer than nineteen syllables’. This expression appears
to name a number (one hundred and eleven thousand, seven
hundred and seventy-seven, 111 777), but it is also an expression of
eighteen syllables that is itself a name of a number. So the least
integer not nameable in fewer than nineteen syllables is nameable
by an expression containing fewer than nineteen syllables, which is
a contradiction.

Bertrand’s postulate The *postulate that for any integer n greater
than 3, there is always at least one *prime between n and 2n – 2.
The conjecture was �rst published in 1845 by the French
mathematician Joseph Bertrand (1822–1900), and was proved in
1850 by Tchebyshev.

Bessel, Friedrich Wilhelm (1784–1846) German mathematician
and astronomer noted for his introduction in 1824 of *Bessel
functions into mathematics. Bessel’s interest in them arose from his
work on the perturbations observed in planetary motions.

Bessel functions *Functions that arise in the solution of the *wave
equation expressed in *cylindrical coordinates and satisfy *Bessel’s
equation.

Bessel functions of the �rst kind are denoted by Jn(z). For a nonzero
integer n,

the series form being valid if n is a positive integer. The order of the
function is n. The real and imaginary parts of Jn[x exp 3лi/4)],
where x is real, are respectively the ber and bei functions of order n.

Bessel functions of the second kind (also called Neumann functions)
are simple combinations of Bessel functions (written as Yn(z)). Bessel



functions of the third kind are called Hankel functions and have two
forms:

Hn(1)(z)=Jn(z) + iYn(z)

Hn(2)(z)=Jn(z) – iYn(z)

The functions were originally introduced by Bessel in 1824. They
arise in many problems in physics and engineering.

Bessel’s equation A second-order *di�erential equation of the form

z2 d2y/dz2 + z dy/dz + (z2 – n2)y = 0

where n is a constant. This is Bessel’s equation of order n
The equation

z2 d2y/dz2 + z dy/dz + (z2 – n2)y = 0

is the modi�ed Bessel equation. Bessel’s equation occurs in many
applications in physics an engineering. See Bessel functions.

beta distribution A distribution over [0, 1] with *frequency
function

f(x) = 1/B(m, n) xm–1 (1 – x)n–1

where B(m, n) is the *beta function an m, n > 0. The frequency
function takes a wide range of shapes for di�erent combinations of
values of the parameters m and n, and includes *U-shaped
distributions and the *uniform distribution over [0,1] as special
cases.

beta function The *function, denoted by B(p, q), that is the integral
of

xp–1(1 – x)q–1



from 0 to 1. It can be expressed in terms of the *gamma function as

between-treatments sum of squares See analysis of variance.

Bezout’s theorem Two algebraic plane curves whose degrees are d
and e and which have no common part meet in exactly de points in
the complex projective plane if the intersection points are counted
with an appropriate multiplicity. In the projective plane geometry
over any �eld, two such curves meet in at most de points. For
example, two conics meet in at most four points. The theorem is
named after the French mathematician Étienne Bézout (1730–83).

Bhaskara (1114–c.1185) Indian mathematician who published
works on arithmetic, Lilavati (The Beautiful), and algebra, the
Bijaganita (Seed Arithmetic).

Bias See unbiased estimator; unbiased hypothesis test.

Biconditional (in logic) A sentence of the form ‘A if and only if B’(A
i� B). Such a statement is called biconditional because it is a joint
assertion of two conditions: ‘A if B’and ‘B if A’. It is symbolized in
*formal language by A ≡ B or A ↔ B (see equivalence).

bidiagonal matrix A square *matrix whose elements are zero
except on the principal diagonal and the �rst superdiagonal or �rst
subdiagonal. The matrix A is upper bidiagonal if aij = 0 when i > j
or j > i + 1, and lower bidiagonal if aij = 0 when i < j or i > j + 1.
The matrix

is upper bidiagonal.



Bieberbach conjecture In 1916 the German mathematician Ludwig
Georg Bieberbach (1886–1982) conjectured that if the *holomorphic
function de�ned by the *power series

f (z)=z + a2 z2 + a3 z 3 + ···

where an are complex numbers is *injective for |z| < 1, then |an| ≤
n for all n ≥ 2. After attempts by many mathematicians, the
conjecture was proved by Louis de Branges in 1984.

Bienaymé–Tchebyshev inequality See Tchebyshev’s inequality.

bifurcation A sudden change in the nature of an *attractor (or
repellor) as the de�ning transformation or *�ow changes with
respect to changes in the de�ning equations. Important examples
are:
(1)Hopf bifurcation (E. Hopf, 1942): a bifurcation in which a family
of �ows xλ (t), parametrized by a real number λ, has an attractor
consisting of a �xed point replaced by a circle and a repelling �xed
point for a small change in the parametrization (see diagram).
(2)Flip (or period doubling) bifurcation: a bifurcation in which a
family of transformations T λ, parametrized by a real number λ, has
a repelling �xed point replaced by a pair of periodic points of period
2, forming an attractor. For example, if Tλ (x)= x2 –(1 + λ) the
change occurs when λ = 0.



bifurcation Hopf bifurcation.

This is related to the *Feigenbaum number.

Bijection A*mapping f: X → Y, where X and Y are *sets, satisfying
the properties (1) if x, y ∈ X and f(x) = f(y) then x = y; (2) if y ∈
Y then y = f(x) for some x ∈ X. Any bijection has an inverse
mapping f–1 such that f(f–1 (y)) = y and f–1 (f(x)) = x for all x ∈ X
and y ∈ Y ; conversely any mapping f having such an inverse must
be a bijection. Another name used for a bijection is *one-to-one
correspondence. A bijection from set A to set B is a function that is
both an *injection and a *surjection.



bilateral symmetry A geometric �gure has bilateral symmetry if it
has re�ectional *symmetry in a line or plane. See also re�ection.

Bilinear Describing a mathematical expression that is *linear with
respect to each of two variables considered separately. For example,

x + 2xy + y = 0

is a bilinear equation.6xy is a bilinear form.

billion One thousand million (109). The term has long been
established in this sense in the USA. In the UK ‘billion’ originally
meant one million million (1012), being a contraction of bi = two
and million, but since the 1970s it has commonly been used to mean
109.

bimodal distribution A *distribution for which the*frequency
function has two distinct maxima. Compare unimodal distribution.

binary code A set of *codewords, each a sequence of zeros and
ones, such as 011001. Usually all the codewords in the set have the
same length; *error-correcting codes are examples of such sets.

binary connective See connective.

binary notation The method of positional notation used in the
*binary system.

binary number A number expressed in the *binary system.

binary operation A rule assigning, to two elements x and y of a
*set, an element x ° y of the same set, often referred to as their
product (although it need not be the product in the usual sense). For
example, addition ( + ) is a binary operation on the set  of
integers, assigning to x and y the value x + y and multiplication (·)
is also a binary operation, assigning to x and y the usual product x·y
= xy. If the set is S, a binary operation b on S can be regarded as a
*function whose *domain is S × S and whose *codomain is S, and



we can write b : S × S → S. Compare unary operation; see also
Cartesian product; algebraic operation.

binary relation See relation.

binary string A string of elements such as 10001110 from the set
{0,1}. Information is often translated into binary strings before
transmission because they are easy to transmit.

binary system A *number system using the base two. Two digits. 1
and 0, are used to denote binary numbers. Decimal 1 is 1 in binary,
decimal 2 is 10, 3 is 11, 4 is 100, 5 is 101, etc. Binary numbers are
used in computers because the two digits 1 and 0 can be represented
by two alternative states of a component (e.g. the presence or
absence of an electrical potential or magnetized region).

binary tree See tree.

binary variable A random variable that can take only two possible
values; for example, the sex of a newborn child may be male or
female, a bacterium may be present or absent in a clinical sample.
For most analytic purposes, binary random variables may be coded
by a random variable X that takes only the value 0 or 1.
For example, we might assign X = 0 to a male birth and X = 1 to a
female birth; or in a coin tossing experiment we might assign X = 0
to the outcome ‘tails’ and X = 1 to the outcome ‘heads’. See also
dummy variable; Bernoulli trial.

Binomial A *polynomial consisting of two terms, for example 1 +
2x or p + q.

binomial coe�cients , the coe�cients of xr in the expansion of
(1 + x)n, such that

and



for each positive integer r. When n is a positive integer, the binomial
coe�cients form a row of *Pascal’s triangle. See binomial theorem.

binomial distribution The *distribution of the number of successes
in a series of n independent *Bernoulli trials, at each of which the
probability of success is p. The *frequency function is

where q = 1 – p, 0 ≤ r ≤ n, and  is a *binomial coe�cient. The
distribution is often denoted by B(n, p). Successive terms in the
frequency function are those in the binomial expansion of (p + q)n.
The mean is given by E(X) = np, and the variance by Var (X) =
npq. For example, if a die is cast four times and a score of 6 is a
success, then n = 4 and p = 1/6, and the probability of two
successes is

For large n, and both np and nq approximately 5 or more, the
binomial distribution approaches the N(np, npq) distribution (see
normal distribution), and when n → ∞ and p → 0 in such a way
that np = λ, it can be approximated by the *Poisson distribution
with mean λ. See also continuity correction; negative binomial
distribution.

binomial expansion The expansion given by the *binomial
theorem.

binomial series An in�nite *series that is the expansion of (1 + x)n
or (x + y)n when n is not a positive integer or zero. See binomial
theorem.

binomial theorem A theorem that gives the expansion for 1 + x)n
as



1 + nx + n(n − 1)/2! x2

+ n(n − 1)(n − 1)(n − 2)/3! x3 + …

This is known as the binomial expansion.
When n is a positive integer the expansion is a �nite series with n

+ 1 terms, the last term equalling xn. When n is not a positive
integer or zero, the expansion is an in�nite series since the
coe�cients are all nonzero; it is known as the binomial series. It is
convergent when |x| < 1and divergent when |x| > 1. It is thus a
valid expansion of (1 + x)n only when |x| < 1. (In the special case
in which x = 1 the series is convergent if n > – 1, and in the case
in which x = –1 the series is convergent if n > 0.)

More generally, an expansion for (x + y)n is

xn + nxn−1y + n(n − 1)/2! xn−2y2 + …

This is valid for |y| < |x|. The coe�cients of the terms are known
as the binomial coe�cients. Only when n is a positive integer is the
expansion a �nite series; it then has n + 1 terms, the last term
equalling yn.

biquadratic See quartic.

birectangular Having two right angles. See spherical triangle.
birth-death process A *stochastic process concerned with
population changes due to births, deaths, immigration, and
emigration.

bisect To divide into two equal parts. For instance, bisection of an
angle involves drawing a line through the vertex that cuts the angle
in half. A point, line, plane, etc. that bisects something is a bisector.

The point that bisects the line segment joining two other points is
called their mid-point. If their position vectors are a and b, the mid-
point has position vector ½(a + b).



bisection method An interative method for solving a nonlinear
equation f(x) = 0 in one variable. It is based on the fact that, if f is
a *continuous function and f(a) and f(b) have opposite signs, then
there is a zero of f between a and b. The bisection method takes an
interval [a, b] with a<b and f(a)f(b)<0, and evaluates f(c), where
c=1/2(a + b). If f(c) = 0, then c is a zero. If f(a) and f(c) have
opposite signs, then there is a zero of f in [a, c]; otherwise f(c) and
f(b) must have opposite signs and there is a zero of f in [c, b]. In
either case, a new interval containing a zero has been constructed,
of half the length of the original interval. This process is continued
until the interval is so small that the zero is known to the desired
accuracy. For example, if the interval is [1.717, 1.724], then the
zero is 1.72 to three signi�cant �gures.

bisector See bisect.

biserial correlation coe�cient See correlation coe�cient.

bit A unit of information, especially as used in digital computers,
consisting of one binary digit; i.e. the amount of information
required to specify one of two alternatives, such as the 0 and 1 in
the binary system. See byte.

bitangent See double tangent.

bivalence, principle of The semantic principle which states that
every sentence is either true or false. Under the standard
interpretation of the logical connectives (see truth function) this
principle is represented in a *formal system as the law of the
*excluded middle: A ∨ ˜ A. See intuitionism; semantics.

bivariate data See data.

bivariate distribution The joint *distribution of two *random
variables X and Y. The cumulative distribution function is

F(x, y) = Pr(X  x, Y  y)

If X and Y are both discrete, the frequency function is



Pij = Pr(X = xi, Y = yj)

and

F(x, y) = ΣΣ Pij

where the double summation is over all i and j such that xi  x and
yj  y.

If X and Y are both continuous, the frequency function is f(x, y)
and

In either case F(x, y) → 1 as x → ∞ and y → ∞. For the continuous
case the marginal distribution of X has marginal frequency function
de�ned as

with an analogous de�nition for f2(y), the marginal frequency
function of Y. The marginal distribution functions are written as
F1(x) and F2(y).

The conditional distribution of X, given Y = y, has conditional
frequency function

with an analogous de�nition for g2(y|X = x). Marginal and
conditional frequency functions are de�ned on similar lines for the
discrete cases, and it is possible to have one of X and Y continuous
and the other discrete. If X and Y are independent variables, then

f(x, y) = f1(x) f2(y)



or

Pij = Pr(X = xi) Pr(Y = yj)

for all x, y. For independence

F(x, y) = F1(x) F2(y)

also.

block 1. See randomized blocks.
2. See partition (of a matrix).

block design 1. See randomized blocks; balanced incomplete block
design.
2. A collection of *subsets Br of a �nite set S such that each Br has
the same number k of elements; in addition, for every subset T of S
with exactly t elements, T is a subset of exactly λ of the Br. The
numbers k, t, λ, and n, the number of elements of S, are
characteristic of the particular design. For example, the following is
a block design with n = 4, k = 3, and t = λ = 2: S = {1, 2, 3, 4}
and the sets Br are the subsets of S with exactly 3 elements; every
subset of S with exactly t = 2 elements belongs to exactly λ = 2 of
the sets Br.

block diagonal matrix A square *block matrix with blocks Aij such
that Aij is a zero matrix for i ≠ j, so that the only nonzero blocks
appear on the principal block diagonal.

block matrix The 4 × 3 matrix

can be written as



where A11 and A21 are 2 × 2 matrices and A12 and A22 are 2 × 1
matrices. This form of matrix, in which the elements are themselves
matrices, is a block matrix, and this example illustrates a block 2 × 2
matrix. More generally, a block p × q matrix is of the form

where the (i, j) element Aij is a matrix of order mi × nj

block triangular matrix A square *block matrix with blocks Aij
such that Aij is a zero matrix for i > j (block upper triangular) or i<j
(block lower triangular). The 4 × 4 matrix

is block 2 × 2 upper triangular with 2 × 2 blocks when viewed as a
block matrix as indicated by the lines, but it is not a *triangular
matrix.

Bob The name conventionally used for the receiver of an encrypted
message.

Boethius (c.475–524) Roman scholar whose Geometry and
Arithmetic survived as standard texts in Europe for much of the
medieval period. The former contained little more than Book I of
Euclid, together with some elementary mensuration; the latter was
based on the Arithmetica of Nicomachus (c. AD 100).



Bolyai, János (1802–60) Hungarian mathematician who
demonstrated in 1823 that it was possible to develop an apparently
consistent geometry in which the parallel postulate was rejected.
Bolyai’s system of hyperbolic geometry, published in 1832, was the
�rst clear account of a *non-Euclidean geometry.

Bolzano, Bernard Placidus (1781–1848) Czech mathematician and
philosopher who made an important contribution to analysis by
o�ering in 1817 the �rst rigorous account of a *continuous function.
He also published an in�uential work, Paradoxes of the In�nite
(1850), in which he anticipated some of the later results of *Cantor.

Bombelli, Rafael (1526–72) Italian mathematician and author of
the highly in�uential L’ Algebra (1572). He published rules for the
solution of quadratic, cubic, and quartic equations, and was one of
the �rst mathematicians to accept imaginary numbers as roots of
such equations.

Bonferroni inequalities Inequalities concerning the *probabilities
of occurrence of combinations of *events. The best known of several
inequalities given by Bonferroni states that if E1, E2, …, En is a set of
n events and Ē1, Ē2, …, Ēn is the set of opposite events for which
Pr(Ēi) = 1 – Pr(Ēi), then

The inequalities are used in *multiple comparison tests when the
tests are not independent of one another and in forming the
associated simultaneous *con�dence intervals. They are named after
the Italian mathematician Carlo Emilio Bonferroni (1892–1960).

Boole, George (1815–64) English mathematician who in his
Mathematical Analysis of Logic (1847) showed for the �rst time how
algebraic formulae could be used to express logical relations. The
*Boolean algebra developed in 1847 and in his The Laws of Thought
(1854) has proved to have wide application in such diverse �elds as
computer design, topology, and probability theory.



Boolean algebra An algebraic system consisting of a *set of
elements S together with two *binary operations, denoted by (the
Boolean product) and + (the Boolean sum) obeying certain *axioms
(x, y, and z are members of S):
(1) The operations are commutative:

x ∙ y = y ∙ x, x + y = y + x

(2) There are identity elements (0 and 1) for each of the operations,
with the identity laws

x ∙ 1 = x, x + 0 = x

(3) The distributive laws apply, each operation being distributive
over the other:

x ∙ (y + z) = (x ∙ y) + (x ∙ z),

x + (y ∙ z) = (x + y) ∙ (x + z)

(4) Each member of S has an inverse (or complement) denoted by
x’, y’, etc., with the complement laws

x ∙ x’ = 0, x + x’ = 1

Note that the Boolean operations ∙ and + are not the same as those
in ‘ordinary’ algebra. For instance, in the algebra of numbers it is
not true that

x + (y ∙ z) = (x + y) ∙ (x + z)

Various alternative axiomatizations of Boolean algebra can be given.
Using the one shown here, certain other relationships can be
proved, for example:
(a) The duality principle that if a given expression is valid, then the
expression obtained by interchanging ∙ and +, and 0 and 1, is also



valid. This follows from the fact that the axioms are symmetrical
with respect to ∙ and + and to 0 and 1.
(b) The idempotent laws

x + x = x, x ∙ x = x

(c) The associative laws

x∙ (y ∙ z) = (x ∙ y) ∙ z

x + (y + z) = (x + y) + z

(d) The absorption laws

x∙ (x + y) = x, x + (x ∙ y) = x

(e) The null laws

x + 1 = 1, x ∙ 0 = 0

There are two common examples of systems that are Boolean
algebras:
(1) The algebra of sets, in which + is *union of sets ∪, ∙ is
*intersection ∩, 0 is the null set, and 1 is the universal set.
(2) The algebra of propositions (see propositional calculus) in which
∙ is ‘and’ (&) and + is ‘or’ (∨).
Boolean algebras are applied extensively to logic design, switching
theory, and other applications in computer science.

bootstrap A method for obtaining information about population
parameters or characteristics by �rst taking a *random sample of n
observations from a population, and then forming from this initial
sample further random samples, called bootstrap samples. These are
also of size n, and are obtained by sampling with replacement (see
random sample). The method is especially useful when there is
insu�cient information to specify the population distribution, or
when there is little analytic theory about properties of estimators. If



B bootstrap samples are taken, they may be used to estimate
standard errors of *estimators of parameters such as means,
medians, or correlation coe�cients obtained from the original
sample without the need to make any assumption about the
population distribution.

For example, if the sample median m is used to estimate the
population median, then if the median of the bth bootstrap sample is
mb*, with b = 1, 2, …, B, then the bootstrap estimated standard
error of m is given by

where m̅* is the mean of the mb*. Approximate 95 percent
con�dence limits for the population median are given by the 0.025
and 0.975 *quantiles of the set of B values mb*. In practice, good
estimates of se(m) may be obtained with B = 50, but values of B =
1000 or B = 2000 are usually required for reliable estimates of
con�dence intervals.

Re�nements are available to improve these estimates. Statistical
software with a reliable random number generator is necessary for
the practical implementation of the bootstrap.

Borda, Jean Charles (1733–99) French mathematician and
astronomer who worked on problems in �uid mechanics,
demonstrating that resistance is proportional to the square of the
�uid velocity and to the sine of the angle of incidence. A naval
captain, Borda also worked on geodesy, developing various
measuring instruments, and helped to introduce the metric system
into France.

bordering The process of adding a row and a column to a
*determinant to increase its order. If the common element of the
added row and column is 1, with other elements being zero, then
the order is increased but the value of the determinant is
unchanged.



Borel, Félix Edouard Emile (1871–1956) French mathematician
noted for his work on set theory (see Borel set) and measure theory.
Borel also introduced a de�nition for the sum of a divergent series.

Borel set A measurable set that can be obtained from *closed sets
and *open sets on the real line by applying the operations of union
and intersection repeatedly to *countable collections of sets.

Borromean rings An arrangement of three interlinked circles in
space such that, if any one of them is removed, then the other two
are unlinked. Named after the house of Borromeo, a wealthy
Milanese banking family who incorporated the design in their
family crest in the 15th century.

Borromean rings

Bouguer, Pierre (1698–1758) French mathematician and physicist
who worked on problems of geodesy. He measured the *acceleration
of free fall using a pendulum and was the �rst to observe that a
pendulum could be a�ected by the gravitational pull of a high
mountain.

bound 1. (of a function) A restriction on the *range of a function.
An upper bound is a number u such that f(x)  u for all x in the
domain, and a lower bound is a number l such that f(x)  l for all x in
the domain. For example, if f(x) = sin x then + 1 is an upper
bound and – 1 is a lower bound. If a lower bound for f(x) exists, f is



said to be bounded below; if an upper bound exists, it is bounded
above; if both exist it is bounded.

An upper bound u is a least upper bound (l.u.b.) if u  v for any
other upper bound v. A lower bound l is a greatest lower bound
(g.l.b.) if l  m for any other lower bound m.

See also unbounded function.
2. (of a sequence) See bounded sequence.
3. (of a set) See order properties.
4. See variable.

boundary See frontier.

boundary conditions If the solution to a *di�erential equation or
*di�erence equation contains r arbitrary constants, these constants
may be eliminated to give a unique solution to a problem if there
are r given conditions that the solution must satisfy. Some of these
may be boundary or initial conditions. Boundary conditions, which
may be for the function and/or its derivatives at certain boundary
points, may be used to obtain a solution which is valid over the
region speci�ed by the conditions. For systems evolving with time,
initial conditions are those that must be satis�ed by the solution
function and its derivatives at the start.

For example, the di�erential equation

d2y/dx2 + 4dy/dx = 0

where x  0, has the solution y = A + Be–4x. If the boundary
conditions are y = 0 and dy/dx = 1 when x = 0, then substituting
x = 0 in the solution and its �rst derivative yields A = 1/4 and B
= –1/4.

bounded sequence A *sequence {an} of *real numbers for which
there is both an upper bound and a lower bound. If there is a number
U that is greater than or equal to every number in the sequence, i.e.
if an  U, then U is an upper bound of the sequence, which is then
said to be bounded above. Similarly, if there is a number L such that



an  L, then L is a lower bound of the sequence, which is then said
to be bounded below.

The positive integers 1, 2, 3, … are bounded below since all
exceed 0. The sequence {1 – 1/n} for n  1 bounded above and
below (i.e. is a bounded sequence) since all its terms lie between 0
and 1.

See also bound.

bounded set A *set A in a Euclidean space is bounded if there exists
a number N such that |x|  N for all x  A. Otherwise the set is
unbounded. A set A in a metric space X with metric d is bounded if
there is a point x  X and a number N such that d(a, x)  N for all a 
A.

bounded variation See variation.

Bourbaki, Nicolas A collective nom de plume of mainly French
mathematicians whose aim has been to publish an ambitious
Éléments de mathématiques in many volumes in which much of
modern mathematics is treated rigorously, comprehensively, and in
depth. Well over 40 volumes have appeared since 1939.

box-and-whisker diagram (boxplot) A useful graphical
representation of the information contained in a *�ve-number
summary. The box is a rectangle with length indicating the
*interquartile range, and arbitrary breadth, divided lengthwise at
the median. The whiskers are lines extending beyond the rectangle
to indicate the range. Adjacent plots for data from two or more
samples make it easy to see major di�erences between their
characteristics. Box-and-whisker diagrams are shown below for two
samples with the following �ve-number summaries:
Sample 1: 2 17 23 49 71

Sample 2: 6 11 25 56 93



box-and-whisker diagrams for two samples.

Box-Jenkins model (G.E.P. Box and G.M. Jenkins, 1967) A very
general mathematical model for *time-series analysis in forecasting
and prediction.

boxplot See box-and-whisker diagram.

brachistochrone A curve that is the path along which a particle
will slide in the shortest time from one point to another, lower point
(not directly beneath the �rst). The problem of �nding the equation
of such a curve was proposed in 1696 by Jean Bernoulli. The
solution – that the curve is a *cycloid through the two points – was
found by a number of mathematicians including Newton, Leibniz,
and Jacques Bernoulli. See also calculus of variations.

Brahmagupta (c.598–c.665) Indian mathematician and astronomer
noted for his introduction of negative numbers and zero into
arithmetic. He also formulated the rule of three, gave the formula
for the area of a cyclic quadrilateral in terms of its sides, and
proposed rules for the solution of quadratic and simultaneous
equations. His main work was an account in verse of Hindu
astronomy and mathematics, Brahmasphuta siddhanta (The Revised
System of Brahma).

Brahmagupta’s formula A formula for the area A of a cyclic
quadrilateral:

A = √ [(s – a)(s – b)(s – c)(s – d)]

where a, b, c, and d are the lengths of the sides, and s is the
semiperimeter, i.e.

s = ½(a + b + c + d)

Compare Hero’s formula.



braid A number of strings plaited together. The theory of braids
studies the di�erent ways in which a number of strings can be
plaited. In the 1930s. E. Artin related the study of braids to group
theory, and in the 1960s V.I. Arnol’d stressed the relevance of braid
theory to the theory of functions. If n points are moved continuously
in the plane back to the positions originally occupied, the movement
can be recorded as a braid. Arnol’d used this idea to study how the
roots of a polynomial vary as the coe�cients of the polynomial are
varied. A close relationship with *knot theory was established by
J.W. Alexander in the 1930s, and exploited by V.F.R. Jones in the
1980s.

branch A part of a curve that is separated from another part by a
*discontinuity or a *singular point.

branch point See singular point.

branching process A *stochastic process where individuals give
rise to o�spring, the distribution of descendants being likened to
branches on a family tree. See tree diagram.

Bravais lattice See crystallography.

Brianchon, Charles Julien (1783–1864) French mathematician
noted for his proof in 1806 of the dual version of Pascal’s theorem.

Brianchon’s theorem See Pascal’s theorem.

Briggs, Henry (1561–1630) English mathematician who in his
Arithmetica logarithmica (1624, The Arithmetic of Logarithms)
published the �rst table of common *logarithms (formerly known as
Briggsian logarithms).

Briggsian logarithm See logarithm.

British thermal unit Symbol: BTU. The *f.p.s. unit of energy, equal
to the energy required to raise the temperature of one pound of
water by 1 ° F. 1 BTU = 1055.06 joules or approximately 252
calories.



British units of length A system of *imperial units based on the
*yard. In this system:

12 inches = 1 foot

3 feet = 1 yard

22 yards = 1 chain

10 chains = 1 furlong

8 furlongs = 1 mile (of 1760 yards)

broken line A line formed of a number of discrete line segments
joined together. A continuous curve can be approximated by a
broken line – for example, a circle can be approximated by a
polygon.



braid (a) The pigtail braid on three strings; (b) a braid on four strings.

Brouncker, William, Viscount (1620–85) English mathematician
noted for his work on the early development of the calculus. He was
one of the �rst mathematicians in Britain to use *continued
fractions, and expressed 4/π as a continued fraction. He also
published work on the recti�cation of the parabola and cycloid.

Brouwer, Luitzen Egbertus Jan (1881–1966) Dutch mathematician
and philosopher. Beginning in 1912. Brouwer formulated the
doctrine of *intuitionism and continued the attempt to construct a
rigorous mathematics in accordance with its principles. He also
worked on * �xed-point theorems in topology.



Brouwer’s theorem See �xed-point theorem.

Brownian motion A physical phenomenon which may be modelled
as a *stochastic process. The phenomenon was �rst noticed by the
Scottish botanist Robert Brown in 1827 when he observed, under a
microscope, the erratic motion of pollen grains suspended in water,
these following a somewhat zigzag path. The term is now used more
generally to describe the random movement of particles suspended
in a �uid, or the stochastic model used to describe such random
movements.

Bu�on, Georges Louis Leclerc, Comte de (1707–88) French
naturalist and mathematician best known as the creator of the
immense Histoire naturelle (1794–1804, 44 vols). In mathematics he
is still remembered for his work on probability and his famous
needle problem, with which in 1777 he computed an approximation
for π.

Bu�on’s needle problem A problem in *probability put forward by
Bu�on in 1777 in a supplement to Histoire naturelle. He considered a
plane area ruled with parallel equidistant lines a distance d apart.
The problem is to calculate the probability that a needle of length l
(l<d), thrown at random onto the area, will come to rest across one
of the lines. The answer, given correctly by Bu�on, is 2l/πd. Laplace
in 1812 extended the problem to a rectangular grid of lines
distances a and b apart, showing that the probability then becomes

2l(a + b) − l2/πab

This is sometimes known as the Bu�on – Laplace problem or the
needle problem.

bulk modulus A constant property of an elastic body, measuring
the resistance to change in volume without change in shape. It is the
ratio of compressive *stress per unit surface area of a body to the
change in volume per unit volume associated with this stress, the
pressure being uniform over the surface. See also elasticity.



bundle A topological notion more general than that of the product
of two *spaces, and sometimes referred to as a twisted product. It is
often described as a map f: E → B between topological spaces E and
B, whose ‘�bres’ f_1 (b) for b  B are all *homeomorphic to a single
space. The simplest example, apart from products, is the *Möbius
strip; in this case E is the Möbius strip, B is a circle, and the ‘�bre’ is
an interval. See also sheaf.

buoyancy The upward *force exerted on a body by the �uid in
which it is wholly or partly submerged. According to *Archimedes’
principle, the magnitude of the force is equal to the weight of �uid
displaced by the body; its line of action passes through the *centre
of gravity of the displaced volume, a point known as the centre of
buoyancy.

Burali-Forti’s paradox Every *well-ordered set has an *ordinal
number, and, as the set of all ordinals is well ordered, it too has an
ordinal number, say A. But the set of all ordinals up to and
including a given ordinal, say B, is itself well ordered and has
ordinal number B + 1. So the set of all ordinals up to and including
A has ordinal number A + 1, which is greater than A, so that A both
is and is not the ordinal number of all ordinals. This *paradox is
avoided in standard versions of set theory by denying that there
exists a set of all ordinals. It was �rst stated in 1897, by the Italian
mathematician Cesare Burali-Forti (1861–1931).

byte A unit of information, as used in digital computers, equal to
eight *bits.



C

C Symbol for the set of all *complex numbers.
C∞ Symbol for the *extended complex plane.

Caesar cipher A *cipher where each letter is replaced by a letter
which is a �xed number of places along in the alphabet. This �xed
number is called the Caesar shift of the cipher. For example, if the
number is 5 then ABY becomes FGD. (The alphabet should be
regarded as written round a circle.) This type of cipher is one of the
*substitution ciphers used and described by Julius Caesar (100–14
BC), after whom it is named.

Caesar shift See Caesar cipher.

Calculus A branch of mathematics using the idea of a *limit, and
generally divided into two parts: integral and di�erential calculus.

Integral calculus (see integration) can be used for �nding areas,
volumes, lengths of curves, centroids, and moments of inertia of
curved �gures. It can be traced back to Eudoxus of Cnidus and his
method of *exhaustion (c.360 BC). Archimedes (in The Method)
developed a way of �nding the areas bounded by curves by
considering them to be divided up by many parallel line segments,
and extended it to determine the volumes of certain solids; for this,
he is sometimes called the ‘father of the integral calculus’.

In the early 17th century, interest again developed in measuring
volumes by integration methods. Kepler used a procedure for
�nding the volumes of solids by taking them to be composed of an
in�nite set of in�nitesimally small elements (Stereometria doliorum,
Measurement of the Volume of Barrels, 1615). These ideas were
generalized by Cavalieri in his Geometria indivisibilibus continuorum
nova (1635), in which he used the idea that an area is made up of
indivisible lines and a volume of indivisible areas, i.e. the concept
used by Archimedes in The Method (see also Cavalieri’s principle).



Cavalieri thus developed what became known as his method of
indivisibles. John Wallis, in Arithmetica in�nitorum (1655),
arithmetized Cavalieri’s ideas. In this period, in�nitesimal methods
were extensively used to �nd lengths and areas of curves.

Di�erential calculus (see di�erentiation) is concerned with the
rates of change of functions with respect to changes in the
independent variable. It came out of problems of �nding tangents to
curves, and an account of the method is published in Isaac Barrow’s
Lectiones geometricae (1670). Newton had discovered the method
(1665–6) and suggested that Barrow include it in his book. In his
original theory, Newton regarded a function as a changing quantity
– a �uent – and the derivative, or rate of change, he called a �uxion.
The slope of a curve at a point was found by taking a small element
at the point and �nding the gradient of a straight line through this
element. The binomial theorem was used to �nd the limiting case,
i.e. Newton’s calculus was an application of in�nite series. He used
the notation x and y for �uxions and x and y for �uxions of �uxions.
Thus, if x = f(t), where x is distance and t time for a moving body,
then x is the instantaneous velocity and x the instantaneous
acceleration. Leibniz had also discovered the method by 1676,
publishing it in 1684. Newton did not publish until 1687 (in
Principia). A bitter dispute arose over the priority for the discovery.
In fact, it is now known that the two made their discoveries
independently and that Newton made his about ten years before
Leibniz, although Leibniz published �rst. The modern notation of
dy/dx and the elongated S for integration are due to Leibniz.

From about this time, integration came to be regarded simply as
the inverse process of di�erentiation. In the 1820s, Cauchy put the
di�erential and integral calculus on a more secure footing by using
the concept of a limit. Di�erentiation he de�ned by the limit of a
ratio, and integration by the limit of a type of sum. The limit
de�nition of an integral was made more general by Riemann.

In the 20th century, the idea of an integral was extended.
Originally, integration was concerned with elementary ideas of
measure (e.g. lengths, areas, and volumes), and with continuous



functions. With the advent of set theory, functions came to be
regarded as mappings, not necessarily continuous, and more general
and abstract concepts of measure were introduced. Lebesgue put
forward a de�nition of integration based on the Lebesgue measure
of a set. Similar extensions of the concept have been made by other
mathematicians.

See also integrability; Lebesgue integral.

calculus of variations A branch of calcuilus concerned with �nding
the maximum or minimum values of *de�nite integrals. A well-
known example of its use is the *brachistochrone problem, in which
it is required to �nd the curve down which a particle will slide
freely in the fastest time. If the equation of the curve is y = f(x), it
can be shown that the time taken between two points is expressed
by an integral of

where g is the*acceleration of free fall. The problem is then one of
�nding f(x) such that the integral has a minimum value. This is
often done by �nding a di�erential equation (the Euler-Lagrange
equation) which the function f(x) must satisfy. Such a function,
maximizing or minimizing a de�nite integral, is called an extremal.
See minimal surface.

Calorie Symbol: cal. A *c.g.s. unit of energy, equal to the energy
required to raise the temperature of one gram of water by 1 °C.
Various calories have been de�ned. The 15° calorie speci�es that the
1 ° rise in temperature should be from 14.5 °C to 15.5 °C; this
calorie is equal to 4.1855 joules. The IT (international table) calorie
is de�ned as 4.1868 joules. The Calorie (written with a capital C and
also called the large calorie, kilogram calorie, or kilocalorie) is equal
to 1000 calories. It is used in estimating the energy value of foods.

cancellation 1. The process of dividing the numerator and
denominator of a fraction by the same number to produce a simpler



fraction. Thus, 27/30 is (9 × 3)/(10 × 3), which is 9/10. The 3 has
been cancelled out of the fraction.
2. The process in which two equal quantities are removed from an
equation. Thus, in x + 3y = 7 + 3y, the terms3y can be cancelled
out, leaving x = 7.

Candela Symbol: cd. The *SI unit of luminous intensity, de�ned as
the intensity, in a given direction, of a source that emits
monochromatic radiation of a frequency of 540×1012 hertz and that
has a radiant intensity in that direction of 1/683 watt per steradian.

Cantor set Construction of the set.

Canonical When an expression can be expressed in a standard
manner, usually at its most simple, it is said to be in canonical form.
Thus the standard or canonical form for expressing a *quadratic
equation is ax2 + bx + c = 0, where a, b, and c are constants.

canonical form (normal form) (of a matrix) A form of *matrix to
which all of a certain class of matrices can be reduced by
transformations of a speci�ed kind. For example, any symmetric
matrix can be reduced to a *diagonal matrix by *similarity
transformations, i.e. any symmetric matrix is *diagonalizable.

Cantilever A beam or other structural member that is supported at
one end only and supports a load along its length or at its free end.
A cantilever can be horizontal or vertical. Cantilever construction is
used, for example, in bridges and in the roofs and �oors of
buildings, permitting a large area to be spanned without obstructing
supports.

Cantor, Georg (1845–1918) German mathematician who between
1874 and 1895 developed the �rst clear and comprehensive account



of trans�nite sets and numbers. He provided a precise de�nition of
an in�nite set, distinguishing between those which were
denumerable and those which were not. See Cantor’s theory of sets;
diagonal argument.

Cantor-Bernstein theorem See Schröder–Bernstein theorem.

Cantor-Dedekind hypothesis See Dedekind cut.

Cantor set Any closed set topologically equivalent to the Cantor
middle third (or ternary) set. This is constructed in the unit interval
[0, 1] by deleting successive middle thirds of intervals. First (1/3,
2/3) is deleted, then (1/9, 2/9) and (7/9, 8/9) are removed, and so
on. The process is continued inde�nitely. The Cantor middle third
set is a *fractal set with *similarity dimension ln 2/ln 3.

Cantor’s paradox A *paradox in *set theory. Is the cardinality of
the set of all sets C greater than or equal to the cardinality of its
*powerset PC? The sets of PC must belong to the set of all sets (PC
⊂ C) and its *cardinal number must therefore be less than or equal
to the cardinal number of C. But, by *Cantor’s theorem, the cardinal
number of C is less than that of PC.

Cantor’s theorem The theorem that, for any set A, the *cardinal
number of A is less than the cardinal number of the *power set PA.
It follows that for any cardinal number n there is always a cardinal
number greater than n.

Cantor’s theory of sets A theory of sets developed by Georg Cantor
in 1874. Dedekind had earlier de�ned an *in�nite set as a set S that
can be put into *one-to-one correspondence with a proper subset of
S. Unlike Dedekind, Cantor realized that not all in�nite sets are the
same. He showed that the rational numbers are countable – i.e. they
can be put into one-to-one correspondence with the positive integers
(they have *cardinal number aleph-null, No). He also showed that
the algebraic numbers are countable. However, the set of all real
numbers (algebraic plus transcendental) cannot be put into one-to-
one correspondence with the positive integers. This in�nite set has a



higher cardinal number (c). In this way, Cantor built up a theory of
trans�nite sets. He showed, for instance, that the set of subsets of a
set always has a higher cardinal number than that of the set itself,
and consequently that there is an in�nite number of these trans�nite
numbers. Cantor also developed an arithmetic of trans�nite *ordinal
numbers.

cap The symbol ∩, used to denote the *intersection of two sets A
and B, as in A ∩ B. Compare cup.

capture-recapture sampling A statistical procedure for estimating
animal populations. In a simple form, a sample of n1 animals is
captured and each is tagged and released. A second sample of n2
animals from the same population is captured at a later date and the
number m of tagged animals is noted. If the unknown population
size is N and any animal is equally likely to be captured, the
proportion of tagged animals in the second sample, m/n2, is an
intuitively reasonable estimate of the unknown proportion of tagged
animals in the whole population, n1/N. Taking these proportions to
be approximately equal leads to an estimate of N given by N* =
(n1n2)/m provided m ≠ 0(since m = 0 implies an in�nite
population). For example, if 25 squirrels are humanely trapped,
marked, and released, and on a later date 40 squirrels are trapped
and 5 of these are marked, we have n1 = 25, n2 = 40, and m = 5,
implying that N* = (25 × 40)/5 = 200.

The *estimator N* is biased, and tends to overestimate the
population size, especially when m is small. The validity of N *is
strongly dependent on the assumptions that both the population size
and the probability of capture remain constant between the
sampling times. The former assumption ignores births, deaths, or
migration between sampling times, and the latter will not hold if
animals �nd the �rst capture appealing, perhaps because of a food
reward; alternatively if an animal is frightened by capture this may
reduce the probability of recapture. More sophisticated estimators
take such factors into account.



The method extends to the medical sciences, where it is used to
estimate total numbers in the population exhibiting some
abnormality, when there are two incomplete registers of patients
with the abnormality, some patients (the ‘recaptured units’)
appearing on both registers, and the remainder only on one.

Carathéodory’s theorem (C. Carathéodory, 1911) If a point x ∈ n

lies in the *convex hull of a set S ⊂ n, then there is a subset T of S
with no more than n + 1 points such that x lies in the convex hull
of T.

Cardano, Girolamo (1501–76) Italian mathematician, physician,
and astrologer noted for the �rst publication of the solution to the
general *cubic equation in his book on algebra, Ars magna (1545,
The Great Art). The solution was in fact found by Tartaglia and had
been revealed in con�dence. Although Cardano credited Tartaglia
with the discovery, the revelation led to a bitter dispute between the
two. Ars magna also contains the solution of the general quartic
equation found by Cardano’s former assistant, Ferrari. Cardano is
also known for his speculations on philosophical and theological
matters and, in mathematics, for early work in the theory of
probability, published posthumously in Liber de ludo aleae (1663, A
Book on Games of Chance).

Cardano’s method See cubic.

cardinal number (cardinality) A number that indicates the
number of elements in a *set. Thus the set of the members of a
football team has cardinal number of 11 while, more generally, a set
with n distinct elements has a cardinal number of n. If two sets can
be put into a *one-to-one correspondence with each other then they
have the same cardinal number. With regard to in�nite sets, all
*countable sets have a cardinal number ℵ0 (aleph-null), while the
cardinal number of the real numbers is denoted by c or by ℵ1. Sets,
whether �nite or in�nite, with the same cardinal number are
described as being equipollent, equipotent, equinumerable, or
equivalent. The cardinal number of a set is sometimes called its power



or potency. Common notations for the cardinal number of a set A are
Ā, n(A), and |A|.

cardinal points 1. The four directions on the earth’s surface: north,
south, east, and west.
2. Four points on the *celestial sphere lying on the horizon. The east
and west points are the intersections of the horizon with the
celestial equator. The north and south points are midway between
these. The points are named so that the north point is the one
closest to the north celestial pole, with the east point 90° clockwise
from the north point.

cardioid A plane curve; the *locus of a �xed point P on a circle
rolling on an equal �xed circle. A cardioid is a type of *epicycloid in
which the two circles have equal radii. In polar coordinates it has
the equation

r = a(1 + cos θ)

The name means ‘heart-shaped’. See also limaçon of Pascal.

Carmichael numbers See pseudoprime.

Carnot, Lazare Nicolas Marguerite (1753–1823) French
mathematician and politician best known for his work on the
foundations of the calculus. Unhappy with the �uxions of Newton,
the di�erentials of Leibniz, and the limits of d’Alembert, he argued
in his Ré�exions sur la métaphysique du calcul in�nitesimal (1797) that
in�nitesimals should be regarded merely as convenient aids,
introduced only to facilitate calculations, and should be eliminated
from the �nal result. In a later work, Géometrie de position (1803),
Carnot helped lay the foundations of modern geometry.

Carnot, Nicolas Léonard Sadi (1796–1832) French mathematical
physicist best known for his classic work Ré�exions sur la puissance
motrice de feu (1824, Re�ections on the Motive Power of Fire), a
cornerstone of the science of thermodynamics. It contained the
crucial insight, Carnot’s theorem, that all reversible heat engines



operating between the same temperatures are equally e�cient. As
later developed by Lord Kelvin and Rudolf Clausius, Carnot’s work
led directly to the discovery of the second law of thermodynamics.

Cartesian coordinate system A *coordinate system in which the
position of a point is determined by its relation to reference lines
(axes). In two dimensions, two lines are used; commonly the lines
are at right angles, forming a rectangular coordinate system (see
diagram (a)). The horizontal axis is the x-axis and the vertical axis is
the y-axis. The point of intersection O is the origin of the coordinate
system. Distances along the x-axis to the right of the origin are
usually taken as positive, distances to the left negative. Distances
along the y-axis above the origin are positive; distances below are
negative. The position

cardioid

of a point anywhere in the plane can then be speci�ed by two
numbers, the coordinates of the point, written as (x, y). The x-
coordinate (or abscissa) is the distance of the point from the y-axis
in a direction parallel to the x-axis (i.e. horizontally). The y-
coordinate (or ordinate) is the distance from the x-axis in a direction
parallel to the y-axis (vertically). The origin O is the point (0, 0).
The two axes divide the plane into four quadrants, numbered



anticlockwise starting from the top right (positive) quadrant: the
�rst quadrant.

Cartesian coordinates were �rst introduced in the 17th century by
René Descartes. Their discovery allowed the application of algebraic
methods to geometry and the study of hitherto unknown curves. As
a point in Cartesian coordinates is represented by an ordered pair of
numbers, so is a line represented by an equation. Thus, y = x
represents a set of points for which the x-coordinate equals the y-
coordinate; i.e. y = x is a straight line through the origin at 45° to
the axes. Equations of higher degree represent curves; for example,

x2 + y2 = 4

is a circle of radius 2 with its centre at the origin. A curve drawn in
a Cartesian coordinate system for a particular equation or function
is a graph of the equation or function.

The axes in a planar Cartesian coordinate system need not
necessarily be at right angles to each other. If the x-and y-axes make
an angle other than 90° the system is said to be an oblique coordinate
system (see diagram (b)). Distances from the axes are then measured
along lines parallel to the axes.

Cartesian coordinate systems can also be used for three
dimensions by including a third axis – the z-axis – through the
origin perpendicular to the other two. The position of a point is then
given by three coordinates (x, y, z). The coordinate axes may be left-
handed or right-handed,



Cartesian coordinate system (a) Rectangular and (b) oblique coordinate systems; (c) a
righthanded system of axes.



depending on the way positive directions are given to the axes. In a
right-handed system (see diagram (c)), if the thumb of the right
hand points in the positive direction of the x-axis, the �rst and
second �ngers can be pointed in the positive directions of the y-and
z-axes respectively. The axes are said to form a right-handed triad. A
left-handed system is the mirror image of this (i.e. determined using
the left hand), the axes being said to form a left-handed triad.

See also rotation of axes; translation of axes.

Cartesian metric When X and Y are *metric spaces with metrics dX
and dY, respectively, the Cartesian metric d on the Cartesian
product X × Y is de�ned by

d((x1, y1) (x2, y2))2 =dx (x1, x2)2 + dy (y1, y2)2

Cartesian product The Cartesian product of two *sets A and B,
denoted by A×B, consists of the set of all *ordered pairs (x, y) such
that x ∈ A and y ∈ B:

A×B = {(x, y): (x ∈ A) & (y ∈ B)}

For example, if A = {1,2} and B = {3,4} then

A×B = {(1,3), (1,4), (2,3), (2,4)}

If each of the two sets has some particular structure (they might
both be groups, vector spaces, or metric spaces), then the product
can usually be given the same structure. For example, if V1 and V2

are both real vector spaces, then the product set V1 × V2 is also a
real vector space with addition de�ned by (x1, x2) + (y1, y2) = (x1

+ y1, x2 + y2), and scalar multiplication by λ(x, y) = (λx, λy).
The product of two or more topological spaces is also a

topological space. For example, the plane is the product R × R.
The Cartesian product is named after Descartes since it

generalizes the concept of a *Cartesian coordinate system.



Cartesian tensor See tensor.

Cassini’s ovals Curves that are the *loci of the vertex of a triangle
in which the side of the triangle opposite the vertex is �xed, and the
product of the two sides adjacent to the vertex is constant. In
Cartesian coordinates, the equation has the form

[(x + a)2 + y2][(x – a)2 + y2] = k4

where a is half the length of the �xed side and k2 the constant. If
k2>a2, there is a single curve. If k2<a2, the curve consists of two
ovals. If k2 = a2, the curve is a *lemniscate. The ovals are named
after the Italian astronomer Giovanni Dom-enico Cassini (1625–
1712).

Cassini’s ovals: PS . PS’ = k2.

casting out nines A simple method of manually checking any
addition, subtraction, or multiplication of *natural numbers, by �rst
�nding the digital root of each of the relevant numbers. The digital
root of a natural number is the single *digit obtained by adding the
decimal digits of the number to give a smaller number, adding the
digits of that number to give a still smaller number, and so on until
a single digit is reached.

For example, for the number 38 247 we have 3 + 8 + 2 + 4 + 7
= 24, and 2 + 4 = 6. In this process we can leave out (or cast out)
any 9 that appears. So for 61 934 we calculate 6 + 1 + 3 + 4 =
14, and then 1 + 4 = 5. Then, to check the addition 38 247 + 61
934 = 100 181, we see whether the sum of the digital roots on the
left has the same digital root as 100 181. In this case 6 + 5 = 11,



which has digital root 2, and this is also the digital root of 10081.
Similarly, to check the subtraction 61 934 – 38 247 and
multiplication 61 934 × 38 247, we look to see whether the digital
root of the answer is equal to that of 5 – 6 and 5 × 6. If a di�erence
of digital roots is negative, add 9; thus 5 – 6 becomes 8.

The method works because 10≡1 (mod 9), so any natural number
is *congruent modulo 9 to the sum of its decimal digits. The digital
root of n is the least non-negative integer congruent to n modulo 9,
and if n1 ≡d1 (mod9)and n2≡d2 (mod9), then n1 ± n2 ≡ d1 + d2

(mod 9) and n1 n2 ≡ d1 d2 (mod9).
The method is mentioned in *Fibonacci’s Liber abaci (1202) but is

probably much older.

Catalan, Eugène Charles (1814–94) French mathematician noted
for his work in number theory, geometry, and combinatorics.

Catalan numbers (E.C. Catalan, 1838) The sequence of numbers cn

(for n≥3) that gives the number of ways to divide a regular n-sided
*polygon into triangles, using non-intersecting diagonals. So c3 = 1,
c4 = 2, c5 = 5, c6 = 14, …, and each cn can be calculated as

Catalan’s conjecture The conjecture (�rst proposed by Catalan in
1844) that when m and n are integers greater than 1, the only
solution in positive integers x and y of the equation xm – yn = 1 is x
= 3, m = 2, y = 2, n = 3, i.e. 32 – 23 = 1. In 1342, Levi ben
Gerson proved that the only powers of 2 and 3 above the �rst to
di�er by 1 were 8 and 9. The conjecture was proved to be true by P.
Mihailescu in 2004.

Catalan’s constant The number K de�ned by



Its numerical value is 0.915 965….

catastrophe theory A theory of dynamic systems developed by
René Thom in 1972 to explain biological growth and di�erentiation,
in which slow growth is accompanied by ‘catastrophic’ changes in
form. It is based on the fact that the state of a system, which
depends on a number of factors, can be represented by a set of
points in n-dimensional space. It concentrates on the topological
classi�cation of these sets, connecting sudden discontinuous changes
(i.e. ‘catastrophies’) with changes in topology. The theory has since
been applied to many other �elds, such as sociology, economics,
engineering, and linguistics. See singularity theory.

categorical data Counts of the number of units or items falling into
one or more categories. For a human population, categories might
be gender (male or female), marital status (single, married,
widowed, divorced), etc. If units can be allocated to only one of two
categories, the data are described as dichotomous data.

categorical proposition A proposition which a�rms or denies that
a *predicate holds of a subject. Traditionally the following four
forms were distinguished: universal a�rmative (all A is B), universal
negative (no A is B), particular a�rmative (some A is B), and
particular negative (some A is not B). Categorical propositions are to
be distinguished from conditional propositions (if A then B) and from
modal propositions (it is possible that A).

categorical variable A *random variable whose values are
categories. For example, side e�ects of a drug classed as (none,
slight, moderate, severe), character classi�cations (introvert,
extravert), times to failure of a machine part (<100 hours, 100–199
hours, 200–299 hours, 5300 hours), and marital status (single,
married, widowed, divorced). Where there is no natural ordering of
the categories, the variable is described as nominal. Thus marital
status is a nominal variable. If there is a natural ordering of
categories, the variable is described as ordinal. Thus the side e�ect



of a drug is an ordinal variable. Categorical variables that can take
only two possible values are called dichotomous variables.

category 1. A classi�cation of *sets into two types: sets are either of
the �rst category or of the second category. A set X is of the �rst
category if X is a *countable union of subsets that are nowhere
*dense. An example is the set of rational numbers, since it can be
represented as the countable union of *unit sets that are nowhere
dense. All sets not of the �rst category are of the second category.
2. An entity that consists of objects and morphisms. A morphism can
be regarded as a function between two of the objects and, when
appropriate, morphisms can be composed. The two basic axioms for
a category are associativity of composition of morphisms and the
existence of an identity morphism for each object. An example is the
category of real vector spaces, which has vector spaces as its objects
and linear transformations as its morphisms.

category theory A language that uni�es many concepts in
mathematics. The theory aims to provide an understanding of
properties of mathematical objects and mappings between them
from a general point of view. See category (2).

catenary A plane curve with the equation, in Cartesian coordinates,

y = c cosh(x/c) = 1/2c(ex/c + e–x/c)

It is symmetric about the y-axis; c is the intercept on the y-axis. The
curve is the shape that a uniform �exible chain would assume if
hung from two points. Huygens was the �rst to show that the
catenary was nonalgebraic. Its equation was discovered by Jacques
Bernoulli. See also intrinsic equation.



catenary: y = c cosh (x/c).

catenoid The surface formed by rotating the *catenary about the x-
axis. Under certain conditions, the surface of minimal area bounded
by two coaxial rings is a catenoid. See minimal surface.

Cauchy, Augustin-Louis, Baron (1789–1857) French
mathematician who strove to introduce a more rigorous approach
into analysis. In his Cours d’analyse (1821, A Course of Analysis) he
introduced the modern notion of a limit and went on to use it to
de�ne the important concepts of continuity, convergence, and
di�erentiability. In group theory, Cauchy proved in 1845 the
fundamental theorem, since known as Cauchy’s theorem, that every
group whose order is divisible by a prime p contains a subgroup of
order p. He also contributed to the calculus of variations, probability
theory, and the study of di�erential equations. See Kovalevsky.

Cauchy convergence condition 1. A condition for convergence
stating that an *in�nite sequence converges if and only if, beyond a
certain point in the sequence, the numerical di�erence between any
two terms is as small as desired. Thus the sequence {an} converges
if and only if, given any positive number ε, however small, there is
an integer N, dependent on ε, such that

|ai – aj|<ε



for all i, j> N.
2. An in�nite *series ∑an converges if and only if, given any positive
number ε, however small, there is an integer N, dependent on ε,
such that

|ar + 1 + ar + 2 + … + ar + i| <ε

for all r>N and i>0. This is not normally used as a test for
convergence but can be used to derive such tests. See also
convergent series.

Cauchy convergence test Let

a1 + a2 + … + an + …

be an in�nite *series of positive terms. If

(see limit), then the series converges. If the limit exceeds 1, the
series diverges. See also ratio test.

Cauchy distribution A continuous *distribution with *frequency
function

where θ, λ>0 are *parameters. The distribution has no �nite
moments, but the median is θ, and the curve is symmetric about the
median and bell-shaped. The parameter λ determines the spread of
the distribution and is often called a scale parameter. For a �xed λ,
if we change θ the graph of the distribution will retain the same
shape with the maximum shifted to correspond to the new value of
θ.

If X has a Cauchy distribution, then



Pr(θ – λ<X  y + λ) = 0.5

The ordinate of f(x) at x = θ – and at x = θ + λ is half the
maximum ordinate at x = θ, so λ is called the half-width at half-
height. If θ = 0 and λ = 1 the distribution is the standard Cauchy
distribution. If X and Y are independent variables having *normal
distributions N (0, б 2) and U = X/Y, then both U and 1/U have a
standard Cauchy distribution. This implies that the *t-distribution
with one *degree of freedom also has a standard Cauchy
distribution. If X has a *uniform distribution over the interval [–
1/2π, 1/2π], then Y = tan X has a standard Cauchy distribution.

This last result and minor generalizations thereof have many
applications in physics. A simple example is that where particles are
emitted in a plane from a point source, A, in random directions (i.e.
equally likely to be emitted in any direction) and follow a straight-
line path, then the distribution of the points of impact of the
particles on any straight line in the plane at unit distance from the
point A has a standard Cauchy distribution.

Cauchy-Crompton formula See Radon transform.

Cauchy integral See integration.

Cauchy integral test A test for *convergence or divergence of a
given in�nite *series of positive terms,

a1 + a2 + … + an + an + 1 + …

where an + 1<an. Suppose that the nth term can be expressed in the
form an = f(n), where f(x) is a continuous function de�ned for all
×  1 (and not just for integral values, x = n). If f(x)>0 for x 1
and if f(x) decreases steadily as x increases, then the series
converges if the integral



tends to a �nite limit A as n → ∞, i.e. if the integral

exists; the sum of the series lies between A and A + a1. The series
diverges if the �rst integral tends to in�nity as n → ∞.

Cauchy ratio test (for convergence). See ratio test.

Cauchy-Riemann equations Given a function f(z) of the complex
variable z = x + iy which is *analytic in some region of the
complex plane, and expressible as u + iv, where u and v are real-
valued functions of x and y, the following equations are satis�ed in
that region:

These are the Cauchy-Riemann equations, named after A.-L. Cauchy
and G.F.B. Riemann.

Cauchy–Schwarz inequality Related *inequalities are associated
with the names of A.-L. Cauchy and K.H.A. Schwarz (1843–1921).
Well-known forms are:
(1) For integrals: if f(x) and g(x) are real functions whose squares
are integrable, then

A statistical application in terms of *expectations is to two random
variables X and Y with �nite second moments, whence [E(XY)]2 
E(X2) E(Y2).
(2) For sums: if ai and bi, i = 1, 2, …, n, are real numbers, then



which may be written in vector notation as

(a . b)2  (a . a)(b . b)

In statistics this result implies that the sample *correlation
coe�cient r satis�es the inequality r2  1.

See also Hōlder’s inequality.

Cauchy sequence See metric space.

Cauchy’s integral theorem The theorem that for a *closed curve C
and an *analytic function of a complex variable f(z),

there being no singular point of f(z) in or on C. See contour integral.

Cauchy’s residue theorem See residue.

Cauchy’s theorem See Cauchy.

cause variable See regression.

Caustic A curve formed by re�ected light, for example in a teacup.
It is the *envelope of the re�ected rays. A caustic can also be formed
by refracted light.

Cavalieri, Bonaventura Francesco (1598–1647) Italian
mathematician. In his Geometria indivisibilibus continuorum nova
(1635, A New Geometry of Continuous Indivisibles) Cavalieri
introduced his method of indivisibles, a forerunner of the integral
calculus, to determine the areas enclosed by certain curves.

Cavalieri’s principle A principle used by Cavalieri in the early
development of the calculus. If two solids have equal heights and
their sections at equal distances from the base have areas that



always have a given ratio, then the volumes of the solids are in the
same ratio.

Cayley, Arthur (1821–95) English mathematician and a proli�c
writer, with 967 papers contained in his collected works. Of these,
one of the most signi�cant was his ‘Memoir on the Theory of
Matrices’ (1858) which created a new mathematical discipline.
Earlier, in collaboration with Sylvester, from 1843 onwards, Cayley
had begun the development of the theory of invariants. A further
innovation, dating from 1854, was his work on abstract groups. In
algebraic geometry it was Cayley in 1843 who began the study of n-
dimensional spaces where n>3.

Cayley algebra (J.T. Graves, 1843) The *vector space of all 8-tuples
(see n-tuple) of real numbers (with addition de�ned coordinate by
coordinate) together with an internal multiplication which is not
always *commutative or *associative, but which is *distributive
over addition. There is a multiplicative *identity element, and every
nonzero element has a multiplicative *inverse. The Cayley algebra is
thus a *division algebra. It is denoted by O and its elements are
called octonions. Like*complex numbers and *quaternions, each
octonion c has a real *norm ||c|| such that || c1 || || c2 || = ||c1c2 ||.
The only normed division algebras over the real numbers are R, C,
H, and O (A. Hurwitz, 1898). John Graves �rst discovered the
octonions, but Arthur Cayley was the �rst to mention them, in an
article in 1845. See algebra; Frobenius’s theorem.

Cayley–Hamilton theorem The theorem that every square matrix
satis�es its own *characteristic equation. In other words, if

|xI – A| = xn + an–1 xn–1

+ … + a1x + a0 = 0

is the characteristic equation of the n × n matrix A, then

An + an–1An–1 + … + a1 A + a0I = 0



where 0 is a *zero matrix and I is an *identity matrix.

Cayley’s theorem The theorem that any *group is isomorphic (see
isomorphism) to a group of *permutations. See also tree.

Cayley table See multiplication table.

c.d.f. See d.f.

ceiling function See integer part.

celestial axis See celestial equator.

celestial equator The *great circle that is the intersection of the
plane of the earth’s geographical equator with the *celestial sphere.
The poles of this circle are the north and south celestial poles. A line
joining these is the celestial axis. See equatorial coordinate system.

celestial latitude (ecliptic latitude) Symbol: β. The angular
distance of a point on the *celestial sphere from the ecliptic taken
along a great circle passing through the ecliptic poles. Celestial
latitude is measured from 0° to 90° north (taken as positive) or
south (taken as negative) of the ecliptic. The complement of the
celestial latitude, 90°–β, the colatitude, is sometimes used. See
ecliptic coordinate system.

celestial longitude (ecliptic longitude) Symbol: λ. The angular
distance (measured from 0° to 360°) of a point on the *celestial
sphere from the vernal equinox. It is measured eastwards along the
ecliptic between the vernal equinox and the place at which a great
circle through the point and the ecliptic poles intersects the ecliptic.
See ecliptic coordinate system.

celestial mechanics The study of the *dynamics of planets,
satellites, comets, double stars, star clusters, etc.

celestial meridian A great circle on the *celestial sphere passing
through the two celestial poles and the observer’s zenith.

celestial pole See celestial equator.



celestial sphere An imaginary sphere of very large indeterminate
radius with its centre at the centre of the earth, used in locating
points in the sky. The positions of stars (and other celestial objects)
can be taken as the radial projection of these objects onto the
surface of the sphere. Since the radius of the sphere is large
compared with that of the earth, observers on the earth can usually
be considered to be at the earth’s centre. Because of the rotation of
the earth, the celestial sphere appears to make a full rotation in
every 24-hour period.

celestial sphere

Positions on the celestial sphere are measured with respect to
certain great circles and �xed points (see diagram):
(1) The celestial equator, which is the projection of the earth’s
equator onto the sphere. See equatorial coordinate system.
(2) The ecliptic, the circle which is the intersection of the earth’s
orbital plane with the celestial sphere. See ecliptic coordinate
system.
(3) The horizon, the circle which is the intersection of a horizontal
plane passing through the observer and perpendicular to the
observer’s *zenith with the celestial sphere. See horizontal
coordinate system.



(4) The galactic equator, the circle which is the intersection of the
plane of the Galaxy with the celestial sphere. See galactic coordinate
system.

The principal points of the celestial sphere are the geometric poles
of these circles and the points at which they intersect. Thus, the
poles of the celestial equator are the north and south celestial poles;
those of the galactic equator are the galactic poles; those of the
ecliptic are called the poles of the ecliptic. The poles of the horizon
are the observer’s zenith and nadir. The ecliptic and celestial equator
intersect at the two *equinoxes. The horizon and the celestial
equator intersect at two *cardinal points.

cell 1. A *topological space homeomorphic to the n-ball (see ball) is
called an n-cell.
2. When *data are classi�ed into categories, as in for example
*grouped data for one variate or in a *contingency table for
multivariate data, the subcategories are called cells. The frequency
with which observations fall into a particular cell is the cell
frequency.

Celsius degree Symbol: °C. A division of a temperature scale in
which the melting point of ice is taken as 0 degrees and the boiling
point of water is taken as 100 degrees. This degree and scale were
formerly known as the centigrade degree and the centigrade scale.
[After A. Celsius (1701–44)]. See also Fahrenheit degree; kelvin.

censored observations In statistical studies involving times to
failure (e.g. the breakdown of machines, or the deaths of
individuals), data may be incomplete in the sense that some ‘units’
may not have failed by the end of the study, or may have been
withdrawn or lost before failure. Such data are said to be censored
or, more speci�cally, right censored. In studies of a disease there is
often a similar di�culty if the time of onset is of interest, for this
may not be known if the disease is detected only when a patient is
clinically examined and de�nite symptoms are apparent. In these
circumstances data are described as left censored. Censoring may or



may not depend on how patients are treated. A typical treatment-
dependent situation is where severe side e�ects of a treatment cause
patients receiving that treatment to withdraw from a study.
Standard statistical techniques can be modi�ed to take censoring
into account. See also survival analysis.

census In *statistics, a survey of a complete population as distinct
from a *sample survey.

centesimal measure See angular measure.

centi- See SI units.

centigrade degree See Celsius degree.

central angle An angle in a circle between two radii.

central conic A *conic that has a centre of symmetry, i.e. an
*ellipse or a *hyperbola.

central di�erence Given *function values yi = f(xi), where xi = x0

+ ih, i = 0,1, 2, …, the central di�erence δi + ½ is de�ned by δi + ½

= yi + 1 – yi. See �nite di�erences.

central force A *force that is directed towards a �xed point. It
commonly obeys an *inverse square law and may be a force of
attraction or of repulsion. For instance, to a �rst approximation the
motion of the planets is subject to a central force of gravitational
attraction by the sun. In a central force �eld the force at every point
acts along the *position vector of that point relative to some point of
reference.

centrality (central tendency) In statistics, a property measured by
the *mean, *median, or *mode.

central limit theorem (P-S. Laplace, 1818; A.M. Lyapunov, 1901) A
theorem which states that, under very general conditions, the
distribution of the mean of n *random variables tends to a *normal
distribution as n→∞. The main condition is that the variance of any



one variable should not dominate. An important application is to
the mean of a random sample of n independently identically
distributed random variables each with mean μ and standard
deviation б. For large n the theorem implies that this mean will be
Ν(μ, б2/n). Inpractice, convergence is usually very rapid; for
example, the means of samples of only ten observations from a
continuous *uniform distribution over [0, 1] are for all practical
purposes normally distributed. The central limit theorem does not
hold for samples from the *Cauchy distribution because that
distribution has no mean.

central polyhedral angle A *polyhedral angle formed at the centre
of a sphere, i.e. the polyhedral angle at the vertex of a *spherical
pyramid.

central projection The central projection of a given set of points in
one plane onto a second plane is the set of points produced by lines
through a �xed point C and through the given points intersecting
the given plane. C is the centre of projection. See also projective
geometry.

central tendency See centrality.

centre (centre of symmetry) A point about which a geometric
con�guration is symmetrical. A geometric �gure has a centre of
symmetry if every point in the �gure has a corresponding point such
that the centre bisects the line segment joining the points. See also
symmetry.



central projection of points A and B to give A and B to give A’ and B’.

centre of a group See conjugacy class.

centre of buoyancy See buoyancy.

centre of curvature See curvature.

centre of gravity The �xed point through which the *resultant of
the gravitational forces acting on all particles of a body can be
considered to act, regardless of the orientation of the body. Since
the resultant of the forces exerted on a body by the gravitational
�eld constitutes the body’s weight, the centre of gravity can be
regarded as the point at which the weight of the body acts; if
supported there, the body would remain balanced.

For a body in a *uniform gravitational �eld (e.g. a body in the
earth’s gravitational �eld which is small compared with the earth),
the centre of gravity coincides with the *centre of mass. For a body
in a non-uniform gravitational �eld, the forces on the body are
reducible to a single force and a *couple whose plane is
perpendicular to the line of action of the force. This force does not
in general pass through a single point �xed with respect to the body
as the body is turned in the �eld. However, if the matter in the body
is distributed with spherical symmetry, the couple reduces to zero
and the force always passes through the centre of mass. Only such a



body has a centre of gravity in a non-uniform �eld, and is said to be
barycentric or centrobaric.

centre of mass (CM; barycentre, mass centre) For a body of mass
M made up of n particles mi(i = 1, 2, …, n) with position vectors ri,
the centre of mass is the point with position vector r ̄given by

For a rod, lamina, or solid of mass M with density 6(r), at the point
with position vector r the equation becomes

where the integral is over the region V occupied by the body. Thus,
for a system of particles situated at points (xi, yi), in a plane, the
coordinates of the centre of mass (x̄, ȳ) can be found from the
equations

For a uniform lamina of area A in the shape of the area under the
curve y = f(x) between x = a and x = b, the position of the centre
of mass (x, y) may be found from the equations

When the *centre of gravity of a body exists, it coincides with the
centre of mass. A table giving the centres of mass of various bodies
is given in the Appendix.

centre of pressure The point on a plane surface immersed in liquid
at which the *resultant pressure on the surface may be considered to
act.



centre of rotation See rotation.

centre of symmetry See symmetry.

centrifugal force The *inertial force reacting against a *centripetal
force.

centripetal component See acceleration; centripetal force.

centripetal force A *force that causes a body to deviate from
motion in a straight line to motion along a curved path, or
constrains a body to move in a curved path. The force at a point is
directed inwards towards the centre of *curvature of this path at the
point and, by Newton’s laws of motion, has a magnitude equal to
the mass of the body multiplied by its centripetal component of
*acceleration. For motion around a circle of radius r, the centripetal
force acts towards the centre of the circle and is equal to mv2/r or
mω2r, where m is the body’s mass, v its speed, and ω its angular
speed.

Centrobaric See centre of gravity.

Centroid The point in a geometrical �gure whose coordinates are
the arithmetical *means of the coordinates of the points making up
the �gure. If the �gure represents a body of uniform density, the
centroid coincides with the *centre of mass.

The centroid of a triangle with vertices (x1, y1), (x2, y2), and (x3,
y3) is the point (1/3 (x1 + x2 + x3), 1/3 (y1 + y2 + y3)). It is the
point of the intersection of all three *medians, dividing each of
them is the ration 2:1.

Ceva’s theorem In a triangle ABC, L, M, and N are points on the
sides AB, BC, and CA, respectively. The theorem, discovered by the
Italian mathematician Giovanni Ceva (1647–1734) in 1678, states
that the *necessary and su�cient condition for AM, BN, and CL to
be concurrent is that



An equivalent statement is that the *binary operation de�ned by
taking the centre of mass of two (weighted) points is associative. It
was in this context that it was originally studied by Ceva. Compare
Menelaus’ theorem.

Cevian A line segment joining a vertex of a triangle to a point on
the opposite side (or on its extension).

c.g.s. units A system of units based on the centimetre, gram, and
second. It was formerly used for scienti�c purposes but has now
been replaced by *SI units. The c.g.s. system used two di�erent
systems of electrical units: electrostatic units (e.s.u.) and
electromagnetic units (e.m.u.).

chain 1. A totally ordered *set. See partial order.
2. See nested sets.

chain complex See homology group.

chain rule (for di�erentiation) A method of obtaining the
*derivative of a *composite function. Di�erentiation is performed
with respect to each function and the results are combined. If y =

f(u) and u = g(x), then

dy/dx = dy/du · du/dx

For example, y = (3x + 1)2 can be regarded as y = u2, where u = 3x
+ 1. Application of the chain rule gives

dy/dx = 2u. 3 = 6(3x + 1)

For a greater number of functions the expression becomes

dy/dx = dy/du · du/dv · dv/dx

There is a version of the chain rule for functions of several variables
which states that the *Jacobian matrix of a composite function fg is



obtained by multiplying the Jacobian matrices of f and g. See also
composite function.

Champernowne’s number (D.G. Champernowne, 1933) The
number

0.123 456 789 101 112 …

whose decimal digits are those of all the *natural numbers in
succession. It is an example of a *normal number.

change of variable (in integration) The transformation of an
integral by substitution of a di�erent variable. For the integration of
a function f(x) the method involves choosing a function x = g(u),
which is substituted in f(x) to give a function of u, say F(u).
Di�erentiating × = g(u) gives dx = g′ (u)du. The change of
variable is thus

For instance, the integral

can be transformed by making the change of variable

x = 1 – u2

so 1 – x = u2, and dx = – 2u du. The integral then becomes

In the case of a de�nite integral, the limits (x = a and x = b, say)
are also changed using x = g(u) to u = g–1(a)and u = g–1(b). The
method is called integration by substitution.



Channel A means of sending messages from one place to another.
For example, a telephone line or a radio signal. A noisy channel is
one that will corrupt or omit parts of the messages. See information
theory.

Chaos A general term for a type of behaviour found in certain
*dynamical systems whose evolution, though deterministic, appears
to be unpredictable and random.

There is no single accepted de�nition of chaos, although it is
common to speak of a sensitive dependence on initial conditions, i.e.
the orbits of adjacent points evolve in markedly di�erent ways. As
the underlying equation of the map or *�ow is usually nonlinear,
chaos is an aspect of nonlinear dynamics. A chaotic dynamical system
contains at least one point whose orbit is a *dense set. The term
‘chaos’ was introduced in 1975 by T-Y. Li and J.A. Yorke in their
work on periodic points for transformations of the real line. It is
usually associated with the presence in the system of a strange
attractor (see below).

For a dynamical system in a space X with an *iterative map xn + 1

= T (xn), an attractor is an invariant set A in X towards which
nearby points x converge, i.e. T(A) = A and xn = Tn(x) approaches
A as n increases for points close to A. For example, for the
transformation z → z2 on the complex plane, the single point A =
{0} is an attractor. However, the invariant set {z: |z| = 1} is not an
attractor. In fact this is a repellor, an invariant set from which
nearby points diverge. Similarly, for a space X with a �ow, an
attractor is an invariant set towards which nearby points converge
in time.

A strange attractor is an in�nite invariant set A, usually an
attractor, with additional properties. There is no single accepted
de�nition, although the most commonly used is that orbits in A
have a sensitive dependence on initial conditions and there is an
open set of points attracted to A. The term was introduced by D.
Ruelle and F. Takens in 1971. Two important examples are:



(1) The Hénon attractor (see diagram (a)). A strange attractor
contained in the plane associated with the Hénon map T(x, y) = (y
+ 1 – ax2, bx) for some choice of real numbers a and b. It was
studied in computer experiments by M. Hénon in 1976, and
rigorously shown in 1991 to be a strange attractor by M. Benedicks
and L. Carleson for many parameter values.
(2) The Lorenz attractor (see diagram (b)). A subset of three-
dimensional space invariant



chaos (a) The Hénon attractor for a = 1.3, b = 0.3. (b) The Lorenz attractor.

under the �ow which is the solution to the Lorenz equations:



The Lorenz attractor was originally studied by Edward N. Lorenz in
1963 as a model for weather; in 2002 the Swedish mathematician
Warwick Tucker showed that it is a strange attractor.
Characteristic 1. See logarithm.
2. (of a ring or �eld) For a given *ring R, if a positive integer n
exists such that na = 0 for all a in R, then the least such positive
integer is the characteristic of the ring. If no least positive integer
exists, the characteristic is zero (or sometimes ‘characteristic ∞’ is
used). The rings of integers, rational numbers, and real numbers all
have characteristic 0. If the ring is an *integral domain, the
characteristic is either zero or a prime.

See also Euler-Poincare characteristic.
characteristic equation. See characteristic polynomial.
characteristic function 1. The expected value (see expectation) of
the *function g(X) = exp(it X) of the *random variable X, for real t,
written as ф(t) = E[exp(it X)]. It exists for, and uniquely de�nes,
any distribution, hence the name. For the standard *normal
distribution

Φ(t) = exp(–1/2t2)

See also moment generating function. 2. The characteristic
function χΑ of a subset A of a set X is the function χΑ: X→ {0,1}
de�ned by XA(x) = 1 if x ∈ A and XA(x) = 0 if × ∉ A. It is also
called the indicator function of the set A.
characteristic polynomial For an nxn *matrix A the polynomial
det(xI – A), where I is the identity matrix of the same dimension as
A and x is a *scalar variable. The characteristic polynomial is a



*polynomial of degree n:det(xI – A) = xn + an–1xn–1 + … + a0,
where an–1 is minus the *trace of A and a0 = (–1)n det(A). The
equation det(xI – A) = 0is the characteristic equation of A and its
roots are the *eigenvalues of A. Sometimes the characteristic
polynomial is de�ned as det(A – xl). See also Cayley-Hamilton
theorem.

Chebyshev See Tchebyshev.

check digit A digit in a *codeword whose sole purpose is to check
whether there has been an error in transmission or transcription. For
example, if the codewords are written using 5 decimal digits, a 6th
digit could be added, for example, it could be the last digit of the
sum of the 5 digits; this extra information would enable a receiver
to detect that one of the six digits has been transmitted incorrectly.
More subtle check digits can detect transposition of digits in the
original message. See ISBN.

Chinese postman problem Any problem equivalent to that of a city
postman who wishes to visit all the streets in his area to deliver his
letters and return to his starting point, having covered the least
possible distance. In terms of *weighted graphs, the problem is to
�nd a closed *walk which includes every edge (at least once) and
has least total weight. See also travelling salesman problem; network
analysis.

Chinese remainder theorem The theorem that if m1, …, mr are
natural numbers every pair of which are *relatively prime, and a1,
…, ar are any integers, then there is an integer x that
simultaneously satis�es the *congruences

x ≡ a1(mod m1), …, x ≡ ar(mod mr)

Also, if x = a is any solution then all other solutions are congruent
to a modulo the product m1m2 … mr.

Simultaneous congruences occur in such problems as that of
�nding a number that leaves the remainders 2, 3, and 2 when



divided by 3, 5, and 7, respectively. This requires �nding an integer
x such that:

x ≡ 2mod 3

x ≡ 3mod 5

x ≡ 2mod 7

The theorem is so named because it originates in the study of
problems such as the one above in the Sunzi suanjing (Master Sun’s
Mathematical Manual), which circulated in China from the 3rd
century AD onwards. It was �rst established by Qin Jiushao in 1247.

There is a more elaborate version that gives precise conditions
under which a set of simultaneous congruence equations have a
solution when the moduli mk are not pair-wise relatively prime. For
example, the equations x: 1 mod 2 and x: 2 mod 4 do not have a
simultaneous solution.

chi-squared distribution The sum of squares of n independent
standard normal variables (see normal distribution) has a chi-
squared (χ2) distribution with n *degrees of freedom. The
distribution belongs to the *gamma distribution family, and has
mean n and variance 2n. Tables of percentiles of the distribution for
various values of n are available for use in the *chi-squared test.
Many statistical software packages provide exact one-tail *p-values.

chi-squared test 1. A test of goodness of �t of observations to a
theoretical discrete *distribution. If a value xi (i = 1, 2, n) that is
expected to occur Ei times for that distribution occurs Oi times, the
statistic

has a chi-squared distribution with n – p *degrees of freedom, where
p is the number of distribution parameters estimated from the data



and used to compute the Ei. Signi�cantly high values of χ2 lead to
the rejection of the hypothesized distribution. Some modi�cations
are needed if a few Ei are small (e.g. if several are 5 or less).

If a fair die is cast 96 times, then xi = 1, 2, 3, 4, 5, or 6 are the
possible scores for each throw, and Ei = 16 for all i. If 01 = 14, 02

= 19, 03 = 11, 04 = 21, 05 = 12, and 06 = 19, then χ2 = 5.5. The
mean of 16 is computed from the data, so there are 6 – 1 = 5
degrees of freedom. The χ2 value is not signi�cant at the 5 percent
level, so the hypothesis that the die is fair is not rejected.

The test may be adapted and applied to grouped data from a
continuous distribution, when these are the only data available, to
see whether they are consistent with a speci�ed distribution (e.g. a
normal distribution). However, if individual observations are
available these should not be arbitrarily grouped simply to allow the
test to be applied because the outcome of the test is not independent
of the choice of class intervals for grouping, and some groupings
may lead to a signi�cant value of the chi-squared statistic, while
others may not. See also Kolmogorov-Smirnov test.
2. A test for lack of association (independence) between numbers in
row and column categories in an r×c *contingency table. The
expected numbers in any cell may be computed from the �xed
marginal totals, and a statistic of the form of χ2 given in 1 above is
calculated by taking the observed and expected numbers in each cell
and summing over all cells. The degrees of freedom are (r – 1)(c –
1). Large values of χ2 lead to the rejection of the independence
hypothesis, since they indicate some association between row and
column categories. In the special case of 2×2 tables, Yates’s
correction should be applied by subtracting 0.5 from the magnitude
of each di�erence, |(Oi – Ei)|, before squaring. The test is an
approximation to *Fisher’s exact test for 2 χ 2 tables. The cautions
about small expected numbers in 1 also apply here.

Chiu-chang Suan-shu See: Jiuzhang suan-shu.

choice, axiom of An axiom of set theory that states that for any
*set S there is a *function f (called the choice or selection function)



such that for any nonempty subset X of S, f(X) ∈ X. The set of
values of f is called the choice set. A choice function for S may be
regarded as selecting a member from each nonempty subset of S.
For example, if S = {1,2}, then nonempty subsets of S are X1 ={1},
X2 = {2}, and X3 = {1,2}. Two choice functions for S may then be
de�ned:

f1 (X1) = 1, f1(X2) = 2, f1(X3) = 1

and

f2 (X1) = 1, f2(X2) = 2, f2(X3) = 2

Zermelo �rst used (an equivalent of) this axiom to prove that every
ordered set can be *well ordered. The axiom has been thought to be
counterintuitive, mainly on the grounds that it asserts the existence
of (choice) sets independently of any property all the members of
the set satisfy. In 1938 Gödel proved that the axiom is *consistent
with the other axioms of set theory, and in 1963 Cohen proved its
*independence.

Cholesky factorization A *matrix A that is symmetric and *positive
de�nite can be factored as A = RT R, where R is an *upper
triangular matrix with positive diagonal entries, called the Cholesky
factor. For example,

It is named after André-Louis Cholesky (1875–1918).

chord A straight-line segment joining any two points on a curve or
surface. A chord is a segment of a *secant lying between two points
of intersection of the secant and the curve. If two tangents are
drawn to a circle from a point outside the circle, the chord joining
the two points of contact of the tangents is called the chord of
contact.



Chuquet, Nicolas (c.1440–c.1488) French mathematician and
author of Le Triparty (c.1480), a treatise on algebra existing only in
manuscript until published in 1880. The �rst part deals with the
newly introduced Hindu-Arabic numbers, while later parts cover a
number of notational innovations and, apparently for the �rst time,
introduce an isolated negative number.

Church, Alonzo (1903–95) American mathematical logician and
author of Introduction to Mathematical Logic (1956). In 1935 he
proposed to identify e�ective computability with λ-de�nability or
general recursiveness; in the following year he went on to show that
the �rst-order functional calculus was undecidable.

Church’s theorem (A. Church, 1936) The theorem that there is no
*e�ective procedure for deciding whether or not a given *w� of the
*predicate calculus is a theorem. In other words, the *decision
problem for the predicate calculus has a negative solution (is
unsolvable).

Church’s thesis (A. Church, 1935) The principle, according to one
formulation, that all e�ectively computable (see e�ective procedure)
functions are *recursive. This thesis ties together an intuitive
concept of e�ective computability and a precise mathematical
concept, and is thus not susceptible to proof. However, evidence for
the thesis can be adduced from the provable equivalence of many
di�erent attempts to characterize accurately the notion of
e�ectiveness.

Chu Shih-chich See Zhu Shijie.

cipher (cypher) 1. The symbol 0 for zero.
2. To calculate; to carry out computations using numbers.
3. An algorithm used to transform text (e.g. a message or credit card
number), called the plaintext into another text, called the ciphertext.
This is done before transmission to a recipient, the aim being to
prevent the plaintext from being recovered by a third party. The
algorithm usually consists of replacing each character of the



plaintext by a *word in some *alphabet, and its exact
implementation depends on a chosen *key. A recipient who knows
the cipher and the key can then recover the plaintext from the
ciphertext.

ciphertext The text obtained after applying a *cipher to the
plaintext.

circle A plane curve that is the *locus of a point which moves at a
�xed distance (the radius r) from a �xed point (the centre). The area
enclosed by a circle is лr2 and the circumference is 2лr. Theorems
associated with circles include the following:
(1) Angles subtended by an arc at the circumference and lying in the
same segment are equal.
(2) The angle that an arc subtends at the centre of a circle is twice
the angle that the arc subtends at points on the remainder of the
circumference.

circle: parametric equations for the circle

(3) An angle subtended at the circumference by a semicircle is a
right angle.
(4) If two tangents are drawn from an external point P to a circle,
then:
(a) the tangents have equal length;



(b) the tangents subtend equal angles at the centre of the circle;
(c) the line from the point to the centre bisects the angle between
the tangents.
(5) The tangent–secant theorem: if a tangent PA and a *secant PBC
are drawn from an external point P, then PA2 = PB . PC.
(6) The intersecting chords theorem: if two chords AB and CD intersect
at a point Y, then AY. BY = CY. DY.
(7) The alternate segment theorem (or tangent–chord theorem): if a
straight line touches a circle, and from the point of contact a chord
is drawn, the angles which the chord makes with the tangent are
equal to the angles subtended by the chord at the circumference in
the alternate segments.

A circle can be regarded as a *conic with an *eccentricity of 0
(i.e. a special case of an ellipse). In rectangular Cartesian
coordinates its equation is

(x – a)2 + (y – b)2 = r2

where r is the radius and (a, b) the centre. The *parametric
equations of this circle are (see diagram)

x = a + r cos θ and y = b + r sin θ

circle of convergence See power series.

circle of curvature See curvature.

circuit See walk.

circulant A type of *matrix (or determinant) in which each row is a
*cyclic permutation of the row above, and such that all the elements
of the principal diagonal are identical; for example,



circular 1. Having the form of a circle.
2. Having a circle as base, as in a circular cone or circular cylinder.

circular data See directional data.

circular functions See trigonometric functions.

circular helix See helix.

circular measure See angular measure.

circular motion Motion along the circumference of a circle. For the
motion to be uniform – at constant speed – there must be a
continuous *acceleration towards the centre of the circle, i.e. a
*centripetal force must be acting, and the tangential component of
acceleration must be zero.

circular permutation See cyclic permutation.

circumcentre The centre of the circumcircle of a given polygon. See
circumscribed.

circumcircle A circle *circumscribed about a given polygon.

circumference 1. The length of a circle, equal to 2лr, where r is the
radius.
2. (of a sphere) The length of a great circle on the sphere.
3. The length of any closed curve or �gure (i.e. the perimeter).

circumferential mean See subharmonic function.

circumscribed Describing a relationship in which one �gure
encloses another. Most commonly it is used to describe the situation
in which a *polygon can be completely enclosed by a circle (the



circumcircle) that passes through all the vertices of the polygon. The
polygon is then said to be circumscribed by the circle; the circle is
circumscribed about the polygon. Alternatively, a polygon completely
enclosing a circle so that every side is a tangent to the circle is said
to be circumscribed about the circle. The term can be extended to
other �gures, including solid �gures. A polyhedron can be
circumscribed by a sphere if all the vertices lie on the surface of the
sphere. A prism can be circumscribed by a cylinder if all the edges
of the prism lie on the cylinder’s surface. See also inscribed.

cis See complex number.

cissoid A plane curve with the equation

r = 2a tan θ sin θ

in polar coordinates. In Cartesian coordinates, the equation is

y2 (2a – x)= x3

The curve is symmetrical about the x-axis and has a *cusp at the
origin. It can be generated by taking a circle (radius a) with a �xed
point P on the circle. A tangent



cissoid

is drawn to the circle at the opposite end of the diameter through P.
A variable line from P cuts the circle at Q and the tangent at R. The
cissoid is the locus of points S, such that PS = QR.

Clairaut, Alexis-Claude (1713–65) French mathematician and
physicist who worked on problems of geodesy and celestial
mechanics, and on di�erential equations, in which �eld he
established *Clairaut’s equation. He also published important work
on cubic curves.

Clairaut’s equation A *di�erential equation of the form

y = xdy/dx + f(dy/dx)

where f(dy/dx) is a function of (dy/dx) only.

class See set.

class equation An equation that counts the number of elements in
the *conjugacy classes of a �nite *group G. The group is the union
of its distinct conjugacy classes, so the *order |G| of G is the sum of
the numbers of elements in the conjugacy classes. Since the union of
the *singleton conjugacy classes is the centre, Z(G), their number is
its order |Z(G)|. So the class equation is usually written as

|G| = |Z(G)| + l + m + …

where l, m, … are the numbers of elements in the di�erent multi-
element conjugacy classes.

class frequency The number of observations in a given *class
interval.

class group In a *�eld of *algebraic numbers, a *group can be
made out of *equivalence classes of the set of *ideals of the
algebraic integers of the �eld. The equivalence *relation is that the
ideals I and J are equivalent if and only if there are principal ideals



S and T such that IS = JT; and the group operation is that the
product of the classes containing I and J is the class containing IJ.
The class number of the algebraic number �eld is the number of
elements in the class group. It can be shown that there is unique
factorization in the ring of integers of the �eld if and only if the
class number is 1.

classical mechanics (Newtonian mechanics) The study of the
behaviour of systems under the action of forces, i.e. the study of the
motions and states of *equilibrium of bodies, based on *Newton’s
laws of motion. Classical mechanics forms a basic and long-
established part of physics and engineering. It can be divided into
*dynamics (*kinematics plus *kinetics) and *statics, or into
dynamics (including statics) and kinematics. It is usually concerned
with the motions of solid bodies rather than �uids. Newton’s laws
are inadequate for the treatment of systems in which components
move at speeds approaching that of light, or of systems of atoms,
molecules, etc.; these systems are the subject matter of *relativistic
mechanics and *quantum mechanics respectively. See also
mechanics; hydrostatics.

class intervals Intervals in which data are grouped. For example, if
employees’ weekly wages are known we may count the number
receiving between £0.00 and £199.99, between £200.00 and
£299.99, etc. The class intervals are £0.00–£199.99, £200.00–
£299.99, etc. The number of employees in each class interval gives
the *class frequency for that interval. Class intervals often are, but
need not necessarily be, all of the same length. See also grouped
data; histogram.

class number See class group.

closed curve A curve that has no end points; i.e. one that is a
continuous transformation of a *closed interval [a, b]in which the
images of a and b coincide. Compare open curve.

closed interval A *set of real numbers {x: a ≤ x ≤ b}, written
as[a, b]. The interval contains the end points a and b. In n-



dimensional space, if a = (a1,…, an) and b = (b1, … bn) are two
distinct points with aj ≤ bj (j = 1, …, n), then the closed interval
[a, b] is given by

{(x1, …, xn): aj ≤ xj ≤ bj, j = 1, …, n}

An interval is partly open and partly closed if it contains just one of
its end points, and is written as [a, b) if it contains a and (a, b] if it
contains b. Compare open interval.

closed region See region.

closed set (of points) A *set A is closed if it contains all its *limit
points. For example, the points corresponding to the real numbers
equal to or greater than 0 and equal to or less than 1 constitute a
closed set. A closed set is the complement of an *open set.

closure The closure of an *open set A is obtained by adding to it all
*limit points of A. Thus, if A is the set of real numbers between 0
and 1, the closure of A would be obtained by adding to A the limit
points 0 and 1. The closure of a set A is denoted by Ā. See also
derived set.

cluster analysis Statistical techniques for determining, on the basis
of measurements of one or more characteristics for each of a
number of items, whether the items fall into recognizable groups
called clusters. For a chosen *metric, items in any one cluster will in
general be closer to each other than they are to items in another
cluster. Objective criteria are needed to determine the number of
clusters and to allocate items to clusters.

Data on age, income, ownership of home or car, time spent out of
the home each week, etc. for a number of people are likely to show
evidence of several distinct clusters, each corresponding to a
category such as employed, unemployed, pensioners, or students.

cluster point See limit point.



cluster sample A sample in which natural or arti�cial groups of
sampling units (each called a cluster), rather than individual units,
are selected from a population. Observations are made on all units
in each selected cluster. For example, households may each form a
cluster, and individuals in each selected household may be the units;
or farms may each form a cluster, and individual �elds on each farm
the units. See also area sampling.

CM Abbreviation for *centre of mass.

coaltitude See zenith distance.

coaxial Having the same *axis, as in coaxial cylinders.

cobordism Two n-manifolds, M and N, are cobordant if there exists
(see manifold) an (n + 1)-manifold-with-boundary, W, whose
boundary is the disjoint union of M and N; W is called a cobordism
between M and N.

The notion of cobordism is due to R. Thom (1954), who gave
*necessary and su�cient conditions for two (di�erential) manifolds
to be cobordant. Thom’s work was extended by J.W. Milnor (1960)
and C.T.C. Wall (1960). It is an important tool in the classi�cation
of manifolds.

Cocker, Edward (1631–75) English mathematician. As a London
teacher and the author of the posthumous Arithmetick (1678),
Cocker was su�ciently well known to endow the phrase ‘according
to Cocker’ with an almost proverbial status.

code 1. See coding.
2. A particular method of encoding, for example *Reed–Solomon
code.

codebreaking An attempt by someone other than the intended
recipient (who does not know the *key) to reconstruct the original
message from the coded message.

codeclination In *equatorial coordinates, the complement of the
declination.



code correction A correction to a *codeword that has been
corrupted (usually during transmission).

code length The length of the codewords in a *code (all codewords
in a given code usually have the same length).

code weight The number of 1’s in a particular *codeword from a
*binary code.

codeword See coding.

coding 1. A method of rewriting a message before it is transmitted.
Two common purposes for doing this are to make the message
di�cult to read, except by the intended recipients, and to introduce
checks to correct errors that might be introduced during
transmission.

More formally, a code C of length n is a set of n-tuples from a set
A, its *alphabet. An element of C is called a codeword. A codeword is
usually written as a *string a1a2 … an, but sometimes as an n-tuple
(a1, a2, … an). Often the alphabet is a *�eld F such as F2 = {0, 1};
then C is a linear code if it is a subspace of the *vector space of all n-
tuples from F. If C is linear and of dimension k, a k × n *matrix
whose rows form a basis for the vector subspace C is called a
generator matrix for C.
2. See data coding.

coding theory The theory of the encryption of messages, using
*ciphers, for security during the transmission of data, or for the
recovery of information from corrupted data (e.g. in reconstructing
messages sent over long distances by space probes). One of the most
secure ciphers is the *RSA cipher, in which information is stored
using integers modulo a large number N, but which can be
deciphered only if one knows the prime *factorization of N; N is
usually chosen to be the product of two large primes. Many *error-
correcting codes which identify and correct errors in messages
corrupted during transmission have been constructed using *Galois
�elds.



codomain See function.

coe�cient 1. In general, the product of all the factors in an
expression except for a speci�ed factor. Thus the coe�cients of x in
the expressions 3x, (a + b) x, and 2xyz are respectively 3, (a + b),
and 2yz. A coe�cient is usually a constant. 2. A number that serves
as a measure of some property or characteristic of a body, material,
process, etc.

coe�cient matrix See augmented matrix.

coe�cient of concordance (M.G. Kendall, 1939) A test for the
consistency of more than two sets of rankings, such as the merit
ordering of competitors by several judges in a sporting contest. If m
judges each award ranks 1 to n independently to competitors, the
sum si of the ranks awarded to competitor i has mean 1/2 m(n + 1).
The sum of the squares of the deviations of the si from their mean is

S = ∑ [si – 1/2m(n + 1)]2

and the coe�cient of concordance is

W = 12S/m2n(n2 − 1)

It can be shown that 0 ≤ W ≤ 1. If all judges give identical
rankings, then W = 1. The minimum possible value is W = 0,
which corresponds to complete disagreement, and values near zero
imply little agreement. If four judges give the ranks shown in the
table to three competitors, clearly there is little agreement, and S =
2 and

W = 12 × 2/16 × 3 × 8 = 1/16

The test is equivalent to *Friedman’s test. It will not detect patterns
other than overall preference; so, for example, if two judges each
rank four candidates in order of preference 1, 2, 3, 4, and another



two rank them 4, 3, 2, 1, there is a reversal of preferences and W =
0. See also nonpara-metric methods; rank.

  Judge

Competitor A B C D si

I 1 1 2 3 7

II 3 2 3 1 9

III 2 3 1 2 8

coe�cient of correlation See correlation coe�cient.

coe�cient of determination (index of determination) If data
consist of n paired observations (xi, yi) and a least-squares linear
*regression of y upon x is �tted, the proportion of the total variance
of the yi attributable to dependence on x (as opposed to
independent variation) is r2, the square of the product moment
*correlation coe�cient, and r2 is called the coe�cient (or index) of
determination. The dependence is total if r = ± 1, when the
regression line accounts for all the variation in the yi because the �t
is perfect. The quantity 1 – r2 may be regarded as a measure of
independence or lack of correlation because it takes a maximum
value of 1 when r = 0 and there is zero correlation, and a minimum
value of zero when r = ± 1 and there is total dependence.

coe�cient of friction See friction.

coe�cient of kurtosis See kurtosis.

coe�cient of multiple determination See multiple correlation
coe�cient.

coe�cient of restitution See Newton’s law of restitution.



coe�cient of skewness See skewness.

coe�cient of variation See variation, coe�cient of.

cofactor A number associated with an element of a *determinant. If
the element is in the ith row and jth column, its cofactor equals the
determinant of lower order obtained by removing the row and the
column in which the element appears, multiplied by (–1)i + j. The
determinant of lower order is called the minor of the original
determinant, and the cofactor is sometimes called the signed minor.
A cofactor of a *matrix is a cofactor of the determinant of the
matrix.

For the determinant

the cofactor of e is

and the cofactor of d is

cofunctions Pairs of *trigonometric functions that are equal when
the variable in one function is the complement of the variable in the
other. The sine and cosine functions are cofunctions:

sin θ = cos(90° – θ)

Other pairs of cofunctions are the tangent and cotangent, and the
secant and cosecant.



Cohen, Paul Joseph (1934–2007) American mathematician who
�nally resolved (1963) the status of Cantor’s continuum hypothesis.
Gödel had shown in 1938 that the hypothesis could not be
disproved in restricted set theory; Cohen went further and
demonstrated that it could not be proved either, thus showing the
hypothesis to be independent of the axioms of Cantor’s set theory.
Cohen’s kappa statistic (J. Cohen, 1960) A measure of agreement,
κ, between two observers when they have independently classi�ed
each one of a set of items, there being two or more classes, and they
are said to agree over an item if they assign it to the same class.

For example, two doctors each examine 80 patients claiming to
su�er from depression, and independently classify each patient as to
whether treatment with a speci�ed antidepressant drug is
appropriate or inappropriate. Both agree in 32 cases that treatment
is appropriate and both agree in 35 cases that treatment is
inappropriate. In the remaining 13 cases there is disagreement, one
doctor thinking treatment is appropriate, while the other does not.

In general, if there are N items and n is the observed number of
agreements over all classes then pobs = n/N is the observed
proportion of agreements. If pexp is the expected proportion of
agreements over all classes under a random assignment, calculated
in the usual manner for a *contingency table, then

k = Pobs − Pexp/1 − Pexp

The coe�cient takes values between –pexp/(1 – pexp) and 1. The value
+ 1 corresponds to perfect agreement, zero to the level expected by
chance, and negative values to apparent disagreement. Formulae are
available for obtaining *con�dence intervals for κ.

coherent units A system of units in which the *derived units are
obtained from the *base units by multiplication or division without
the introduction of numerical factors. *SI units form a coherent
system of units.



cohomology The cohomology groups Hn(X) (n 0) of a topological
space X are variants of the *homology groups of X, but with the
characteristic property that, given a continuous map f: X→Y, the
corresponding homomorphisms f* run from Hn(Y) to Hn(X) rather
than the other way round.

Cohomology groups arise naturally in the statement of the
*Poincaré duality theorem for manifolds. They are important also
because the cohomology groups of X can be given the additional
structure of a ring, making them a slightly more powerful tool in
algebraic topology than homology. Cohomology has been adapted
and usefully applied in several areas of mathematics. See di�erential
form.

colatitude 1. Symbol: θ The angle between the polar axis and the
radius vector in a *spherical coordinate system.
2. The complement of *celestial latitude in an *ecliptic coordinate
system.

collinear Having a common line. Thus, collinear points are points
that lie on a straight line. Collinear planes are planes that intersect in
a common straight line. See concurrent.

collinearity transformation (collineation) A *transformation that
takes collinear points into collinear points. See matrix.

collision Momentary point contact between two objects (e.g.
snooker balls) and their resulting interaction, or the de�ection of
two particles (e.g. nuclear particles) from their original paths as a
result of long-range interaction rather than direct contact. *Kinetic
energy can be lost in a collision as a result of changes in the internal
energies of the two objects, as by the heating up of a snooker ball or
the excitation of an atom. If no change in kinetic energy occurs, i.e.
if kinetic energy is conserved, then the collision is said to be elastic;
otherwise it is described as inelastic. See Newton’s law of restitution.

column A vertical line of elements in an array, as in a *determinant
or *matrix.



column rank The dimension of the *column space of a matrix. It is
equal to the *row rank and the *rank of the matrix.

column space The vector space of all *linear combinations of the
columns of a matrix.

column vector (column matrix) A*matrix having a single column
of elements.

combination The number of selections of r di�erent items from n
distinguishable items when order of selection is ignored. Denoted by

 or nCr, it has the value n!/[r!(n – r)!]; and  is the coe�cient of
xryn–r in the binomial expansion of (x + y)n. See binomial
distribution; permutation.

combinatorial theory See combinatorics.

combinatorial topology The study of *topological spaces that are
constructed by piecing together elementary ‘blocks’ called simplexes,
which are higher-dimensional analogues of points, line segments,
and triangles.

More precisely, for n  0an n-simplex σ (or simplex of dimension n)
is de�ned to be the *convex hull in some Euclidean space m of a set
of n + 1 points a0, a1,…, an ∈ m (called vertices), provided these
points ai are ‘independent’ in the sense that the equations

(where λ0, λ1, …, λn are real numbers) imply that λ0 = λ1 = …
=λn = 0 (thus three points a0, a1, and a2 are independent if they
are not collinear). For example, a tetrahedron is a 3-simplex in 3.

A (nonempty) subset of r + 1 vertices of σ determines an r-
simplex contained in a, called a face of σ.

A simplicial complex K is a �nite set of simplexes in some m, with
the property that all faces are included and any simplexes meet, if at
all, in a common face. The union of the simplexes in K is called the



polyhedron of K. The dimension of K is the dimension of its simplex
of highest dimension.

See also homology group.

combinatorics The branch of mathematics involved in the study of
discrete objects – those where continuity plays no role. Enumeration
and *graph theory are important examples of areas of
combinatorics. The topic has applications in many branches of
science, especially computer science.

commensurable Describing two quantities that are integral
multiples of a common unit. 16 and 12 are commensurable since
they are both integral multiples of 1, 2, or 4. Likewise, 3 feet and 2
inches are commensurable quantities since 3 feet contains 2 inches
an integral number of times. Numbers are commensurable if their
ratio is rational. √2 and 1 are incommensurable since √2/1 is not
rational.

common denominator A common multiple of the denominator of
two or more fractions, i.e. a number that each denominator divides
exactly. For example, the fractions 1/2, 1/3, and 3/7 have common
denominators of 42, 84, 126, 168, etc. The least common
denominator (LCD) is the lowest such number, in this case 42. The
common denominator is used in adding fractions.

common di�erence See arithmetic progression.

common factor (common divisor) A number that divides two or
more given numbers exactly. For example, the numbers 20, 70, and
80 have 2 as a common factor; other common factors are 5 and 10.
The largest number that is a common factor of the given numbers is
the highest common factor (HCF), also called the greatest common
divisor (GCD). In the case above the HCF is 10. See also Euclidean
algorithm.

common fraction (simple fraction, vulgar fraction) A fraction in
which both numerator and denominator are integers. Compare
complex fraction.



common multiple A number that is a multiple of two or more other
numbers. The lowest number that is a multiple of a given set of
numbers is their least common multiple (LCM). For example 3, 9, and
11 have a LCM of 99; i.e. 99 is the smallest number that all three of
the given numbers will divide exactly. The LCM can be found by
splitting each number into prime factors. Thus, to �nd the LCM of 7,
9, 12, and 14:

7 =   7

9 =   32

12 =   3 × 22

14 =   7 × 2

The LCM is obtained by multiplying the prime factors together,
taking each the maximum number of times it occurs in any of the
numbers. In this case the LCM is 7 × 32 × 22 = 252.

common ratio See geometric progression.

common tangent A line that is a *tangent to two separate curves.
Two circles that lie outside each other have four common tangents:
two external tangents (the circles lie on the same side of the tangent)
and two internal tangents (the circles lie on opposite sides).

commutative Describing a *binary operation ° where the result of
the operation does not depend on the order of the elements a and b
it is applied to; that is,

a ° b = b ° a

Thus the commutative law of addition is

a + b = b + a

and the commutative law of multiplication is



a × b = b × a

Many mathematical systems contain non-commutative operations.
See group; ring; vector product.

commutator (of elements in a group) The commutator c of two
elements a and b in a *group is an element such that bac = ab.

commute If a and b are elements in a *set with a *binary operation
°, they commute if a ° b = b ° a. See also commutative.

compact A subset A of a *topological space X is compact if,
whenever A is contained in the *union of a collection of open sets
Ui, then A is contained in the union of a �nite number of the Ui.

When X is a *metric space, a subset A is compact if every
*sequence has a *limit point in A. A closed interval A = [a, b] ⊂ 
is compact, but the open interval A = (0, 1) is not compact since
the limit point 0 of the sequence {1/n}, n > 1, does not lie in A.
The Heine–Borel theorem states that a subset A ⊂ n is compact if and
only if A is closed and *bounded. It is named after Heinrich Eduard
Heine (1821–81) and F.E.E. Borel.

companion matrix The companion matrix associated with the
polynomial p(x)= xn – an–1xn

–1 – … – a1x – a0 is the n × n matrix

The *eigenvalues of C are the zeroes of p, so one method of �nding
the zeroes of a polynomial is to �nd the eigenvalues of the
corresponding companion matrix.

comparative experiments See experimental design; factorial
experiments.



comparison test A test for determining whether a given in�nite
*series is convergent or divergent by comparing it with another
series of known convergence or divergence. Let

∑an and ∑bn

be two series of positive terms. Then one form of the test states that
(1) if an  bn for all n and if Σbn converges then Σan converges;
(2) if an bn for all n and if Σbn diverges then Σan diverges.
In case (1) the value of the summation of an does not exceed that of
bn.

Another form of the comparison test states that if an/bn tends to a
nonzero (�nite) limit as n→∞, then either both series converge or
both diverge. See convergent series.

compass (compasses) An instrument for drawing circles.

complement 1. See complementary angles.
2. The complement of a *set A, denoted by A′ or sometimes & A,
consists of all those elements that are not members of A:

A′ = {x: x ∉ A}

For example, in the domain of natural numbers, if A is the set of
even numbers then its complement A′ is the set of odd numbers. See
relative complement.

complementary angles Two angles that have a sum of 90°. Each
angle is said to be the complement of the other.

complementary error function See error function.

complementary function A part of the general solution of a linear
*di�erential equation with constant coe�cients. If the equation has
the form

a d2y/dx2 + b dy/dx + cy = f(x)



where a, b, and c are constant, the complementary function is the
general solution of the equation

a d2y/dx2 + b dy/dx + cy = 0

See di�erential equation.

complete 1. A *formal system S is said to be simply complete if and
only if, for every *w� A of S, either A or ˜ A is a theorem of S. This
is a proof-theoretic notion of completeness, and it is in this sense
that arithmetic was shown by Gödel to be incomplete if consistent
(see proof theory; Gödel’s proof).
2. An interpreted *logistic system (see interpretation) is said to be
complete if and only if all *valid *w�s are theorems. Completeness
in this sense is the converse of soundness (see sound). A completeness
theorem for a logistic system S establishes that all the valid
arguments that can be formulated in S are such that the conclusion
is deducible from the premises (see deduction). Examples of
complete systems of logic are the propositional calculus and the
predicate calculus. See also logic.
3. See truth function.

complete bipartite graph See graph.

complete �eld See order properties.

complete graph See graph.

complete induction See induction.

complete lattice A *lattice in which every subset has a *greatest
lower bound and a *lowest upper bound.

completeness property See order properties.

completeness theorem See complete.

complete quadrangle See quadrangle.

complete quadrilateral See quadrilateral.



complete space See metric space.

completing the square The process of writing a quadratic
expression in a form in which the variable appears only in a squared
term. Most commonly, ‘completing the square’ refers to a method of
solving *quadratic equations by putting an equation

ax2 + bx + c = 0

in the form

(x + k)2 + A = 0

where a, b, c, k, and A are constants. It can be used when it is not
evidently or easily possible to factorize the left-hand side of the
equation. For instance, the equation

3x2 + 24x + 9 = 0

is divided through by 3 to give

x2 + 8x + 3 = 0

To complete the square, this has to be put in the form

(x + 4)2 + A = 0

where A = –13 and thus

(x + 4)2 = 13

giving x = –4 + √13 or –4 – √13. See also quadratic formula.

complex analysis The study of *functions of a complex variable.
The theory involves *holomorphic and *meromorphic functions. The
theory can be used to study functions of a real variable, for example
the integrals of certain functions can be successfully evaluated using
*Cauchy’s residue theorem.



complex conjugate 1. The complex conjugate of a *complex
number z (= a + ib) is the complex number a – ib and is denoted
by z ̄or z*. The number and its conjugate form a conjugate pair; each
is the conjugate of the other.
2. The complex conjugate of a *matrix A is the matrix formed by
replacing each element of A by its complex conjugate. It is denoted
by Ā, or sometimes A*. See also Hermitian conjugate.

complex fraction A fraction in which either the numerator or the
denominator or both are themselves fractions. Compare common
fraction.

complex function (function of a complex variable) A *function
whose *domain and *codomain are sets of *complex numbers. For
example, the function f: z  z2 which maps the set of complex
numbers C to C is a complex function. A complex function may also
be regarded as a map of all or part of the complex plane to itself.
Some complex functions take only real values. Examples include z 
Im z and z  arg z, where Im and arg denote the imaginary part and
principal value of the *argument, respectively; they map C to .
Compare real function.

complexity (of an algorithm) The number of discrete steps (such as
addition and multiplication) needed to complete the execution of an
*algorithm, expressed as a function of the size of the input. For
example, to multiply two n × n matrices takes of the order of 2n3

additions and multiplications if done in the usual way, but the
computation can be done in a number of operations proportional to
nlog

2
7, using *Strassen’s method. Since log27<3, Strassen’s method

requires fewer operations than conventional multiplication for
su�ciently large n, and it is said to have a lower computational
complexity. Complexity has come into prominence because of the
increase in the number, variety, and running costs of algorithms
used by computer programmers. See also polynomial time; NP
problem.



complex number A number of the type a + ib, where i is √–1 and
where a and b are real numbers. a is said to be the real part of the
complex number and b the imaginary part. The real and imaginary
parts of a complex number z are denoted by Re z and Im z.
(Sometimes j is used for √–1 in place of i.) If b = 0, the number has
no imaginary part and is a *real number. The real numbers are
considered to be a subset of the complex numbers. If b is nonzero
then the number is an imaginary number; imaginary numbers in
which a = 0 (i.e. ones with no real part) are said to be pure
imaginaries. Complex numbers arise from attempts to solve equations
that involve roots of negative numbers. For instance, the equation x2

+ 4 = 0 has roots of ± √–4. These are pure imaginary numbers,
written as + 2i and –2i, where i stands for √–1. The set of all
complex numbers is usually denoted by C.

Complex numbers can be represented on an *Argand diagram
using two perpendicular axes. The real part is the x-coordinate and
the imaginary part is the y-coordinate. A complex number a + ib is
then represented either by the point (a, b) or by a vector from the
origin to this point. This gives an alternative method of expressing
complex numbers, in the form r(cos θ + i sin θ), where r is the
length of the vector and θ is the angle between the vector and the
positive direction of the x-axis. The value r is the *modulus (or
absolute value) of the complex number; the angle θ is the
*argument (or amplitude) of the number. This form of complex
number is referred to as the polar form or modulus–argument form.
Sometimes the expression (cos θ + i sin θ) is abbreviated to cis θ.

Complex numbers can be added (or subtracted) by adding (or
subtracting) their real and imaginary parts separately. For example:

(3 + 2i) + (5 + 4i) = 8 + 6i

In multiplication, the brackets are expanded:

(a + ib)(c + id) = ac + iad + ibc + i2bd



Since i2 = –1, this becomes

(ac – bd) + i(ad + bc)

If the complex numbers are in polar form they can be multiplied by
multiplying their moduli and adding their amplitudes. Thus,

r1(cos θ1 + i sin θ1)r2(cos θ2 + i sin θ 2)

= r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)]

See also complex conjugate; Euler’s formula; quaternion.

complex plane See Argand diagram.

component (of a vector) One of a set of *Vectors whose sum is the
given vector. The component of a vector in a given direction is,
however, the projection of the vector onto a line in that direction.
The components of a vector are often taken at right angles to each
other; if, for example, they are directed along x, y, z coordinate
axes, then the components can be expressed as ai, bj, ck, where i, j,
k are *unit vectors.

component analysis See principal component analysis.

composite function (function of a function) A *function h such
that h(x) = g(f(x)), where f and g are functions and the *domain of
h is the set of x in the domain of f for which f(x) is in the domain of
g. For example, if f(x) = x2 + land g(x) = x + 1, and the domain
of f is the set of real numbers, then

The composite function can be written as gf or g ° f. In general, fg is
not the same as gf. In the above example,



If f is continuous at x = a and g is continuous at f(a), then h is
continuous at x = a. A composite function can be di�erentiated
using the *chain rule.

composite hypothesis See hypothesis testing.

composite number A number that is not *prime, i.e. one that has
factors other than itself and 1. See also Gaussian integer.

composition (of vectors) *Vector addition, i.e. the process of
determining the sum, or resultant, of vectors.

composition series A sequence H0, H1, …, Hn of *subgroups of a
*group G with *identity element e, such that H0 = {e}, Hi is a
*maximal *normal subgroup of Hi + 1 for 0  i<n, and Hn = G. For n
> 2, n ≠ 4, the *symmetric group Sn has one composition series:
{e}, An, Sn, where An is the *alternating group.

compound distribution A term used chie�y but not exclusively for
the *distribution of a sum

Sn = X1 + X2 + … + xn

where the Xi are mutually independent discrete *random variables
often with the same distribution. N may also be a random variable.
In particular, if the Xi are all Bernoulli variables with Pr(Xi = 1)= p
(see Bernoulli trial) and N has a *Poisson distribution with mean λ,
then SN has a Poisson distribution with mean λp.

compound interest See interest.

compound pendulum Any *rigid body that swings about a
horizontal axis that passes through the body (but not through its
centre of mass). See pendulum.



compound sentence (molecular sentence) A sentence (see w�)
that contains logical constants such as & (and) or  (or). For
example, in the *propositional calculus the set of compound
sentences can be identi�ed with those sentences that contain a
truth-functional connective. Compare atomic sentence.

compression A *force that compresses or tends to compress a body
or structure, or the change in shape that results from the application
of such a force. For example, a sphere under a uniform compression
might decrease in radius (i.e. in volume). Compressive stress is set up
within the body or structure in reaction to such a force. See also
stress.

computable See e�ective procedure.

computer algebra The use of a computer program to carry out
algebraic (as opposed to purely numeric) operations; also called
symbolic manipulation. Computer algebra programs can be classi�ed
as either general purpose (examples being Maple® and
Mathematica®), or specialized, the latter being dedicated to
particular types of computation (e.g. *group theory).

concave function See convex function.

concave polygon A *polygon that has at least one interior angle
greater than 180°. Interior angles greater than 180° are said to be re-
entrant angles. Compare convex polygon.

concave polyhedron A *polyhedron for which at least one face lies
in a plane that cuts other faces, i.e. the polyhedron does not lie
completely on one side of that plane. Compare convex polyhedron.

concentric Having the same centre. The term can be applied to any
two or more �gures that have centres of symmetry. Compare
eccentric.
conchoid A plane curve that can be generated by �rst taking a �xed
point P outside a �xed line. A variable line through P cuts the �xed
line at Q. If points R and R′ are chosen on this line such that RQ =



QR′ = b (a constant), the conchoid is the locus of R and R′ as PQ
varies. It has two branches on each side of the �xed line; both
branches are asymptotic to this line. In Cartesian coordinates, if P is
the origin and the �xed line is x = a, the equation is

(x – a)2 (x2 + y2) = b2x2

The polar equation is

r = a sec θ ± b

If a = b, one branch has a cusp; if a < b, it has a loop.

conchoid with a < b.

conclusion See argument; syllogism.

concomitant variable See analysis of covariance.

concordance See coe�cient of concordance.

concurrent Having a common point. Concurrent lines, for example,
are lines that all pass through a certain point. See collinear.



concyclic Describing points that lie on the same circle. For instance,
the vertices of a *cyclic polygon are concyclic.

conditional A statement that something is true or will be true
provided something else is also the case. It is a sentence of the form
‘if A then B’, often symbolized in a *formal language as A ⊃ B or as
A → B. A is called the antecedent and B the consequent of the
conditional. See also implication.

conditional distribution See bivariate distribution; multivariate
distribution.

conditional equation See equation.

conditionally convergent series See convergent series.

conditional probability See probability.

condition number A number that measures the degree of ill-
conditioning of a mathematical problem. For example, for a linear
system of equations with *coe�cient matrix A, a condition number
is the *norm of A multiplied by the norm of A–1; if the system is *ill-
conditioned, A–1 will have relatively large elements and the
condition number will be large.

cone A solid �gure formed by a closed plane curve on a plane (the
base) and all the lines joining points of the base to a �xed point (the
vertex) not in the plane of the base. The closed curve is the directrix
of the cone and the lines to the vertex are its generators (or
elements). The curved area of the cone forms its lateral surface. Cones
are named according to the base, e.g. a circular cone or an elliptical
cone. If the base has a centre of symmetry, a line from the vertex to
this centre is the axis of the cone. A cone that has its axis
perpendicular to its base is a right cone; otherwise the cone is an
oblique cone. The altitude of a cone (h) is the perpendicular distance
from the plane of the base to the vertex.

The volume of any cone is 1/3hA, where A is the area of the base.
A right circular cone (circular base with perpendicular axis) has a



slant height (s), equal to the distance from the edge of the base to the
vertex (the length of a generator). The lateral area of a right circular
cone is лrs, where r is the radius of the base. The term ‘cone’ is often
used loosely for ‘conical surface’. See also spherical sector (for
spherical cone).

con�dence interval If the distribution of a *random variable X
contains an unknown parameter θ, a 100(1 – α) percent con�dence
interval for θ is an interval formed by a rule which ensures that, in
the long run, 100(1 – α) percent of such intervals will include the
parameter θ. Typically the interval is derived from the information
obtained from a random sample of n observations from the
distribution. If α = 0.05, the interval is a 95 percent con�dence
interval. For example, if x̄ is the mean of a sample of n observations
from a normal distribution with unknown mean μ and known
*standard deviation a, then a 95 percent con�dence interval for μ is

[x̄ − 1.96σ/√n, x̄ + 1.96σ/√n]

The end points of the interval are called con�dence limits.
A 100(1 – α) percent con�dence interval for a parameter θ

derived from a given sample covers all values θ0 of that parameter
that would be accepted at signi�cance level α in a *hypothesis test
of H0: θ = θ0 against the alternative H1: θ ≠ θ0.

For two or more parameters, the concept extends to a con�dence
region. Bayesian con�dence intervals are conceptually di�erent, but in
many cases are numerically equivalent. See also Bayesian inference;
con�dence level.

con�dence level The value of 100(1 – α) percent associated with a
*con�dence interval or region. Common values are 90, 95, 99, and
99.9 percent, corresponding to α = 0.10, 0.05, 0.01, and 0.001,
respectively.

con�dence limits See con�dence interval.

con�dence region See con�dence interval.



con�guration A particular arrangement of points, lines, curves, etc.

con�guration space An *abstract space describing all possible
positions of a system (e.g. a mechanical system). The dimension of
the con�guration space is the number of *degrees of freedom of the
system.

confocal conicoids *Conicoids that have the same principal planes
and having sections by these planes that are *confocal conics.

confocal conics *Conics that have the same focus or foci. For
example, families of confocal conics can be generated by an
equation of the form

x2/a2 − k + y2/b2 − k = 1

where a2>b2 and k is a parameter taking all real values, provided
a2>k and b2 ≠ k. Thus, for values of k less than b2, ellipses are
generated; values greater than b2 generate hyperbolas. Confocal
ellipses and hyperbolas intersect at right angles.

conformable matrices Two *matrices such that the number of
columns in one equals the number of rows in the other. Matrices
must be conformable for matrix multiplication to be possible.

conformal transformation A*transformation such that if two
curves intersect at an angle θ, their images also intersect at angle θ.
Thus, a conformal transformation (or map) is one that preserves
angles, and is also called an equiangular or isogonal transformation.
In Euclidean space, inversion, re�ection, translation, and
magni�cation are conformal transformations.

confounding See factorial experiments.
congruence 1. The property of being *congruent.
2. See Congruence modulo n.

congruence class (residue class) A*set consisting of all the
integers that are *congruent modulo n to a given integer. For



example, with respect to the modulus 7, some of the integers in the
congruence class containing 2 are …, –19, –12, –5, 2, 9, 16, … A
congruence class modulo n can equally be regarded as the set of all
integers that leave a particular remainder on division by n.

For any modulus n there are n di�erent congruence classes and
they form an *additive group, where the class obtained by adding
the classes containing a and b respectively is the class containing a
+ b. This group, which is also a *cyclic group, is usually denoted by
n.

congruence modulo n (C.F. Gauss, 1801) A relation, usually
between integers, expressing the fact that two integers a and b di�er
by a multiple of a chosen natural number n. The two integers are
said to be congruent modulo n, written as a≡b (mod n). For example:

8 ≡   – 1 (mod 3)

42 ≡   18 (mod 8)

365 ≡   1 (mod 7)

Integers c and d that are not congruent modulo n are said to be
incongruent modulo n, written as c  d (mod n).

Two congruences with the same modulus (n above) can be added,
subtracted, and multiplied just like ordinary equations. So 8≡18
(mod 10) and 27≡7 (mod 10) together imply

(8 + 27) ≡ (18 + 7)(mod 10)

(8 – 27) ≡ (18 – 7)(mod 10)

8×27 ≡ 18×7(mod 10)

This is not true for division; we de�nitely cannot conclude that

8/27≡18/7 (mod10)

nor even that



8/2≡18/2 (mod 10)

A common factor can be cancelled from both sides of a congruence
if as much as possible of the factor is also divided into the modulus.
Thus

8≡18 (mod 10)

does imply that

8/2≡18/2 (mod 10/2)

and

6≡36 (mod 15)

implies that

2≡12 (mod 5) and 1≡6 (mod 5)

The arithmetic of congruences (or modular arithmetic) is useful in
many ‘cyclic situations’ in everyday life. For instance, the problem
of �nding the day of the week for a certain date involves
congruences modulo 7; and the fact that a 24-hour clock might say
21:00 when a 12-hour clock says 9:00 corresponds to the fact that
21≡9 (mod 12).

The congruence notation a≡b (mod n) is sometimes extended to
include cases in which a and b are more general real numbers. It
then means, as before, that a – b is an integer that is an integer
multiple of the natural number n. For example, 1 6≡0 6 (mod 1),
5.74≡ – 3.26 (mod 3).

See also division modulo n; factor modulo n; congruence class.

congruence transformation See matrix.

congruent 1. Describing two or more geometric �gures that di�er
only in location in space. The �gures are congruent if one can be
brought into coincidence with the other by a rigid motion in space



(without changing any distances in the �gure). Note that two plane
�gures can be congruent without being identical. For instance, two
scalene triangles with identical sides and angles are not identical if
one is drawn as a mirror image of the other. They are, however,
congruent (on this de�nition) since one can be rotated through 180°
about an axis in the plane (or ‘picked up’ o� the plane and put
down again the opposite way round). In the case of three-
dimensional �gures, this point is important since mirror images
cannot be made coincident by a rigid motion in (three-dimensional)
space. If two solid �gures are identical, they are directly congruent. If
each is identical to the mirror image of the other, they are oppositely
congruent.

Two triangles are congruent if there is a correspondence between
them satisfying one of the following conditions:
(1) All three pairs of corresponding sides are equal (the SSS
condition).
(2) Two pairs of corresponding sides are equal, and the angles
between them are equal (SAS).
(3) Two pairs of corresponding angles and a pair of corresponding
sides are equal (AAS or ASA).
(4) The triangles are right-angled, and they have equal hypotenuses
and a further pair of equal sides (RHS).
2. See congruence modulo n.

congruent matrices See matrix.

conic (conic section) A type of plane curve that is the *locus of all
points such that the ratio of their distance from a �xed point (the
focus) to their distance from a �xed line (the directrix) is a constant.
The constant is the eccentricity (e) of the conic, and its value
determines the type of curve:

ellipse 0  e < 1

parabola e = 1



hyperbola e > 1

A circle is a special case of an ellipse with zero eccentricity (e = 0).
Conics were �rst studied by the Greek Menaechmus (c.350BC),

who identi�ed them as sections of di�erent types of circular cone.
Other early investigations were made by Conon of Samos (c.245BC).
Apollonius of Perga in around 225 BC produced an extensive study in
his book Conics, and showed that they could be formed by di�erent
sections of any circular conical surface. Thus, an ellipse is formed by
a plane cutting the surface at an angle (to the axis) greater than the
*generating angle; a parabola is formed by a plane section at an
angle equal to the generating angle; and a hyperbola by a plane at
an angle less than the generating angle. A circle is a special case of
an ellipse, formed by a section perpendicular to the axis of the
conical surface (see diagram). Apollonius also recognized that a
conical surface has two *nappes and was therefore able to show that
the hyperbola has two branches.

The hyperbola and the ellipse, which have centres of symmetry,
are known as central conics. There are certain limiting cases of conic
sections that give rise to what are known as degenerate conics. Thus,
a point is a limiting case of an ellipse in which the intersecting
plane cuts the vertex of the cone. A single line is a limiting case of a
parabola in which the plane is tangent to the surface. A pair of
intersecting straight lines is a ‘hyperbola through the vertex of the
cone.

The treatment of conic sections by coordinate geometry was
begun in the 17th century, notably by Jan de Witt (1629–72), who
gave the de�nition in terms of the focus and directrix, and
independently in 1655 by John Wallis. In a Cartesian coordinate
system, the equation for a conic can be expressed in various ways.
For instance, if e is the eccentricity, the origin is the focus, and the
directrix is a distance k from the origin, then

(1 – e2)x2 + 2e2kx + y2 = e2k2



The general conic is expressed by a general equation of the second
degree:

ax2 + 2hxy + by2 + 2gx + 2fy + c = 0

The equation can, by translation of axes, be put in a form in which
it contains no terms of the �rst degree:

Here, Δ is the determinant (called the discriminant of the conic):

Its value is

abc + 2fgh – af2 – bg2 – ch2

If the discriminant is nonzero, then the conic is an ellipse, parabola,
or hyperbola:

h2 – ab < 0,  ellipse

h2 – ab = 0,  parabola

h2 – ab > 0,  hyperbola

If the discriminant is zero, then the conic is degenerate:



Conics can also be treated by *projective geometry. In 1604
Kepler introduced the idea that intersecting straight lines,
hyperbolas, parabolas, ellipses, and circles all belong to the same
family depending on

conic The conic sections.

the positions of the foci. In particular, he regarded the parabola as a
curve with one focus at in�nity. Desargues developed the projective
geometry of conics, showing that a projection of any conic is also a
conic. The work was largely disregarded at the time–partly because
of Desargues’s obscure terminology, but also because his treatment
was overshadowed by the contemporary interest in analytic
geometry.

See also circle; ellipse; hyperbola; parabola.

conical Denoting or concerning a *cone.

conical pendulum A simple *pendulum whose bob swings in a
horizontal circle, i.e. the cord generates a right-circular conical
surface with a vertical axis. The angular speed of the bob is
constant. The period of revolution T is given by



where h is the height of the point of suspension above the centre of
the circle and g is the acceleration of free fall.

conical surface A surface generated by all the straight lines that
pass through a given point and intersect a curve that is not in the
same plane as the given point. The point is the vertex of the surface,
the curve is its directrix, and the lines forming the surface are
generators (or elements). The surface has two parts (nappes) on each
side of the vertex. A circular conical surface has a circle as directrix.

conicoid (conoid) A surface with plane sections that are conics, e.g.
an *ellipsoid, *hyperboloid, or *paraboloid.

conic section See conic.

conjecture (hypothesis) A statement which may be true, but for
which a proof (or disproof) has not been found. Examples are
*Goldbach’s conjecture and the *Riemann hypothesis.

conjugacy class A *set in a *group consisting of all the group
elements that are *conjugate to a given element. Each element in a
group belongs to a unique conjugacy class. The identity element is
the only element in its conjugacy class, and also this is the only
conjugacy class which is also a subgroup. There may be other
elements that also form one-element conjugacy classes, and the set
of all such elements of a group G is a subgroup of G called the
centre, Z(G), of G. The elements of the centre are precisely the
elements that each *commute with every element of G. So the
centre is the whole group when it is *Abelian. See class equation.

conjugate angles Two angles that have a sum of 360°. Each angle is
said to be the explement of the other.

conjugate arcs See arc.

conjugate axis See hyperbola.

conjugate complex numbers See complex conjugate.



conjugate diameters A pair of diameters of a given *conic, such
that one diameter belongs to the family of parallel chords whose
centres de�ne the other. The major and minor axes of an ellipse, for
example, are a pair of conjugate diameters (in this case they are
perpendicular).

conjugate elements Two elements a and b in a *group are
conjugate if there is an element g in the same group such that b = g–

1ag (where g–1 denotes the *inverse of g and the group operation has
been written as juxtaposition). Element b is said to be conjugate to
element a, and vice versa. The relation of being conjugate is an
“equivalence relation on the group. See conjugacy class.

conjugate gradient method An iterative method for solving a
linear system of equations Ax = b in which the matrix A is
*symmetric positive de�nite. It is most often used for large *sparse
matrices, for which it is particularly appropriate because each
iteration involves a single product between the matrix and a vector.
It is closely related to the *Lanczos method for computing
*eigenvalues of a matrix.

conjugate lines (of a conic) Two lines such that each contains the
*pole of the other.

conjugate pair See cross-ratio.

conjugate points (of a conic) Two points such that each lies on the
*polar of the other.

conjugate prior distribution See Bayesian inference.

conjugate set See transform.

conjugate to See conjugate elements.

conjunct See conjunction.

conjunction A sentence of the form ‘A’ and ‘B’, often symbolized in
a *formal language as ‘A & B’(see and). ‘A’and’B’ are called
conjuncts.



conjunctive normal form A formula is in conjunctive normal form
if it consists entirely of a *conjunction of *disjunctions, with each
disjunction formed only from *atomic sentences or their *negations.
It can be shown that every *w� of the *propositional calculus can
be expressed as an equivalent formula in canonical normal form. For
example, the expression (p ν q) & (p ν ˜ r) & (q ν r) is in conjunctive
normal form. It is thus possible to see whether any formula is a
*tautology of the propositional calculus by noting, as in the
following case, that each disjunction contains an atomic sentence
and its negation: (p ν q ν ˜p) & (q ν ˜ q ν r) & (r ν p ν ˜ r). Using this
approach it is possible to show that the propositional calculus is
*complete. Compare disjunctive normal form.

connected graph See walk.

connected relation A *binary relation R on a*set A is connected if
for all pairs of members x and y

x ≠ y→ (x R y) ν (y R x)

For example, in the domain of natural numbers the relation ‘greater
than’ is connected.

connected set A*set A is a connected set if there do not exist
disjoint nonempty subsets of A (X and Y) such that X ∪ Y = A, and
no *limit point of X is a member of Y and no limit point of Y is a
member of X. Compare disconnected set.

connected space A *topological space S is a connected space if
there do not exist disjoint, nonempty open sets of S (X and Y) such
that X ∪ Y = S. The real line  is connected, but X = \{0}, the real
line with the origin removed, is disconnected because it is the union
of the two disjoint open subsets (–∞, 0) and (0, ∞). A space X is
called path-wise connected (or arc-wise connected) if any two points a,
b ∈ X can be joined by a *path lying entirely within X. For many
spaces the de�nitions of connected and path-wise connected are
equivalent. Compare disconnected space.



connection A connection on a di�erential *manifold M is a way of
de�ning the parallelism of vectors. It allows consistent
di�erentiation everywhere on M, since it ‘connects’ the various local
coordinates on the manifold. A *Riemannian metric gives rise to a
connection, but not vice versa. The idea of a connection was
stressed by Weyl in his e�orts to unify the theories of relativity and
electromagnetism. Connections are also used in the study of *vector
bundles and, in this context, they are basic in the development of
*gauge theory.

connective In mathematical *logic, a symbol that can be combined
with one or more sentences in order to form a new sentence. If a
connective joins two sentences then it is called a binary (or dyadic)
connective.
Examples are ‘and’, ‘or’, ‘i�, and ‘if … then’. See also truth function.

Conoid See conicoid.

Conon of Samos (�. 245 BC) Greek mathematician and astronomer
responsible for early investigations into conics. His work was
absorbed into the later work of Apollonius.

Conover squared rank test See homogeneity of variance.

consecutive angles Two angles in a *polygon that share a common
side.

consecutive sides Two sides in a *polygon that share a common
vertex; adjacent sides.

Consequence 1. (logical consequence) A *w� A is a logical
consequence of a set of w�s B1, …, Bn if and only if, given the truth
of B1, …, Bn, A must also be true. Equivalently, A is a logical
consequence of B1, …, Bn if and only if

(B1 & … & Bn) ⊃ A

is a valid w� (see implication, material).



2. (formal consequence) A is a formal consequence in a *formal
language S of the *w�s B1, …, Bn if and only if A is deduced from
B1, …, Bn by use of the rules of inference of S (see deduction). In
those logistic systems where the deduction theorem holds, A is a
formal consequence of B1, …, Bn if and only if

(B1 & … & Bn) ⊃ A

is a theorem. If a logistic system is also *sound and *complete then
A is a logical consequence of B1, …, Bn if and only if A is a formal
consequence of B1,…, Bn. See logic.

Consequent 1. The second term in a ratio. Thus in the ratio 5:7, 7
is the consequent (5 is the antecedent).
2. That part of a *conditional statement that indicates what is or
would be the case given the initial condition. Thus in the
conditional ‘if p then q’, q stands for the consequent (p is the
antecedent).

conservation laws Laws requiring that, in an isolated or
undisturbed system, the total amount of some *physical quantity
does not change in the course of time; the quantity is said to be
conserved. Such quantities include mass or mass–energy, momentum,
and electric charge. The basis for such laws lies in the symmetry of
space (and time): a given conserved quantity remains constant
under a particular symmetry transformation.

conservation of energy The principle stating that in any isolated
system the total *energy remains constant in time. There can be
interconversion between di�erent forms of energy – mechanical,
heat, electrical, chemical, etc. – but the sum of these energies
cannot change. Some components of the system may gain energy,
but others must lose an equivalent amount.

In the theory of relativity, energy and mass are equivalent and
interconvertible according to the *mass–energy equation, E = mc2,
where c is the speed of light. Thus a considerable amount of energy



can be generated by the destruction of a small quantity of matter. In
systems in which such conversion takes place, e.g. by nuclear
reactions, the conservation of mass–energy must be invoked: the sum
of the total (rest) mass plus the total energy remains constant.

conservation of mass The principle stating that in any isolated
system the total *mass remains constant in time. Matter can change
its form, as in combustion or metabolism, but the mass of all the
products will equal that of the initial mass. According to the theory
of relativity, however, mass and energy are equivalent. In addition,
the mass of a body increases quite considerably as its speed
approaches the speed of light. These changes in mass can normally
be ignored, but they are signi�cant in systems involving, for
example, reactions of nuclear particles. In such systems there is
conservation of mass-energy, where the mass is the particle’s *rest
mass. See conservation of energy; mass-energy equation.

conservation of momentum The principle stating that in a system
in which components are undergoing *collisions or mutually
attracting or repelling each other, then, in the absence of an
external force, the sum of the momenta of the components in any
particular direction remains constant: the *momentum gained by
one component is balanced by a loss of momentum of one or more
other components. For a body, or system of particles, rotating about
a �xed axis, there is also conservation of *angular momentum,
provided no external torque is applied.

conservative �eld The *�eld of force associated with a
*conservative force.

conservative force A *force, such as gravitation, that acts on a
particle in such a way that the work done in moving the particle
from one point to another depends only on these end points and is
independent of the path taken; the net *work evaluated around a
closed loop is zero.

The work done by a conservative force in bringing a particle from
a given point to some standard point is the *potential energy of the



particle at the given point. Potential energy can be de�ned only for
conservative forces. For motion under conservative forces, the total
energy, *kinetic plus potential energy, remains constant, i.e. is
conserved. See also potential; �eld.

Consistent 1. Describing equations that have a set of values that
satis�es all the equations. For example, the equations

x + y = 10 and x + 2y = 15

are consistent, since they are satis�ed by x = 5 and y = 5. The
equations

x + y = 10 and x + y = 15

are inconsistent – there is no pair of values of x and y that satis�es
both simultaneously.
2. Describing a *formal system in logic which is free from
contradiction, i.e. one containing no *w� A such that both A and its
negation ˜ A are provable (see proof; contradiction). A formal system
is said to be absolutely consistent if not all w�s are *theorems. In
many formal systems, consistency in the �rst sense is equivalent to
absolute consistency. Although consistency is a proof-theoretic
notion, its motivation is semantic in character: we are not interested
in those systems that contain, as theorems, w�s that cannot be true.
Inconsistent systems have no *models.

consistent estimator See estimator.

Constant 1. A �xed quantity or numerical value.
2. A symbol that is assigned a speci�c �xed entity under an
*interpretation. Constants contrast with *variables, which range
over a set of entities. An individual constant is an expression that is
assigned an object under an interpretation. For example, a name
such as ‘Aristotle’ would be treated as an individual constant. A
logical constant is a logical expression that is used when giving the



logical form of a sentence. Thus the logical form of ‘some men are
mortal’ is

(∃x)(M(x)) & F(x))

and the logical constants are ‘∃’ and ‘&’.

constant of integration See integration.

constant of proportionality See variaton.

constant term The term in a *polynomial that does not involve any
power of the variable. For example, in the polynomials x3 – 6x + 2
and x4 + 2x3 – x, the constant terms are 2 and 0, respectively. If the
variable is x, as here, the constant term can be regarded as the
coe�cient of x°.

Construction The process of drawing a given geometric �gure; for
example, the construction of a line at right angles to a given line or
the construction of a line bisecting a given angle. Usually, it is
required that this be done using only compasses and straightedge.
The three classical constructions of antiquity, dating from the 4th
century BC, are *squaring the circle, *duplication of the cube, and
*trisection of an angle. Mascheroni constructions are ones that require
only compasses. See also Fermat numbers.

Constructive Describing a de�nition or proof in which there is an
*e�ective procedure for the construction of every object, such as a
number or set, in it. The concept of a constructive de�nition is
linked to the insistence of *intuitionism that before the existence of
a mathematical object can be accepted, an e�ective procedure must
be given for its construction. Thus the inference ‘It is false that every
number n lacks the property F, therefore at least one number n has
the property F’ would not be allowed in a constructive proof unless
we could �rst identify that number or provide an e�ective
procedure for its identi�cation. Compare non-constructive.

consumer’s risk See acceptance sampling.



contact, point of See tangent.

contingence, angle of The angle between the positive directions of
two *tangents to a plane curve at two given points on the curve.

contingency table A table of r rows and c columns (r, c  2) in
which each row and each column is associated with a speci�ed
attribute, and the number nij lying in row i and column j (called the
cell (i,j)) is a count of the number of units having that combination
of attributes. The table shown here has r = 2 and c = 3, and refers
to the three qualities (superior, average, or poor) of items produced
by two factories (A and B). Each of 40, 60 items from factory A, B
were graded for quality. A *chi-squared test may be used to see
whether proportions in each category di�er signi�cantly between
factories.

  Superior Average Poor

Factory A 12 20 8

Factory B 14 39 7

Row and/or column categories may be nominal (e.g. married,
single, widowed) or ordinal (e.g. aged under 10, aged 10–19, aged
20–29, aged 30 or over). While the chi-squared test for
independence (lack of association between row and column
attributes) is suitable for contingency tables with nominal
categories, more powerful tests based on *loglinear models and
*odds ratios are available when row and column categories are
ordinal. See also Fisher’s exact test.

Continua Plural of continuum.

continued fraction A fraction in which the denominator is a
number plus another fraction, which in turn may have a



denominator consisting of a number plus another fraction, and so
on:

The series may be �nite (terminating fraction) or in�nite
(nonterminating fraction).

Every positive real number has a simple continued fraction
expansion in which each partial quotient a0, a1, a2, … is an integer,
a1, a2, … are positive integers, and b1, b2, … are each equal to 1. In
this form, the expansion is often written as [a0,a1,a2,…].

For example, √5 equals the in�nite continued fraction

which can be written as [2,4,4,4, …].
All *rational numbers have �nite simple continued fractions, and

real *irrational numbers have in�nite expansions. In each case the
rational numbers p0/q0, p1/q1, … obtained by truncating the
expansion after a �nite number of partial quotients are called the
convergents of the continued fraction. Thus p0/q0 = [a0] = a0,
p1/q1 = [a0, a1] = a0 + 1/a1, p2/q2 = [a0, a1, a2], …. The
convergents of √5 are 2, 2 + ¼ = 9/4, [2, 4, 4] = 38/17, …. The
convergents of a number x tend to x and can be determined
*recursively from the values p0/q0, p1/q1, and pn/qn = anpn−1 +
pn−2/anqn−1 + qn−2 for n  2.

continued product A product of factors; this is often written using
the notation



which signi�es the product

T1 × T2 × … × Tm

A continued product may contain an in�nite number of factors. See
also in�nite product.

continuity correction The addition or subtraction of 0.5 to values
of a discrete *random variable taking integral values to obtain
closer agreement to a continuous approximation. For example, when
approximating to the binomial distribution by a normal distribution,
Pr(X  15), (binomial) is best approximated by Pr(X  15.5)
(normal).

continuity equation An equation that is used in many branches of
physics and is applied to the continuous �ow of a conserved
quantity such as mass or electric charge. For mass, it equates the
rate of increase of �uid mass in any volume in the �uid to the net
rate of mass �ow into this volume. This can be expressed as

where ρ is the �uid density, ∂p/∂t is the rate of change of density at
some point, and v is the velocity at that point; ∇ is the operator
*del.

continuous distribution See distribution.

continuous function (continuous mapping, continuous map) A
*function for which a small change in the independent variable
causes only a small change, and not a sudden jump, in the
dependent variable.

A *real function f(x) is continuous at x = c if the right- and left-
hand limits of f(x) at x = c and f(c) all exist and are equal.



Otherwise, f(x) is discontinuous at x = c. An equivalent de�nition is
that for any positive number E a positive number δ depending on E
and c can be found such that

|f(x) – f(c)|< ε

whenever |x – c| < δ.
If f is continuous at every point of the open interval (a, b) it is

said to be continuous in (a, b). If, in addition,

then f is continuous in the closed interval [a, b]. The function f is
sectionally or piecewise continuous in (a, b) if the interval can be
subdivided into a �nite number of intervals in each of which the
function is continuous with a �nite right-hand limit at each lower
end point and a �nite left-hand limit at each upper end point.

Elementary functions such as polynomials, and trigonometric,
logarithmic, and exponential functions, are continuous at all points
of their domains.

A complex function f(z) is continuous at z = z0 if, as z tends to
zero in any manner, the limit of f(z) is f(z0). Alternatively, given a
positive number e, a positive number δ depending on E and z0 can
be found such that |f(z) – f(z0)|< E, whenever |z – z0| < δ.

If a function is di�erentiable at x = c it must be continuous at
that point. The converse is false: for example, |x| is continuous but
not di�erentiable at x = 0. The sum, di�erence, and product of
continuous functions are themselves continuous. The quotient of
two continuous functions is continuous at points where the
denominator is not equal to zero.

A function of two variables is continuous at (c, d) if, as x and y
tend to c and d respectively in any manner whatsoever,

Lim f(x, y) = f(c, d)



provided f(c, d) exists. If the function is continuous at every point of
a region A in the x–y plane it is said to be continuous over A.

If its domain X and codomain Y are both *metric spaces or
topological spaces, then a function f is continuous at x ∈ X if for
any *neighbourhood V of f(x) in Y there is a neighbourhood U of x
∈ X such that for all u ∈ U then

f(u)∈V (or f(U) ⊆ V)

If f is continuous at all points of X it is said to be continuous on X.
See also uniformly continuous function; topological space; compare

discontinuous function.

continuous mapping, continuous map See continuous function.

continuous random variable See random variable.

continuum (plural continua) 1. An entity or substance whose
structure or distribution is continuous and unbroken: for example,
the *real numbers , *time, a �uid or plasma, *spacetime.
2. A *compact *connected set. Examples are a closed *interval and,
in higher-dimensional space, a *ball or a *sphere. In this sense the
set of real numbers is not a continuum since it is not compact.

All continua (in senses 1 and 2) have the same *cardinality,
usually denoted by c.

continuum hypothesis A hypothesis in set theory �rst proposed by
Cantor. The *set of all *natural numbers N has a *cardinal number
ℵ0. The *power set of N will therefore have a cardinality of 2ℵ0,
which is denoted by c – the cardinal number of the set of real
numbers (the continuum). Cantor’s hypothesis is that no in�nite
cardinal lies between ℵ0 and c. He was unable to prove this as a
theorem of set theory. Work by Gödel in 1938 and Cohen in 1963
demonstrated the independence of the continuum hypothesis by
showing that the axioms of set theory would remain consistent,
assuming that they were initially consistent, if either the continuum



hypothesis or its negation were added. See also Cantor’s theory of
sets.

contour integral An *integral de�ned for a *function f(z) in the
*complex plane and for a curve or contour C in this plane. The
integral of the function along the contour is written as

and is de�ned as follows. C is divided into n segments by n + 1
points z0, z1, …, zn. Points on C are taken in each subinterval: t1

between z0 and z1, t2 between z1 and z2, andingeneral ti between zi–1

and zi. Numbers |z1 – z0|, |z2 – z1|, …, |zn – zn–1| are taken. If the
largest of these is δ, then the contour integral is the limit of the sum

∑f(ti)(zi – zi–1)

as n tends to in�nity and δ tends to zero.
The limit exists if f(z) is continuous on C and C is a *recti�able
curve.

contour plot A contour plot of a function f(x, y) of two variables is
a plot in the x–y plane in which points having equal f-values are
joined by curves (contour lines), for a selection of di�erent f-values.
The diagram shows a contour plot for the function

f(x, y) = 4x2 – 2.1x4 + 1/3x6 + xy – 4y2 + 4y4

over the region – 3  x  3, – 1.5  y  1.5, with contour lines
corresponding to function values between – 10 and 10. The function
has a number of minima, maxima, and *saddle points in the region.

Contractible See homotopy.

contraction mapping A mapping f: X → X, where X is a metric
space, is a contraction if it decreases distances in the sense that
there is a positive constant α < 1 such that d(f(x), f(y))  α d(x, y)



for all x, y ∈ X. If X is *complete, then every contraction mapping
has a unique �xed point: a point a ∈ X such that f(a) = a. This result
is known as the Banach contraction principle or contraction mapping
theorem in a metric space (S. Banach, 1922). This principle underlies
the *Picard iteration method of solving di�erential equations
numerically. See also �xed-point theorem.

Contradiction A simultaneous assertion and denial of a proposition;
i.e. a sentence of the form ‘A and not A’, often symbolized within a
*formal language as ‘A & ˜ A’. Formal systems in which a
contradiction is a theorem are said to be inconsistent. The law of
contradiction is the logical principle that a proposition cannot be
both asserted and denied; i.e. the theorem of the *propositional
calculus ˜(A & ˜ A).

Contrapositive A statement that is related to a *conditional
statement in the following way: the conditional statement ‘if A then
B’ has a contrapositive ‘if not B

contour plot Contour lines of a function f(x, y).

then not A’. Thus the contrapositive of the conditional ‘A ⊃ B’ is’ ˜B
⊃˜A’. A conditional and its contrapositive are materially equivalent
(see equivalence), and this gives rise to a rule of inference
(contraposition) whereby any occurrence of a conditional can be
replaced by its contrapositive.



Thus we can derive from ‘if the square of an integer is even then
the integer is even’ the contrapositive ‘if an integer is not even then
its square is not even’.

contravariant tensor See tensor.

control chart A graph used in *quality control to indicate whether
or not a characteristic of mass-produced items, such as individual
weight, mean lengths of items in batches, or variability of length of
items in batches, falls within acceptable limits; and thus to indicate
whether some de�ciency in a production process is resulting in
failure to meet such limits.

A common procedure for checking weight consistency is to take a
speci�ed number of units (four, say) from a production line at
regular (e.g. hourly) intervals and record their total weight. This is
plotted on a graph on which there is a target line representing the
ideal total weight. Above and below this line at calculated distances
are upper and lower control lines (often at about three *standard
deviations above or below the target). If the total weight falls
outside these lines, there is a need to check whether the process is
out of control. There are sometimes additional warning lines
indicating that a certain action may be needed if a speci�ed number
of consecutive sample values fall outside these lines. Modi�ed charts
are used to detect other undesirable features, such as increases in
variability of output. See also cusum chart.

Convergence A property of a *convergent series or *convergent
sequence.

convergent fraction A nonterminating *continued fraction that has
a *limit.

convergent integral An *in�nite integral that has a de�nite limit.

convergent iteration An *iteration which generates a *convergent
sequence.

convergent product An *in�nite product that has a nonzero value.



Convergents See continued fraction.

convergent sequence An in�nite *sequence that has a *limit. See
order (12).

convergent series An in�nite *series

a1 + a2 + … + an + …

whose *partial sums, sn, given by

sn = a1 + a2 + … + an

approach a limit S as the number of terms, n, approaches in�nity;
i.e. a series is convergent if

The series is then said to converge to the value S or to have the sum
S. If sn does not approach a limit as n→∞ the series is divergent (see
divergent series).

Some of the terms in the in�nite series Σan may be negative. If
these terms are all made positive, i.e. if the absolute values |an| are
considered, and if the series Σ|an| is also convergent, then the series
Σan is said to be absolutely convergent. The series

is absolutely convergent. If Σ|an| is not convergent then Σ an is said
to be conditionally convergent. The series



is conditionally convergent since the *harmonic series Σ (1/n) is
divergent.

If Σan and Σbn are two convergent series with sums S and T then
Σ(an + bn) converges; sum is S + T
Σ(an – bn) converges; sum is S – T
Σkan converges, k constant; sum is kS
If an  bn for all n then S  T.
Since convergent series play a major role in mathematics it is
necessary to be able to test a series for convergence. See comparison
test; ratio test; Abel’s test; Cauchy convergence test; Cauchy integral
test; Dirichlet’s test.

Converse (of a theorem) A *theorem obtained by interchanging the
premise and conclusion of a given theorem. For example, the
theorem ‘if two chords of a circle are equal’ distances from the
centre, then the chords are equal’ has the converse ‘if two chords of
a circle are equal then they are equidistant from the centre’. In this
case the converse of the theorem is true, but this is not always so.

conversion period See interest.

convex combination A*linear combination in which the *scalar
coe�cients are non-negative and their sum is 1. For example, 0.1a +

0.3b + 0.6c is a convex combination of the *vectors a, b, and c.

convex function A *real function f(x) is said to be convex if for
every pair of points A and B on the curve y = f(x) the line segment
AB lies above the curve. It is said to be concave if the line segment



always lies below the curve. For example, the function x2 is convex,
and the function x3, for x  0, is concave.

More formally, the real function f(x) is said to be convex if, for
any pair of x-values x1 and x2, and all numbers λ such that 0  λ  1,

f(λx1 + (1 – λ)x2)  λf(x1) + (1 – λ)f(x2)

If the function –f(x) is convex then f(x) is a concave function. This
formal de�nition extends to functions of more than one variable, the
two numbers x1 and x2 then being replaced by a pair of *n-tuples.

If a function is both convex and concave then it is a *linear
function.

convex hull The convex hull of a set of points X is the intersection
of all *convex sets containing X, i.e. the smallest convex set
containing X. Equivalently, the convex hull is the set of all *convex
combinations of points of X.

convex polygon A *polygon that has all its angles less than or
equal to 180°. Compare concave polygon.

convex polyhedron A *polyhedron in which the plane of every face
does not cut the polyhedron, i.e. the polyhedron lies completely on
one side of the plane of each face. Compare concave polyhedron.

convex set A *set of points which, if it contains the points A and B,
contains the line segment AB. See also convex hull.

Convolution The convolution of two *functions f(x) and g(x) is the
function

coordinate One of a set of numbers (coordinates) specifying the
position of a point relative to certain other lines or points. See
coordinate system; see also abscissa; ordinate.



coordinate geometry (analytic geometry) A form of geometry in
which lines, curves, etc. are represented by equations by using a
coordinate system. Coordinate geometry was introduced in 1637 by
Rene Descartes. See also Cartesian coordinate system.

coordinate system A system for locating points in space by using
reference lines or points. The position of a point is given by a set of
numbers (coordinates) that are distances or angles from the
reference frame. See Cartesian coordinate system; polar coordinate
system; astronomical coordinate system; geographical coordinates;
inertial coordinates; compare intrinsic equation.

Copeland–Erdős number (A. Copeland and P. Erdős, 1946) the
number

0.235 711 131 7 …

whose decimal digits are those of all the *prime numbers in
succession. It is *normal to base ten.

Coplanar Lying in the same plane. Thus, coplanar lines (or curves)
are lines (or curves) that lie in the same plane. Any three points are
coplanar. Four points are coplanar if the *determinant which has
the coordinates of the points as its �rst three columns, and a fourth
column whose elements are unity, is zero

coprime See relatively prime.

Copunctal Having a common point. For instance, in a three-
dimensional coordinate system the three coordinate axes are
copunctal, the common point being the origin.



Coriolis force An *inertial force that arises when a body moves in a
rotating *frame of reference. The force acts on the body at right
angles to both the axis of rotation and the direction of motion of the
body in the rotating frame, and vanishes when the velocity of the
body is zero. It has a magnitude of 2mvω, where m is the body’s
mass, v the magnitude of its velocity relative to the rotating frame,
and ω the magnitude of the angular velocity of the rotating frame
relative to an inertial frame. The Coriolis acceleration is the
tangential acceleration experienced by the body as a result of this
force: it acts in the same direction with magnitude 2vω. The total
force acting on the body is the sum of the ‘real’ force, the inertial
*centrifugal force, and the Coriolis force.

The Coriolis force must be taken into account when considering
motion relative to the earth’s surface, e.g. the overall movement of
winds or the trajectories of long-range weapons. It is named after
the French engineer Gustav Gaspard de Coriolis (1792–1843).

Cornu spiral See spiral.

Corollary See theorem.

Correlation In a general sense, correlation between two or more
quantities denotes an interdependence between them. The word is
widely used in a more restrictive sense to indicate a degree of
relationship, especially one more or less linear in nature, between
two variables or between two sets of *ranks. Data pairs that show a
close relationship are said to be highly correlated. High correlation
need not imply causal relationship: for example, data for numbers of
car owners and the average daily sales of alcohol in each of a
number of cities are likely to be highly correlated, but this may
simply re�ect the in�uence of population size on both variables. See
correlation coe�cient; multiple correlation coe�cient.

correlation coe�cient 1. The product-moment correlation coe�cient
(sometimes called the Pearson correlation coe�cient after Karl
*Pearson, who discovered many of its properties) between two
random variables X and Y is de�ned as



(see covariance, variance). For a straight-line relationship, ρ = + 1.
If ρ = 0, then X and Y are said to be uncorrelated; this does not
imply independence unless X and Y have a bivariate *normal
distribution. For n paired observations (xi, yi), i = 1, 2, …, n, the
sample correlation coe�cient r is given by

r = sxy/√(sxxsyy)

where sxy denotes the sum of products of deviations of the xi and yi
from their means, and sxx and syy are sums of squares of deviations
from their respective means. If r = 1, the points lie on a straight
line of positive slope; if r = – 1, they lie on a straight line of
negative slope. If r is near zero there is virtually no linear
association, but there may be some other form of association: for
example, the points may be well scattered around the circumference
of a circle.
2. Spearman’s rank correlation coe�cient (C. Spearman, 1904) is the
product moment correlation coe�cient between two sets of paired
*ranks, such as the ranks assigned to each of the same set of
candidates giving their order of merit on the basis of examination
results for papers in (i) Mathematics and (ii) French. If no
candidates are ranked equally (i.e. if there are no tied ranks) in any
one subject, the Spearman’s coe�cient rS is usually calculated by a
formula that takes account of special properties of ranks:

rs = 1 − 6T/n(n2 − 1)

where T is the sum of squares of the di�erence between the ranks
for each of the n pairs. If measurements x and y have been replaced
by ranks, a value of rS ± 1 implies that y increases or decreases
monotonically (but not necessarily linearly) as x increases.
3. Kendall’s rank correlation coe�cient (M.G. Kendall, 1938) is a
measure of agreement between two sets of orderings of the same



objects, and may be calculated using either *order statistics or
ranks. The objects are arranged pairwise in ascending order for the
�rst set, and the number of objects out of natural order in the
second set is counted. A coe�cient is formed which may take values
between – 1(complete disagreement) and + 1 (complete
agreement). Complete disagreement occurs when the rankings in the
two sets are in reverse order.
4. The biserial correlation coe�cient is an infrequently used measure
of dependence between a *random variable X that varies
continuously and a *random variable Y that may take only two
values, y1 or y2.

correlation matrix A *matrix representation of all correlations
between pairs of p ( 2) variables or sets of observations. The entry rij

is the *correlation coe�cient between the i th and j th variables.
The matrix is symmetric with diagonal elements all unity and all
*eigenvalues non-negative.

Correspondence A *binary relation. See also one-to-one
correspondence; many–one correspondence; one–many
correspondence.

corresponding angles See transversal.

Cos Cosine. See trigonometric functions.

cosecant (cosec) See trigonometric functions.

Coset If H is a *subgroup of a *group G with group operation °, then
to every element a of the group G there corresponds a left coset,
denoted by a ° H, which is the set of all elements of the form a ° h,
where h  H. Similarly, there is a right coset, denoted by H ° a,
consisting of all elements of the form h ° a, where h  H. See also
normal subgroup; ideal.

Cosh Hyperbolic cosine. See hyperbolic functions.

Cosine See trigonometric functions.



cosine curve A graph of a cosine function (see trigonometric
functions). In rectangular Cartesian coordinates a graph of y = cos x
is a regular undulating curve intersecting the y-axis at the point
(0,1). It is the same shape as a *sine curve, displaced by 1/2π along
the x-axis.

cosine rule (law of cosines) 1. A formula used for solving triangles
in plane trigonometry:

c2 = a2 + b2 – 2ab cos C

where C is the angle opposite side c (i.e. the angle included between
sides a and b).
2. Formulae used in spherical trigonometry for solving *spherical
triangles:

cos c = cos a cos b + sin a sin b cos C

cos C = – cos A cos B + sin A sin B cos c

where a is the side opposite angle A, b is opposite angle B, and c is
opposite angle C.

cosine series 1. The *series expansion for a cosine function:

cos x = 1 − x2/2! + x4/4! − x6/6! + …

This is valid for all x. See trigonometric functions.
2. A *series in which the terms are cosine functions. See Fourier
series.

cotangent (cot) See trigonometric functions.

Coterminal 1. Coterminal angles are angles which are rotations
between the same two lines, i.e. angles that have the same initial
and �nal lines. For example, 20°, – 340°, and 380° are coterminal
angles.



2. Coterminal edges are edges of a geometric �gure or *graph which
have a common vertex.

Cotes, Roger (1682–1716) English mathematician and astronomer.
Much of his short life was spent working with Newton on preparing
the extensively revised second edition of Newton’s Principia (1713).
Cotes published just one mathematical paper of his own, Logometria
(1714), in which he described new methods for computing
logarithms and for converting logarithms from one base into
another. His other mathematical papers, published posthumously in
Harmonia mensurarum (1722), dealt mainly with problems on the
integration of rational functions.

Coth Hyperbolic cotangent. See hyperbolic functions.

Coulomb Symbol: C. The *SI unit of electric charge, equal to the
quantity of charge transferred by a current of 1 ampere �owing for
1 second. [After C.A. Coulomb (1736–1806)]

countable (denumerable, enumerable) Describing a *set that can
be put into a *one-to-one correspondence with a subset of the
positive integers. If the set is in�nite it is described as countably
in�nite. Examples are the set of natural numbers and the set of
rational numbers. The set of irrational numbers is not a countable
set. See also Cantor’s theory of sets.

Counterexample An example clear enough to disprove a general
statement. Thus the claim that there are no numbers other than 1
which are the sum of the cubes of their digits is refuted by the
counterexample

153 = 13 + 53 + 33

counting number A number used in counting objects, i.e. one of
the set of positive integers 1, 2, 3, 4, etc.

couple A system of two *forces that are equal in magnitude, act in
exactly opposite directions, and do not have the same line of action.



A couple has the same *moment about any point in the plane of the
two forces. The moment is a *vector that acts at right angles to the
plane of the forces: under the action of a couple, a rigid body rotates
about an axis perpendicular to this plane. The magnitude of the
vector is Fd, where d is the perpendicular distance between the
forces and F is the magnitude of each force. A couple has no
resultant force: it cannot be reduced to or balanced by a single
force. It can be balanced by a couple having equal but opposite
moment, applied in the same plane or in a parallel plane. In
addition, two couples are together equivalent to a third couple
whose moment is the vector sum of the separate moments.

covariance The �rst product *moment of two *variables about their
means. If X and Y have means μχ and μy then the covariance is

For a sample of n paired observations (xi, yi) the sample covariance
is

The covariance of X and Y divided by the product of the standard
deviations of X and Y is the product moment *correlation
coe�cient, which, unlike covariance, is not scale dependent.

covariance, analysis of See analysis of covariance.

covariance matrix The analogue of the *correlation matrix, with
covariances in place of correlations and variances in place of unit
elements on the main diagonal.

covariant tensor See tensor.

cover If A is a family of *sets, and if X is a set such that every
element of X is included in at least one of the family of sets of A,



then A is said to be a cover of X. For example, if

A = {{1,2}, {3,4}} and X = {1,3}

then A is a cover of X. See compact.

CPA Abbreviation for *critical path analysis.

Cramer, Gabriel (1704–52) Swiss mathematician who in his
Introduction à l’analyse des lignes courbes algébriques (1750,
Introduction to the Analysis of Algebraic Curves) published a
classi�cation of algebraic curves. The book also contains *Cramer’s
rule for the solution of systems of linear algebraic equations.

Cramér, Harald (1893–1985) Swedish pure mathematician and
statistician. His Mathematical Methods of Statistics (1945) was a
de�nitive work linking the pure-mathematical theory of probability
to statistical applications. As an adviser to the life assurance
industry, he pioneered the statistical study of risk. His work on time-
series analysis led to the development of an important method
called Cramer-Wold decomposition; he was co-discoverer of the
*Cramér-Rao inequality. His interest in mathematics owed much to
a close friendship with G.H. Hardy.

Cramer-Rao inequality (C.R. Rao, 1945; H. Cramer, 1946) An
*inequality giving a lower *bound to the *variance of an *estimator
T of a parameter θ, extending that for an unbiased estimator to
allow for bias. See information.

Cramer’s rule (G. Cramer, 1750) A rule for solving systems of
linear *simultaneous equations by *determinants. It requires the
equations to be written in the form

a1x + b1y + c1z = d1

a2x + b2y + c2z = d2

a3x + b3y + c3z = d3



Then, the determinant of the coe�cients of the unknowns is formed:

If D ≠ 0 there is a unique solution. If D = 0, the equations are not
independent and may either be *inconsistent or possess in�nitely
many solutions. For each unknown in the system of equations a
determinant is formed in which the coe�cients of that unknown are
replaced by the constant terms appearing on the right-hand sides of
the equations. Thus, to �nd x, the coe�cients a1, a2, and a3 are
replaced by d1, d2, and d3, to give

The value of x is then given by x = Dx/D. Similarly, for y

and y = Dy/D. The method can be used for any system of n linear
equations in n unknowns. However, it requires many more
arithmetic operations than *Gaussian elimination, and so is used
only for small values of n.

Crelle, August Leopold (1780–1855) German mathematician and
civil engineer noted for his founding in 1826 of the Journal für die
reine und angewandte Mathematik (Journal of Pure and Applied
Mathematics), known more familiarly as Crelle’s Journal, one of the
�rst journals to be devoted exclusively to mathematical research. He
is also remembered for his publication in 1820 of extensive factor
tables.



critical damping The situation occurring when a system, such as a
pendulum, just fails to oscillate. See damped harmonic motion.

critical path analysis (CPA) A form of net-work analysis used to
determine the optimum or permissible scheduling for meeting �xed
constraints where there are interlocking and ordered operations,
such as those involved in building a house or publishing a book.
Characteristics are:
(1) there is an order of precedence for certain activities;
(2) some activities may be carried out simultaneously;
(3) the duration of each activity is known. An activity is a task
requiring time to perform it; a dummy activity is one that requires no
action or time to complete and is included in a network to assist the
solution of the problem. A CPA network is a logical combination of
edges and nodes. Activities and times are indicated on edges of the
network joining nodes which represent the start and �nish of
activities. In a simple situation the earliest possible time of
completion is entered in each �nish node, though further
information may be added at nodes in larger networks.

The earliest completion time of an activity is also the earliest
possible starting time for any activity that can be started only after
that previous activity is completed. For some activities the
completion time of the whole project will not be delayed if those
activities are not started at the earliest possible time, but there will
always be a latest time for starting any activity without delaying the
completion of the whole project. The edges joining the nodes at
which

Activity Duration(minutes) Precedents

A Disembark passengers 7  

B Unload baggage 10  

C Refuel aircraft 12 A



D Clean cabin 15 A

E Load catering requirements 6 D

F Load baggage 12 B

G Embark passengers 14 C, E

H Final loading check 2 F, G

critical path analysis for turning round an aircraft. The numbers represent time in
minutes; times in nodes are cumulative. The dashed lines represent dummy activities. The
critical path itself is via the edges A, D, E, G, H. Some activities not on the critical path
may be started later without increasing the minimum turn-round time of 44 minutes given
in the �nal node; for example, the start of activity C could be postponed for up to 28 – 19
= 9 minutes without delaying take-o�.

the earliest and latest possible starting times for an activity are
equal form the critical path for the completion of the job on
schedule. The method can be extended to work out how changes in
the time taken to complete activities will delay or advance the
completion date. Such studies are called programme evaluation and
review techniques, commonly abbreviated to PERT.

The network in the diagram is for �nding the shortest time
(determined by the critical path) for turning round an aeroplane
after landing if the activities, duration, and precedence requirements
are as given in the table.

critical point 1. See stationary point.
2. A point on a graph at which a curve has a vertical *tangent.



critical region See hypothesis testing.

cross-cap See manifold.

cross product See vector product.

cross-ratio A particular ratio of ratios of lengths between four
points A, B, C, and D on a line, de�ned as (AC/CB)/(AD/DB) or (AC
. DB)/(AD . CB), and denoted by {A, B; C, D}. This equals the ratio of
the ratios in which C and D divide AB.

If this cross-ratio is equal to –1, it is called a harmonic ratio, and
the four points form a harmonic range or set in which (A, B) and (C,
D) are conjugate pairs. In this case C and D divide AB in the same
ratio (one internally, the other externally). The cross-ratio is
harmonic if {A, B; C, D} = {B, A; C, D}.

If the line has a parametrized form in which the points have
parameters a, b, c, and d, the cross-ratio is given by

{A, B; C, D} = (a − b)(b − d)/(a − d)(b − c)

See division in a given ratio; harmonic pencil.

cross-section See section.

cross-validation A procedure in statistical modelling in which data
are �rst randomly divided into two or more *subsets. A model (e.g.
some *regression model) is �tted to all but one of these subsets, and
a prediction error of the �tted model when applied to the omitted
subset is calculated. Each subset is omitted in turn, and a combined
estimated prediction error is obtained. For small data sets an
extreme but useful procedure is the leave-one-out cross-validation
technique, where each of n observations is omitted in turn and a
model is �tted to the remaining n – 1 data. A predicted value is
obtained for the omitted observation using that model.

The method is useful both for assessing the overall goodness of �t
of a model and for detecting outliers. The computations for a leave-



one-out cross-validation are similar to those for the *jack-knife, but
the aim is di�erent.

cruciform curve A plane *curve with the equation

x2 y2 = a2(x2 + y2)

in Cartesian coordinates. The curve is cross-shaped, being
symmetrical about the origin with four branches. The lines x = ± a
and y = ± a are asymptotes.

crunode See node.

cryptanalysis The science of studying and developing methods of
analysing *cipher-text in an attempt to �nd the *plaintext, usually
by a recipient of an encrypted message who does not know the
decryption *key.

cryptology (cryptography) The science of secret writing. It
involves the development and understanding of methods of both
encryption and decryption. The ultimate goal is to �nd reasonably
quick methods of encryption that are di�cult to decrypt without
speci�c information and, on the other hand, to �nd methods that
will decrypt *cipher text when the decryption *key is not known.

crystallography The study of crystal structures. It is based largely
on the algebraic properties of the symmetry group of the crystal
*lattice, which is the group of all the *isometries of the crystal
(regarded as being repeated inde�nitely in all directions). The two
main areas of crystallography are the study of the Bravais lattice,
which gives information about the way in which the crystal
structure is replicated throughout space, and the study of the point
group, which gives information about the structure of the crystal in
the neighbourhood of a particular atom. The crys-tallographic
restriction is the theorem that any symmetry of a crystal that has
�nite *order must be of order 1, 2, 3, 4, or 6. There are 14 di�erent
Bravais lattices and 32 point groups; they can be combined in
various ways to produce a total of 230 crystal space groups. For all



but a few of these possibilities there are substances occurring
naturally in crystalline forms having the corresponding crystal
group symmetry.

Johann Kepler (1571–1630) was the �rst to study crystals and
their symmetries. The theory was developed intensively by R.-J. Hay
(1743–1822) and A. Bravais (1811–63). In the 1980s quasi-crystals
were discovered; unlike true crystals, they can have �vefold
symmetry.

csc Cosecant. See trigonometric functions.

csch Hyperbolic cosecant. See hyperbolic functions.

ctn Cotangent. See trigonometric functions.

cube 1. The third power of a number. The cube of a is a×a× a, i.e.
a3.
2. A solid �gure that has six identical square faces, all the face
angles being right angles. The volume of a cube is a3, where a is the
length of an edge. The cube is one of the �ve regular polyhedra. See
polyhedron.

cube root A value or quantity that has a cube equal to a given
quantity. The real cube root of 8, written as , is 2 since 8 = 23.

cube root of unity See root of unity.

cubic Describing a mathematical expression of the third *degree.
Thus, a cubic polynomial in x is a polynomial of the type

ax3 + bx2 + cx + d

A cubic function of x is a function f(x) whose value for a value of x
is given by a cubic polynomial in x. A cubic equation is an equation
of the general form

ax3 + bx2 + cx + d = 0



The �rst methods of obtaining a formula for x in terms of the
coe�cients were found by Scipione del Ferro (c.1465–1515) and
later by Tartaglia. Del Ferro’s solution was never published, but
Tartaglia’s appeared in 1545 (without his consent, but with
acknowledgement) in *Cardano’s book Ars magna.

This method (often known as Cardano’s method) involved �rst
recasting the equation by substituting x = y – b/3a. This removes
the term in y2. Dividing through by the coe�cient of y3 gives an
equation of the form

y3 + py + q = 0

This, the reduced cubic, is the starting point for the solution. Next,
the substitution y = u – v is made with the condition that uv =
1/3p (one-third of the y-coe�cient). The equation becomes

u3 – v3 + q = 0

Substituting v = p/3u gives

u6 + qu3 – (p/3)3 = 0

which is a quadratic equation in u3:

(u3)2 + qu3 – (p/3)3 = 0

Solving this for u3 gives a value of u and hence a value of v. The
general solution for y (in the reduced cubic) can then be found.

The nature of the roots of a cubic equation can be found from its
discriminant. For the cubic equation

ax3 + bx2 + cx + d = 0

the discriminant can be found by dividing through by a so as to
make the leading coe�cient unity. The cubic then has the form

x3 + px2 + qx + r = 0



and the discriminant is

p2q2 + 18pqr – 4q3 – 4p3r – 27r2

If the discriminant is negative, there are two conjugate imaginary
roots and one real root. If it is zero, there are three real roots of
which at least two are equal. If it is positive, there are three real
roots that are not equal. This last case is a di�culty in Cardano’s
solution of the cubic because it leads to calculations that require the
cube root of an imaginary number – the so-called irreducible case of
the cubic.

The solution of such cases was �rst suggested by Viete, who
noticed that it was linked with the geometrical problem of trisecting
an angle. If the equation is put in the reduced form

y3 + 3py + q = 0

and a substitution my = x is made, to give

x3 + 3m2px + qm3 = 0

then substituting x = cos θ gives

cos3 θ + 3m2p cos θ + qm3 = 0

Viete compared this with his multiple angle formula for cos 3θ,
which can be written as

cos3 θ − 1/4 (3 cos θ) – 1/4 (cos 3θ) = 0

It follows that if 3m2p = – 4 then cos 3θ = –4qm3. Since p and q are
known, then m, and consequently cos 3θ, can be found. From the
possible values of θ three values of cos θ (= x)can be obtained and
consequently the three values of y that satisfy the original cubic. In
principle, solutions of the cubic equation can be found by such
methods. In practice, however, it is usual to use numerical methods
of solution (see numerical analysis).



A cubic curve is a curve with an algebraic equation of the third
degree. A cubic graph is a regular *graph in which every vertex has
degree three.

cubical parabola A plane *curve with the equation

y = ax3

in Cartesian coordinates. It has a point of in�ection at the origin. See
also semicubical parabola.

cubic lattice *lattice of points in three-dimensional space with
coordinates (ax, ay, az), where x, y, and z integers and a is a
positive constant (see diagram (a)). The cubic lattice with a = 1 is
the three-dimensional integer lattice.

A lattice of points with coordinates (1/2ax, 1/2ay, 1/2az) such
that the integers x, y, and z are all even or all odd is a body-centred
cubic lattice. This lattice comprises all the points of the cubic lattice
with constant a and the points at the centre of each cube (see
diagram (b)).

A lattice of points with coordinates (1/2ax, 1/2ay, 1/2az) where
the integers x, y, and z are such that x + y + z is even is a face-
centred cubic lattice. This lattice contains all the points of the cubic
lattice with constant a and the points at the centres of the faces of
each cube (see diagram (c)).

See also Kepler’s conjecture.

cuboctahedron (plural cuboctahedra) A *polyhedron formed by
truncating a



cubic lattice (a) cubic lattice, (b) body-centred cubic lattice, and (c) face-centred cubic
lattice.

cube so that the vertices lie at the centre points of the cube edges. It
can similarly be formed by truncating an octahedron (hence the
name). The cuboctahedron is one of the Archimedean solids. It has
14 faces, 12 vertices, and 24 edges.

cuboid See parallelepiped.

cumulants The coe�cient kr of tr/r! in the series *expansion of ln
M(t), where M(t) is the *moment generating function, is called the
rth cumulant. For any distribution, k1 is the mean and k2 is the
variance. Expressions for cumulants in terms of moments, and vice
versa, are available.

cumulative frequency function An alternative name for a
(cumulative) *distribution function. It is frequently applied to data
to designate the proportion of a set of data less than a speci�ed
value. For example, if represents the number of teeth with dental
caries in a group of 50 schoolchildren (see table), then the



cumulative frequency function F(y) = frequency Y  y, where for
these data F(y) is a step function and the values at the steps are F(0)
= 27/50, F(1) = 39/50, F(2) = 45/50, F(3) = 49/50, and F(6) =
1. Fisa non-decreasing function such that, for all y, 0  F(y)  1. The
sums 27, 27 + 12, …, 27 + 12 + 6 + 4 + 1 = 50 are sometimes
called the absolute cumulative frequencies.

Number of teeth Number of children

0 27

1 12

2 6

3 4

6 1

cup The symbol  used to denote the *union of two sets A and B, as
in the expression A  B. Compare cap.

curl For a vector function of position V(r), the curl of V, written as
curl V, is given by ∇x V, where ∇ is the operator *del. Thus

and

r = xi + yj + zk

An equivalent form for curl V is



for which V = Vxi + Vyj + Vzk.
In �uid �ow, 2 curl v gives the angular velocity in an element of

�uid (v is its velocity).
See divergence; gradient; Stokes’s theorem.

curvature Symbol: k. The rate of change of direction of a curve at a
particular point on that curve. The angle δψ through which the
tangent to a curve moves as the point of contact moves along an arc
PQ is the total curvature of the arc PQ (see diagram (a)). The mean
curvature of the arc PQ is de�ned as the total curvature divided by
the arc length δs, i.e. δψ/s, where s is the arc distance of P from a
�xed point A. The curvature k at the point P is the limiting value of
the mean curvature of the arc PQ as δs → 0, i.e. the derivative
dψ/ds.

If the curve is a circle with centre at C and radius R (see diagram
(b)), then<PCQ = δψ and δψ/s = 1/R. Thus at all points on a
circle, the curvature is the reciprocal of the radius.

The circle of curvature at any point on a curve is the circle that is
tangential to the curve at that point and whose curvature is the
same as that of the curve at that point (see diagram (c)). The centre
of curvature is the centre of this circle. The radius of curvature at P is
the radius ρ of this circle, and p = |ds/dψ|.

curvature (a) Total curvature of a curve; (b) curvature of a circle; (c) circle of curvature.

In Cartesian coordinates,



In parametric form, if x = f(t) and y = g(t), then

ρ = (ẋ2 + ẏ2)3/2/|ẋÿ − ẍẏ|

where x, ẍ, y, and ÿ represent �rst and second derivatives with
respect to t.

At a point on a surface, the curvature varies with direction. In
general, there are two directions in which the radius of curvature
has an absolute maximum and absolute minimum. These are the
principal directions, and *Euler’s theorem shows that they are
perpendicular. The principal curvatures at the point are the
curvatures in these directions. The total (or Gaussian) curvature of
the surface at a given point is the product of the principal
curvatures at that point. The curvature of higher-dimensional
manifolds is also intensively studied, and is one of the main
mathematical foundations for Einstein’s theory of general relativity.

curve A line, either straight or continuously bending without
angles. A curve can be considered as the path of a moving point (i.e.
a point moving with only one degree of freedom). Alternatively it
can be regarded as a set of points produced by a continuous
transformation of a closed interval.

Curves are generally studied as graphs of equations using
*coordinate systems. They are classi�ed as algebraic curves, which
have algebraic equations, and transcendental curves, which have
equations containing transcendental functions. Open curves (or arcs)
are curves that have end points. Closed curves have no end points,
i.e. a closed curve is a transformation of a closed interval [a, b] for
which the images of a and b coincide. A curve that lies entirely in a
plane is a plane curve. A curve that does not lie in a plane is a skew
or twisted curve (e.g. a *helix). Any curve in three-dimensional space
is described as a space curve (note that it need not also be a twisted
curve).



curvilinear motion Motion along a curved path. *Circular motion
is a special case of curvilinear motion.

cusp (spinode) A *singular point on a curve at which there are two
di�erent *tangents that coincide. A cusp is a special case of a
*double point in which the tangents are

cusp Types of cusp.

coincident. In a single cusp the curve is not continuous through the
point (i.e. two branches or parts of the curve meet at a point). A
double cusp has both branches of the curve continuous through the
point (i.e. the curve is tangential to itself). A double cusp is also
called an osculation or a tacnode. Cusps (either single or double) are
further classi�ed into cusps of the �rst kind (in which both branches
of the curve near the cusp lie on opposite sides of the tangent) and
cusps of the second kind (in which the branches of the curve lie on
the same side of the common tangent). Double cusps at which one
or both branches of the curve have points of in�ection are called
points of osculin�ection (i.e. both osculation and in�ection).

cusum chart A *control chart designed to detect departures from
acceptable operating standards in which a record is kept of the sum
of deviations from an ideal or target value for successive samples.
While the process is in control, the cumulative sum (abbreviated to
cusum) of deviations should remain small, positive and negative
deviations almost cancelling out. A run of samples in which either
positive or negative deviations dominate indicates that the process
may be out of control. Cusum charts are designed in a way that
makes it easy for plant operatives to make a routine decision about



whether such cumulative data indicate that a process is out of
control.

cut See Dedekind cut.

cybernetics The science of communication and control applied to
machines, animals, and organizations. Cybernetics attempts to unify
such studies using ideas of information transfer and feedback. The
subject was developed in 1946 by Norbert Wiener, who coined the
name from the Greek kubernētēs, meaning ‘pilot’ or ‘steersman’.

cycle See walk.

cycle per second See hertz.

cyclic Describing a polygon that can be *circumscribed by a circle,
so that all its vertices lie on the circumference of the circle. Thus, a
cyclic quadrilateral is a quadrilateral with its four vertices lying on a
circle. See also Ptolemy’s theorem.

cyclic code A *linear code in which every cyclic *permutation of a
*codeword is also a codeword. For example, if 1011 is a codeword
in a cyclic code, then so are 0111, 1110, and 1101.

cyclic group A *group, all of whose elements are powers of a single
element. A �nite cyclic group containing n elements will be
generated by one element, say t, that satis�es tn = I (where I is the
*identity element); it is denoted by n. When n ≥ 3it can be
regarded as the group of all rotational *symmetries of a regular
polygon with n sides. See dihedral group; generator.

cyclic permutation (circular permutation) A *permutation in
which each member of a *set replaces a successive member or in
which each member is replaced by a successive member. For
example, x → y, y → z, z → x is a cyclic permutation of x, y, and z.

cycloid A plane *curve that is the *locus of a point on the
circumference of a circle as the circle rolls (without slipping) along



a straight line. If P is the point on the circle, of radius r, the
parametric equations of the cycloid are

x = r(θ – sin θ) and y = r(1 – cos θ)

where the circle rolls along the x-axis, starting with P at the origin,
and θ is the angle through which P has rotated. The curve has a
series of arches and touches the baseline at *cusps a distance 2πr
apart. It is a special case of the *trochoid.

Although unknown to Greek geometers, the cycloid was
extensively studied by later mathematicians, especially in the 17th
century, when it was the cause of some bitter disputes about priority
of discovery.

cycloid

It seems to have been recognized by Galileo, who attempted to �nd
the area under an arch by experiment (weighing the shape). The
curve was �rst studied extensively by Roberval, who proved (1634)
that the area under an arch was three times the area of the
generating circle. He also found (1638) the tangent at any point on
the curve. If at a point P, a line PH is drawn parallel to the baseline
and a tangent PT is drawn to the generating circle (PT indicating the
direction of motion of P), then the tangent to the cycloid bisects the
angle HPT (see diagram). Torricelli also discovered these results,
publishing them �rst (in 1643 and 1644). Huygens, in 1658,
considered the cycloid in his work on pendulum clocks. He showed
that a simple pendulum in which the bob followed a cycloidal path
would always have the same period of swing, irrespective of the



amplitude, i.e. that the cycloid is an isochrone (or tautochrone).
This is called the pendulum property of the cycloid.

cyclotomic polynomial The polynomial Φnx whose zeroes are the
primitive nth roots of unity. For example, Φ2 (x) = × + 1, Φ4 (x)=
x2 + 1, and if n is a *prime number then Φn (x)= xn–1 + xn–2 + …
+ x + 1. See primitive roots.

cylinder A �gure formed by cutting a *cylindrical surface by two
parallel planes at an angle (> 0) to the generators. Usually, the
term is used for a solid �gure, i.e. one in which the directrix is a
closed curve such as a circle or ellipse. The cylinder then consists of
two identical plane bases with a curved lateral surface formed by
generators joining corresponding points on the bases. If the bases
are perpendicular to the elements of the cylinder, the cylinder is a
right cylinder; otherwise it is oblique.

The perpendicular distance between the bases of a cylinder is its
altitude (h). The volume is Ah, where A is the area of a base; the
area of the lateral surface is sp, where p is the perimeter of a section
at right angles to the generators, and s is the slant height. For a right
cylinder, s = h.

cylindrical coordinate system A *polar coordinate system in three
dimensions. Cylindrical coordinates have the two coordinates (r, θ)
of polar coordinates in a plane with an additional z-axis through



cylindrical coordinate system

the pole perpendicular to the plane. If r is constant and z and θ vary
over all values, a cylindrical surface is generated.

It is possible to change between cylindrical and rectangular
Cartesian coordinates. If the pole of the cylindrical system coincides
with the origin of the Cartesian system, the polar axis coincides with
the x-axis, and the z-axes coincide, then a point (r, θ, z) in
cylindrical coordinates has Cartesian coordinates given by

x = r cos θ, y = r sin θ, z = z

Similarly, a point (x, y, z) in Cartesian coordinates has cylindrical
coordinates given by

r = √(x2 + y2), θ = tan-1 (y/x), z = z

the value of θ being chosen so that

x:y:r = cos θ:sin θ:1

cylindrical surface A surface formed by all the straight lines that
are parallel to a given line and that pass through a given curve



which is not in the same plane as the reference line. The curve is the
directrix of the cylindrical surface; the parallel straight lines are
called generators (or elements) of the surface. If the directrix is a
closed curve the surface is a closed cylindrical surface, otherwise it is
an open cylindrical surface. Such surfaces are named according to
the directrix, e.g. a circular cylindrical surface or a parabolic
cylindrical surface.

cylindroid A *cylindrical surface. The term is often used for a
cylindrical surface that has a circular or elliptical section.

cypher See cipher.



D

d’Alembert, Jean le Rond (1717–83) French mathematician,
philosopher, and encyclopaedist. In his Traité de dynamique (1743,
Treatise on Dynamics) he formulated what later became known as
*d’Alembert’s principle. He is also known for his work on the theory
of vibrating strings, and partial di�erential equations.

d’Alembert’s principle The principle that the internal forces in a
system of *particles are in *equilibrium.

d’Alembert’s test (for convergence) See ratio test.

d’Alembert’s theorem See fundamental theorem of algebra.

damped harmonic motion The motion ofa body that ideally would
undergo simple *harmonic motion but in practice is subjected to
some form of resistance. The damping is commonly due to viscous
forces. For light damping, as occurs for a pendulum in air, the
oscillations slowly die away; the decrease in amplitude is
exponential in nature. For a heavily damped system, as would occur
for a pendulum suspended in a very viscous �uid, there is no
oscillation, although the decay is still exponential. When a system
just fails to oscillate, critical damping is said to occur. The equation
of motion can be written as

where k > 0. It has three forms of solution:
(1) Light damping (k < n), where the general solution is

x = e-kt (A sin n1t + B cos n1t)

where n1 = √(n2 − k2).



(2) Heavy damping (k > n), where

x = e-kt (A ek1t + B e-k
1t)

and k1 = √(k2 − n2).
(3) Critical damping (k = n), where

x = (A + Bt)e-kt

Dandelin sphere If a circular conical surface is cut by a plane, the
curve of intersection is a *conic. A Dandelin sphere is a sphere
inside the conical surface that is *tangent to the conical surface
along a circle, and is also tangent to the plane. The point of
tangency to the plane is a focus of the conic (ellipses and hyperbolas
have two Dandelin spheres; parabolas have one). It is named after
the French mathematician Germinal Pierre Dandelin (1794–1847).

Darboux’s theorem A theorem de�ning an integral in terms of
upper and lower *bounds. For a function f(x) which is bounded on
the interval [a, b], the interval is subdivided into n parts by points

a = x0 < x1 <  < xn = b

In the Riemann de�nition of *integration, intermediate points are
considered on these subintervals. In Darboux’s theorem, upper and
lower bounds are taken for each interval. M1 is the least upper
bound of f (x) on [x0, x1]and m1 is its greatest lower bound; M2 is the
least upper bound of f(x) on [x1; x2]and m2 is its greatest lower
bound; and in general Mi is the least upper bound of f(x) on [xi−1,
xi]and mi is its greatest lower bound. Two sums can then be formed:

If the length of the largest subinterval is δ, then the limits of the
above sums as δ tends to zero give two integrals. The �rst (for upper
bounds) is called the upper Darboux integral; the second (for lower



bounds) is the lower Darboux integral. The function f(x) has a
Riemann integral if these two integrals are equal. The theorem is
named after the French mathematician Jean Gaston Darboux (1842–
1917).

dart See Penrose tiles.

data (singular datum) In statistics, information of a quantitative or
qualitative nature. Data collected from records or by measurement
in *sample surveys or designed experiments (see experimental
design) or in observational studies are called primary or raw data.
These may consist of measurements (e.g. weight, age, and height of
each of a group of children) or counts (e.g. numbers of males and
numbers of females living in a city) or of qualitative attributes (e.g.
hair colour and eye colour for each of a number of individuals).

Summary statistics such as percentages, means, and standard
deviations, derived from primary data are called secondary data.

Bivariate data consist of pairs of measurements or observations of
two variables for each of a number of units (e.g. weight and age for
each of 50 children). The concept extends to multivariate data when
there are more than two measurements on each unit (e.g. sex, body
weight, a respiratory rate measurement, and daily food intake for
each of 20 mice). See also categorical data; grouped data;
contingency table; scales of measurement.

data coding A way of simplifying manual calculations or reducing
rounding errors when using pocket calculators or computers. In
statistics, when calculating a *mean or *standard deviation for data
sets, coding is based on two rules:
(1) If each datum is multiplied by a constant b, then the mean and
standard deviation are each multiplied by b.
(2) If a constant a is added to each datum, then the mean is
increased by a and the standard deviation is unaltered.
For example, to calculate the mean and standard deviation of
179.385, 179.387, and 179.392, we might multiply by 1000 and
then subtract 179 387 (i.e. add − 179 387), giving −2, 0, and 5.



The mean and standard deviation of these numbers are easily
computed as 1 and √(26/3) = 2.94. Adding 179 387 to 1 and
multiplying by 1/1000 gives the mean of the original data as
179.388, and multiplying 2.94 by 1/1000 then gives the standard
deviation as 0.00294.

The addition of a constant a to each datum is equivalent to
measuring from an arbitrary origin, −a, rather than from zero.

day Symbol: d. A unit of time based on the period of rotation of the
earth about its axis. It can be de�ned in several ways. The apparent
solar day is the interval between two successive meridian transits of
the sun. It varies over the course of the year from 24h 0min 30s to
23h 59 min39s. The mean solar day is the interval between two
successive meridian transits of an imaginary point in the sky (the
mean sun) that moves along the celestial equator with a uniform
rate of motion equal to the average rate of motion of the sun along
the ecliptic. Its duration is exactly 24 hours. The sidereal day is the
interval between two successive meridian transits of the vernal
equinox. The mean sidereal day, which is very close in value to the
apparent sidereal day, is 23h 56min 4.09 s.

death rate The number of deaths (in total or due to a speci�c
cause) in a given period, divided by the population exposed to risk.
For comparative purposes the rate is usually standardized for
di�erences in age, sex, and exposure to risk in di�erent populations.
Also called a mortality rate. See also life tables.

dec Abbreviation for *declination.

deca- See SI units.

decade A group or series of ten numbers.

decagon A *polygon that has ten interior angles (and ten sides).

deceleration Negative *acceleration.

deci- See SI units.



decibel Symbol: dB. 1. A unit for comparing two currents, voltages,
or power levels, equal to one-tenth of a *bel.
2. A similar unit for measuring the intensity of sound, equal to ten
times the logarithm to the base ten of the ratio of the intensity of
the sound to be measured to the intensity of a reference sound,
usually taken as the lowest audible sound of the same frequency.

decidable Describing a class of problems for which there is an
*e�ective procedure (a decision procedure, or algorithm)for solving
each problem in the class. *Formal systems are said to be decidable
if there is an e�ective procedure for determining, for any *w� A of
the system, whether or not A is a theorem of the system. In the case
of the *propositional calculus, *truth tables provide an e�ective
means of determining whether a w� is a *tautology. The
completeness theorem (see complete) for the propositional calculus
shows that every tautology is a theorem, and thus there is an
e�ective method for determining whether a w�s a theorem. In
other words, the decision problem for the propositional calculus has a
positive solution. *Church’s theorem shows that the *predicate
calculus is not similarly decidable.

decile See quantile.

decimal A number expressed using the decimal *number system.
Commonly, the term is used for numbers that have fractional parts
indicated by a decimal point. A number less than 1 is called a
decimal fraction; for example, 0.537 is a way of writing

i.e. (5 × 10-1) + (3 × 10-2) + (7 × 10-3).
A mixed decimal is one consisting of an integer and a decimal

fraction (e.g. 27.63). The �rst position to the right of the point
(representing tenths) is the �rst decimal place; the second position is
the second decimal place; etc.



A decimal fraction is a series of fractions, i.e. it is a number of
tenths plus a number of hundredths plus a number of thousandths,
etc. The decimal may have a �xed number of digits: for example, ⅝
is 0.625; such numbers are called �nite or terminating decimals. In
other decimals the digits may continue inde�nitely (they represent
an in�nite series); decimals of this type are called in�nite or
nonterminating decimals.

If the number is a rational number it may have an in�nitely
repeating digit or group of digits; decimals of this type are said to be
repeating or recurring decimals. Thus ⅓ is the decimal 0.333 33…..
This is sometimes written as 0.3 and referred to as ‘nought point
three recurring’. Another example of a repeating decimal is 5/7,
which is 0.714285 714… with the block of digits 714 285 repeated
endlessly; this is written as 0.714285. Such decimals are also called
periodic decimals. Irrational numbers, such as π, √2, and e, are
decimals that are in�nite but do not repeat; such numbers are
termed nonrepeating or nonperiodic decimals.

decimal fraction See decimal.

decimal notation The method of positional notation used in the
decimal *number system.

decimal place See decimal.

decimal point A dot used to separate the integral part of a number
from the fractional part in the decimal *number system. The point is
either centred (as in 0–5) or, now more commonly, placed on the
line (0.5), as in this Dictionary. In many European countries a
comma is used (0,5).

decimal system The commonly used *number system using the
base ten. See also decimal.

decision problem The problem of determining whether a class of
problems is *decidable. See NP problem.



decision theory A framework for making decisions in the presence
of uncertainty, which is appropriate in many situations in business
or industry. A simple example of its application may be formulated
as a two-person game (see game theory), with an entrepreneur as
one player and nature (i.e. the world, a market, the competition) as
the other. The entrepreneur may adopt any one of a �nite number
of strategies, but knows only the probabilities that nature will adopt
each of its possible strategies. A payo� matrix gives the
consequences (gain or loss to the entrepreneur) of each choice made
by the entrepreneur for each choice made by nature. If the
probabilities that nature will adopt each of its strategies are known,
the entrepreneur may calculate the payo� expected from a
particular action (i.e. a particular strategy). One criterion for
choosing an action is to use the *minimax principle to select an
action that minimizes the maximum expected loss. If an action a2

produces losses that are always greater than the losses produced by
an action a1, no matter what strategy nature adopts, a2 is said to be
inadmissible and may be excluded from further consideration in a
decision problem. See also decision tree.

decision tree A form of *tree diagram useful in determining the
optimum action to take when there are alternative strategies with
uncertain outcomes. For example, a builder may be allowed to
tender for only one of two contracts. If he tenders for contract A,
there is a probability of 0.7 that he will win the contract and make a
pro�t of £10000. If he tenders for contract B, the probability that he
wins is 0.2, but his pro�t will be £30 000. If he fails to win the
contract he tenders for, he will do other work and make a pro�t of
£5000. Which contract should he tender for to maximize his
expected pro�t? The decision tree for deciding this is shown in the
diagram.

Square nodes are called decision nodes; circular nodes are random
nodes. Branches leaving random nodes have known attached
probabilities. A vertical line represents a terminal node. Possible
decisions or their consequences are indicated on each branch, with
associated probabilities when relevant. A gain or other measured



outcome is indicated at each terminal node. To determine the
maximum expected gain, the expected gain is computed at each
random node and is conventionally written in or below each node.
For this example the expected gains at nodes A and B are computed
as £10000 × 0.7 +

decision tree for deciding between two tenders. 5000 × 0.3 =
£8500 for A, and £30 000 × 0.2 + 5000 × 0.8 = £10 000 for B.
Tomax-imize his expected gain, the builder should thus tender for
job B. In practice, most decision trees have many more branches and
nodes than there are in this simple example.

declination (dec) Symbol: δ. The angular distance of a point on the
*celestial sphere from the celestial equator, taken along a celestial
meridian passing through the point. Declination is measured from 0°
to 90° north (taken as positive) or south (taken as negative) of the
celestial equator. Sometimes the complement (90 ° – δ), called the
north polar distance, is used. See equatorial coordinate system.

decoding (decryption) In cryptography, the recovery of plaintext
from ciphertext. See cipher.

decomposition 1. (of a fraction) The process of splitting a fraction
into two or more *partial fractions.
2. (of a matrix) See factorization.

decreasing function See monotonic decreasing function.



decreasing sequence A *sequence a1, a2,… for which an > an+ 1 for
all n is said to be strictly decreasing. The sequence is described as
monotonic decreasing if an ≥ an + 1 for all n.

If a monotonic decreasing sequence {an} hasalowerbound (see
bounded sequence) then it tends to a �nite limit; if no lower bound
exists, then an → − ∞ as n → ∞.

Compare increasing sequence.

Dedekind, Julius Wilhelm Richard (1831−1916) German
mathematician who in his Was sind und was sollen die Zahlen? (1888,
The Nature and Meaning of Numbers) o�ered an axiomatic account
of the natural numbers. He further de�ned the irrational numbers in
terms of the *Dede-kind cut.

Dedekind cut (J.W.R. Dedekind, 1872) A division of the *rational
numbers into two (nonempty) *sets such that every number of the
�rst set (A) is less than every number of the other set (B). If A has a
largest member (or if B has a smallest member) the cut de�nes a
rational number. If A has no largest member and B no smallest
member, then the cut de�nes an irrational number. For example, the
rational numbers could be put into two sets in which set A contains
negative rational numbers together with those that have squares less
than 2, and set B contains the positive rational numbers that have
squares greater than 2. The cut itself de�nes the irrational number
√2. A number can be indicated using the notation (A, B), where A
and B are the sets in the cut. The real numbers are the set of all
Dedekind cuts. The irrational numbers are the set of all Dedekind
cuts for which the �rst set has no largest member and the other set
no smallest member.

The method allows irrational numbers to be formally de�ned
from rational numbers without geometric reasoning. The cut is
equivalent to dividing a number line into two segments by a point,
and the de�nition depends on the principle that the points on the
line can be placed in *one-to-one correspondence with the real
numbers. This idea is known as the Cantor−Dedekind hypothesis.

See real number.



deduction A valid argument in which the conclusion follows from
the premises. Formally, it is a sequence of *w�s C1,…, Cm of a
*formal language S such that for each Ci, 1 ≤ i ≤ m, either
(1) Ci is an axiom of S (if there are such);
(2) Ci is a member of a set B1,…, Bn (the premises, or hypotheses of
the deduction); or
(3) Ci is immediately inferred from some previous w�s of the
sequence by a single application of a rule of inference of S.
If we let A = Cm then A is deduced from (or proved from) premises
B1,…, Bn, or, equivalently, B1,…, Bn  S A (sometimes the subscript S
is omitted if it is clear which formal language is intended).
Deductions are *proofs only if the set B1,…, Bn is empty; proofs use
only axioms and rules of inference. See argument; consequence;
natural deduction.

deduction theorem The *theorem that if B1, …, Bn  A then

B1, …, Bn−1 ‘  Bn ⊃ A

It holds in standard *formal systems such as the *predicate calculus.

deferred correction See Richardson extrapolation.

de�cient number (defective number) See perfect number.

de�nite integral An expression for the di�erence between the
values of an *integral when evaluated for two values of the *inde-
pendent variable, written as

The values x = b and x = a are called the upper and lower limits of
the de�nite integral. If F(x) is an integral of f(x), then the value of
the above de�nite integral is F(b) − F(a). This is also written as 



The following example illustrates the evaluation of a de�nite
integral:

Properties of de�nite integrals are:

and

If k is constant, then

If c is a point inside the range a ≤ x ≤ 4 b, then

If f (x) and g(x) are both integrable in the range a ≤ x ≤ b, then

Compare inde�nite integral.

deformation Change in shape or size of a body as a result of the
action of external *forces. The extent of the deformation depends on
the material from which the body is made, the shape of the body,



and the area of application of the force. Deformation is usually
considered in terms of the *stress set up within a body and the
*strain associated with such stress. See also elasticity.

degenerate conic A point, line, or pair of lines, regarded as a
limiting case of a *conic section.

degree 1. The exponent of a variable in a term. For example, in
3x3y2z, x has degree 3, y degree 2, and z degree 1. The degree of the
whole term is the total of these exponents, in this case 3 + 2 + 1
(= 6). The degree of a polynomial or equation is the degree of its
highest-degree term. For instance,

x + 2xy + y = 0

is an equation of the second degree (2xy is the highest-degree term).
Its degree in x (or y) is 1.
2. (of a curve) The degree of an equation representing a plane
algebraic *curve. For instance, y = mx + c, which represents a
straight line, has degree 1. The equations y2 = 2x and xy = 4 both
have degree 2, and the corresponding curves are quadratic curves
(i.e. *conics). If the degree is 3, the curve is a cubic curve; if 4, a
quartic; if 5, a quintic;etc.
3. (of a di�erential equation) Thepower to which the highest-order
derivative is raised in a *di�erential equation.
4. (of a map of a sphere to itself) Let f: Sn → Sn be a continuous
map from the n-sphere to itself (n ≥ 1). Since the homology group
Hn(Sn) is in�nite and cyclic, the induced homomorphism f* must
satisfy f*(x) = d . x for all x ( Hn(Sn) and some integer d. The
integer d is called the degree of f.

It can be shown that two continuous maps f, g: Sn → Sn are
*homotopic if and only if they have the same degree.
5. (of a vertex of a *graph) The number of edges joined to the
vertex.
6. Symbol: °. A unit of angle equal to 1/360 of a complete turn. See
angular measure.



7. A subdivision of a scale of temperature measurement. See Celsius
degree; Fahrenheit degree; kelvin.

degree measure See angular measure.

degree of arc A unit measuring the length of an arc, equal to the
length of arc of a circle that subtends an angle ofone degree at the
centre of the circle. Note that the degree of arc is a measurement of
length (not of angle) and is strictly de�ned only for a circular arc. It
is used in astronomy to express distances on the celestial sphere.
Similarly, the minute of arc and second of arc are de�ned as arc
lengths that subtend an angle ofa minute and a second, respectively.

degrees of freedom 1. (in statistics) Degrees of freedom are in
essence the number of independent units of information in a sample
relevant to estimation of a *par-ameter or calculation of a *statistic.
One approach is to regard the n observations as the initial units of
information, one of which is used to determine the total or *mean.
As the mean must be known before we can determine deviations
from it, there are n − 1 degrees of freedom left for estimating the
*variance in the sense that if the total is �xed, only n − 1 values
can be assigned arbitrarily; the remaining one is then �xed to ensure
the correct total. Likewise, in a 2 × 2 *contingency table with �xed
marginal (i.e. row and column) totals there is only one degree of
freedom, for once a value is assigned to any one of the four category
cells the remaining values are determined by the constraint that
they must add to the �xed marginal totals. For example, in the table
below if we arbitrarily choose a = 10, it follows that b = 2, c = 5,
and d = 8:

  Col.
1

Col.
2

Row
totals

Row 1 a b 12

Row 2 c d 13



Column
totals

15 10  

Similarly, if we put a = 5, then automatically b = 7, c = 10, and d
= 3.
2. See normal modes.

del The operator

where i, j, and k are *unit vectors along the x-, y-, and z-axes
respectively. The symbol ∇ is also known as nabla. See curl;
divergence; gradient; Laplace’s equation; wave equation.
Delambre’s analogies See Gauss’s formulae.

de L’Hôpital’s rule See L’Hôpital’s rule.

Delian problem See duplication of the cube.

delta function See Dirac delta function.

deltoid 1. A concave *quadrilateral that has two pairs of equal
adjacent sides. See concave polygon; compare kite.
2. A plane *curve that is the *locus of a point on the circumference
of a circle that rolls on the inside of a �xed circle of three times its
radius. It has three *cusps and is an example of a *hypocycloid. See
also astroid.

demography The statistical study of human populations, in
particular vital statistics (birth and mortality rates), movements of
people, and other factors in�uencing population changes. See life
tables.

de Moivre, Abraham (1667−1754) French mathematician and the
author of The Doctrine of Chances (1718), one of the earliest works
on probability theory. He is also known for *de Moivre’s theorem, in



which complex numbers were introduced into trigonometry for the
�rst time.

de Moivre’s theorem The relationship

(cos θ + i sin θ)n = cos nθ + i sin nθ

involving the polar form of a *complex number. It was discovered
by Abraham de Moivre around 1707.

De Morgan’s laws Identities that hold for any two *sets A and B:

(A ∩ B)’ = A’ ∪ B’

(A ∪ B)’ = A’ ∪ B’

where A’ denotes the *complement of A. By using these identities it
is possible to convert any *intersection of sets into a *union of sets,
or vice versa.

The name is also given to two theorems of the *propositional
calculus:

where A and B are any two statements. These theorems may be used
to replace a *disjunctionina*compoundsentencebya *conjunction,
and vice versa.

The formulae are named after the English mathematician and
logician Augustus De Morgan (1806−71), who proposed them in
1847.

denary Pertaining to or based on the number ten.

denial of the antecedent The *fallacy of inferring from A ⊃ B and
˜A that ˜B, or an argument of this form. It is so called because the
second premise, ˜A, is the *negation of the *antecedent of the



*conditional statement forming the �rst premise. See also
a�rmation of the consequent.

denominate number A number that determines a unit of a
*physical quantity, as in 5 metres or 6 volts. The unit involved
(metre, volt, etc.) is the denomination of the number.

denomination See denominate number.

denominator The divisor in a fraction: i.e. the number on the
bottom. In ¾, 4 is the denominator (3 is the numerator).

dense set A *subset A⊂ X is dense in the topological space X if
every neighbourhood of every point of X contains at least one point
of A. So, in a *metric space, every point of X is a *limit point of a
sequence of points of A. The set of rational numbers is dense in the
set of real numbers. Weierstrass’s theorem states that the set of all
polynomial functions is dense in the space of all continuous
functions on a closed, bounded interval. Compare discrete set
density 1. Symbol: ρ. The mass per unit volume of a material. It is
usually expressed in grams per cubic centimetre or kilograms per
cubic metre.
2. The value of some *physical quantity per unit volume (or area, or
length). For example, surface charge density is the electric charge
per unit area of surface.

denumerable See countable.

deontic logic The logic of obligation and permissibility. It was
initially developed by the Finnish logician Georg von Wright
(1916−2003) in the 1950s, since when many alternative systems
have been proposed. Von Wright began by adding to the
*propositional calculus the variables a, b, c,… denoting acts, the two
operators O (it is obligatory that) and P (it is permissible that), and
two axioms:
A1. Oa → Pa (if a is obligatory then it is permitted);



A2. P(a ∨ b) → (Pa ∨ Pb) (if either a or b is permitted then either a
is permitted or b is permitted).
The operator O can be de�ned in terms of P through the de�nition
that ‘Oa’ is equivalent to and replaceable by ‘˜ P ˜ a’; in other words,
saying that a is obligatory is equivalent to saying that it is not
permissible not to do a.

departure The length of arc cut o� on a line of latitude by two
*meridians. The value of the departure decreases with distance from
the equator, falling to zero at the poles.

dependent equations An equation is dependenton a set of
equations if it is satis�ed by every set of values of the variables that
satis�es the set of equations. A set of equations is dependent if one
of them is dependent on the others. If the set contains no dependent
equation it is independent.

For example, the set of equations

x + y = 3, x(x + y) = 3x

is dependent since the second equation is dependent on the �rst, i.e.
every pair of values (x, y) satisfying the �rst equation satis�es the
second. The equations

x + y = 3, x + 2y = 6

are independent since, of all the pairs (x, y) satisfying one equation,
only (0,3) satis�es the other.

In solving a system of *simultaneous equations, a dependent
equation may be ignored.

dependent variable See function; regression; variable.

depression, angle of See angle.

derangement A *permutation with no �xed points, where a �xed
point would be a point which is mapped to itself. So the
permutation p from a *set X to itself is a derangement if p(a) ( a for



every a ( X. The only derangements of the set {1,2,3} are the
permutations p1 and p2, where p1 maps 1, 2, 3 to 2, 3, 1 and p2 maps
1, 2, 3 to 3, 1, 2. The number dn of derangements of an n-element
set is given by d1 = 0, d2 = 1, and dn = (n – 1)[dn−1 + dn−2] for n
≥ 3.

de Rham cohomology See di�erential form.

derivative The rate of change of a *function with respect to the
independent variable. It is also known as the di�erential coe�cient or
the derived function. For a function y = f(x) the derivative can be
written as dy / dx, y′, Df(x), Dxy, or f′(x). For the function y = f(x),
a smallchange δx in x causes a change δy in y, where

δy = f(x + δx) − f(x)

and

The derivative of the function, dy/dx, is the limit (if it exists) of this
expression as δx



derivative As Q approaches P, the line PQ becomes the tangent at
P.

approaches zero. A particular interpretation of the derivative at a
point is that it is the slope of the tangent to the curve y = f(x) at the
point. Taking derivatives of derivatives gives derivatives of higher
order. For instance, the function y = x4 has a �rst derivative dy/dx
= 4x3. The second derivative, written as d2y/dx2, is obtained by
di�erentiating this to give 12x2; the third derivative, d3y/dx3, is 24x.
For n > 1, the nth derivative is denoted by dny/dxn. Other common
notations for the second, third, and nth derivatives are y′′, y′′′, y(n)

and f ′ (x), f ′′′ (x),f(n) (x).
When time t is the independent variable and y = f(t), a common

notation for the �rst and higher derivatives is ӱ, ӱ, etc.
A table of derivatives is given in the Appendix. See also

di�erentiation; partial derivative.

derived curve A curve obtained from an original curve by taking a
*derivative. For instance, the �rst derived curve of the curve y =
f(x) is the curve y = f′(x), where f′ is the �rst derivative of f. For
each point with a given abscissa on the second curve, the value of y
equals the slope of the �rst curve at that value of x. A curve
indicating the way distance changes with time for a moving body
would have a derived curve showing how velocity changes with
time. The second derived curve would be produced by taking the
second derivative of the function representing the original curve. In
this example, it would show how acceleration changes with time.

derived equation 1. An equation obtained by an algebraic
operation on a given equation, e.g. dividing both sides by the same
factor or adding terms to both sides. 2. An equation obtained by
*di�erentiation of both sides of a given equation.

derived function See derivative.

derived set The *set of all *limit points of a set. The derived set of a
set A is usually denoted by A′. See also closure.



derived units A set of units derived from a set of *base units by
multiplication or division without introducing numerical factors. For
example, in *SI units the derived unit of velocity (metre per second)
is obtained by dividing the base unit of length (metre) by the base
unit of time(second).

DES Abbreviation for Data Encryption Standard. A method of
*encryption that was recognized by US authorities as producing
ciphertext that was very di�cult to decipher and adopted as a
standard in 1976. It has now been superseded by *AES, which is
easier to implement and more secure.

Desargues, Girard (1591−1661) French mathematician and
engineer who, in a work on the conic sections published in 1639,
founded the discipline of *projective geometry. His work contained
many original ideas, including what is now known as *Desargues’s
theorem, but it remained largely ignored until the 19th century.

Desargues’s theorem A theorem of *pro-jective geometry: if the
lines joining corresponding vertices of two triangles pass through a
common point, then the points of intersection of corresponding
sides lie

Desargues’s theorem



on a straight line. The dual theorem (see duality) is: if the
corresponding sides of two triangles have points of intersection that
lie on a straight line, then the lines joining corresponding vertices
pass through a common point. The dual is also the *converse.

The theorem (as well as its converse) also holds in three
dimensions.

Descartes, René (1596−1650) French mathematician and
philosopher who in his La Géométrie (1637) introduced into
mathematics the fundamental principles and techniques of
coordinate geometry. He began with a solution to the problem of
the four-line locus, went on to show how to draw tangents to curves,
and, in the �nal part, dealt with the solution of equations of degree
higher than two, describing also the rule known as *Descartes’s rule
of signs. In the area of notation, it was Descartes who introduced the
system of indices (x2, x3, etc.) and who began to employ the �rst
letters of the alphabet to refer to known quantities and the last
letters to represent unknowns. The adjective Cartesian is derived
from his name.

Descartes’s rule of signs A rule for �nding the maximum number
of positive *roots for a *polynomial equation. It depends on the
number of variations in sign of the coe�cients of the polynomial, i.e.
on the number of times the sign changes when the polynomial is
written in descending order. Thus

x5 + x4 − 2x3 + x2 − 1 = 0

has three variations in sign. Descartes’s rule states that the number
of positive roots cannot be greater than the number of variations in
sign (although it may be less). In the case above, it cannot exceed
three. The rule can also be applied for negative roots by replacing x
by −x. Thus, in the example the equation becomes

−x5 + x4 + 2x3 + x2 − 1 = 0

for which there are two variations in sign.



describe In geometry, to draw an arc or circle.

descriptive statistics See statistics.

designed experiment See experimental design.

det See determinant.

determinant A sum of certain products of numbers (elements) taken
from a square array. It is commonly denoted by writing the array
with a vertical line on each side, as in

or as the ‘det’ function applied to a matrix, as in

Horizontal lines of elements are rows and vertical lines are columns.
The number of rows or columns is the order of the determinant (2 in
the example above). A diagonal of the determinant is a diagonal line
of elements. The one from top left to bottom right is the main or
principal diagonal (a, d in the example); the other is the main
antidiagonal (b, c in the example). The second-order determinant
above equals ad − bc. In general, the value of any determinant is
obtained by taking any row or column, forming the products ofeach
element and its *cofactor, and taking the algebraic sum of these
products. Commonly, the elements of the �rst row are used in
expanding determinants, as in the following example:



Various operations can be performed on determinants:
(1) If any two rows or columns are interchanged the value remains
the same but the sign of the determinant changes.
(2) Multiplication of the determinant by a quantity is equivalent to
multiplying all the elements of any row or column by that quantity.
(3) If all the elements of any row or column are multiplied by a
quantity and added to the corresponding elements ofanother row or
column, the value of the determinant is unchanged.
(4) Interchanging the rows and columns does not alter the value of
the determinant. If any two rows (or columns) are equal or have
proportional elements, the value of the determinant is zero.

Two determinants may also be multiplied, provided that they are
of the same order, by the same method as in the multiplication of
*matrices. The determinant of a square matrix A is written as |A|
ordet A.

See also alternant; circulant; Cramer’s rule; Jacobian;
Vandermonde determinant.

determination See coe�cient of determination.

deterministic model See model.



developable Describing a surface (e.g. a conical or cylindrical
surface) that can be rolled out �at on a plane without any stretching
or shrinking.

deviance (J.A. Nelder and R.W.M. Wed-derburn, 1972) A measure
for judging how well data �t a model using *maximum likelihood
estimates in *generalized linear models.

deviation See mean absolute deviation; standard deviation.

d.f. Abbreviation for *degrees of freedom; less frequently for
*distribution function. A preferred abbreviation for the latter is c.d.f.
(cumulative distribution function).

diabolic square See magic square.

diagonal 1. A line segment that joins any two nonadjacent vertices
of a *polygon.
2. A line segment that joins a vertex of a *polyhedron to another
vertex that is not in the same face.
3. A set of diagonal elements forming part of a square array, as in a
*determinant or square *matrix. The diagonal from top left to
bottom right is the main or principal diagonal; that from top right
to bottom left is the main antidiagonal.

diagonal argument An argument introduced into mathematics by
Cantor in 1891 to prove that the *cardinal number of the set of
*real numbers is greater than the cardinal number of the set of
natural numbers: that the real numbers are, in fact,
nondenumerable. Assume that the real numbers between 0 and 1
are *countable, and that they have been put into a *one-to-one
correspondence with the natural numbers:

1 ( 0.a11 a12 a13 …

2 ( 0.a21 a22 a23 …

3 ( 0.a31 a32 a33 …



Cantor went on to show how to construct a real number X between
0 and 1 that di�ers from those already matched with the natural
numbers. Thus, let X correspond to the nonterminating decimal

x = 0.x1 x2 x3 …

where xi = aii + 1, unless a = 9, in which case let xi = aii − 1.
Clearly, the diagonal number X cannot be matched with any of the
natural numbers. It follows that the set of real numbers is
nondenumerable.

Diagonal arguments of this kind have proved to be very powerful
and have been used by, amongst others, *Godel and *Turing.

diagonalizable matrix A square matrix that can be reduced to a
*diagonal matrix by a *similarity transformation, i.e. a square
matrix A for which X−1 AX is diagonal for some nonsingular matrix
X.

diagonally dominant matrix A square *matrix is diagonally
dominant by rows if, in each row, the absolute value of the element
on the main diagonal exceeds the sum of the absolute values of the
other elements. A matrix is diagonally dominant by columns if its
*transpose is diagonally dominant by rows. For example, the matrix

is diagonally dominant by rows, but not by columns. A diagonally
dominant matrix (by rows or columns) is necessarily a *non-singular
matrix.

diagonal matrix A square *matrix in which allelements
o�themaindiagonal arezero. A diagonal matrix in which all the
elements on the main diagonal are equal is a scalar matrix.



diagonal point See quadrangle.

diameter 1. A *chord through the centre of a circle or sphere.
2. (of a conic) A straight line that is the *locus of the mid-points of
any set of parallel chords of the conic. In the case of the ellipse and
hyperbola, the diameters pass through the centre of the conic.

dichotomous data See categorical data.

dichotomous variable See categorical variable.

dichotomy Division of a population or sample into two groups
based either on measurable variables (e.g. age under 18, age 18 or
over) or on attributes (e.g. male, female).

Dido’s problem The problem of determining the curve that encloses
the maximum area for a given curve perimeter. The solution is that
the curve is a circle. The problem is named after the mythological
Queen Dido, who, according to legend, was given as much land as
could be enclosed by a cow-hide. She cut the hide into narrow strips
and, in an early application of the calculus of variations, laid them
in a semicircle on the coastline, enclosing the land on which she
founded the city-state of Carthage.

di�erence 1. A value or expression obtained by subtraction.
2. Thedi�erenceoftwo *sets A and B (or the relative complement of B
in A), denoted by A\B or A − B, consists of the set of those
elements that are members of A but not members of B:

A\B = {x: x ( A & x ( B}

For example, if A is {1,2,3} and B is {1,2,4,5}, then A\B is {3}.

di�erence equation An equation involving *�nite di�erences. For
example, the problem of �nding a sequence y0, y1, y2,… such that
∆yn = n has the solution

yn =½n(n – 1)+k



where k is an arbitrary constant. An *initial condition y0 = 1gives k
= 1.

Since ∆yn = yn + 1 −yn, the above equation may be written as

yn + 1 − yn = n

Di�erence equations are often expressed in this way and are a type
of *recurrence relation. They occur naturally in this form for
*stochastic processes such as *random walks.

There are many analogies between di�erence equations and
*di�erential equations, both in form and in methods of solution.

di�erentiable A *real function f(x) is dif-ferentiable at x = a if the
limit

exists; the value of the limit is then denoted by f′(a). A real-valued
function of several variables is di�erentiable at a point if all its
*partial derivatives are de�ned at that point. The function is called
di�erentiable on a set A if it is di�erentiable at every point of A. It
can be shown that a di�er-entiable function is *continuous.

di�erential The di�erential dx of an independent *variable x is any
arbitrary change in the value of x, the corresponding di�erential dy
being de�ned as dy = f ′(x)dx, where y = f(x) and f′(x) is the
derivative of f(x). See also total di�erential.

di�erential calculus See calculus.

di�erential coe�cient See derivative.

di�erential equation A relationship between an independent
*variable x, a dependent variable y, and one or more of the
*derivatives of y with respect to x. A simple example of a
di�erential equation is



A solution of a di�erential equation is a function that, when
substituted for the dependent variable in the equation, leads to an
identity. Thus, for the equation above, y = ½ x2 is a solution since
substituting for dy/dx leads to x = x. Note that y = ½x2 + C,
where C is a constant, is also a solution, in this case the general
solution of the di�erential equation. A particular solution is one in
which the constant(s) have particular values, e.g. y = ½x2 + 5 (see
boundary conditions).

The order of a di�erential equation is the order of the highest
derivative. The degree of the equation is the power to which the
highest-order derivative is raised. Thus,

is a simple second-order equation of the �rst degree, and

is a second-order equation of the second degree.
An equation involving more than one independent variable and

*partial derivatives with respect to these variables is a partial
di�erential equation (PDE). An important example is *Laplace’s
equation. A di�erential equation which does not contain partial
derivatives is an ordinary di�erential equation (ODE).

Di�erential equations occur in numerous practical applications in
science and engineering. There are various cases with standard
methods of solution, as follows:
DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST
DEGREE

(1) Exact equations. Equations of the form



are exact if the left-hand side is the di�erential coe�cient of some
function f(x, y) with respect to x. Integration gives the solution f(x,
y) = C, where C is a constant. An exact equation is one in which the
total di�erential of a function f is equal to zero, i.e.

Thus an equation

A dx + B dy = 0

is exact if

(2) Variables separable. In this case, the equation can be put in the
form

Rearrangement gives

f(x) dx = −g(y) dy

Both sides can then be integrated.
(3) Homogeneous equations. These can be writtenintheform

The method of solution is to make the substitution y = vx, which
reduces the equation to one in v and x only.

In the resulting equation, the variables are separable.



(4) Equations reducible to homogeneous form. Equations of the form

can be handled by substitution. Let x = X + h and y = Y + k
where h and k are constants. Then,

If h and k are chosen to be values of x and y, respectively, that
satisfy the simultaneous equations

a1x + b1y + c1 = 0

a2x + b2y + c2 = 0

then the original equation becomes

which is homogeneous.
However, if a1/a2 = b1/b2 ( c1/c2, then h and k cannot be chosen

as above. In this case, let a2 = ma1 and u = a1x + b1y. The equation
becomes

and the variables u and x can be separated.
(5) Linear equations. Equations ofthe form



where P and Q are functions of x, or constants, are said to be linear
in y and can be solved by multiplying throughout by an *integrating
factor exp(∫ P dx). This makes the left-hand side of the equation an
exact di�erential:

where C is a constant.

DIFFERENTIAL EQUATIONS OF THE SECOND ORDER

(1) Equations ofthe form

are immediately solvable by integrating twice.
(2) Equations ofthe form

Here, the �rst integration is obtained by multiplying both sides of
the equation by 2dy/dx:

Integrating both sides with respect to x gives



where C is a constant.
The second integration is then accomplished by taking square

roots and then separating the variables.
(3) Linear equations with constant coe�cients of the form

This equation has a solution y = emx if am2 + bm + c = 0. This
auxiliary equation will have two roots which may be (a) real and
di�erent, (b) real and equal, or (c) imaginary. The cases are as
follows:
(a) Real and di�erent roots m and n. Here, emx and enx are
solutions of the di�erential equation and the general solution will
be

y = A emx + B enx

A and B being arbitrary constants.
(b) Real and equal roots m. Thegeneral solution is

y = emx(A + Bx)

(c) Imaginary roots of the form m = p ± iq. The general solution is

y = epx(A cos qx + B sin qx)

(4) Linear equations with constant coe�cients of the form

If y = u(x) is the general solution of the equation



and y = v(x) is any particular solution of the given equation,
obtained for example by inspection, it can easily be proved that the
general solution of the given equation is

y = u(x) + v(x)

It follows that the general solution ofthe equation is made up of
the sum of the two parts, one being the general solution ofthe allied
equation

known as the complementary function, and the other being any
particular solution of the given equation, known as a particular
integral. The complementary function can be found by the methods
given above. A particular integral of the equation

is found in one of the following ways.
If f(x) is a polynomial of degree n, a particular integral can be

obtained by substituting

y = a0 + a1x + a2x2 + … + anxn

and determining the constants a0, a1, …, an by equating coe�cients.
If f(x)=kemx, a particular integral can be found by substituting y

= pemx, p being determined by equating coe�cients. If the function
emx occurs in the complementary function p will be indeterminate,
and it will be necessary to use the substitution y = pxemx or
possibly y = px2 emx.

If f(x) = A cos nx or A sin nx, the substitution y = p cos nx + q
sin nx gives a particular integral. If functions of cos nx and sin nx
occur in the complementary function, the substitution becomes



y = x(p cos nx + q sin nx)

A particular integral can be found for a wide range of functions
using the method of *Laplace transforms. A particular integral can
also be found by using methods involving the *di�erential operator
D, meaning ‘di�erentiate with respect to the independent variable
involved’, and its inverse.

If the di�erential equation is of the form F(D)y = f(x) then a
particular integral is

See also Bernoulli’s equation; Bessel’s equation; Clairaut’s equation;
Euler’s equations; hypergeometric di�erential equation; Korteweg-
de Vries equation; Laguerre’s di�erential equation; Laplace’s
equation; Legendre’s di�erential equation; Mathieu’s equation;
Maxwell’s equations; Navier-Stokes equations; van der Pol’s
equation; wave equation.
di�erential form A di�erential form ω is an object which is de�ned
on a di�erential *manifold M and which can be integrated over a k-
dimensional set (as a *multiple integral), but does not depend on a
particular choice of coordinate system. For example, a 1-
dimensional form is (locally) the di�erential of a di�erentiable real-
valued function, but it is not necessarily the di�erential of a (single-
valued) function. Indeed, dθ is not the di�erential of any single-
valued di�erentiable function on the circle

{(cosθ, sinθ): 0 ≤ θ ≤ 2π}

The theory of di�erential forms allows the uni�cation and
generalization of a number of theorems of several-variable calculus.
For example, the generalized Stokes’s theorem



(where ∂K denotes the boundary of the *domain
K)includes*Green’stheorem, *Stokes’s theorem, and the
*fundamental theorem of calculus as special cases. A more detailed
analysis involves the study of the *homology groups of the manifold
M; the de Rham cohomology spaces of M (G. de Rham, 1931) can be
constructed using the set of all the di�erential forms on M, and are
closely related to the *co-homology groups of M.

di�erential geometry The branch of geometry concerned with the
intrinsic properties of curves and surfaces as found by di�erential
*calculus. Gauss, in 1827, de�ned the total (or Gaussian) *curvature
of a surface at a point and gave formulae for this in terms of the
partial derivatives using di�erent coordinate systems. This was later
extended by Riemann (see Riemannian geometry) to a general
di�erential geometry of any type of space in any number of
dimensions.
di�erential manifold See manifold.

di�erential operator A symbol or letter indicating
that*di�erentiationis to be performed, written as D or d/dx.
Properties of thedi�erential operatorincludethefollowing:

In general, any nonconstant polynomial in D is a di�erential
operator. For example, (D3 + 2D + 6)y is d3y/dx3 + 2dy/dx + 6y.

di�erentiation The process of obtaining the *derivative of a
*function by considering small changes in the function and in the



independent variable, and �nding the limiting value of the ratio of
such changes. If y = x2, for a small change δx in x,

In general, if y = xn, then dy/dx = nxn−1.
Methods of di�erentiation include the use of the *chain rule,

*product rule, and *quotient rule, and *implicit di�erentiation.
A table of derivatives is given in the Appendix. See also partial

di�erentiation; numerical di�erentiation.

Di�e-Hellman-Merkle key exchange (B.W. Di�e, M.E. Hellman
and R.C. Merkle, 976) A safe method of exchanging a *key. To
illustrate it, suppose that AliceandBobwishtocommunicate securely.
They decide to use the multiplicative *cyclic group G of order p − 1
consisting of the nonzero elements of a *�nite �eld of order p, and
choose a *generator g for this group. Alice chooses an integer a and
calculates A = ga modulo p; she sends this to Bob. Bob chooses an
integer b and sends B = gb modulo p to Alice. Both can compute the
key K = gab modulo p since Alice can do K = Ba andBob cando K
= Ab. An eavesdropper may know p, g, A, and B but cannot
calculate K without solving the *discrete logarithm problem. If p is a
large prime the problem is very di�cult to solve, so K canbe used as
the basis of a private key for Alice and Bob.

digit A symbol used in writing numbers. For the decimal *number
system ten digits are used: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. See also
duodecimal system; exadecimal system.



digital root See casting out nines.

digraph See graph.

dihedral The con�guration formed by two half-planes meeting at a
common edge. The dihedral angle is the angle between these half-
planes; i.e. the angle between two half-lines, one in each plane,
drawn perpendicular to the edge from a common point.

dihedral group A *group generated by two elements, say r and t,
thatsatisfy r2 = tn = (tr)2 = I, where n is an *integer and is at least
2, and I is the *identity element. It is denoted by Dn and contains 2n
elements. When n ≥ 3 it can be regarded as the group ofall
rotational *symmetries of the solid �gure produced by joining the
bases of two identical regular *pyramids. Alternatively, it can be
regarded as the group of all symmetries of a regular polygon with n
sides. See cyclic group; generator.

Dijkstra’s algorithm See network analysis.

dilatation (dilation) A transformation that maps lines onto parallel
lines. It is either a *translation or an *enlargement (a central
dilatation).

dilation 1. The increase in volume per unit volume of a material.
2. See time dilation.

dim Dimension. See vector space.

dimension 1. Of space, the number of parameters needed to specify
the position ofa particular point. Space has n dimensions when n
coordinates are required: points in one-dimensional space lie on a
curve; points in two-dimensional space lie on a surface; points in
three-dimensional space lie within a volume. Space is normally
considered as three-dimensional. The dimensions of an object in
three-dimensional space are given in terms of its volume.
2. The size of a *matrix expressed as m × n, where m is the number
of rows and n the number of columns. A square matrix of dimension
n × n is sometimes said to be ‘of dimension n’.



3. The number of elements in a *basis of a vector space.
4. (of a manifold) See manifold.
5. (of a simplex) See combinatorial topology.
6. The power of a fundamental *physical quantity, such as length,
time, or mass, that is used in the description of the measure of any
physical quantity. The physical quantity is represented by the
product of particular powers of one or more fundamental quantities,
without any numerical factor; this is known as its dimensional
formula. (The same system is used in de�ning a coherent system of
units, where the units of physical quantities can be derived from
fundamental units such as the metre, second, and kilogram.)

The dimensional formulae for mechanical quantities are usually
expressed in terms of powers of length L, time T, and mass M.
Although it is possible to give the dimensional formulae for non-
mechanical (e.g. electrical) quantities in terms of these three
quantities, fractional exponents are involved. However, an
additional fundamental quantity can usually be introduced: current,
for example, can be expressed as QT−1, where Q is charge.

When two physical quantities are multiplied or divided, the
exponents of their dimensional formulae are added or subtracted as
appropriate. For two physical quantities to be added or subtracted,
however, they must have the same dimensional formula.
Furthermore, the arguments of trigonometric, exponential, and
logarithmic functions must be dimensionless. It follows that in an
equation involving physical quantities, the two sides of the equation
must have the same dimensions.

See also dimensional analysis.

dimensional analysis A technique that makes use of the
*dimensions of *physical quantities. It provides a means of checking
equations that involve physical quantities: the terms on each side of
an equation should have the same dimensional formulae; any
numerical factors in the equation would have to be ignored.
Equations can also be derived from a study of the dimensions of the
physical quantities likely to be involved; again, numerical factors



could not be obtained from such analysis. The technique can thus be
used to obtain information about a system before a full analysis is
undertaken.

Diocles (c.200 BC) Greek mathematician who wrote a work on
conics, known only from extracts or from a much later dubious
Arabic translation. He is reported to have invented the cissoid curve
to solve the problem of duplicating the cube.
Diophantine analysis The study of *Diophantine equations.

Diophantine equation Any equation, usually in several unknowns,
that is studied in a problem whose solutions are required to be
integers, or sometimes more general *rational numbers. Examples of
such problems are:
(1) To �nd all integers x and y that satisfy 11x + 3y = 1.
(2) To �nd all rational numbers x, y, and z such that x3 + y3 = z3.
Problems of this type are named after Diophantus of Alexandria,
who investigated many similar questions in his book Arithmetica.

*Hilbert’s 10th problem (1900) was to devise an *algorithm
which would determine whether any given Diophantine equation is
solvable in rational numbers. In 1970, Y. Matyasevic proved that no
such algorithm can exist.

Diophantine problem A problem whose solutions are required to
be integers or *rational numbers. See Diophantine equation.

Diophantus of Alexandria (c. AD 250) Greek mathematician and
author of the Arithmetica, of which ten of the original thirteen books
are extant. Over 180 problems are considered, some of which are
surprisingly hard, in the �eld of what have since become known as
*Diophantine equations.

Dirac delta function (delta function) A *generalized function,
denoted by δa cf. p191, �rst used by the English physicist Paul
Adrien Maurice Dirac (1902–84).



directed angle An angle measured from an initial line to a �nal
line. If the sense of rotation is anticlockwise, the angle is positive in
sign; if the sense is clockwise the angle is negative.

directed graph See graph.

directed line A line along which one direction is speci�ed as
positive with the opposite direction speci�ed as negative.

directed number (signed number) A number with a positive or
negative sign, indicating that it is measured in a certain direction
from the origin along a line.

directional data (angular data, circular data) Data consisting
essentially of angular bearings from a point. Such data may be
represented by points on the circumference of a circle having that
initial point as centre.

Directional data have some characteristics that di�er from those
of linear data. For example, if angles are measured over the range 0°
to 360° and observed values are 1, 5, 10, 350, 355, and 359, then
the linear counterpart *mean and *median are both 180°. However,
if these angles are measured with the same zero, but with a range
from −180 ° to 180°, the readings become 1, 5, 10, −10, −5, and
−1, giving a mean or median zero. It is clear from diagram (a) that
the latter is a more sensible interpretation of centrality.

directional data
If points are distributed on the circumference of a circle and the

probability that any point lies on any arc of �xed length is the same,
there is a uniform directional distribution. A typical sample of 10
from this distribution is illustrated in diagram (b). There is no
unique mean direction in this case.



Often one is interested in whether directional data are clustered in
some incomplete arc on the circle, and several distributions,
including the wrapped Cauchy distribution, may then be relevant.
Non-parametric methods exist for testing the hypothesis of a
uniform distribution against an alternative of clustering.

Any data having a periodic pattern may be expressed in a circular
representation, for example the distribution of births over time of
day on a 24-hour clock, or suicides on dates throughout a year on a
circular scale from 1 January to 31 December.

direction angles For a line in a three-dimensional *coordinate
system, the direction angles are the three positive angles the line
makes with the three coordinate axes (usually denoted by α, β, and
γ for the x-, y-, and z-axes, respectively). The cosines of these angles
are the direction cosines of the line, l, m, and n. The angle θ between
two lines with direction cosines l1, m1, n1 and l2, m2, n2 is given by

cos θ = l112 + m1 m2 + n1 n2

Direction ratios (or direction numbers) are numbers in the ratio l:m:n.
Note that directionangles(cosinesorratios)arenot independent; if two
are known, the third is �xed. The direction cosines are related by

l2 + m2 + n2 = 1

direction angles of a line.



direction cosines See direction angles.

direction ratios See direction angles.

direct iteration See iteration.

directly congruent See congruent.

directly proportional See variation.

director circle A circle that is the *locus of the point of intersection
of pairs of perpendicular *tangents to an *ellipse or *hyperbola.

direct proof A method of proof in which conclusions are derived
from *axioms and established laws in accordance with accepted
de�nitions and rules of *infer-ence. Thus, assuming that ‘greater
than’ is a *transitive relation, and the two premises 12 > 10 and 10
> 8 hold, then we can directly infer the conclusion 12 > 8.
Compare indirect proof.

directrix (plural directrices) 1. See conic. 2. A curve de�ning the
*generators of a *ruled surface. See also cone; conical surface;
cylinder; cylindrical surface.

direct trigonometric function A*trigono-metric function such as
sine or cosine, as distinguished from an *inverse trigonometric
function.

Dirichlet, Peter Gustav Lejeune (1805−59) German
mathematician who �rst formulated the modern notion of a
function. In number theory he demonstrated in 1825 that *Fermat’s
last theorem held for n = 5 and later proved what is now known as
*Dirichlet’s theorem. In other work. Dirichlet dealt with boundary
problems and with Fourier series, in which latter �eld he was able
to de�ne (1829) the conditions su�cient for convergence.
Dirichlet’s principle See pigeonhole principle.

Dirichlet’s test A test for *convergence of a *series. Let Σ an be an
in�nite series whose *partial sums



sn = a1 + a2 + + an

are bounded, i.e. there is a positive number H such that

|Sn| < H for all n

If the numbers b1, b2,…, bn,… constitute a monotonic *decreasing
sequence that approaches zero, then the in�nite series

a1b1 + a2b2 + + anbn +

converges. The test can also be used to determine whether a
functional series has *uniform convergence. See also Abel’s test.

Dirichlet’s theorem The theorem that in every *arithmetic
progression a, a + d, a + 2d,…, where a and d are *relatively
prime, there are an in�nite number of primes.

disc (disk) The set of all points lying on a circle or within it is a disc
or closed disc. The set of all points lying within the circle is an open
disc. See ball.

disconnected graph See walk.

disconnected set A*set A is disconnected if there exist disjoint
nonempty subsets of A (X and Y) such that X ∪ Y = A, and no
*limit point of X is a member of Y and no limit point of Y is a
member of X. Compare connected set.

disconnected space A *topological space S is disconnected if there
exist disjoint, nonempty open sets of S (X and Y) such that X ∪ Y =
S. Compare connected space.

discontinuity A point in the *domain ofa *function at which the
function is discontinuous. A real-valued function f has a jump
discontinuity at x = c if the right-hand and left-hand limits at x = c
exist but are not equal; f(c) may equal one or neither of these limits.
For example,



f(x) = 0 for x > 1

f(x) = 1 for x < 1

f(x) = ½ for x = 1

has a jump discontinuity at x = 1.
The function f has a removable discontinuity at c if the left- and

right-hand limits at x = c are equal to each other but unequal to
f(c). The function f can be made continuous by rede�ning f(c) to
have the same value as the limits. For example,

f(x)= x sin(1/x) for x ( 0

f(x) = 1 for x = 0

has a removable discontinuity at x = 0, which can be removed by
letting f(0)=0. Removable and jump discontinuities are simple
discontinuities.

A function f may not have a �nite left-or right-hand limit at x =
c, or the function may be unde�ned at x = c. Thus f(x) = 1/(x −
1) has a discontinuity at x = 1 as it is unde�ned there. If f remains
�nite at x = c it is said to have a �nite discontinuity at that point.
For example, f(x) = cos(1/x) has a nonremovable �nite
discontinuity at x = 0. If, however, |f(x)| becomes arbitrarily large
near x = c it is said to have an in�nite discontinuity at that point. For
example, f(x) = 1/x has an in�nite discontinuity at x = 0.

See also discontinuous function.

discontinuous function A function that is not a *continuous
function. A function that is not continuous at x = c is said to be
discontinuous at x = c and discontinuous on any interval containing
c, if the *domain and *codomain are sets of real numbers. See also
discontinuity.

discrete distribution See distribution.



discrete Fourier transform A technique similar to the Fourier
transform that is used to study discrete phenomena. It can be used
to speed up computer calculations. If x1, x2,…, xn is a sequence of
complex numbers, its discrete Fourier transform is the sequence x1,
x2, …, xn, where

and its inverse is

Evaluation directly from these formulae requires a multiple of n2

operations. The fast Fourier transform is a way of evaluating the
discrete Fourier transform in a number of operations proportional to
n ln n.

discrete logarithm problem If g is a *gen-erator of a *cyclic group
G (often the multiplicative group of nonzero elements of a *�nite
�eld), the discrete logarithm problem is to solve the equation y =
gx for the unknown integer x. For large cyclic groups this is
regarded as a very di�cult problem. It is analogous to the problem
of solving y = ex where x and y are real numbers and whose
solution is x = ln y.

discrete random variable See random variable.

discrete set A *set such as the set of *natural numbers is said to be
discrete in the sense that there are elements of the set between
which there are no other natural numbers. The set of rational
numbers is not discrete since between any two members there is
always at least one other rational number. In general, a set A is
discrete if every point of A has a *neighbourhood containing no
other point of A. Compare dense set.



discrete space A topological space in which every subset is an
*open set.
discriminant (of a polynomial equation) A value obtained by taking
the di�erences of all possible pairs of the *roots of an equation,
squaring each di�erence, and taking the product of these squares.
For example, if an equation has three roots, r1, r2, and r3, the
discriminant is

(r1 − r2)2 (r2 − r3)2 (r3 − r1)2

The discriminant can be found from the coe�cients of the equation
and can give information on the form of the roots. For instance, the
quadratic equation with real coe�cients

ax2 + bx + c = 0

has a discriminant b2 − 4ac. If this is zero, the roots are real and
equal; if positive, the roots are real and unequal; if negative, the
roots are imaginary. See also cubic; conic.

discriminant function A function that assigns an individual to one
of two or more *populations on the basis of data for that individual.
The function is based on measurements on individuals for whom the
population to which each belongs is known. It is often linear, and is
chosen to minimize the probabilities or costs of mis-classi�cation.

disjoint Describing *sets that have no common members. Two sets
are disjoint if their *intersectionis empty. For example, the sets A =
{1,2} and B = {4,5} are disjoint sets.

disjunct See disjunction.

disjunction (alternation) A sentence of the form ‘A or B’, often
symbolized in a formal language as ‘A ⅴ B’ (see or). ‘A’and ‘B’ are
called disjuncts. If a disjunction ‘A ⅴ B’is read as ‘A or B but not both’
then the disjunction is said to be exclusive; if ‘A or B’ is read as ‘A or
B or both’ then the disjunction is said to be inclusive. Ingeneral, it is



the inclusive sense that is implied by logicians in using the symbol
ⅴ.
disjunctive normal form A formula is in disjunctive normal form if
it consists of a *disjunction of Conjunctions, with each conjunction
formed only from *atomic sentences or their *negations. It can be
shown that every *w� of the propositional calculus can be expressed
as an equivalent formula in disjunctive normal form. Thus the
expression (p & q & r & ˜r) ⅴ (q & ˜q) ⅴ (q & p & ˜p) is in disjunctive
normal form. It is thus possible to see if any formula is a
*contradiction of the propositional calculus by noting, as in the case
above, that each disjunction contains both an atomic sentence and
its negation. Compare conjunctive normal form.

disjunctive syllogism See implication.

dispersion The spread of a *random variable or a set of
observations. Widely used measures of spread are *variance,
*standard deviation, *range, *interquartile range, and semi-
interquartile range. For random variables the range may be in�nite.
For random samples, the sample equivalents of their population
counterparts may be used as *plug-in estimators, but sometimes
modi�ed estimators are preferred. For example,

is an *unbiased estimator of population variance based on a random
sample of n observations x1, x2,…, xn, but the plug-in estimator,
which is the sample variance with divisor n in place of n − 1, is a
biased estimator.

dissection See partition.

dissection proof A proof that involves cutting a geometric object
into a �nite number of pieces. For example, one can show that two
polygons have the same area if one of them can be broken into
�nitely many polygons that can be reassembled to form the other. In
particular, a triangle can be dissected into three pieces which can be



rearranged to form a rectangle; thus proving a formula for the area
of a triangle (see diagram).

dissection proof

In 1807, the Scottish mathematician William Wallace formulated
the theorem that if two planar rectilinear polygons have the same
area then one of them can be dissected into pieces that can be
reassembled to form the other. The corresponding problem in three
dimensions was one of Hilbert’s problems and the German
mathematician Max Dehn showed in 1901 that there are two
polyhedra of the same volume for which it is impossible to
reconstruct one from the other by dissection. See also
equidecomposable.

distance 1. The length of a line segment between two points, lines,
planes, etc. For example, the distance between two parallel lines or
planes is the length of a line segment that is perpendicular to both.
The distance of a point from a line, curve, plane, or surface is the
length of the shortest line segment joining the point to the line,
curve, plane, or surface.
2. (angular distance) The distance between two points as measured
by the angle between two lines through the points and through a
common reference point. For instance, the angular distance between
points A and B with respect to point P is the angle APB.
3. (arc distance) The distance between two points on a curve as
measured by the *length of the arc joining them.

distance function See metric.



distribution A *random variable that takes only a �nite or
countably in�nite set of values has a discrete distribution. More
formally, for a random variable X taking a �nite or countably
in�nite set of values xi, the discrete distribution of X is the set of
pairs (xi, Pr(X = xi)). Inmostpractical cases the values taken are
non-negative integers. The *binomial distribution takes integral
values in [0, n]. For the *Poisson distribution, any non-negative
integral value is possible.

A random variable that may take any value in a �nite or in�nite
interval has a continuous distribution. More formally, for a random
variable X taking a value between x and x + δx with probability
f(x)δx, the continuous distribution of X is the set of pairs (x,f(x)).
The *normal and *gamma distributions are well-known examples.

See also Bernoulli distribution; bivariate distribution; Cauchy
distribution; chi-squared distribution; extreme value distribution; F-
distribution; geometric distribution; hypergeometric distribution;
logarithmic distribution; multinomial distribution; multivariate
distribution; negative binomial distribution; Pareto distribution;
Pearson distributions; t-distribution; triangular distribution; uniform
distribution; Weibull distribution.

distribution-free methods Methods for testing hypotheses or
setting up *con�dence intervals that include many *non-parametric
methods. A distribution-free method for making *inferences from a
sample does not depend on the form of the underlying population
distribution; there may be requirements such as continuity or
symmetry, but it is not assumed that the sample comes from any
speci�c family such as that of the normal or exponential
distributions.

The methods often depend only on the ranks of observations, and
are therefore particularly useful when only the order of data is
known but not precise values. Many of the tests have analogues in
which it is assumed that samples are from a given family of
distributions, and when that assumption is valid the distribution-
free tests are generally less e�cient. However, a distribution-free



test is often more e�cient than a parametric test when assumptions
for the latter break down.

Many sophisticated distribution-free methods once presented
formidable computational problems, even for small samples, but
these have been overcome by modern computer software
developments. For larger samples the *central limit theorem allows
the development of approximations based on the *normal
distribution.

See coe�cient of concordance; correlation coe�cient; Friedman’s
test; Jonck-heere-Terpstra test; Kolmogorov-Smir-nov tests; Kruskal-
Wallis test; median test; Page test; permutation test; sign test;
Wilcoxon rank sum test; Wilcoxon signed rank test.

distribution function If X is a *random variable its (cumulative)
distribution function is

F(x) = Pr(X ≤ x)

For discrete variables,

and for continuous variables,

where f(t) is the frequency function. F(x) is *monotonic increasing,
and F(x) → 1 as × → ∞. Also, F(x)→0 as x→ − ∞. The de�nition
extends to *multivariate distributions. For a *bivariate distribution,

F(x, y) = Pr(X ≤ x, Y ≤ y)

distributive Describing an operation on a combination in which the
result is the same as that obtained by performing the operation on



the individual members of the combination, and then combining
them. For example,

2 × (3 + 6) = (2 × 3) + (2 × 6)

is an example of the distributive law of arithmetic (or algebra), i.e.

a × (b + c) = (a × b) + (a × c)

In this case it is said that ‘multiplication is distributive over
addition’. Note that addition is not distributive over multiplication:

2 + (3 × 6) ( (2 + 3) × (2 + 6)

In the algebra of sets, intersection (∩) is distributive over union
(∪). Thus for sets A, B, and C,

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Also union is distributive over intersection, i.e.

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

See also Boolean algebra; �eld.

div See divergence.

divergence 1. A property of a *divergent series or *divergent
sequence.
2. (div) For a vector function of position V(r) the divergence of V,
written as div V, is given by ∇.V, where ∇ is the operator *del. Thus

and

r = xi + yj + zk



The divergence is useful in certain physical applications. For
example, ρ div v gives the rate of loss of mass of �uid per unit
volume, ρ being the density and v the velocity; and div D gives
electric charge density, where D is electric displacement. The
divergence of a vector is a scalar.

See curl; gradient; Green’s theorem.

divergence theorem See Gauss’s theorem.

divergent integral An *in�nite integral that has no de�nite *limit.

divergent product An *in�nite product that has a value of zero or
in�nity.

divergent sequence An in�nite *sequence that has no *limit. A
divergent sequence is either properly divergent or oscillating
depending on whether it tends to in�nity or oscillates in value. See
also divergent series.

divergent series An in�nite *series

a1 + a2 + a3 + … + an + …

whose *partial sums

sn = a1 + a2 + … + an

do not approach a limit as the number of terms, n, becomes
increasingly large (compare convergent series).

A series is properly divergent if sn tends to in�nity as n tends to
in�nity, i.e. if sn → + ∞ or sn → − ∞ as n → ∞. An example is the
series 1 + 2 + 3 + 4 + …. If a divergent series is not properly
divergent it must be an oscillating series, i.e. sn oscillates in value. An
example is the series

∑ (−1)n = −1 + 1 − 1 + 1 − …

for which



sn = 0 when n is even

sn = −1 when n is odd

There are several methods by which a sum can be attributed to a
divergent series.

divide To perform a division; to split into two or more parts.

divided di�erence interpolation formula A formula for
*interpolation that makes use of divided di�erences; it is also called
the Newton divided di�erence interpolation formula. If a function y =
f(x) has known values y0, y1,…, yn at points x0, x,…, xn, and a value
y′ is to be estimated at x′, the formula is

y′ = a0 + a1(x′ − x0)

+ a2(x′ − x0)(x′ − x1) + …

+ an(x′ − x0)(x′ − x1) …

(x′ − xn − 1)

The numbers ak are divided di�erences, given by ak = f[x0, x1,…,
xk], where the divided di�erences are de�ned recursively by f[xk]
= f(xk) and

Thus, for example,

The divided di�erences can be computed by forming a triangular
divided di�erence table in which each entry is computed from the



ones immediately west and north-west of it using the formula above.
For n = 3, the table has the form
x0 f[x0]
x1 f[x1] f[x0, x1]
x2 f[x2] f[x1, x2] f[x0, x1, x2]
x3 f[x3] f[x2, x3] f[x1, x2, x3] f[x0, x1, x2, x3]

dividend A number or *polynomial that is divided by another
number or polynomial. See division.

divisible Capable of being divided by a number or *polynomial an
exact number oftimes(withzero remainder). Simpletests exist for the
divisibility ofnumbers. Thus a number is divisible by:
2 if it is even
3 if the sum of the digits is divisible by 3
4 if the last two digits give a number divisible by 4
5 if the last digit is 5 or 0
6 if the number is even and divisible by 3
8 if the last three digits form a number divisible by 8
9 if the sum of the digits is divisible by 9
10 if the last digit is 0
11 if the sum of the digits in odd-numbered positions equals the sum
of those in even-numbered positions, or if the two sums di�er by a
multiple of 11.
See also factor theorem

division The inverse operation to multiplication; the operation of
�nding − for two numbers or *polynomials − a third number or
polynomial (the quotient) such that the �rst number or polynomial is
equal to the quotient multiplied by the second. The operation is
written as

q = a ÷ b



where q is the quotient, a is the dividend, and b is the divisor. Other
common methods of indicating a quotient are a/b, a/b, and a : b.

The division algorithm is applied to integers and states that for any
integers a and b there are two other integers q and r such that

a = bq + r

where |r| < |b|. Here, q is the quotient (sometimes called the partial
quotient if r ( 0) and r is the remainder. The algorithm also applies to
polynomials, for which it states that for any polynomials A(x) and
B(x), there are polynomials Q(x) and R(x) such that

A(x) = Q(x) B(x) + R(x)

where the *degree of R(x) is less than the degree of B(x).

division algebra See algebra.

division algorithm See division.

division in a given ratio 1. Division of a quantity into parts which
are in a certain ratio to one another. For instance, 100 divides in the
ratio 2: 3 into parts of 40 and 60, while 150 divides in the ratio
1:2:3 into parts of 25, 50, and 75.
2. Given three collinear points A, B, and P, then P divides AB in the
ratio m : n if AP : PB = m : n. The lengths are *directed numbers, so
that if P lies between A and B, the ratio is positive and P divides AB
internally in the ratio m : n. When P is not between A and B, the
ratio is negative and P is said to divide AB externally in the ratio |m|
: |n|

If A, B, and P have position vectors a, b, and r, then

See also cross-ratio; golden section.



division modulo n The process of dividing an integer b by an
integer a modulo n. This means �nding an integer q such that aq ( b
(mod n), and is possible only with a q that is unique modulo n if a
and n are relatively prime. For example, 7/2 ( 8 (mod 9) since 2 ×
8 ( 7 (mod 9), 1/3 ( 6 (mod 17) and 4/5 ( 8 (mod 12).

The concept can be extended to include the possibility of dividing
an integral polynomial f(x) (one with integral coe�cients) by
another integral polynomial g(x) modulo n. As above, this amounts
to �nding a polynomial h(x) such that

f(x) : g(x)h(x) (mod n)

where the congruence means that the respective coe�cients of f(x)
and g(x)h(x) are congruent modulo n. For example, modulo 3, x3 −
x2 − 1 is divisible by x + 1 since

(x + 1)(x2 + × −1) = x3 + 2x2 − 1

=(x3 − x2 − 1) (mod3)

and modulo 11 the same polynomial x3 − x2 − 1 is not divisible by
x + 1 but is divisible by x − 5 since

(x − 5)(x2 + 4x − 2) = x3 − x2 − 22x

+ 10 ( (x3 − x2 − 1) (mod 11)

See also congruence modulo n; factor modulo n.

division ring (skew �eld) A *set D with operations of addition ( +
) and multiplication ( × ) that is a*ring and that also has an identity
element 1 (i.e. 1 × a = a × 1 = a for each a in D) and in which
every nonzero element b has a corresponding inverse element b−1

(so that b−1 × b = b × b−1 = 1). The axioms for a division ring
are just those for a �eld with the single exception that
multiplication need not always be *commutative (i.e. there may be
elements a and b in D for which a × b ≠ ( b × a).



division sign The sign ÷ denoting *division. It �rst appeared in
1659 in an algebra by Johann Heinrich Rahn. The alternative sign /,
or solidus, is often used to separate the *numerator and
*denominator of a fraction, as in 2/3. Its use was recommended by
William de Morgan in 1845 to simplify the printing of fractions. See
also multiplication sign.

divisor 1. See division.
2. An integer or *polynomial that divides another integer or
polynomial exactly. The notation m | n denotes that the integer m is
a divisor of another integer n, i.e. that n is *divisible by m. See
factor.

divisor function The *function τ(n) (or sometimes d(n)) that gives
the number of positive *divisors of a *natural number n. For
example, τ(6) = 4. If n has the *prime factorization , then

τ(n) = (1 + a1)(1 + a2) … (1 + ar)

divisor of zero An element a in a *ring is a left divisor of zero if
there is an element b ( 0 in the ring such that ab = 0. The element a
is a right divisor of zero if there is an element c ( 0 such that ca = 0.
It is just called a divisor of zero (or a zero divisor) if it is both a left
and a right divisor of zero. If the ring is *commutative, any left
divisor is also a right divisor and vice versa. An element is a proper
divisor of zero if it is a divisor of zero and is not itself zero. See also
integral domain.

dodecagon A *polygon that has 12 sides.

dodecahedron (plural dodecahedra) A *polyhedron that has 12
faces. A regular dodecahedron, in which all the faces are regular
pentagons, is one of the �ve regular polyhedra.

d.o.f. Abbreviation for *degrees of freedom.

domain 1. (of a function) The set of values that can be assumed by
the independent variable of a *function. Thus, if for every number



in 0 ≤ x ≤ 2

y = f(x)= x3

then the domain of f is the closed interval [0, 2]. The *range is [0,
8].
2. See integral domain.
3. (universe of discourse) The entities referred to by a language.
More formally, the set of entities assigned as semantic values to the
nonlogical expressions in the intepretation of a *formal language.
See interpretation; semantics.
4. See region.

dot product See scalar product.

double-angle formulae Formulae in plane trigonometry that give
trigonometric functions of double angles in terms of functions of the
angles, as follows:

See also multiple-angle formulae.

double cusp See cusp.

double integral A *multiple integral involving two successive
integrations. See area.

double negation (law of) The *theorem of the *propositional
calculus stating that

A ≡ ˜˜A

(A is equivalent to not not A). It follows from noncontradiction (not
both A and not A) and the law of the excluded middle (either A or



not A).

double point A *singular point on a curve at which the curve
intersects itself so that there are two *tangents at the point. The
tangents may be either coincident or non-coincident (in which case
the point is a *node or crunode). See also cusp.

double root See multiple root.

double tangent 1. A *tangent that touches a curve at two separate
points; a bitangent. 2. A pair of coincident *tangents, as at a *cusp.

drag Resistance to the movement of a body through a �uid such as
water or air; the �uid is set in motion by the moving body and the
body thus experiences a *force opposing its motion. The amount of
drag depends on the velocity of the body, its shape and size, and the
density and viscosity of the �uid. There is no adequate formula
giving the drag in every situation. One formula, used in
aerodynamics, gives the drag force as ½kρ Av2. A is a representative
area of the body, v its speed, and ρ the �uid density; the coe�cient
k depends on the conditions and is a function of the Reynolds
number, vl/v, where l is a representative length of the body and ν is
the coe�cient of kinematic viscosity. Objects may be streamlined to
reduce drag. Compare lift.

dual code The dual code to a *linear code C of length n is the set of
all *binary strings b1b2… bn such that a1b1 + a2b2 + … + anbn = 0
modulo 2 for all *codewords a1 a2… an in C. The dual of a linear
code C is also a linear code.

dual game See game theory.

duality 1. The connection between lines and points in plane
geometry (or between planes and points in solid geometry). A line
can be de�ned by two points, and a point by the intersection of two
lines; in this sense, the line and the point are said to be dual elements
in plane geometry. Similarly, connection of points by lines and
intersection of lines to give points are dual operations. A statement in



which the name of each element is replaced by its dual element and
the description of each operation is replaced by that of its dual
operation leads to a dual statement (or dual theorem). The principle of
duality in *projective geometry is that if a theorem is true, its dual is
also true. See also Desargues’s theorem; Pascal’s theorem.
2. See Boolean algebra.

dual theorem, elements, etc. See duality.

dummy activity See critical path analysis.

dummy variable A quantity written in a mathematical expression
in the form of a variable, although it represents a constant. Dummy
variables typically take the value 1 or 0. For example, in statistics
the *regression equation with two independent or *explanatory
variables x1 and x2 is often written as y = β0 + β1x1 + β2x2, but it is
sometimes more convenient to write it as y = β0x0 + β1x1 + β2x2,
where x0 is a dummy variable always equal to 1. If we also wanted
to consider the regression model in which β0 = 0, this can be
accommodated by setting the dummy variable x0 = 0. The term is
sometimes used when a variable characterizes attributes such as the
presence of a property or characteristic (x = 1) or the absence of it
(x = 0), but this usage is to be discouraged, for here x is what is
properly called a *binary variable.

dunce hat The *topological space obtained from an equilateral
triangle ABC by identifying together the three edges AB, AC, and
BC.

duodecimal notation The method of positional notation used in
the *duodecimal system.

duodecimal system A *number system using the base twelve. In
the duodecimal system twelve di�erent characters are needed; often
the digits 0−9 are used together with the letters A and B: ten is A
and eleven is B. Twelve is written as 10, thirteen as 11, etc. The
number 7AB in duodecimal would, in the decimal system, be (7 ×



122) + (10 × 121) + (11 × 120) = 1139. The duodecimal system
has an advantage over the decimal system for calculation because
12 has more factors than 10.

See also hexadecimal system.

duplication of the cube The problem of constructing, using only an
unmarked straightedge and compasses, the edge of a cube having
twice the volume of a given cube. It is also known as the Delian
problem, since it is said that in 230 BC the oracle at Delos told the
Athenians that, to rid themselves of a plague, they should construct
an altar twice the size of the existing one to Apollo. It is one of the
three classical problems of Greek geometry, along with *squaring
the circle and *trisection of an angle. It is now known that the
construction is impossible.

Durbin-Watson statistic (J. Durbin and G.S. Watson, 1950) A
*statistic for testing in *time-series analysis (when the observations
form an ordered sequence in time) whether there is a correlation
between successive *errors.

dyadic connective See connective.

dynamical system An iterative procedure xn + 1 = T(xn), where T is
a mapping of a space X into itself, de�nes a dynamical system in X
in which positions of points in X evolve iteratively under T. Thus the
map z ( z2 − 1and iteration  together de�ne a dynamical
system in the complex plane. The term is also used to describe a
point or set of points whose positions evolve with time according to
a set of time-dependent equations or �ow, typically the solution to a
set of di�erential equations. For example, if the position of a point x
at time t is denoted by x(t), the equation x(t) = t2 + 1 de�nes a
�ow on the real line which is a solution to the equation x(t) = 2t.
Thus the term covers sets of states whose evolution is governed
either by an iterated map or by a set of time-dependent equations
(or �ow).



For a map T and iteration xn + 1 = T (xn), the ordered set of
points x0, x1, x2,… is called the orbit of x0. For example, the set of
points 1, ½,¼,⅛,… is the orbit of the point 1 under the map T(x)=
½x.

When T is *invertible, the orbit usually includes the points x−1 =
T−1(x), x−2 = T−1 (x−1), etc. For a �ow, the orbit of a point x is
the union of all points x(t) for all t (see also trajectory).

dynamic programming A method of solving a wide range of
optimization problems in *operational research where a step-wise
approach to decisions is appropriate.

An example is illustrated in the diagram. The lines represent all
possible routes for a three-stage bus journey from A to D (i.e. B1,B2,
and B3 are possible �rst-stage end points, C1 and C2 are second-stage
end points, and D is the third-stage end point). The number on each
line represents the stage fare for that route. The problem is to �nd
the route from A to D with the lowest fare.

dynamic programming Minimizing the fare for a three-stage bus
journey.

The dynamic programming approach �rst seeks the optimum one-
stage strategy for the �nal (third) stage, i.e. C1 or C2 to D. This is a
trivial problem as there is only one route from each. The next step is
to �nd the optimal two-stage strategy from B1,B2, or B3 to D. In this
simple example it is easy to see that, starting this two-stage process
from B1, the optimal route to D is via C1 (total fare 7, compared



with 10 for travel via C2). Similarly, from B2 to D the route via C1 is
optimal (total fare 11) and from B3 to D the route via C2 is optimal
(total fare 13).

The important point now is that, no matter how many additional
earlier stages we add, the above routes are always optimal once we
have arrived at B1, B2, or B3. In this simple example it is now easy to
see that, starting from A, the three-stage total fare via B1 is 10 + 7
= 17; via B2, 5 + 11 = 16; and via B3, 5 + 13 = 18. Thus the
optimum route from A to D is via B2 and C1, with a fare of 16.

In more general problems of this type a *recursive approach is
used along these lines to �nd the appropriate solution.
dynamics A �eld of *classical mechanics concerned with the study
of the motion of material bodies under the in�uence of *forces.
*Newton’s laws of motion form the basis of this study. Dynamics can
be divided into *kinetics, in which the relationships between force
and motion are considered, i.e. the e�ects of forces are studied, and
*kinematics, in which motion is described without regard to its
cause, i.e. without considering the forces involved. Kinematics is,
however, often treated as a separate �eld of classical mechanics.
Dynamics and kinetics, then, are concerned with essentially the
same subject matter and may be considered synonymous. *Statics
deals with bodies in equilibrium under the action of forces.

dyne Symbol: dyn. A *c.g.s. unit of force, equal to the force required
to impart to a mass of 1 gram an acceleration of 1 centimetre per
second per second. 1 dyne = 10-5 newton.



E

e A transcendental *irrational number that is the base of natural
*logarithms. It has the value 2.718281 828…, the limit of (1 +
(1/n))n as n→(. It is the sum of the in�nite series

1 + 1/1! + 1/2! + 1/3! + …

See also exponential function; exponential series.

eccentric Having centres that do not coincide. The term is applied
to circles, ellipses, and other �gures that have centres of symmetry.
Compare concentric.

eccentric angle The angle that a radius of the *auxiliary circle
makes with the positive x-axis, used in forming the parametric
equations of an *ellipse or *hyperbola.

eccentric circle One of two circles that have the same centre as a
*central conic and diameters equal to the conic’s axes. See ellipse;
hyperbola.

eccentricity Symbol: e. The ratio, for a point on a *conic, of its
distance from a �xed point (the focus) to its distance from a �xed
line (the directrix). See also ellipse; hyperbola; parabola.

ecentre See excentre.

echelon form See row echelon form.

ecliptic The *great circle that is the intersection of the plane of the
earth’s orbit with the *celestial sphere. The poles of this circle are
the poles of the ecliptic. The line joining these poles is the ecliptic axis.
The plane of the ecliptic is inclined at an angle of 23° 26′ to the
plane of the celestial equator – an angle known as the obliquity of the
ecliptic. See ecliptic coordinate system.



ecliptic axis See ecliptic.

ecliptic coordinate system An *astronomical coordinate system in
which measurements are based on the ecliptic. In this system a point
on the *celestial sphere is located by two angular measurements.
The *celestial longitude (λ) is the angular distance measured
eastwards along the ecliptic from the vernal equinox. The *celestial
latitude (β) is the angular distance north or south of the ecliptic.

ecliptic latitude See celestial latitude.

ecliptic longitude See celestial longitude.

EDA Abbreviation for *exploratory data analysis.

edge 1. A line joining two vertices of a geometric �gure or *graph.
2. A line or line segment from which one or more *half-planes
extend; for example, the line segment between two faces in a
*polyhedron, or the line between two planes in a *polyhedral angle.

e�ective procedure An *algorithm for determining whether or not
a given object has a certain property. In particular, a function is said
to be e�ectively computable if and only if, given the arguments of
the function, there is an algorithm for determining its value. Many
precise mathematical de�nitions have been provided that capture
the intuitive notion of e�ectiveness, all of which are provably
equivalent (see Church’s thesis).

Examples of problems that are solvable by e�ective means are:
whether or not a number c is the sum of numbers a and b; whether
or not a given *w� is an axiom of the *predicate calculus (i.e.
whether or not the predicate calculus is axiomatic); and whether or
not a sequence of w�s is a *proof in the predicate calculus. See
decidable; Church’s theorem; recursive.

e�ect variable See regression.

e�ciency 1. (R.A. Fisher, 1921) A *statistic T0 used as an
*estimator is more e�cient than another estimator T1 if it has



smaller *variance. E�ciency has been studied principally for
consistent and unbiased estimators. If two estimators of a parameter
θ are such that sample sizes n1 and n2 are needed to give the same
variance or, equivalently, the same power (see hypothesis testing),
the relative e�ciency of T1 with respect to T2 is n2/n1. Thus if n1 =
10 and n2 = 20, then T1 is twice as e�cient as T2. The limit of the
relative e�ciency for large n is called the asymptotic relative
e�ciency.

E�ciency concepts extend to the comparision of tests, and
relative e�ciency may then depend on the *distribution from which
a sample is obtained. While the *t-test is more e�cient than the
*Wilcoxon rank sum test for location comparisons of samples from a
normal distribution, the reverse is true for samples from an
exponential distribution.
2. In *experimental design one design is more e�cient than another
if the same precision can be obtained with less resources or if
greater precision can be obtained with the same resources; a
complication arises in that one design may be more e�cient than
another for some treatment comparisons but less e�cient for others.
3. The ratio of the energy output to energy input over some time
interval for a *machine or other energy-converting mechanism,
usually expressed as a percentage. This is equivalent to the ratio of
work done on the load of a machine to work done by the e�ort.
E�ciency is thus a measure of performance, and in practice is
always less than 100 percent. Of the total energy available, some
will always be lost in the form of unusable heat, e.g. through
friction or exhaust fumes.

e�ort The *force applied to a particular part of a *machine,
producing an e�ective force of di�erent magnitude at some other
part. The e�ective force is applied to the load of the machine.

eigenfunction A nontrivial solution of a di�erential equation
subject to boundary conditions involving a parameter, for certain
values of the parameter called *eigenvalues. For example, the
di�erential equation with parameter λ



d2y/dx2 + λy = 0

subject to y(0)=0 and y(π)=0 has an eigenvalue m2 with
eigenfunction sin mx, for any nonzero integer m.

eigenvalue In general, a characteristic value of some mathematical
expression. The term comes from the German eigen (‘characteristic’
or ‘own’). In some older texts the term ‘latent root’ is used.

For a square *matrix A, the number λ is an eigenvalue of A if
Ax=λx for some nonzero vector x, the corresponding eigenvector.
The eigenvalues are the zeroes of the *characteristic polynomial of
A. An n(n matrix of complex numbers always has n eigenvalues, but
may have fewer than n *linearly independent eigenvectors. For a
*symmetric matrix the eigenvalues are always real. For instance, the
matrix

has eigenvalues λ1=–4, λ2=4, and λ3=8, and corresponding
eigenvectors

For a linear transformation on a *vector space L: V→V, the number
λ is an eigenvalue of L if L(x)=λx for some nonzero element × of
V, the corresponding eigenvector.

eigenvector See eigenvalue.

Einstein, Albert (1879–1955) German-Swiss-American theoretical
physicist who revolutionized modern physics with his special and
general theories of relativity. Both needed for their expression
mathematical techniques and insights not previously deployed in



physics: in his special theory of 1905 Einstein substituted the
Lorentz transformation for the classical Galilean transformation,
while in his general theory he incorporated a curvature tensor based
ultimately on the geometry of Riemann and the tensor calculus of
Ricci-Curbastro.

Einstein’s equation See mass–energy equation.

Eisenstein, Ferdinand Gotthold Max (1823–52) German
mathematician who proposed the conjecture that numbers of the
form 22 + 1, 222 + 1, 222 + 1, …, are prime. This was disproved in
1953 when the *Fermat number F16 = 2216 + 1 was shown to be
composite. He is, however, better known for his formulation of
*Eisenstein’s criterion.

Eisenstein’s criterion A *su�cient condition for a polynomial with
integer coe�cients to be *irreducible (over the rational numbers) is
that there exists a prime number p which divides all coe�cients
except the leading coe�cient, but is such that p2 does not divide the
constant term. For example, x3 + 2x + 2 is irreducible, but x3 + 2x
+ 4 and x3 − 2x + 4 may not be (the former is irreducible, the
latter is reducible).

elastic collision See collision.

elastic constants Any of various constants that describe the
behaviour of a homogeneous body under the action of a deforming
*force. They include *Young’s modulus, the *bulk modulus, and
*Poisson’s ratio. See elasticity.

elasticity The property of a solid body whereby it can resume its
original shape and size once any deforming *forces are removed.
The relations between a deforming force and the resulting change in
shape or size of a homogeneous body can be described by its
*elastic constants. The deforming force and the resulting
deformation are considered in terms of *stress and *strain. For small
stresses and strains, strain is proportional to stress. Above a certain



stress not only will this proportionality no longer apply but also the
body will not resume its original con�guration. See Hooke’s law.

elastic modulus See modulus.

elastic wave See wave.

electromagnetic wave See wave.

electronvolt Symbol: eV. A unit of energy used in atomic physics,
equal to the energy acquired by an electron in passing through a
potential di�erence of 1 volt. 1 electronvolt=1.602(10–19 joule.

element 1. An expression following an integral sign in an
*integration. For example, in the integration

giving the area under the curve of y=f(x) between x=a and x=b,
the expression f (x) dx gives the element of area (i.e. the general
formula for the area of the in�nitesimal strips that are summed in
�nding the total area). Elements of length, volume, mass, etc. are
similarly de�ned.
2. A *member of a *set or group.
3. See determinant; matrix.
4. See generator.

elementary matrix A square matrix obtained from the *identity
matrix by applying an *elementary matrix operation. Multiplying a
matrix A on the left (right) by an elementary matrix has the same
e�ect as performing the corresponding elementary row (column)
operation on A. An elementary matrix is *nonsingular.

For example, the matrix



can be obtained from the identity matrix by the elementary row
operation of adding the �rst row to the second. Multiplying the
matrix

on the left by this matrix has the same e�ect as the row operation,
producing

elementary matrix operation One of the operations of
interchanging two rows or columns of a matrix, multiplying a row
or column by a nonzero scalar, or adding a scalar multiple of one
row or column to another. These are known as elementary row
operations and elementary column operations, respectively.
*Gaussian elimination makes use of elementary row operations.

elementary symmetric polynomial See invariant.

elevation 1. The height of a point above some baseline or plane.
2. (angle of) See angle.

eliminant (resultant) An expression formed from the coe�cients of
a set of *linear equations by eliminating the variables between the
equations. In the case of a set of linear equations, the eliminant is a
*determinant formed from the coe�cients and constant terms. It is
equal to zero for consistent simultaneous equations. For example,
the three equations

a1x(b1y(c1=0

a2x(b2y(c2=0

a3x(b3y(c3=0



have the eliminant

elimination The process of removing variables from a set of
*simultaneous equations. There are various methods of elimination.
For example, the equations

x + 3y = 7, 2x + y = 9

can be handled by multiplying the second equation by 3, to give a
third equation

6x + 3y = 27

Subtracting the left- and right-hand sides of the �rst from the third
then gives

5x = 20

i.e. x = 4. The same result can be obtained by substitution. The �rst
equation is put in the form

x=7–3y

and this value of x is then substituted in the second:

2(7–3y) + (y =9

giving y = 1 and x =4. See also Gaussian elimination.

ellipse A type of *conic that has an *eccentricity between 0 and 1
(0<e<1). It is a closed symmetrical curve like an elongated circle –
the higher the eccentricity, the greater the elongation. Any chord
through the centre is a diameter. The ellipse has two diameters that
are axes of symmetry: the longest diameter is the major axis and the



shortest the minor axis. A line segment from the centre to the ellipse
along the major axis is a semimajor axis; one along the minor axis is
a semiminor axis. Each of the two points at which the major axis
meets the ellipse is a vertex of the ellipse. The area of an ellipse is
πab, where a is the length of the semimajor axis and b the length of
the semiminor axis.

The ellipse has two foci on the major axis and two directrices
perpendicular to the major axis (see diagram (a)). Each

ellipse (a) F1 and F2 are foci.

focus is a distance ae from the centre, where e is the eccentricity.
Each directrix is a distance a/e from the centre. The standard
equation of an ellipse in Cartesian coordinates is

x2/a2 + y2/b2 = 1

The eccentricity of an ellipse is given by c/2a, where c is the
distance between the foci. Alternatively it is given by

e2 − 1 − b2/a2

Either of the two chords through a focus of the ellipse and
perpendicular to the major axis is a latus rectum. The length of the
latus rectum is 2b2/a.

A circle with its centre at the centre of the ellipse and passing
through the vertices (i.e. with radius a) is an eccentric circle of the



ellipse. The circle with radius b is also an eccentric circle. The larger
one (radius a) is called the auxiliary circle of the ellipse. If the ellipse
has its centre at the origin and its major axis along the x-axis, the
eccentric angle, α, is de�ned as follows (see diagram (b)). At a
particular point P on the ellipse

ellipse (b) The eccentric angle of P is α.

the ordinate is extended to meet the auxiliary circle (at P′); a is then
the positive angle between the x-axis and the radius OP′. The
parametric equations of the ellipse are

x=a cos α,    y=b sin α

The ellipse has two well-known properties connected with its foci F1

and F2. For any point P on the ellipse, the sum of the distances PF1

and PF2 is constant (equal to 2(). This is made use of in drawing
ellipses by looping a string around two pins at the foci. The focal
property of the ellipse is that if at any point P the tangent APB is
drawn, then the lines from the foci to the point make equal angles
with the tangent; i.e. (APF1=(BPF2 See diagram (c)). This is also
called the re�ection property, since a



ellipse (c) PF1(PF2=2a, and angle APF1 = angle BPF2.

re�ector shaped like an ellipse would focus light from a source at
one focus onto the other focus (the optical property), or would
similarly focus sound (the acoustical property).

See also Kepler’s laws.

ellipsoid A closed surface such that its plane sections are ellipses or
circles. In Cartesian coordinates, it has the standard equation

x2/a2 + y2/b2 + z2/c2 = 1

The centre of the ellipsoid is its centre of symmetry, and any chord
through the centre is a diameter of the ellipsoid. Three of these
chords are axes of symmetry – as with the ellipse, the largest is the
major axis and the smallest the minor axis. The third axis,
perpendicular to the other two, is the mean axis. The semimajor (a),
semiminor



ellipsoid

(b), and semimean (c) axes are de�ned as for the ellipse. The volume
of an ellipsoid is 4/3πabc.

A special case of an ellipsoid is an ellipsoid of revolution (also
called a spheroid) obtained by rotating an ellipse about one of its
axes. In this case, plane sections perpendicular to the axis of
revolution are circles. Revolution about the major axis gives a
prolate ellipsoid (shaped like a rugby ball). Rotation about the minor
axis gives an oblate ellipsoid. The earth, for instance, has a shape
approximately that of an oblate ellipsoid.

ellipsoidal Denoting or concerned with an *ellipsoid.

elliptical Denoting, concerning, or connected with an *ellipse. For
example, an elliptical cone (or cylinder) is a cone (or cylinder)
having an ellipse as base.

elliptical paraboloid See paraboloid.

elliptic curve A curve, de�ned by a *polynomial equation with
*rational *coe�cients, having *genus l and containing at least one
point, a rational point, with rational coordinates. The standard form
of such a curve may be taken to be y2=x3 + ax + b, where a and b
are rational numbers, and the cubic polynomial x3 + ax + b has
distinct *zeroes. For example, the elliptic curve y2=x3 + 17 has a
rational point (–2,3), but it also has many others, e.g. (2,3),
(¼,33/8), and (–1,4).



The study of elliptic curves and their rational points was of great
importance in the solution of *Fermat’s last theorem.

elliptic functions Functions �rst derived from *elliptic integrals by
Abel in 1826. For example, if the elliptic integral of the �rst kind is
written in the form

then the elliptic functions sn, cn, and dn are de�ned by

x = sn u

√(1–x2)= cn u

√(1–k2x2)= dn u

This de�nition of the elliptic function sn is analogous to the
de�nition of the *circular function sin by

Elliptic functions and integrals have many applications in
mathematics. They were used by Hermite in 1858 in his solution of
the general quintic equation.

elliptic geometry See Riemannian geometry.

elliptic integral An integral of the form

where R is a *cubic or *quartic function of x and f is any *rational
function of x and (R. The name comes from the fact that integrals of
this type were �rst met in the determination of the circumference of



an ellipse. Any elliptic integral can be reduced to the sum of an
elementary function and constant multiples of integrals in three
standard forms involving x and constants k and n, known
respectively as the modulus and parameter. These three integrals are
called Legendre’s standard elliptic integrals of the �rst, second, and
third kinds respectively:

elongation The total increase in length in the direction of a tensile
*stress, or the increase in length per unit length caused by such a
stress.

embedding A continuous map f:X→Y between *topological spaces
is called an embedding if it is a *homeomorphism onto a subspace of
Y.

empirical Based on observation or experiment rather than
deduction from basic laws or postulates. An empirical formula, for
example, is a formula that is devised to �t known data. An empirical
curve is a curve drawn as the best approximation to �t a set of
points.

empirical distribution function See sample distribution function.

empty set See null set.

encoding (encryption) In cryptography, the construction of
ciphertext from plaintext. See cipher.

endogenous variables Variables such as price and demand in an
economic *model that are an inherent part of the system, as distinct



from exogenous variables, which impinge on the system from outside
(e.g. exogenous variables such as rainfall may a�ect demand for
certain products).

endomorphism A *mapping from a set to itself.

end point One of the numbers de�ning an *interval.

energy Symbol: E. A measure of the capacity of a body or system to
do *work, i.e. to change the state of another body or system. Energy
is measured in joules. Any body or system that is subject to a
*conservative force, such as gravitation, has two forms of energy:
*kinetic energy due to its motion and *potential energy due to its
position; although two bodies can exchange kinetic and potential
energy, the total energy remains constant in an isolated system.
There is thus *conservation of energy. There are many kinds of
energy, which are interconvertible: in a power station, the chemical
energy stored in coal is converted by combustion to heat, which in
turn is used to produce a jet of steam that drives a rotor whose
mechanical energy is converted to electrical energy. Again, for a
closed system energy is conserved.

enlargement (central dilatation, homothety, similitude) A
*transformation involving a �xed point C, which is called the centre
of enlargement. The image P′ of a point P is the point on the
*directed line CP such that CP′ = kCP, where k, the scale factor of
the enlargement, is a nonzero constant. When k is negative, C lies
between P and P′. If C is the origin, a point with position vector r is
mapped onto the point with position vector kr. In the plane, an
enlargement with centre at the origin and scale factor k maps the
point with Cartesian coordinates (x,y) onto the point (kx,ky).
Enlargement multiplies the distance between any two points by |k|.

enneagon See nonagon.

entailment See implication.



entire function (integral function) A function f of a *complex
variable z that is an *analytic function for all �nite values of z.
Examples are ez, sin z, and cos z. Liouville’s theorem states that if f (z)
is entire and bounded, then it is constant.

enumerable See countable.

enumeration theory The theory of methods used to count or
estimate the number of objects of a given type. An example of its
application is in chemistry, to count the number of di�erent possible
molecules of isomers.

envelope 1. A curve that touches (is *tangent to) every member of
a given *family of curves. For instance, a family of circles with
radius a, each of which has its centre on another circle of radius r,
has an envelope consisting of a circle of radius r + a and a smaller
circle of radius |r–a|.

In general, a family of curves is de�ned by a parameter m, and
members that di�er by a small amount δm will intersect. The locus
of these points of intersection as (m tends to zero becomes the
envelope. The equation of the envelope can be found by equating to
zero the partial derivative with respect to m of the equation of the
family. For instance, the equation y=2mx + m2 represents a family
of intersecting straight lines. Taking the partial derivative with
respect to m (holding y and x constant) and equating to zero gives

0=2x + 2m

The equation of the envelope is then found by eliminating m
between this equation and the original equation, to give y=–x2; i.e.
the envelope is a parabola.

2. A surface that is *tangent to all the members of a given *family of
surfaces. For instance, the envelope of a family of spherical surfaces,
each of which has its centre on a sphere, is itself a sphere. Such
envelopes are used in constructing new wave-fronts from secondary
wavelets in wave theory.



epicycle See epicycloid.

envelope of a family of circles.

epicyclic Denoting, concerning, or connected with an *epicycloid.
For example, an epicyclic gear is one in which one gear wheel
moves around another.

epicycloid The *locus of a point on the circumference of a circle
that rolls on the outside of a �xed circle (both circles being in the
same plane). The parametric equations of the epicycloid are

x=(R + r)cos θ–r cos [(R + r)θ/r]

y–(R + r)sin θ–r sin [(R + r)θ/r]

where the �xed circle has its centre at the origin and has radius R,
the rolling circle has radius r, and θ is the angle between the x-axis
and a line through the centres of the two circles. The epicycloid was
known to Apollonius of Perga, who used it in his method of
representing planetary motion. In this, the moving circle was called
the epicycle and the �xed circle the deferent. The system was later
used in the Ptolemaic system of astronomy.

The epicycloid has *cusps at the points at which the moving point
touches the �xed circle. If the ratio R/r is a rational number, the
epicycloid is a closed curve. If R= r, the curve is a *cardioid; if
R=2r, the curve is a *nephroid. The epicycloid is a special case of
an *epitrochoid. See also roulette.

epitrochoid The *locus of a point on the radius (or radius
extended) of a circle that rolls on the outside of a �xed circle (both
circles being in the same plane). The epi-trochoid is thus a more



general case of the *epicycloid and it has similar parametric
equations:

x= (R + r) cos θ–d cos [(R + r)θ/r]

y=(R + r) sin θ–d sin [(R + r)θ/r]

where d is the distance of the point from the centre of the circle. See
also roulette.

equals sign The sign used to represent equality, and to form an
*equation. The modern sign =, a pair of equal parallel line
segments, was introduced in 1557 by Robert *Recorde, ‘bicause noe
2 thynges can be moare equalle’.

equate To state that one expression is equal to another; to form an
equation.

equate coe�cients To conclude from the fact that two
*polynomials are *identical that their *coe�cients must be the
same. This technique is frequently used to obtain information about
the *roots of a polynomial equation. For example, if the roots of x2

+ ax + b=0 are α and β, then

x2 + ax + b=(x–α)(x–β)

=x2–(α + β)x + αβ

Since the coe�cients of x must be the same, we conclude that α +
β=–a, and since the coe�cients of x0=1 (the *constant terms) are
the same, we conclude that αβ=b.

equation A statement that two mathematical expressions are equal.
A conditional equation is true only for certain values of the variables.
Thus,

3x + y=7



is true only for certain values of x and y. Such equations are
distinguished from identities, which are true for all values of the
variables. Thus.

(x + y)2=x2 + 2xy + y2

which is true for all values of x and y, is an identity. Sometimes the
symbol ( is used to distinguish an identity from a conditional
equation.

equation of continuity See continuity equation.

equation of motion A *di�erential equation of the type

m d2r/dt2 = F(r)

that gives the *position vector r of a particle of mass m moving
under a *force F, as a function of time: the force is a function of
position, i.e. it varies from point to point. Integration of this
equation gives the velocity dr/dt at some particular time, and a
second integration gives the position at some particular time. Two
constants of integration are introduced, usually determined by the
initial conditions, i.e. the velocity v0 and position r0 at time t=0.

In the simple case of motion under a constant force, the equation
reduces to d2r/dt2 = a, i.e. motion with constant acceleration a.
Integration gives dr/dt = v0 + at, and a second integration gives
r=r0 + v0t + ½at2. See also Newton’s laws of motion; Euler’s
equations.

equator See geographical equator; celestial equator; galactic
equator.

equatorial coordinate system An *astronomical coordinate system
in which measurements are based on the celestial equator. A point
on the *celestial sphere is located by two angular measurements.
The *right ascension (RA, α) is the angular distance measured
eastwards along the celestial equator from the vernal equinox. The



*declination (dec, δ) is the angular distance north or south of the
terrestrial equator. Alternatively, *hour angle (t) can be used instead
of right ascension. This is the angular distance measured westwards
along the celestial equator. North polar distance, which is the
complement of declination (i.e. 90°–δ), sometimes replaces
declination. The equatorial system is the most widely used system of
astronomical coordinates.

equiangular Having equal angles. The term is usually applied to
geometric �gures (for example, polygons) that have all their angles
equal.

equiangular hyperbola See hyperbola.

equiangular spiral See spiral.

equiangular transformation See conformal transformation.

equicontinuous functions A family of *functions {fi} with the
same *domain such that for all ε>0 there exists a δ depending only
on ε, and such that whenever

|x1–x2| < δ

then

|fi(x1) – fi(x2)| < ε

for all i.

equidecomposable Describing objects that can be broken down
into identical sets of component pieces. More formally, two
*polyhedra K1 and K2 in a *Euclidean space which are the union of
n-dimensional simplexes are equidecomposable if each polyhedron
is the union of a �nite set of polyhedra

K1=A1∪A2∪…Ak



K2=B1∪B2∪…∪Bk

where any pair of the polyhedra Ai and Aj intersect only in lower-
dimensional faces (and also for any pair Bi and Bj), and each Ai can
be obtained from the corresponding Bi by a rigid motion. If K1 and
K2 are equidecomposable, then they have the same (n-dimensional)
volume. For planar polygons, i.e. the case n=2, William Wallace
proved in 1807 that if two polygons have the same area then they
are equidecomposable (see diagram). In 1901 Max Dehn proved that
the corresponding result is false in three dimensions; for example, a
cube and a regular tetrahedron with equal volume are not
equidecomposable.

equidistant Having equal distances from some speci�ed point, line,
etc.

equilateral Having equal sides or equal lengths. The term is usually
applied to geometric �gures (for example, polygons) that

equidecomposable Two equidecomposable polygons.

have all their sides equal. It can also be used to denote two �gures
in which the corresponding sides are equal.

equilateral hyperbola See hyperbola.

equilateral polygon A *polygon that has all its sides equal. An
equilateral triangle also has equal interior angles (60°).

equilibrant A *force or system of forces that can balance a given
force or system of forces.



equilibrium A state attained or maintained by a particle or system
of particles (a body) when it has no acceleration, neither
translational nor rotational; the *resultant of the *external forces
acting on the particle or body is zero, as is the sum of the of the
*moments of all these forces. The equilibrium is said to be stable if,
when slightly displaced, a particle or body returns to its original
position; if the particle or body remains in its displaced position it is
said to be in neutral equilibrium; if it moves to a di�erent position,
away from both the original and the displaced position, the
equilibrium is described as unstable.

equinoxes (equinoctial points) Two points on the *celestial sphere
at which the ecliptic intersects the celestial equator. The sun in its
apparent annual motion crosses the celestial equator at these two
points, crossing from south to north at the vernal equinox ( ) and
from north to south at the autumnal equinox ( ). In the northern
hemisphere these crossings occur around 21 March (vernal) and 23
September (autumnal), and they are marked by days on which the
hours of daylight and darkness are equal. Points midway between
these are the two solstices (or solstitial points).

equinumerable (equipollent, equipotent) Two *sets A and B are
equinumerable if they can be put into a *one-to-one
correspondence. The two sets are also described as equivalent. See
also cardinal number.

equipotential surface An imaginary surface in a *conservative �eld
on which all points have the same *potential.

equivalence 1.(material) Statements A and B are materially
equivalent when both A and B are true, or both A and B are false.
The material equivalence of A and B is symbolized by A(B (or A↔B,
or A if and only if B) and is de�ned in a formal system as

(A ⊃ B) & (B ⊃ A)

See also truth function.



2.(strict or logical) Statements A and B are strictly equivalent if
they must have the same *truth value (i.e. if it is impossible for
them to have di�erent truth values). The strict equivalence of A and
B is symbolized by A⇔B and de�ned with in a modal logic as  (A 
B). See implication.

equivalence class If R is an *equivalence relation de�ned on the
*set A then the equivalence class of any element x∈A, denoted by
[x], is the set of elements to which x is related by the equivalence
relation R:

[x] = {y:x R y}

For example, if R is the equivalence relation ‘the same height as’,
then the equivalence class of the element x∈A consists of all
elements of A with the same height as x. The equivalence relation R
will also *partition the set A into the equivalence classes of A. Thus,
if A={u, v, w, x, y, z}, and if u, v, and w are of the same height, and
x, y, and z are of the same height but di�erent from the height of u,
v, and w, then { u, v, w} and {x, y, z} are the equivalence classes of
A.

equivalence principle The principle stating that, on a local scale,
the physical e�ects of a uniform acceleration of some *frame of
reference imitate completely the behaviour in a uniform
gravitational �eld. For those on board a spacecraft far out in space,
isolated from any gravitational �eld, everything (including
themselves) would be weightless. If the spacecraft were given a
uniform acceleration, corresponding to the *acceleration of free fall
on earth, then everything in it would behave as if the spacecraft
were stationary on earth. The principle of equivalence of these two
frames of reference was introduced by Albert Einstein in his general
theory of *relativity.

equivalence relation A *relation that is *re�exive, *symmetric,
and *transitive on a set is an equivalence relation on that set.
Examples of equivalence relations are parallelism between straight



lines, congruence between �gures, equality between numbers, and
congruence modulo n.

equivalent (of sets) See equinumerable.

equivalent matrix See matrix.

eradius See exradius.

Eratosthenes of Cyrene (c.275–194 BC) Greek astronomer and
mathematician who proposed as a means of collecting prime
numbers the so-called *sieve of Eratosthenes. He is also remembered
for his ingenious determination of the circumference of the earth.
This he based on the observation that at midday at Syene (now
Aswan) the sun is vertically overhead, while at the same time at
Alexandria the rays make an angle of 7.2° with the vertical. He
estimated the distance between Syene and Alexandria from the time
taken for a camel train to make the journey, and thereby calculated
the circumference of the earth. It is uncertain just how accurate his
result was because the exact size of the unit used (the stade) is
unknown. Eratosthenes also measured the angle of the obliquity of
the *ecliptic.

Erdős, Paul (1913–96) Proli�c Hungarian mathematician who was
one of the best problem-solvers of the 20th century and made
important contributions to number theory and combinatories. He
led a peripatetic life and wrote papers with very many di�erent
collaborators. In 1949, he and Atle Selberg found an elementary, if
complicated, proof of the *prime number theorem. Most of his work
came from his fascination with problems that were easy to state but
di�cult to solve.

erf See error function.

erg Symbol: erg. A *c.g.s. unit of work, equal to the work done by a
force of 1 dyne acting through a distance of 1 centimetre. 1 erg=10–

7 joule.



ergodicity The property of many time-dependent processes, such as
certain *Markov chains, that the eventual (limiting) distribution of
states of the system is independent of the initial state.

error 1. (in numerical computation) Errors are of three main types:
Rounding (or roundo�) errors are caused by approximating

numbers by ones with fewer digits, and are an inevitable
consequence of working with �nitely many digits. These errors are
dangerous for two reasons. First, in a computer calculation
consisting of thousands or even millions of elementary operations
(additions, subtractions, multiplications, divisions), small rounding
errors can accumulate to produce large errors. Second, and more
insidiously, a single rounding error can give rise to a large error. For
example, if we evaluate 1/(1–cos 1°) in four-decimal-digit
arithmetic, we obtain 5000, whereas the correct answer is 6565.8
(to one decimal place); the rounding error in the computed value of
cos 1° is ampli�ed by the subtraction and division.

Truncation errors are associated with essential limitations in the
construction of approximations. They may arise from the use of an
approximation rule, terminating an iterative method before it has
converged, approximating a derivative by a di�erence (see
numerical di�erentiation), or taking only �nitely many terms of a
series expansion such as a Taylor series. A truncation error also
arises from the *truncation of a number.

Expressions and upper bounds for truncation errors are often
available. For example, if the *trapezoidal rule is used to integrate
f(x) over [a, b] using n subintervals of length h, the truncation error
E (integral minus approximation) is given by

E = –h2(b – a)f″(α)/12

where the second derivative f″ is evaluated at some unknown point
α in [a, b]. If the trapezoidal rule is used to calculate the integral of
cos x over [0, 0.8] with n=8 and h=0.1, then, since |f″(x)|≤1, the
truncation error cannot exceed (0.1)2(0.8/12=0.000 67 in
magnitude.



Data errors are errors that are inherent in the numbers that form
the input to a computation. They may arise from errors in
measuring physical quantities, or from rounding errors incurred in
storing the numbers on a computer.

2. (in statistics) A random error is the discrepancy between an
observed value and the value predicted by some appropriate
*model, and represents uncontrolled *variation. In many practical
situations errors are assumed to be independent and to have a
*normal distribution with zero mean. See also hypothesis testing;
residuals.

error-correcting code A form of encryption that identi�es errors
and corrects messages corrupted during transmission.

A *code C is k-error-correcting if up to k errors can be corrected.
For example, if the *Hamming distance between any two codewords
of C is at least 2k + 1, then C is k-error-correcting. A well-
constructed code can be smaller and still be k-error-correcting. See
coding theory.

error-detecting code A form of encryption which allows errors in
messages to be identi�ed during transmission, but not necessarily
corrected. Such a *code is useful if the message can be resent easily.
See also error-correcting code.

error function The function

It is closely related to the standard *normal distribution cumulative
distribution function Ф(x), since

In applied mathematics, physics, and astronomy, the error function
notation is widely used, while in probability and statistics the



normal distribution is preferred.
The function

is called the complementary error function.
A *Taylor expansion of erf(x) valid for all real x takes the form

If measurement errors are normally distributed with *mean zero and
*standard deviation σ, then erf (x/ σ√2) is the probability that a
single measurement error will lie in the interval (–x, x).

error mean square In *analysis of variance, an *unbiased estimator
of error *variance. It is the error (or residual) sum of squares
divided by the error degrees of freedom. It is used as the
denominator in *F-tests and is an estimator of the true error
variance σ2 which is used to construct *con�dence intervals.

errors of the �rst and second kind See hypothesis testing.

error sum of squares See analysis of variance.

escape speed (escape velocity) The minimum speed at which an
object must be propelled from a celestial body (such as the earth) in
order to escape its vicinity, i.e. to avoid going into orbit around it or
returning to its surface under the action of the body’s gravitational
�eld. It is equal to √(2MG/R), where G is the gravitational constant
and M and R are the mass and radius of the celestial body (assumed
to be spherical). The escape speed from the earth’s surface is about
11.2km s–1.



escribed circle See excircle.

essentially bounded function A *function f for which there exists
a number K such that the *set {x: |f(x)|>K} has *measure zero. The
essential supremum of |f(x)| is the *greatest lower bound of all
possible K, and is written as essup|f(x)|.

essential map See homotopy.

essential singularity See singular point.

essential supremum (essup) See essentially bounded function.

estimation The use of an *estimator to estimate a population
parameter. The numerical value of an estimator calculated from a
particular sample is called a point estimate; a *con�dence interval is
an interval estimate. A 100(1–α) percent con�dence interval for a
parameter contains all the values of that parameter that would be
accepted under a (usually two-tail) hypothesis test (see hypothesis
testing) at signi�cance level ( if the test were made using the given
sample.

estimator A *statistic used to provide an estimate of a *parameter.
For example, the sample mean x̄ is an unbiased estimator of the
normal population mean μ. The term estimator refers to the statistic
x̄; its value, 12.37, say, in a speci�c case is called an estimate. For a
sample of size n, an estimator Tn of a population parameter θ is
consistent if, for large n, Tn converges in probability to θ.i.e.if

See unbiased estimator.

Euclid (c.300–260BC) Greek mathematician and author of one of the
most famous texts in the whole of mathematics, Stoi-cheion or
Elements. In 13 books it covers the geometry of the triangle, the
circle, various quadrilaterals, Eudoxus’ theory of proportion,
elementary number theory, irrational numbers, and solid geometry.
The treatment throughout is axiomatic and based upon de�nitions,



postulates, and ‘common notions’. Important results established
include the in�nity of the primes (Book IX: 20), the fundamental
theorem of arithmetic (Book IX: 14), Pythagoras’ theorem (Book I:
47), the *Euclidean algorithm (Book VII), the existence of irrational
numbers (Book X), and the construction of the �ve Platonic solids
(Book XIII). Despite di�culties with the �fth postulate, the so-called
*Euclidean geometry of the Elements survived unquestioned until the
19th century when the *non-Euclidean geometry of Bolyai and
Lobachevsky was formulated. In addition to several other
mathematical works, most of which are lost (including a work on
conics), Euclid also wrote on astronomy, optics, and music.

Euclidean algorithm A systematic procedure for �nding the highest
*common factor (HCF) of two given natural numbers:
(1) If the two numbers are equal, their common value is also their
HCF. Otherwise apply step 2.
(2) Divide the smaller number into the larger (possibly with a
remainder).
(3) If the division at step 2 is exact then the divisor is the HCF of the
original two numbers.
(4) If the division at step 2 is not exact, ensure that the remainder is
smaller in absolute value than the divisor. The HCF of the original
two numbers is the same as the HCF of the current divisor and the
absolute value of the current remainder; so begin again at step 2
with these smaller numbers.

A very easy application of the algorithm is to �nd the HCF of 34
and 102. Here the algorithm stops after the �rst application of step
2 above, and the HCF is 34 since 102=3×34.

Another example, where two divisions are needed, is to �nd the
HCF of 52 and 273. In this case

273=5×52 + 13

52=4×13



so the required HCF is 13.
The process always terminates, although several repetitions of

steps 2 and 4 may sometimes be needed. For instance, the
calculation of the HCF of 595 and 721 proceeds thus:

721=1×595 + 126

595=5×126–35

126=4×35–14

35=2×14 + 7

14=2×7

so the HCF of the original two numbers is 7.
When the successive divisions are set out in order as above, the

desired HCF is always the(absolute value of)the last non-zero
remainder. At each division with remainder there is a choice
between a positive and a negative remainder, but it is quicker
always to choose the one that has the smallest absolute value. When
positive remainders are always chosen, Lamé’s theorem (G. Lamé,
1844) asserts that the number of steps taken by the algorithm never
exceeds 5 times the number of decimal digits in the smaller of the
original numbers.

Some variations on the algorithm have been discovered which
allow faster computer evaluation.

Euclidean construction A geometrical construction that may be
carried out using only an unmarked straightedge and compasses. For
example, there is a Euclidean construction for the bisection of an
angle, but not for its *trisection. See Mascheroni; Fermat numbers;
duplication of the cube; squaring the circle.

Euclidean geometry *Geometry based on the de�nitions and
axioms set out in Euclid’s Elements. Book I starts out with 23
‘de�nitions’ of the type ‘a point is that which has no part’ and ‘a line



is a length without breadth’. Then follow ten axioms, which Euclid
divided into �ve ‘common notions’ and �ve propositions. His
common notions were:
(1) Things that are equal to the same thing are equal to one another.
(2) If equals are added to equals, the wholes are equal.
(3) If equals are subtracted from equals, the remainders are equal.
(4) Things that coincide with one another are equal to one another.
(5) The whole is greater than the part. Euclid’s postulates were:
(1) A straight line can be drawn from any point to any other point.
(2) A straight line can be extended inde�nitely in any direction.
(3) It is possible to describe a circle with any centre and radius.
(4)All right angles are equal.
(5) If a straight line falling on two straight lines makes the interior
angles on the same side less than two right angles, then the two
straight lines, if produced inde�nitely, will meet on that side on
which the angles are less than two right angles. With these basic
assumptions, Euclid went on to prove propositions (theorems) about
geometrical �gures. Euclid’s system of geometry was regarded as
logically sound for 2000 years, although in fact it contained many
concealed assumptions. In 1899, Hilbert, in Grundlagen der Geometrie
(Foundations of Geometry), recast Euclidean geometry using three
unde�ned entities (point, line, and plane). He introduced 28
assumptions, known as Hilbert’s axioms. See also non-Euclidean
geometry; parallel postulate.

Euclidean metric See Euclidean space.

Euclidean norm See norm (of a vector space).

Euclidean plane See Euclidean space.

Euclidean space Symbol: n. For a �xed natural number n, n is the
*set of all *n-tuples (x1, …, xn) of real numbers x1, …, xn, together
with the operations of addition of pairs of n-tuples and



multiplication of any n-tuple by any real number k, and a *norm for
each n-tuple. These are de�ned by

The �rst two operations make n an n-dimensional *vector space,
and the norm leads to a distance function d(x, y)=||x–y||, where ×
denotes the n-tuple (x1, xn) and y denotes the n-tuple (y1, …, yn). The
distance function d(x, y)is called the Euclidean metric.

The ordered pairs in 2 can be identi�ed with geometrical points
in a plane relative to �xed coordinate axes, so 2 is often called the
Euclidean plane.

Euclid’s proof (of the in�nity of primes) Suppose that p1, p2,…, pn is
any �nite list of *primes, and then form the number

N=1 + p1×p2×…×pn

Then N cannot be divisible by any of the primes p1, …, pn, for a
remainder of 1 is left whenever we try to divide by one of them. On
the other hand, N is bigger than 1 and is either a prime number
itself or is divisible by primes not in the given list. In either case,
this demonstrates the existence of a prime p not in the original list.
So the set of all primes cannot be contained in any �nite list, and
this is the required result.

Eudoxus of Cnidus (c.400–c.350 BC) Greek mathematician and
astronomer noted for his introduction of the method of *exhaustion
to determine areas bounded by curves. The theory of proportion in
Book V of Euclid’s Elements is also supposed to have been derived
from the lost work of Eudoxus.



Euler, Leonhard (1707–83) Swiss mathematician who in his
numerous works made major contributions to virtually every branch
of the mathematics of his day. He published works on analysis
(1748), the di�erential calculus (1755), the integral calculus (1768–
70), the calculus of variations (1744), planetary motion (1744), and
the moon’s orbit (1753), as well as writing hundreds of memoirs.
Amongst the many new symbols Euler introduced were the signs i
for √–1, Σ for summation, and the functional notation f(x). Speci�c
achievements were his theorem on polyhedra, his work on graph
theory, his method for solving biquadratic equations, and his phi
function for determining the number of positive integers not greater
than and prime to a given number n. Not the least of Euler’s
achievements was his work in mechanics, notably his treatise of
1736, with which began the long struggle to introduce analytically
rigorous methods into the discipline.

Euler characteristic For a surface, the number V–E + F, where V is
the number of vertices, E the number of edges and F the number of
faces of a *triangulation of the surface. The Euler characteristic is a
property of the surface and not of the particular triangulation (as
long as the faces are homeomorphic to discs). In particular, for the
surface of a convex polyhedron, it is always the case that V–E +
F=2. If a surface is made up of h *handles and c *cross-caps, then
its Euler characteristic is 2–2h–c.

Eulerian graph A connected *graph is Eulerian if it contains a
closed *walk which includes every one of its edges once and once
only, i.e. a closed trail or circuit including every edge (see diagram
(a)). The term arises from Euler’s negative solution to the problem
of �nding a walk around Königsberg which crossed each of seven
bridges exactly once and returned to its starting point (see
Königsberg bridge problem).

A connected graph that contains a trail (not necessarily closed)
which includes every one of its edges is called semi-Eulerian or
traversable (see diagram (b)). This is equivalent to saying that one
can draw the graph without lifting the pen from the paper and not



retracing any edge. A connected graph is Eulerian if and only if the
‘degree of every vertex is even; a connected graph is semi-Eulerian if
and only if there are 0 or 2 vertices of odd degree.

Compare Hamiltonian graph.

Eulerian graph (a) Eulerian, (b) semi-Eulerian, and (c) non-Eulerian
graphs.

Euler–Lagrange equation See calculus of variations.

Euler line In any triangle that is not equilateral, the *circumcentre
O, *centroid G, and *orthocentre H lie on a straight line, the Euler
line of the triangle, and OG=2GH.

Euler-Maclaurin summation formula A formula for the error in
the repeated *trapezoidal rule. If T(h) denotes the repeated



trapezoidal rule approximation to  based on n subintervals of
width h, then

The coe�cients B2r are the *Bernoulli numbers. The Euler–
Maclaurin summation formula has various uses, one of which is to
estimate sums of series.

Euler-Poincaré characteristic A generalization of the Euler
characteristic (see Euler’s theorem).

Given a *simplicial complex K, the Euler-Poincaré characteristic
χ(K) is de�ned to be

where αn is the number of n-simplexes of K. Since χ(K) is the
Lefschetz number (see �xed-point theorem) of the identity map of K,
it depends only on the homol-ogy groups of K, and so χ(K)=χ(L) if
K and L are homeomorphic (or even homotopy-equivalent).

In essence, the Euler–Poincaré characteristic is due to Euler, who
observed that χ(K)=2 for regular polyhedra K in 3. Euler’s original
de�nition was extended by Cauchy (1813) and Poincaré (1895).

See combinatorial topology.

Euler’s constant Symbol: γ. The limit of

as n → ∞. To four decimal places, its value is 0.5772.



Euler’s criterion See residue.

Euler’s equations Three *di�erential equations expressing the
motion of a *rigid body rotating about a �xed point, O, with
*angular velocity ω. The forces on the body have *moment M about
O. Euler’s equations involve the components of moment along the
principal axes of the body:

I1 ∂ω1/∂t − (I2 − I3)ω2ω3 = M1

I2 ∂ω2/∂t − (I3 − I1)ω3ω1 = M2

I3 ∂ω3/∂t − (I1 − I2)ω1ω2 = M3

where I1, I2, and I3 are the principal *moments of inertia at O, and ω
1, ω 2, and ω 3 are the components of angular velocity along the
principal axes.

Euler’s formula The formula

eix=cos x + i sin x

It was introduced by Euler in 1748, and is used as a method of
expressing *complex numbers. The special case in which x = π
leads to the formula eiπ = – 1.

Euler’s identities Three identities (c.1748) relating the
trigonometric functions, exponential function, and i, the square root
of –1:

sinx = (eix – e–ix)/2i

cosx = (eix + e–ix)/2

eix = cosx + i sin x

They are derived from the series for cos x, sin x, and ex. See also
hyperbolic functions.



Euler’s method A numerical method for solving di�erential
equations of the form

dy/dx = f(x,y)

given an ‘initial condition y(a)=ya. Euler’s method generates a
sequence of approximations yn≈y(xn), in which yn + 1 is obtained
from yn by the formula

yn + 1 = yn + hf(xn,yn),    n =1,2, …

evolute where y1 = ya and xn + 1 = xn + h, and h is a positive step-
size. For example, for the problem

y′ = (1–x)y + cosx,    y(0) = 1

Euler’s method generates y1 = 1 + 2h as an approximation to y(h).

Euler’s phi function (phi function, totient function) (L. Euler,
1760) For a given natural number n the notation ɸ(n) indicates the
number of natural numbers not exceeding n and *relatively prime to
n. For example, ɸ(20) = 8.

Euler’s theorem uses this function to generalize *Fermat’s theorem
as follows. If a is any integer that is relatively prime to the natural
number n, then aɸ(n) – 1 is divisible by n (or equivalently, aɸ(n)≡1
(mod n)). Fermat’s theorem results when n is a prime, since then
ɸ(n) = n – 1.

Foremost among the many other properties of Euler’s function is
the fact that it is *multiplicative: if m and n are relatively prime,
then ɸ(mn) = ɸ(m).ɸ(n). This leads to the formula that if p1,…, pr
are the distinct primes dividing n, then

Euler’s theorem 1. (for polyhedra) The relationship



V – E + F = 2

for any simple closed *polyhedron, where V is the number of
vertices, E the number of edges, and F the number of faces. (A
simple closed polyhedron is one that is topologically equivalent to a
sphere.) See also Euler characteristic.
2. See curvature.
3. See Euler’s phi function.

Euler’s theorem For this triangular prism V = 6, E = 9, F = 5; and
V – E + F = 2.

Eve The name conventionally used for a third party who might
intercept and try to decode a message (an eavesdropper).

even function A *function f such that f(–x) = f(x) for every x in the
*domain. For example, f(x) = x2 is an even function. The *graph of
the function is symmetrical about the y-axis. Compare odd function.

even number An integer that is divisible by 2.

even permutation A *permutation that is equivalent to an even
number of *trans-positions. For example, 312 is an even
permutation of 123 since it is equivalent to two transpositions: (13)
and then (12). Compare odd permutation.

event A *subset of the *sample space of all possible outcomes of an
experiment. If the outcome of a particular experiment belongs to a
subset A, then A has occurred. If a die is cast and the sample space S
represents all possible scores, and A the event ‘score is even’, then



S={1,2,3,4,5,6} and A={2,4,6}. If we cast a die and score 4, the
event A has occurred, but if we score 5 the event A has not
occurred. The complement of A, denoted by A′ or Ā, represents the
event ‘A has not occurred’. The whole space S represents a certain or
sure event, and Pr(S)=1.

evolute A curve that is the *locus of the *centres of curvature of a
given curve. The evolution given curve is the *involute of the
evolute. The evolute of a circle is a point (its centre), and this is
regarded as a degenerate case. The semicubical parabola 4x3 =
27ay2 is the evolute of the parabola y2 = 4ax + 8a2 (see diagram).

evolution The process of extracting a *root of a number or
equation. Compare involution.

exa- See SI units.

exact division Division in which there is zero remainder.

exact equation A type of *di�erential equation in which the ‘total
di�erential of a function is equal to zero. Thus, if z = f (x, y),

∂z/∂x dx + ∂z/∂y dy = 0

is an exact equation. An equation

Adx + Bdy=0

is exact if ∂A/∂y = ∂B/∂x

excentre (ecentre) The centre of an *ex-circle of a triangle.
Compare incentre.

excircle (escribed circle) A circle lying outside a given triangle
*tangent to one of the sides and to the other two sides extended.
The bisector of the angle between the two extended sides passes
through the centre of the excircle. Compare incircle.

excluded middle, law or principle of the The *theorem of the
*propositional calculus Aⅴ∼A, i.e. the principle that for any



statement A, the statement ‘A or not A’ is always true. See also
bivalence.

exhaustion A method of treating areas and volumes of curved
�gures, dating back to Eudoxus of Cnidus (c.360BC). Earlier
mathematicians had considered the idea of �nding areas of curved
�gures by approximating them by rectilinear �gures. For example, if
a circle is taken with an inscribed polygon and an escribed polygon,

evolute of a parabola.

the area of the circle must lie between the areas of the two
polygons. Moreover, the more sides are taken for the polygons, the
nearer they approximate the true area of the circle. Before Eudoxus,
Greek mathematicians had no way of using this approach as they
did not have the concept of a limit. Eudoxus is generally credited
with the idea that, given a magnitude, if at least half the magnitude
is subtracted and at least half subtracted from the remainder, and so
on, then ultimately the remainder will be less than any preassigned
magnitude. In modern notation, for a magnitude a and a ratio



0.5≤r<1, the limit of a(1 – r)n is zero as n→∞. Eudoxus used this
concept to prove theorems about areas and volumes, for example to
show that the volume of a cone is one-third of the volume of a
cylinder with the same base and height.

existential import The existential commitment of particular kinds
of proposition. A singular proposition such as ‘Some fractions are
reducible is assumed to have existential import, and to be
interpreted to mean that ‘There exists at least one fraction which is
reducible.’ Universal propositions of the form ‘All A is B’ are held to
carry no existential import and to be translated as ‘If anything is an
A then it is a B.’ As a consequence, as there are no French kings, the
universal statement ‘All French kings are bald’ will have an empty
subject term, and will be true. See syllogism.

existential quanti�er See quanti�er.

exogenous variables See endogenous variables.

exp See exponential function.

expanded number A number written as a sum of multiples of
powers of its *base. For instance, the number 163 (in decimal) can
be written as (1×102) + (6×101) + 3 in expanded form.

expansion 1. A mathematical expression that is written as the sum
of a number of terms. Expansion is also the process of putting an
expression in this form, for example the expansion of (x + 1)3 to
give x3 + 3x2 + 3x + 1. The method of expanding such brackets is
to take them in pairs and use the distributive law, thus:

(x + 1)2 = (x + 1)](x + 1)

= x(x + 1) + 1(x + 1)

= x2 + 2x + 1

(x + 1)3 = (x + 1)(x2 + 2x + 1)



= x(x2 + 2x + 1)

+ 1(x2 + 2x + 1)

= x3 + 3x2 + 3x + 1

The expansion of a function is the form of a function when it is
represented as a sum of terms, i.e. as a �nite series or as an in�nite
series that converges to the function for certain values of the
variables (see convergent series). For example,

Cos 4x = 1 – 8 cos2 x + 8 cos4 x

is the expansion of cos 4x in terms of cos x,

The expansion of a *determinant is the conversion of the
determinant to an expression containing determinants of lower
order.
2. (of a number) The expansion of a number to a given *base is its
representation in the *number system with that base. For example,
the expansion of the number 5 to base 2, its binary expansion, is 101;
and the expansion of 3/4 to base 10, its decimal expansion, is 0.75,
while its binary expansion is the binary number 0.11.

expectation (expected value) The �rst *moment about the origin
for a *random variable. Denoted by E(X), it is also called the mean
value of X. For a discrete random variable taking a �nite or
countably in�nite set of values xi with probabilities pi,



and for a continuous random variable with *frequency function f(x),

The expected value of a function g(X) of X is de�ned as

or

as appropriate. See also moment; characteristic function.

experimental design In comparative experiments where the aim is
to compare the e�ect of administering two or more treatments such
as di�erent medicines, fertilizers, or lubricants to units such as
patients, plots of land, or machines, the *e�ciency and *precision of
an experiment may often be improved by certain groupings of the
units. The set of rules used for grouping units de�nes an
experimental design. Any one group should consist of units that are
as alike as possible in characteristics that may a�ect responses other
than the applied treatments. Treatments are then compared within
each group, often by means of the *analysis of variance. The
relevant analysis removes the e�ect of di�erences – other than those
resulting from the applied treatments – between units in di�erent
groups. Well-known and widely used designs include *randomized
blocks, *balanced incomplete blocks, one or more *Latin squares,
and *Youden squares. See also factorial experiments.

explanatory variable See generalized linear model; regression.

explement See conjugate angles.



explicit function A *function de�ned by y=f(x1,x2,…,xn) where y
is the *dependent variable. An example is

Compare implicit function.

exploratory data analysis (EDA) (J.W. Tukey, 1977) A term used
to describe a preliminary examination of *data by operations such
as grouping, graphing, and tabulation in a way that will highlight
their general structure and characteristics and which will often
detect *outliers. Tools such as *box-and-whisker diagrams, *�ve-
number summaries, and histograms are widely used EDA tools. For
multivariate data or large collections of data, methods such as
*kernel density estimation are often used. EDA is often helpful in
deciding which formal statistical analyses may be appropriate.

exponent (index) A number placed in a superscript position to the
right of another number or variable to indicate repeated
multiplication: a2 indicates a×a, a3 indicates a×a×a, etc.
Sometimes ‘power’ is used instead of exponent; more strictly, power
is the result of the multiplication – for instance, 4 is the second
power of 2 (i.e.22). If the exponent is negative then the expression is
the reciprocal of the number with a positive value of the exponent:
for example, x–n=1/xn. Any number with an exponent of zero is
equal to 1 (x0=1). Certain laws of exponents (laws of indices) apply:
(1) multiplication: anam=an + m;
(2) division: an/am=an–m;
(3) raising to a power: (an)m=anm.
Fractional exponents are de�ned by am/n=n((am).

exponential curve A curve with an equation of the form y=ax.

exponential distribution The distribution of a random variable X
with frequency function f(x)=ke–kx,x≥0. The mean is E(X)=1/k
and the variance Var(X)=1/k2. For a *Poisson process in which
events occur at a rate of k per unit time, the intervals between



successive events (the waiting times) are exponentially distributed
with mean 1/k. For example, if events occur at a mean rate of 4 per
hour, the times between events are exponentially distributed with
mean ¼, i.e. the expected time between events is 15 minutes. The
distribution is a special case of the *gamma distribution.

exponential family of distributions Distributions are said to
belong to the exponential family if they have *frequency functions
of the form

f (x, h)=exp(a(x)b(h) + c(h) + d(x))

where h is a parameter. Distributions of this form are important in
*generalized linear models, and the *normal distribution, *Poisson
distribution, and *binomial distribution all belong to this family.
Any parameters other than h are regarded as known.

exponential function The function exp x or ex (see e). The term is
also used for functions of the type ax (where a is a constant) or,
more generally, a function having variables expressed as exponents.
For all x,

See also exponential series.

exponential growth or decay A growth pat-tern for which some
quantity y (e.g. weight, length of an organism, or numbers of
individuals in an animal population) at time t is given by the
equation y=aebt, where a and b are constants and a>0. The rate of
growth or decay is given by dy/dt=abebt=by, and is thus
proportional to size. For growth b>0; for decay b<0.

exponential notation (standard form, index notation, scienti�c
notation) A method of writing numbers as a product of a number
between 1 and 10 and a power of 10. For instance, 1056 in
exponential notation is 1.056×103.



exponential series The *series

The series converges (absolutely) for all x. Its sum is a function of x:
the exponential function, ex. The exponential series is therefore an
*expansion of the exponential function.

exponential time See polynomial time.

expression Any mathematical form expressed symbolically, as in an
equation, polynomial, etc.

exradius (eradius) The radius of an ‘ex-circle of a triangle. Compare
inradius.

extended complex plane Symbol:C∞. A *set consisting of C, the set
of *complex numbers, and a symbol, denoted by ‘∞‘ which is not in
C.

The elements of C∞ may be represented by the points on a sphere,
as follows. Consider a sphere resting on a *complex plane with its
south pole at the origin of the plane. A line is drawn from the point
(a,b) in the plane to the north pole of the sphere. This line meets the
sphere at a point which is uniquely determined by the point (a,b),
and so by the complex number a + ib.

Every complex number thus corresponds to a point on the sphere
below the north pole, and conversely every point on the sphere,
apart from the north pole, corresponds to a complex number. The
north pole is then identi�ed with the symbol ∞, and the whole
sphere, identi�ed with C∞ in this manner, is called a Riemann sphere.

The extended complex plane is a topological space in which the
neighbourhoods of ∞ are de�ned as the complements in C∞ of the
closed and bounded subsets of C.

extension �eld If a *�eld L contains another �eld K, and the �eld
operations in K are the same as those in L (when they are just
applied to elements of K), then L is an extension �eld of K and K is a



*sub�eld of L. For instance, the �eld of *real numbers is an
extension �eld of the �eld of *rational numbers, and is itself a
sub�eld of the �eld of *complex numbers.

extensive de�nition An attempt to de�ne a term by listing the
elements to which it correctly applies. Thus the set of regular
convex polyhedra is {tetrahedron, cube, octahedron, dodecahedron,
icosahedron}. Compare intensive de�nition.

exterior (of a set) See frontier.

exterior angle 1. An angle formed outside a *polygon between one
side and another side extended.
2. See transversal.

external angle An *exterior angle of a polygon.

external force Any *force that originates outside a particular
system of particles considered as a whole. External forces can be
distinguished from *internal forces, which arise from mutual
interactions between the particles of the system and cancel each
other out when the whole system is considered.

external tangent See common tangent.

extraction (of roots) The process of �nding a *root or roots. For
example, extracting the cube root of 27 is the process of �nding its
cube root (3). Extracting the root of an equation is the process of
�nding a number or numbers that satisfy the equation.

extrapolation If the values y1, y2,…, yn of a *function f (x) are
known for values x1, x2, …, xn of the independent variable,
extrapolation is the process of estimating, from the given data, the
value of the function for a further value of x lying outside the given
range of x. See also interpolation.

extremal A point at which a *function attains an *extremum. The
term is often used in the *calculus of variations for a function
(thought of as a point in a space of functions) at which a *functional



attains an extremum. For example, the *brachistochrone is the
extremal for the functional

where g is the *acceleration of free fall.

extreme value distribution A distribution associated with the least
or greatest values in a *sample, i.e. the *order statistics x(1) and x(n)

for a sample of size n. For example, these distributions are relevant
to estimating the probability of future �oods exceeding a certain
magnitude on the basis of records for past �oods, or estimating the
earliest likely failure time of a speci�ed machine component. The
choice of an appropriate extreme value distribution depends on the
type of population from which samples are drawn. A well-known
extreme value distribution is the *Weibull distribution. Others
include the Frechet and Gumbel distributions.

extremum (plural extrema) Greatest or least possible. An extremum
of a *function is a *maximum or *minimum value of the function.
The problem of maximizing or minimizing a function is an extremum
problem. See Fermat point.



F

Fq Symbol for the *�nite �eld with q elements.

face One of the plane regions bounding a *polyhedron, or the
planes forming a *polyhedral angle.

face angle A plane angle between two adjacent edges in a
*polyhedral angle.

factor 1. An integer or *polynomial that divides a given integer or
polynomial exactly is called a factor or divisor. Thus, 1, 2, 3, and 6
are all factors of 6; and x–1 and x + 2 are factors of x2 + x–2, since
(x–1)(x + 2)=x2 + x–2.

In a restricted sense of the de�nition, the factors of polynomials
with rational coe�cients must themselves be nonconstant
polynomials with coe�cients that are rational numbers (as in the
above example). More generally, sometimes the factors are taken to
include constants, e.g.

2x2 + 2=2(x2 + 1)

or to include irrational numbers, e.g.

x2–2=(x + √2)(x–√2)

x2 + y2=(x + iy)(x–iy)

See also common factor; divisible; factor theorem.
2. See factorial experiments.

factorable 1. Of an integer, containing factors other than itself or
unity. For instance, 8 (=4×2) is factorable. Prime numbers are not
factorable.



2. Of a *polynomial, containing factors other than itself or a
constant. For example, x 2 + x–2 is factorable into (x + 2)(x–1).

factor analysis (L.L. Thurstone, 1935) A statistical technique that
aims to express p observed *random variables as *linear functions of
m (<p) factors plus a term representing error (or residual) variation.
There are several speci�cations of the basic problem, and estimation
requires a knowledge of the *covariance matrix of the observations.
Factor analysis was used originally in psychological experiments to
try to explain individual test scores in terms of factors such as verbal
ability, arithmetic ability, and manual skill. See also principal
component analysis.

factor formulae Formulae from plane trigonometry expressing the
sums and di�erences of sines and cosines as products of
trigonometric functions:

sinx + sin y=2sin½(x + y)cos½(x–y)

sinx–sin y=2cos½(x + y)sin½(x–y)

cosx + cos y=2cos½(x + y)cos½(x–y)

cosx–cos y=–2sin½(x + y)sin½(x–y)

See also product formulae.

factor group See normal subgroup.

factorial A number obtained by multiplying all the positive integers
less than or equal to a given positive integer. The factorial of a given
integer n is usually written as n! (an old notation is ⌊n), i.e.

n!=n×(n–1)×(n–2)×…

×3×2×1

By convention factorial zero, 0!, is taken to be unity. See gamma
function; factorial series; hypergeometric series; Stirling’s formula.



factorial experiments (F. Yates, 1934) Experiments in which the
treatment structure allows comparisons of several types of
treatment, each called a factor, at di�erent quantitative or
qualitative levels. In an experiment measuring the yield of a
chemical process, factor A might represent three di�erent
temperatures, 120 °C, 150 °C, and 180 °C, and factor B two di�erent
pressures, 1 and 2 atmospheres. The design allows the experimenter
to assess whether the e�ects of each factor are simply additive or
whether they interact (i.e. are not directly additive). There would be
interaction if, for example, yield increased as temperature increased
at the lower pressure, but yield decreased as temperature increased
at the higher pressure.

The results are analysed by partitioning the between-treatments
sum of squares in an *analysis of variance into main e�ects and
interactions. Designs may involve any number of factors and any
number of levels of each factor. In a *randomized block design
every factor–level combination appears once in each block.
*E�ciency can sometimes be increased by using a device known as
confounding, which allows the use of blocks containing selected
subsets of factor–level combinations. Certain components of
interaction, usually assumed to be negligible, then become
‘confounded’ with di�erences between blocks. Special analyses are
needed for sophisticated factorial designs, some of which may not
include all factor–level combinations.

factorial series The in�nite series

This is a *convergent series whose sum is the number e, i.e. 2.718
28….

factorization 1. The representation of a number or *polynomial as
a product of *factors. If the factors of a number are all prime
numbers, then their product is the prime factorization of that
number. See fundamental theorem of arithmetic.



2. (of a matrix) The representation of a matrix as the product of two
or more matrices. Important examples are *LU factorization,
*Cholesky factorization, and *polar decomposition. See also Schur
decomposition; singular value decomposition; QR factorization.

factor modulo n A number or *polynomial that divides another
number or polynomial modulo n, i.e. a factor of it modulo n (see
division modulo n). Thus modulo 12, 5 has the two factorizations
1×5 and 7×11, while 8 has the factorizations 1×8, 2×4, 4×5,
2×10, 4×8, 4×11, 7×8, 8×10. Modulo 7, 2x 4–4 x–3 has the
factors 2x2 + 3 x + 3, x–2, and x + 4 since
(2x2 + 3x + 3)(x–2)(x + 4)

=2x4 + 7x3–7x2–18x–24

≡ (2x4–4x–3) (mod7)

Integers that are *coprimeto n are the only numbers that, modulo n,
are factors of every integer. These same coprime numbers, regarded
as constant polynomials, are the only polynomials that have the
similar universal property of dividing every polynomial modulo n.

factor theorem The theorem that for a given *polynomial in x, x–a
is a factor if the value of the polynomial is zero when a replaces x
throughout. The *remainder theorem reduces to the factor theorem
when the remainder is zero.

Fahrenheit degree Symbol: °F. A division of a temperature scale in
which the melting point of ice is taken as 32 degrees and the boiling
point of water is taken as 212 degrees. This scale has now been
largely replaced by the *Celsius scale and, for many scienti�c
purposes, by the *kelvin scale. To convert a Fahrenheit temperature
to Celsius the formula used is C=5(F–32)/9. [After G.D. Fahrenheit
(1686–1736)]

fair game A game in which the entry cost or stake equals the
expected gain (see expectation). In a sequence of fair games between



two adversaries the one with the larger capital has the better chance
of ruining his opponent. See random walk; St Petersburg paradox.

fallacy An *argument or form of argument that is invalid. For
example, the argument ‘Given x≥y and y≥z it follows that x>z’ is
a fallacy. Since the time of Aristotle, logicians have sought to
identify and classify persistent and systematic errors of reasoning
usually described as fallacies. The major division is between formal
and informal fallacies. Two formal fallacies when reasoning with
*conditionals are *a�rmation of the consequent and *denial of the
antecedent. Similarly with the *syllogism, amongst a number of
formal fallacies there is the fallacy of four terms, as in ‘All metals are
elements. Brass is a metal ∴ Brass is an element’, where the term
‘metal’ is used ambiguously to refer to a pure substance and to an
alloy. There are also a large number of informal fallacies whose
force is more rhetorical than logical. These include argumentum ad
hominem, where the man rather than his argument is attacked, for
example ‘No butcher can be expected to argue honestly about the
meat trade’.

false position, rule of (regula falsi) In general, a method of
successively approximating a *root of an equation f(x)=0 from an
initial estimate or estimates of the root.

In a method of simple position, a single estimate a0 is made and
an*iteration of the form an + 1=g(an) is used for n=1, 2, ….
Examples are the direct iteration and Newton-Raphson methods.

In a method of double position, such as successive *linear
interpolation, two estimates a0 and b0 are found such that f(a0) and
f(b0) are close to zero but of opposite sign (see diagram). These
estimates are then used as starting values in the formula

where, for n=0, 1, 2, …, bn + 1 is chosen from an and bn so that f(bn
+ 1) is of opposite sign to f(an + 1).



false position: linear interpolation.

family 1. A set of curves that are related by a common equation, so
that all the curves can be generated by varying one or more
parameters in the equation. For example, the equation

x2 + y2=r2

represents a family of concentric circles with centres at the origin
and di�erent values of r. The equation

(x–h)2 + y2=a2

where a is constant, represents a family of circles of equal radius
(a)with centres along the x-axis (as h varies). The above cases are
both examples of one-parameter families. Families of curves can also
be generated by varying two or more parameters. Thus, in the
second equation above both h and a can be varied to produce the
two-parameter family of all circles that have their centre on the x-
axis. The family of all circles in the plane is a three-parameter
family obtained by varying h, k, and r in the equation

(x–h)2 + (y–k)2=r2

See also confocal conics.
2. A set of surfaces related by a common equation. As with curves,
families of surfaces can be one-parameter, two-parameter, etc. For
example, the equation

x2 + y2 + z2=r2



represents a one-parameter family of concentric spheres for di�erent
values of r.

farad Symbol: F. The *SI unit of capacitance, equal to the
capacitance of a capacitor between the plates of which a potential
di�erence of 1 volt will appear when it is storing 1 coulomb of
charge. [After M. Faraday (1791–1867)]

Farey sequence (of order n) (C. Haros, 1802; J. Farey, 1816) The
�nite *increasing sequence Fn of *irreducible fractions, between 0
and 1 inclusive, whose denominators do not exceed the *natural
number n. Thus F5 is

One of the main properties of any Farey sequence is that if a/b and
a′/b′ are two adjacent terms with a/b<a′/b′, then a′b–ab′=1. For
instance, in F5 a/b=3/5 and a′/b′=2/3 are two such terms, and
2×5–3×3=1.

fast Fourier transform (FFT) See discrete Fourier transform.

F-distribution (R.A. Fisher, 1922) The *distribution of the ratio of
two independent chi-squared variables (see chi-squared
distribution), each divided by its *degrees of freedom. It is used in
the F-test or variance ratio test in an *analysis of variance to test the
null hypothesis that two components estimate the same variance
against the alternative that the numerator component estimates a
greater variance, the latter being indicated by a high F-value. The F-
test may also be used to test the acceptability of the hypothesis that
two samples are from normal distributions with the same variance.
Tables giving critical values at the 0.05, 0.01, and 0.001
signi�cance levels are widely available, and most computer
programs for the analysis of variance give *p-values associated with
calculated F-values. The distribution was �rst tabulated in 1934 by
the American statistician George Waddel Snedecor (1881–1974),



who named it the F-distribution in honour of Fisher. It is sometimes
referred to as Snedecor’s F-distribution.

feasible region, feasible solution See linear programming.

Feigenbaum number (M.J. Feigenbaum, 1979) A real number that
characterizes the parameter values for which the *logistic map
experiences *period doubling. If period doubling takes place at
successive parameter values a1=3.5, a2=3.56, …, an, …, then

This is the Feigenbaum number. It is a universal constant, in that for
similar maps with period doubling the limit has the same value.

Feit–Thompson theorem A �nite *group of *prime order has no
subgroups apart from the whole group and the subgroup consisting
of the identity element, and is thus a *simple group. W. Feit and
J.G. Thompson proved in 1963 that a �nite simple group that does
not have prime order must have even order.

femto- See SI units.

Fermat, Pierre de (1601–65) French mathematician who in his
posthumously published Arithmetica (1670) established a number of
important results in number theory. He was also responsible for
some pioneering work on the calculus and devised a general
procedure for �nding tangents to curves. Further work in his Isagoge
ad locus planos et solidos (1679, On the Plane and Solid Locus)
foreshadowed the later analytic geometry of Descartes and allowed
him to de�ne such important curves as the hyperbola and parabola,
the spiral of Fermat, and the cubic curve known as the witch of
Agnesi. In optics, Fermat formulated the principle of least time.
With Pascal, he laid the foundations of probability theory. See also
Fermat’s last theorem.

Fermat numbers (P. de Fermat, 1640) Numbers Fn of the form 22n

+ 1 where n is zero or a positive integer. The �rst few are



A Fermat number that is prime is called a Fermat prime.
Each Fermat number is *relatively prime to every other Fermat

number, and Fermat thought that they are actually all prime, as is
the case for the examples above. However, in 1732 Euler found that
F5 is divisible by 641. To this date no one knows whether there are
any Fermat primes after F4.

In 1796 Gauss showed that Fermat numbers have a remarkable
connection with geometry, since a regular polygon can be
constructed with just unmarked straightedge and compasses if and
only if the number of sides of the polygon is a power of 2, or a
product of distinct Fermat primes, or a power of 2 multiplied by
such a product.

Fermat point For a triangle ABC, the point P in its plane such that
PA + PB + PC is a minimum. If all the angles of the triangle are
less than 120°, then P lies where the angles BPC, CPA, and APB are
all 120°. If the angle at one of the vertices of the triangle is greater
than or equal to 120°, then P lies at that vertex.

This problem of �nding the point in the plane that minimizes the
sum of its distances from the vertices of a given triangle is
sometimes called the Fermat problem or Steiner’s problem. It is one of
the �rst instances of an extremum problem.
Fermat’s last theorem The result that if the *integer n is at least 3,
then there are no integers x, y, and z, none of which is zero,
satisfying the equation

xn + yn=zn



This was �rst conjectured by *Fermat in about 1637, and he said
that he had a proof, though it was never found. For over 350 years,
work on Fermat’s conjecture provided much stimulus to the
development of algebraic number theory; after a period of intense
activity by the English mathematician Andrew Wiles it was
eventually proved in 1995 by Wiles, with assistance from the
English mathematician Richard Taylor.

Fermat’s spiral See spiral.

Fermat’s theorem The theorem (P. de Fermat, 1640) that if a is an
integer and p is a *prime that does not divide a, then p does divide
ap–1–1; or, in *congruence notation, ap–1 ≡ 1(mod p). For example,
84–1 is divisible by 5. A simple corollary is that, whether p divides a
or not, it must divide ap–a: equivalently ap ≡ a (mod p). Chinese
mathematicians 2500 years ago were aware that if p is prime then p
divides 2p–2, which is the case a=2. Leibniz was able to prove
Fermat’s theorem by 1683, but the �rst published proof was given
in 1736 by Euler, who subsequently generalized the result (see
Euler’s phi function). The theorem is sometimes known as Fermat’s
little theorem to distinguish it from his celebrated last theorem.

Ferrari, Ludovico (1522–65) Italian mathematician who was the
�rst to solve the *quartic equation. He was assistant to Cardano,
who published the solution in his Ars magna (1545).

FFT Abbreviation for fast Fourier transform (see discrete Fourier
transform).

Fibonacci, also known as Leonardo of Pisa (c.1175–c.1250) Italian
mathematician who in his treatise on arithmetic and algebra, Liber
abaci (1202, The Book of the Abacus), championed the Hindu–
Arabic number system. One of its large collection of problems gives
rise to the *Fibonacci sequence. A later work, Liber quadratorum
(1225, The Book of Square Numbers) contains the �rst Western
advances to be made in arithmetic since Diophantus.



Fibonacci sequence (Fibonacci, 1202) The *sequence 1, 1, 2, 3, 5,
8, 13, 21, … where each term, after the �rst two, is the sum of the
preceding pair of terms. Sometimes the sequence is begun 0, 1, 1,
…. These Fibonacci numbers originally arose from a problem about
the breeding of rabbits posed by Fibonacci in his Liber abaci. But
they also occur elsewhere in the natural world, for example as the
numbers of ancestors of a male honeybee in di�erent generations.
The sequence also has several interesting mathematical properties:
for example, every two adjacent terms are relatively prime; any
natural number is a sum of distinct Fibonacci numbers; and the
ratios of successive terms, 1/1, 2/1, 3/2, 5/3, … get closer and
closer to the golden ratio (see golden section).

�ctitious force See inertial force.

�ducial inference R.A. Fisher (1935) introduced the concept of a
�ducial distribution to make probabilistic inferences about unknown
parameter values. Fiducial theory very often gives similar results to
theories leading to *con�dence intervals, but the logical basis is
distinct. The theory has some very subtle aspects and is not widely
used. See Behrens–Fisher test.

�eld 1. A *set (of numbers or functions, for instance), together with
ways of adding and multiplying together members of the set, that
satisfy rules similar to the rules for the addition and multiplication
of *rational numbers. In particular, given any element in the set, we
must be able to add any element to it, subtract any element from it,
multiply it by any element, or divide it by any nonzero element, and
in each case obtain a result in the same set of elements. In detail, a
set F will be a �eld if and only if the operations + and×on F satisfy
the following properties:
(1) for any a and b in F, a + b and a×b must also be in F;
(2) for any a and b in F, a + b=b + a and a×b=b×a;
(3) for any a, b, and c in F, a + (b + c)=(a + b) + c and
a×(b×c)=(a×b)×c;



(4) there is a special number 0 in F such that 0 + a=a for every a
in F, and there is a special number 1 (≠ 0) in F such that 1×a=a
for every a in F;
(5) to every element a there corresponds an element–a in F such
that a + (–a)=0, and if a≠0 there is an element a—1 in F such that
a×a–1=1;
(6) for any a, b, c in F, a×(b + c)=
Although there is no explicit mention of subtraction or division in
properties (1)–(6), they are there implicitly since subtracting a is the
same as adding–a, and dividing by a is the same as multiplying by
a–1.

The set of all rational numbers with their usual addition and
multiplication is an example of a �eld. The real numbers and the
complex numbers (with the appropriate addition and multiplication
each time) are also �elds. However, the set of integers, for example,
is not a �eld. It fails to satisfy the last part of (5) as it has many
elements (e.g. the integer 2) that do not have integer reciprocals.

There are also examples of �elds that have only a �nite number of
elements. In these cases the easiest way to see how their elements
are to be added and multiplied is to write down the addition and
multiplication tables. The smallest possible �eld has just the two
elements 0 and 1, which are added and multiplied together as in the
following tables:

There are also �elds with 3, 4, 5, 7, 8, 9, … elements, but not 6 or
10, because the number of elements in any �nite �eld must be a
power of a prime. Conversely, if pn is any prime power there is a
unique �nite �eld with pn elements, often called the *Galois �eld,
GF(pn). See also ring.



2.(�eld of force, force �eld) A phenomenon associated with a
Conservative force: it is the force that would be experienced by a
particle of unit mass (unit charge, etc.) due to some distribution of
matter (charge, etc.). For example, a particle of mass m will
experience a *gravitational force GMm/d2 when it is a distance d
from some body of mass M; the gravitational �eld at that position is
GM/d2. The �eld therefore depends on the distribution of matter
that causes it; its e�ect is on another distribution of matter. The
same applies to an electrostatic �eld arising from a distribution of
charge.

A �eld of force is an example of a vector �eld or a *vector function
of position, g(r), i.e. at every point there is speci�ed a vector g, the
magnitude and direction of which varies from point to point. A
relationship can be established between �eld and *potential, which
is a scalar function of position and an example of a scalar �eld.

�eld extension See extension �eld.

Fields Medal The Canadian mathematician John Charles Fields
(1863–1932) sought to provide for mathematicians an award
comparable in stature to the Nobel prizes. Consequently, he
proposed to award quadrennially at least two gold medals for
‘outstanding achievement in mathematics’, normally to
mathematicians under 40, at successive International Congresses of
Mathematicians (ICM). In his will he left su�cient funds and
suggestions for the organization of the award. The �rst awards were
made in 1936; the recipients were Lars Ahlfors for his work on
*complex analysis and Jesse Douglas for his work on the *Plateau
problem. Following a wartime hiatus the awards were resumed in
1950. Fields wished to stress the international nature of
mathematics, and consequently urged that there should not be
attached to the medals ‘the name of any country, institution, or
person’. The award is administered by a Board of Trustees set up by
the University of Toronto; the medals themselves are awarded by a
committee of mathematicians appointed by the ICM.



�gurate number An integer that can be represented by an *array
forming a regular geometric �gure. See triangular number.

�gure 1. (geometric �gure) A combination of lines, points, curves,
surfaces, etc.
2. Any character or combination of characters representing a
number.
3. A digit.
4. See syllogism.

�lter Let X be any *set and F a collection of nonempty *subsets of
X. F is a �lter on X if and only if
(1) (A∈F)&(B∈F)→(A∩B)∈F;
(2) Ø(F;
(3) (A∈F)&(A⊆B)→B∈F, here B⊆X.
For example, the set F of all closed intervals [x, y] where
0<x<½2<y<1 is a �lter on [0,1].

�nite decimal (terminating decimal) See decimal.

�nite di�erences When a *function is tabulated at equal intervals
in the argument, the di�erences between successive function values,
di�erences between successive di�erences, etc. are called �nite
di�erences.
There are several notations for �nite di�erences. If y=f(x) has
known values y0, y1, y2, …, yn at x0, x1,=x0 + h, x2=x0 + 2h,…,
xn=x0 + nh, then

∆yr=yr + 1–yr, r=0, 1, 2, …, n–1

is called the �rst forward di�erence of f(x) at x=xr; the di�erence

∆2yr=∆ (∆yr)=∆y + –∆yr

= yr + 2–2yr + 1 + yr



is called the second forward di�erence at x=xr. The �rst backward
di�erence is

(yi=yi–yi–1

and the �rst central di�erence is

δi + 1/2=yi + 1–yi

More generally, the kth forward di�erence is

where is the *binomial coe�cient. Note also that
y1=y0 + ∆y0, y2=y0 + 2∆y0 + ∆2y0

and in general

If y=xn it is easily seen that, for all y, Dy is a polynomial of degree
n–1, ∆ny is a constant, and, for all m>n, ∆my=0. Thus if y is
*polynomial of degree n, then all its nth forward di�erences ∆ny are
constant. The converse is also true.

Finite di�erences are commonly set out in a table of the form



For example, if x0=–2, y=x2–2, and h=l then

Each entry in the last three columns is obtained by subtracting the
entry in the previous column immediately above it from that
immediately below it.

Finite di�erences are important in *interpolation and *di�erence
equations, and for many other problems such as *numerical
integration and *numerical di�erentiation.

�nite discontinuity See discontinuity.

�nite element method A method for approximating the solution of
a *partial di�erential equation with boundary conditions over a
given domain. The domain is partitioned into elements (typically
triangles for a two-dimensional region or tetrahedra in three



dimensions) and on each element the solution is approximated by a
suitable *function, usually a low-degree *polynomial. The
coe�cients that de�ne the polynomials are chosen to satisfy a best
approximation criterion.

�nite �eld See Galois �eld.

�nite Fourier transform Alternative name for a *discrete Fourier
transform.

�nite group A *group with a �nite number of elements.

�nite sequence A *sequence that has a �nite number of terms.

�nite series A *series that has a �nite number of terms.

�nite set A *set that is not in�nite, i.e. one that cannot be put into
a *one-to-one correspondence with a proper *subset of itself.

�nite variation See variation.

�rst kind The terms �rst kind, second kind, third kind, etc. are
sometimes used to dis-tinguish two or more classes of mathematical
object of some common overall type. For example, there are
*elliptic integrals of the �rst, second, and third kinds. See also Airy
functions; Bessel functions; cusp; hypothesis testing; integral
equation; separation.

�rst-order convergence See order.

�rst-order di�erential equation A *di�er-ential equation
containing only the �rst di�erential coe�cient dy/dx.

Fisher, Sir Ronald Aylmer (1890–1962) English mathematician,
statistician, and geneticist who in his Statistical Methods for Research
Workers (1925) provided the basic statistical techniques and designs
used by subsequent workers.

Fisher’s exact test A test for lack of asso-ciationina2×2
*contingency table. The test is based on the *hypergeometric
distribution, and is available in many statistical software packages.



If expected numbers in all cells are not too low, the *chi-squared
test provides a good approximation. It is sometimes called the
Fisher–Irwin or the Fisher–Yates test. An extension to rxc tables is
called the Fisher–Freeman–Halton test.

Fisher’s z-distribution A *distribution based on the *logarithm of
the ratio of two *estimators of a common *variance. In practice the
*F-distribution is used instead.

Fisher’s z -transformation A*transformation of the sample
estimate, r, of a bivari-ate normal *correlation coe�cient to
z=tanh–1r, giving a better approximation to a normal distribution.

Fitzgerald–Lorentz contraction See Lor-entz-Fitzgerald
contraction.

�ve-number summary (J.W. Tukey, 1977) For a set of
observations the least value, �rst *quartile, *median, third quartile,
and greatest value form a �ve-number summary of *order statistics,
providing a rapid means of assessing the location, dispersion, and
asymmetry (if any) of the observations. In association with a *stem-
and-leaf display, this summary is generally superior to a *histogram
in descriptive statistics, and it is widely used in *exploratory data
analysis.

�xed-point iteration See iteration.

�xed-point theorem Any theorem that gives conditions which
ensure that a *continuous mapping f: X( X has a �xed point, i.e. that
there is an a ( X such that f(a)=a. Examples are the Banach
contraction principle (see contraction mapping) and Brouwer’s theorem
(L.E.J. Brouwer, 1912) which states that if X is the n-ball Bn (see
ball) then any such f has a �xed point. Thus for n=2, any
continuous map of a circular disc onto itself has a �xed point.

There is a more general version called the Lefschetz theorem (S.
Lefschetz, 1926; H. Hopf, 1928) that applies when X is any
(compact) *polyhedron.



�xed variable See regression.

�at angle (straight angle) An angle equal to one-half of a complete
turn (180° or π radians).

�ecnode A *node on a curve at which one or both branches of the
curve have points of *in�ection.

�oating-point representation A �oatingpoint system represents a
real number × in a given *base β as x=f×βe, where f is a real
number (the *mantissa) and e an integer (the *exponent or *index).
For example, 105.7=0.1057×10–3. The representation can be made
unique by requiring that 1/β≤|f|<1. *Exponential notation is a
form of �oating-point representation.

Computers use a �oating-point system in which f and e have a
limited range: f is a number with t base-β digits, and e lies in an
interval [L, U]. In such a system there are �nitely many numbers,
and × can be written as

where each digit � satis�es 0≤�≤β–1. Numbers for which f1 ( 0 are
normalized numbers. On most computers, the base β=2.

When a �oating-point operation (addition, subtraction,
multiplication, or division) is performed between two �oatingpoint
numbers, the result may not be a �oating-point number, most likely
because it has more than t digits in the mantissa; the result is then
rounded (see rounding o�) to produce a �oating-point number,
thereby committing a rounding *error.

�oor function See integer part.

�ow See dynamical system.

�ow chart (�ow diagram) A diagram to indicate the relationships
between logical steps in a well-de�ned procedure, such as an



algorithm for a computer program to calculate the sum of N
numbers X. A suit-able �ow chart would be as shown in the
diagram. The standard convention is to use elliptical frames for
‘start’ and ‘end’, rectangles for operation boxes, and diamonds for
decision boxes. There is one route out

�ow chart for computing a sum of numbers. from a start box. An
operation box must have one or more routes in and exactly one
route out; a decision box at least one route in and always two routes
out, depending on the decision. An end box has at least one route in
and no routes out. Flow charts are used in other contexts. Financial
journals often use them to indicate optimal investment strategies in
the light of di�erent options facing investors in di�ering
circumstances.



�uent See calculus.

�uid mechanics The study of the mechanical and �ow properties of
liquids and gases. See also hydrostatics.

�uxion See calculus.

focal chord A *chord that passes through the focus of a *conic.

focal property The property of a *conic in which lines from the foci
to a point on the curve make equal angles with the *tangent at that
point. It is also called the re�ection property, since it shows how light
(optical property) or sound (acoustical property) would be re�ected by
a re�ector with the shape of the conic. See ellipse; hyperbola;
parabola.

focal radius A line segment between the focus of a *conic and any
point on the conic.

focus (plural foci) See conic.

folium of Descartes A plane *curve with the equation (in Cartesian
coordinates) x3 + y3=3axy. It passes through the origin, has a
single loop (hence folium, ‘leaf’), and has two branches that are
asymptotic to the straight line x + y + a=0. It was proposed by
René Descartes in 1638, who used it to cast doubt on a method of
�nding tangents invented by Pierre de Fermat.

foot 1. Symbol: ft. A *British unit of length equal to one-third of a
yard. 1 foot=0.3048 metre.
2. The point at which a line perpendicular to another line or to a
plane meets that line or plane.



folium of Descartes

foot-pound Symbol: ft-lb. A unit of work in the *f.p.s. system, equal
to the work done by 1 pound-force acting through 1 foot. 1 foot-
pound=1.35582 joule.

foot-poundal Symbol: ft-pdl. A unit of work in the *f.p.s. system,
equal to the work done by a force of 1 poundal acting through a
distance of 1 foot. 1 foot-poundal=0.042 14 joule.

force Symbol: F. A dynamic in�uence that, when acting on a
particle or system of particles (a body), causes or tends to cause it to
accelerate. The particle or body can be moving or stationary. Force
is expressed in newtons and is a vector quantity. Its magnitude can
be given by the product of the magnitude of the acceleration, a,
given to the particle or body, and the mass, m, of the particle or
body. This is Newton’s second law of motion. The direction of the
force is the direction in which the acceleration is imparted (for
linear motion). A body will be deformed by the action of a force.
The deformation is usually ignored when studying the motion of the
body as a whole. See also Newton’s laws of motion; central force;
centrifugal force; centripetal force; conservative force; Coriolis
force; external force; inertial force; internal force.



forced oscillation The motion arising when an oscillating system is
subjected to an external driving force that is itself periodic (or is
some other function of time). One component of the motion is the
*free oscillation that would occur in the absence of the driving force
and that eventually dies away (see damped harmonic motion).
Ultimately, with a periodic driving force, the frequency of the forced
oscillation is that of the driving force but there is a change in
amplitude and phase. If the frequency is close to that of the free
oscillation, the amplitude can be very large (see resonance).

force �eld See �eld.

force polygon A graphical representation of a system of forces
acting at a point and their *resultant. Let the forces F1, F2, …, Fn be
represented by directed line segments A0A1, A1A2, …, An–1An. The
resultant of the system is represented by the directed line segment
A0An. If A0 and An coincide, the resultant is zero and the system is in
*equilibrium. See also polygon of forces.

force polygon for four forces, F1, F2, F3, and F4 The directed line
segment A0A4 represents the resultant.

forest See tree.

form A homogeneous *polynomial in two or more variables. The
form is said to be linear if the variables are separately of the �rst
degree. The number of sets of variables is the order of the form. For
instance, if there are two sets of variables, x1, …, xn and y1, …, yn,
the sum



a11x1y1 + a12x1y2 + + a1nx1yn +

a21 x2y1 + a22 x2y2 + + a2nx2yn +

anlxny1 + an2xny2 + + annxnyn

is a bilinear form (of order 2). A quadratic form is a form of the
second degree, for example
ax2 + bxy + cy2

Quadratic forms in two variables (as above) represent *conics when
put equal to a constant. Quadratic forms in three variables equal to
a constant represent *conicoids. The study of forms was developed
in the mid 19th century by A. Cayley and J.J. Sylvester, who called
them quantics. In particular, they studied the *invariants of forms.
For instance, if the form above is part of an equation representing a
conic, then the expression b2–4ac is an invariant for translation or
rotation of the coordinate axes.

formal calculation A calculation (often involving *power series)
that is purely algebraic and disregards questions of *convergence.
Euler used formal calculations to discover many new theorems.

formal consequence See consequence.

formalism The view, often associated with David Hilbert, that
mathematics can be regarded as manipulation of symbols
independently of their meaning or interpretation. To the formalist,
mathematics is not true in the sense that it describes an independent
reality, but is rather like a game played in accordance with certain
rules that allow the construction of sequences of symbols from other
sequences of symbols. Thus the formalisms concern is proof-
theoretic, one of the tasks of mathematics being to provide
consistency proofs (see consistent) that prevent contradictory claims
from being made. Without consistency, mathematics would be
useless.



The formalists, like the intuitionists, �nd acceptable only those
proofs that do not require an in�nite number of steps.

See intuitionism; logicism.

formal language In logic, a set of symbols together with a set of
formation rules that designate certain sequences of symbols as *w�s,
and a set of rules of inference (transformation rules) that, given a
certain sequence of w�s, permit the construction of another w�. The
symbols chosen vary from language to language, but typically they
contain both logical *constants and nonlogical vocabulary. For
example, in the language of the *propositional calculus the logical
constants are truth-functional connectives, and the nonlogical
vocabulary consists solely of sentence letters. In the *predicate
calculus, variables, predicates, and quanti�ers are needed. The
formation rules will naturally re�ect the chosen vocabulary. The
rules of inference are to be thought of as governing only the
manipulation of symbols, independently of any interpretation they
might have.

Although formal languages do not require at any stage the notion
of an interpretation, they are nevertheless constructed with
interpretations in mind, and rules of inference that do not preserve
truth, although not formally unsatisfactory, are of no interest. The
term ‘formal language’ is also sometimes used as a synonym for
‘formal system’.

See also proof theory; logic.

formal power series See formal calculation.

formal system (formal theory) A*formal language together with a
set of *axioms.

formation rules In logic, the rules of a *formal language for
constructing *w�s from symbols. For example, the rule in the
*propositional calculus that if ‘A’is a w�, then ‘˜ A’ (i.e. ‘not A’) is a
w�.



formula Any identity, general rule, or law of mathematics. See also
well-formed formula.

forward di�erence Given *function values yi=f(xi), where xi=x0

+ ih, and i=0, 1, 2, …, the forward di�erence ∆yi is de�ned by
∆yi=yi + 1–yi. See �nite di�erences.

forward di�erence formula See Gregory-Newton interpolation.

Foucault’s pendulum A means of showing the rotation of the earth
about its axis. It was demonstrated in 1851 by the French physicist
Jean Bernard Léon Foucault (1819–68), who suspended a 28 kg ball
on a 67 m length of wire inside the dome of the Pantheon in Paris.
When such a pendulum is set in motion, with small displacements
about its equilibrium position, the suspended weight swings in a
plane (tracing a straight line on the �oor beneath), and this plane
slowly rotates about the vertical.

The maximum rate of rotation occurs at the earth’s poles. The
pendulum maintains a constant plane of oscillation in space
(relative to the �xed stars) while the earth rotates. To an observer
on earth the plane of oscillation makes one rotation every 24 hours
(approximately). In general, the angular speed of rotation is ω sin λ,
where ω is the earth’s angular speed of rotation, 7.3×10–5 rad s–1 or
15° per (sidereal) hour, and λ is the local latitude; the direction of
rotation is clockwise in the northern hemisphere, anticlockwise in
the southern.

four-colour problem The problem of �nding the minimum number
of colours needed to colour a geographical map so that adjacent
regions are distinguished by di�erent colours. (Adjacent regions are
ones with common boundary line segments.) It is clear that three
colours will not su�ce. It was proved in 1890 by P.J. Heawood that
�ve colours are always enough; however, the problem of
demonstrating that four is the minimum number of colours was
resolved only as recently as 1976, by K. Appel and W. Haken.

As Appel and Haken had used some 1200 hours of computer time
and in the process accepted a number of complicated computations



uncheckable by human hand, some critics have objected that such
an approach does not amount to an acceptable mathematical proof.
Most mathematicians, however, have accepted the proof while
continuing to hope for a more accessible demonstration of the
theorem.

The problem applies to maps on a plane or sphere. For a torus, it
has been proved that seven is the minimum number of colours
required.

four group See Klein’s four group.

Fourier, Jean-Baptiste Joseph, Baron (1768–1830) French
mathematician who, in his Théorie analytique de la chaleur (1822,
Analytical Theory of Heat), developed the technique since known as
*Fourier analysis, which has proved to have wide application in a
number of apparently unrelated disciplines.

Fourier analysis The use of*Fourier series and *Fourier transforms
in analysis.

Fourier coe�cients See Fourier series.

Fourier series The in�nite *series

Since the sine and cosine each have a period of 2π, the Fourier
series also has a period of 2π. By a suitable choice of the coe�cients
an and bn, the series can be made to converge to (i.e. the sum of the
series can be made equal to) any periodic function of × de�ned on
the interval (–π, π). If �s such a function, the Fourier coe�cients are



for n=1, 2, 3, …. The Fourier series is used in the analysis of a
waveform into its constituent sine waves of di�erent frequencies
and amplitudes (see wave).

Fourier series were �rst used to study heat conduction but are
now very widely used in electrical engineering, vibration analysis,
acoustics, optics, data compression, signal processing and other
areas. For example, the decomposition of light sources using
spectroscopy relies on Fourier analysis and is used to obtain
information about the chemical composition of stars.

Fourier’s half-range series A *Fourier series that can take two
forms:

The cosine is an *even function while the sine is an *odd function,
i.e.
cosx=cos(–x),sinx=–sin(–x)
The former (cosine) series can therefore be made to converge to any
even function of x de�ned on the interval (–π, π), and the latter
(sine) series to any odd function of x de�ned on (–π, π).

Fourier transform An *integral transform of the type

The function F is said to be the Fourier transform of the function f.
It follows that

F and f are said to be a pair of Fourier transforms. See also discrete
Fourier transform.

four squares theorem See Lagrange’s theorem (1).



f.p.s. units A system of units that was formerly used in English-
speaking countries for scienti�c, engineering, and general purposes.
A noncoherent system, based on the foot, pound, and second, it has
been replaced for scienti�c purposes by *SI units.

fractal A term introduced in 1975 by the French mathematician
B.B. Mandelbrot to describe geometric objects that, in a certain
sense, have ‘fractional dimension’. It includes sets such as the
*snow�ake curve and *Cantor set generated by some in�nitely
repeated process and possessing self-similarity, i.e. every point of the
set is con-tained in a scaled-down copy of the entire set. In general,
a fractal is a set of points with a similarity dimension or Hausdor�
dimension which is not an integer (see below). In many cases, the
attractor or strange attractor (see chaos) associated with a
transformation or *�ow is a fractal.

A self-similar fractal S in a space of dimension d can be given a
similarity dimension D, where 0 ≤ D ≤ d). If there are N
similarities with scale factors r1, r2, …, rN that map S into itself, then
D satis�es the equation (r1)D + + (rN)D=1. For example, the
Cantor set C has self-similarities x  1/3x and x  2/3 + 1/3x. In
this case, r1=r2 = 1/3, and so D=ln2/ln3. The interval [0, 1], the
snow�ake curve, and the unit square have similarity dimension 1,
1n 4/ ln 3, and 2, respectively.

The Hausdor� dimension is a more general de�nition introduced
by F. Hausdor� in 1919. It can be de�ned for any set in n-
dimensional Euclidean space. For sets with self-similarities, the
Hausdor� dimension and similarity dimension coincide.

Fractal curves are used in producing designs in computer
graphics. Many of the designs have a natural form (e.g. the
snow�ake curve–see diagram). Fractal geometry has been used to
study crystal formation, electrical discharges, coagulation of
particles, urban growth, and many other areas.



fractal An early stage in the generation of the snow�ake curve.

fraction A quotient of one number (or a expression) by another,
indicated by a/b (or a/b). The dividend a is the numerator and the
nonzero divisor b is the denominator. Fractions are classi�ed as:
Common (or simple or vulgar)fraction–the numerator and
denominator are both integers.
Complex fraction–the numerator and denominator are themselves
fractions.
Proper fraction–the numerator is less than the denominator, as in⅞.
Improper fraction–the numerator is greater than the denominator, as
in 7/8.
Mixedfraction–an integer together with a proper fraction, as in 1½.

Rules for combining fractions are:
Addition. The fractions are put in a form in which their
denominators are equal. For example, to add 1/2 and 1/3, write 1/2
= 1/3 and 1/2 = 3/6 is the lowest *common denominator of the
two fractions). Then,

1/2 + 1/3 = 3/6 + 2/6 = 3 + 2/6 = 5/6

Subtraction. The same method as addition, except that the
numerators are subtracted rather than added.
Multiplication. The numerators are multiplied and the denominators
are also multiplied. For example,



2/3 × 4/7 = 2×4/3×7 = 8/21

Division. The divisor is inverted and the two fractions are then
multiplied. Thus

See also continued fraction; decimal; partial fraction; reducible
fraction.

frame In statistics, a speci�cation of all units in a *population in
su�cient detail for the selection of a random sample, including,
where appropriate, information for selection of *strati�ed samples,
etc. The UK Register of Electors forms a frame of all people in each
district quali�ed to vote in parliamentary elections; unfortunately it
rapidly becomes out of date through deaths, people moving to other
districts, etc. See sampling theory.

frame of reference A means by which the position of a point or the
time of an event can be de�ned in relation to anarbitrary point and
an arbitrary pointer reading on a clock. These reference entities,
which together form the frame of reference, are described in terms
of some coordinate system and a linear timescale. If it is assumed
that time is absolute, that observers all experience the same �ow of
time, then a particular frame of reference can be described merely
in terms of a particular set of axes.

An inertial (or Newtonian) frame of reference is a frame of reference
in which a body will remain at rest or move at constant velocity as
long as no force is acting on it, i.e. Newton’s �rst law of motion is
valid. Any frame of reference moving at constant velocity relative to
an inertial frame is also an inertial frame. A set of axes �xed in
space relative to the positions of distant stars is a standard inertial
frame. A set of axes on the earth’s surface can be considered a good
approximation to an inertial frame.

If a particle is �xed in a given frame of reference but is
accelerated with respect to an inertial frame, then the given frame is



a noninertial or accelerated frame of reference. A rotating frame of
reference is non-inertial: a particle �xed in such a frame will have a
*centripetal component of acceleration relative to an inertial frame.

See also inertial force; relativity.

Fredholm’s integral equations Certain types of *integral equation.
A Fredholm integral equation of the �rst kind has the form

g being the unknown function. A Fred-holm integral equation of the
second kind is

They are named after the Swedish mathematician Erik Ivar
Fredholm (1866–1927).

free group A *group with no relations between its *generators a, b,
… except the trivial relations aa–1=I, … and their consequences
(such as b–1 aa–1b=I). Here I is the identity of the group and the
operation has been written as juxtaposition. In such a free group,
every element other than the identity can be written uniquely as a
�nite product aαbβ … rσ of powers of generators, where adjacent
generators a, b, … in the product are distinct and the exponents α,
β, … are nonzero integers. Every subgroup of a free group, apart
from the identity, is also free; and every group is a homomorphic
image of some free group.

free oscillation The motion of an oscillating system that occurs
when it is displaced from its *equilibrium position and released. The
system oscillates about this point with a frequency characteristic of
the system. In practice there is some resistance to the motion, i.e.
the oscillations are damped, and the free oscillations gradually die
away (see damped harmonic motion). When it is necessary to



maintain an oscillation, a compensating mechanism is used to
overcome the resistance. This mechanism can be regarded as an
external driving force, and the system will assume *forced
oscillation.

free variable See variable.

Frege, Friedrich Ludwig Gottlob (1848–1925) German
mathematician, logician, and philosopher who in his Begri�sschrift
(1879, Concept-writing) developed the �rst adequate notation for
mathematical logic and provided the �rst formalization of the
propositional and predicate calculus. In his Die Grundlagen der
Arithmetik (1884, The Foundations of Arithmetic) Frege o�ered a
de�nition of number based on set theory, while his abortive
Grundgesetze der Arithmetik (1903, Basic Laws of Arithmetic) tried to
complete the logicist programme of deriving arithmetic from logic.

frequency 1. Symbol: ν or f. The number of complete *oscillations
or *cycles that occur in unit time, i.e. the rate of repetition of a
periodic phenomenon. The various forms of wave motion have some
value of frequency, as do pendulums. In one complete oscillation or
cycle there is a displacement or variation from an equilibrium
position or value, a return to equilibrium, a displacement or
variation in the opposite sense, and a further return to equilibrium.
Frequency is measured in hertz. See also angular frequency.
2. The absolute frequency of an observed value is the number of
times that value appears in a sample. In the sample 2, 5, 3, 3, 3, 5,
3, 6, 2, 3, 9, 5 the absolute frequency of the observation 3 is 5, and
that of 9 is 1. The relative frequency of an observation is determined
by dividing the absolute frequency by the total number of
observations. There are 12 observations in the above sample, so the
relative frequency of 3 is 5/12 and that of 9 is 1/12. The cumulative
frequency of observations less than or equal to a given value is the
sum of all frequencies of observations at or below that value. In the
above sample the cumulative absolute and relative frequencies of
observations less than or equal to 5 are respectively 10 and 5/6. The
frequency for a range is the sum of all frequencies of observations in



that range. In the above sample the absolute and relative
frequencies of observations in the range 3 to 5 inclusive are 8 and
2/3.

frequency analysis An analysis of *ciphertext that relies on the
*frequency of occurrence of certain elements. A classic example is in
*substitution ciphers applied to English words, for which use is
made of the fact that E is the most common letter in normal English.

frequency curve A smooth curve approximating a *frequency
polygon for a large data set. The term is also used for the curve
representing the *frequency function.

frequency distribution A speci�cation of the frequencies with
which values of a variable occur. For observed data, the distribution
usually takes the form of a *frequency table, and for a continuous
variable the data will need to be grouped (see grouped data). A
theoretical distribution is usually speci�ed by a *frequency function
or a *distribution function.

frequency function For a discrete probability *distribution, the
frequency function speci�es for each realizable value x of a random
variable X the *probability that X attains that value. Thus, for a
*binomial distribution with parameters n and p, the frequency
function is speci�ed by

For a continuous random variable X, if f(x) δx is the probability that
X takes a value between x and x + δx, where δx ( 0, then f (x) is the
frequency function of X, and f(x) gives the probability density of X at
x. For the *exponential distribution with mean 1,

f(x)=0 if x<0

f(x)=e–x if x≥0



For continuous distributions, if F(x) is the *distribution function
then f(x)=F′(x). Alternative names for the frequency function are
probability mass function, or probability function for discrete X and
probability density function for continuous X.

For discrete data, the frequency function (sometimes called the
relative frequency function) gives the relative frequency of each x-
value. For example, if for a group of 100 children the numbers
having 0, 1, 2, 3, 4 decayed teeth are 53, 29, 14, 1, 3 respectively,
then the frequency function is such that f(0)=0.53, f(1)=0.29,
f(2)=0.14, f(3)=0.01, f(4)=0.03.

The concept may be extended to more than one random variable.
See bivariate distribution; multivariate distribution.

frequency polygon A �gure obtained by joining the mid-points of
the tops of the rectangles forming a *histogram.

frequency table A table that summarizes the absolute or relative
frequencies for a set of observations. The concept extends to
cumulative frequencies; for example, for the observations 2, 3, 5, 5,
5, 7, 9, 9, 9, 10, the table gives absolute frequencies and cumulative
frequencies. The idea extends to the frequencies of observations of
*grouped data, where groups correspond to nonoverlapping ranges.

frequential inference Statistical inference based on the frequential
theory of probability, which regards the *probability of an event as
the limit of the frequency of occurrence of that event in a series of n
trials as n(∞. In *hypothesis testing this leads to familiar tests, e.g.
the *t-test, as to whether data provide evidence against a null
hypothesis that it comes from a population with a parameter θ, say,
having some preassigned �xed value θ0. The question that is posed
and answered by this approach is ‘What is the probability (given by
a *p-value) of obtaining this or a more extreme (i.e. more unlikely)



value of a relevant statistic obtained from the observed data when
the null hypothesis is true?’ *Bayesian inference, on the other hand,
poses and attempts to answer the question ‘How do the data
in�uence our (prior) beliefs about what values of a parameter are
plausible?’

In estimation problems a *con�dence interval approach is a
frequential inference in the sense that we interpret con�dence
intervals on the basis that a con�dence interval of, say, 95 percent is
such that if we form these for repeated samples from the same
population, in the limit 95 percent of such intervals will cover (or
include) the true parameter value.

Both Bayesian and frequential inference methods extend to more
than one parameter.

Fresnel integrals The integrals

They are named after the French physicist Augustin Jean Fresnel
(1788–1827), and are used for analysing light di�raction. See spiral.

friction A *force that opposes the relative motion between two
surfaces in contact, and is encountered when an object slides on a
surface or when motion is �rst initiated. It acts within the plane of
contact and is independent of the apparent area of contact of the
sliding surfaces. (The true area of contact is considerably smaller
owing to the roughness of the surfaces.) Most of the energy used in
overcoming friction is dissipated as heat.

In addition to the frictional force of magnitude F, two surfaces in
contact experience a force of magnitude P that is due to their
mutual reactions and acts perpendicular to the plane of contact.



With no relative motion, F can take any value up to some limiting
value which is roughly proportional to P. Thus for equilibrium

F < μsP

where (s is the coe�cient of static (or limiting) friction. When there is
relative motion,

F < μkP

where (k, the coe�cient of kinetic friction, is approximately constant.
In general, (k is less than (s.

If a rolling rather than a sliding motion can be used, as with ball
bearings, there is much less friction (see rolling friction).

Friedman’s test (M. Friedman, 1937) A nonparametric test using
*ranks for testing equality of *means in a *randomized block
experiment. The statistic used is similar to *Kendall’s coe�cient of
concordance. See nonparametric methods.

frieze group A symmetry group of a strip pattern (a frieze). It is the
one-dimensional analogue of the symmetry group of a crystal. It can
be shown that there are exactly 7 di�erent frieze groups. See
crystallography; compare wallpaper group.

Frobenius’s theorem The *theorem that a �nite-dimensional
associative *division algebra over the �eld of *real numbers must
consist of either the real numbers themselves, or the *complex
numbers, or the *quaternions. It is named after the German
mathematician Georg Ferdinand Frobenius (1849–1917).

Since real multiplication and complex multiplication are
*commutative operations, whereas quaternion multiplication is not
always commutative, it follows from Frobenius’s theorem that the
quaternions form the only noncommutative, �nite-dimensional
associative division algebra over .



frontier (boundary) The interior of a *set A is the *union of all
open *subsets of A. The exterior of set A is the interior of the
complement of A. The frontier of A is the set of points that belong to
neither the interior nor the exterior of A.

The frontier of a set A in a topological space X consists of those
points x ( X which are limits of a sequence of points in A and of a
sequence of a set of points not in A. In symbols, ,
where Ā denotes the *closure of A.

frustum A part of a solid �gure cuto� by two parallel planes. The
altitude (h) of the frustum is the distance between the planes. The
volume of a frustum of any cone or pyramid is given by

where A1 and A2 are the areas of the bases. If the cone is a right
circular cone, the lateral area of the frustum is

πs(r1 + r2)

where r1 and r2 are the radii of the bases and s is the slant height of
the frustum. The volume of the frustum of a pyramid can also be
obtained from the *prismoid formula.

frustum of a cone.



F-test A statistical test based on the *F-distribution. See variance
ratio.

fulcrum The pivot about which a *lever turns, and about which the
moments of the applied force and the weight are calculated.

function (map, mapping) A rule that assigns to every element x of
a *set X a unique element y of a set Y, written as y=f(x) where f
denotes the function. X is called the domain and Y the codomain. The
set of all the elements f(x) is called the range or image of f, and is
denoted by Rf, Im f, or f(X). It is a subset of the codomain. For
example, the area of a circle, y, is a function of the radius, x, written
as y=f (x)=(x2. x is called the independent variable or argument, and
y is called the dependent variable or the image of x. If a function can
be expressed algebraically the value of y can be calculated for any
particular value of x. For example, a circle of radius 2 has area
f(2)=4(. However, some functions cannot be expressed
algebraically: for example, the function ‘is the birthday of’, which
has domain the set of all individuals and range the set of all days in
a year.

A function can also be de�ned as the set of all *ordered pairs (x,
y), with x belonging to the domain X and y belonging to the
codomain Y, where there is a *many-to-one correspondence
between the members of X and the members of Y.

A *multiple-valued function is not a function as de�ned above
because for each value of x the corresponding y is not necessarily
unique, but it can be considered as being made up of several
branches, each of which is a (single-valued) function.

A function y=f (x) can be graphically represented if (x, y) is
plotted on rectangular coordinate axes for every x in X.

A function of two variables assigns to every element (x1, x2) of a
set of ordered pairs a single element y=f(x1, x2). Here, x1 and x2 are
the independent variables and y is the dependent variable. For
example, the volume of a right circular cylinder y is x2 where x1

is the radius of the base and x2 is the height. Similarly, a function of



several variables assigns to every ordered n-tuple (x1, …, xn) a single
element y=f(x1, …, xn). x1, …, xn are independent variables and y is
the dependent variable.

A function with domain X and codomain Y is also called a
mapping or map from X to Y, written as f: X(Y; if, for example, for all
x ( X the function maps x onto x2, this can be speci�ed by using the
notation f: x x2.

The image of an element x ( X is the element f(x). The image of a
subset A ( X is the set of all the images of the elements of A, and is
denoted by f(A).

The pre-image of a subset B of the range of f is the set of all
elements in X whose images are in B, and is denoted by f–1 (B). Thus,
for the function f: x x2 with domain  and codomain , the range of
f is the non-negative real numbers, the image of 3 is 9, the image of
the interval [–2, 3] is the interval [0, 9], and the pre-image of the
interval [4, 9] is the union of two intervals [–3,–2] and [2, 3].
A polynomial function (or rational integral function) has the form

f(x)=a0 + a1x + + anxn

where a0, a1, …, an are constants.
An algebraic function y=f(x) is one that can be de�ned by a

relation of the form

p0(x) + p1(x) y + + pn–1(x)yn–1 + pn(x) yn=0

where p0(x), …, pn(x) are polynomials in x.
A transcendental function is a function that is not analgebraic

function. Examples are the *trigonometric, *logarithmic, and
*exponential functions.

See also analytic function; complex function; continuous function;
discontinuous function; even function; inverse; limit; mean value;
monotonic decreasing function; monotonic increasing function; odd
function; rational function; turning point.



functional A *function that has a *domain that is a set of functions
and a *range belonging to another set of functions. For example, the
*di�erential operator d/dx is a functional of di�erentiable functions
f(x). The range of the functional may be a set of numbers. An
example of this is a *de�nite integral of f(x) with respect to x.

functional analysis See Banach space.

functional series A *series of the form

∑fn(x)

in which the terms are *functions of an independent variable x. The
set of values of × for which the series converges constitutes the
region of convergence of the series. See also power series.

function of a complex variable See complex function.

function of a function See composite function.

fundamental group See homotopy group.

fundamental theorem of algebra The theorem that every
polynomial equation having complex coe�cients and of degree
greater than or equal to 1 has at least one complex root. The
theorem was �rst conjectured by Albert Girard who, in 1629,
published an account of the roots of equations in which he
recognized the existence of imaginary roots. The name ‘fundamental
theorem of algebra’ is due to Gauss, who �rst investigated the
problem in his doctoral thesis (1799), showing that earlier ‘proofs’
were not su�cient. This proof of Gauss’s was geometric, based on
the then novel idea that the real and imaginary parts of a complex
number could be interpreted as coordinates in a plane. Gauss later
tried to prove the theorem by purely algebraic means, but failed. In
France, the theorem is known as d’Alembert’s theorem in recognition
of d’Alembert’s many attempts to prove it.

fundamental theorem of arithmetic The statement(known to
Euclid) that every *natural number other than 1 can be uniquely



expressed as a product of *primes. (A prime number itself is
expressed as a product with one term in it.) The analogous result for
all the integers is that every integer, apart from 0 and ±1, can be
expressed essentially uniquely as a product of prime integers. This
means that it will be possible to express an integer in several
di�erent ways as a product of prime integers, e.g. 18=2×3×3=(–
2)×(–3)×3. However it is only possible if, as here, the individual
prime integers in the two products di�er only by factors that are
unit integers (± 1).

fundamental theorem of calculus The theorem expressing the
relationship between *integration and *di�erentiation, namely that
if the integral

exists, and a *function F(x) also exists for which F(x)=f(x) in
a≤x≤b, then

fuzzy logic A system of logic proposed in 1965 by Lofti Zadeh, an
Iranian electrical engineer, based on fuzzy set theory. In classical set
theory an object either is or is not a member of a given set; in fuzzy
set theory membership is represented by a real number between 0
and 1. Thus whether someone is tall or not is not simply true or
false, but more a matter of degree. Systems of fuzzy logic have been
used, amongst other applications, to control elevators, dishwashers,
and assembly line strategies in factories.



G

galactic axis See galactic equator.

galactic centre A point on the galactic equator taken as the centre
of the Galaxy and used as the zero point in a *galactic coordinate
system. It has an agreed position (in equatorial coordinates) of right
ascension 17 h46 min, declination–28°56°.

galactic coordinate system An *astronomical coordinate system in
which measurements are based on the galactic equator. A point on
the *celestial sphere is located by two angular measurements. The
*galactic longitude (l) is the angular distance measured eastwards
from the *galactic centre. The *galactic latitude (b) is the angular
distance north or south of the galactic equator.

galactic equator (galactic circle) The *great circle that represents
the intersection of the plane of the Galaxy with the *celestial sphere.
The poles of this circle are the north and south galactic poles. The
line joining these poles is the galactic axis. See galactic coordinate
system.

galactic latitude Symbol: b. The angular distance of a point on the
*celestial sphere from the galactic equator taken along a *great
circle passing through the point and through the galactic poles.
Galactic latitude is measured from 0° to 90° north (taken as positive)
or south (taken as negative) of the galactic equator. See galactic
coordinate system.

galactic longitude Symbol: l. The angular distance (measured from
0° to 360°) of a point on the *celestial sphere from the *galactic
centre. It is measured eastwards along the galactic equator between
the galactic centre and the place at which a great circle through the
point and the galactic poles intersects the galactic equator. See
galactic coordinate system.



galactic pole See galactic equator.

Galilean transformation See relativity.

Galileo Galilei (1564–1642) Italian astronomer and physicist who,
in Discorsi e dimostrazione matematiche intorno a due nuove scienze
(1638, Dialogues on Two New Sciences) and other works, attempted
to present a mathematically exact and experimentally based
kinematics. He correctly formulated the law of acceleration (s=½
at2) and was the �rst to note the isochrony of the pendulum. The
transformation of the parameters of position and motion is named
after Galileo as the Galilean transformation.

gallon Symbol: gal. 1. An *imperial unit of capacity or volume,
equal to the volume occupied by ten pounds of distilled water. 1
gallon=4.546 09x10–3 cubic metre.

2. A unit of liquid volume in the *United States customary system
equal to 231 cubic inches. 1 US gallon=3.785 411x10–3 cubic
metre=0.832 674 imperial gallon. 6 US gallons ≈ 5 UK gallons.

Galois, Évariste (1811–32) French mathematician noted for his
fundamental discovery in 1829 of group theory, although full details
of his work were published only posthumously in 1846. His
discovery arose from his realization that the general quintic
equation was insoluble by the traditional method of extracting
roots. Galois went on to establish precisely under what conditions
such traditional methods would work.

Galois �eld (�nite �eld) Any *�eld that contains only a �nite
number of elements. For example, the integers 0, 1, 2, …, p – 1
added and multiplied modulo a *prime p. The study of such �elds
was initiated by Galois in 1830. A �nite �eld with q elements is
denoted by GF(q) or Fq

Galois group A *group of *automorphisms associated with a pair of
*�elds E and F where one of the �elds, say F here, is a *sub�eld of
the other. It is denoted by G(E/F) and consists of all the



automorphisms of E that leave each element of F �xed. That is, an
automorphism σ of E is in G(E/F) precisely when σ(α)=a for every
α in F. If f(x) is a polynomial with all its coe�cients in F, then the
Galois group of the polynomial is G(K/F)where K is the smallest
�eld containing F and all the roots of the equation f(x)=0. See
soluble group; simple group.

Galois theory The theory that reduces the study of *�elds
containing a given �eld to the study of the associated *Galois
groups. Galois’s powerful ideas can be used to produce explicit
examples of polynomial equations (e.g. x5 – 10x + 2=0) whose
roots cannot be obtained from the coe�cients by using (in any
order and any number of times) just the operations of addition,
subtraction, multiplication, division, and raising to powers of the
form 1/n (where n is any natural number). The roots of a
polynomial equation can be written in this way if and only if the
corresponding Galois group is soluble. So the roots of any
polynomial equation whose Galois group is not soluble can be
written only by using functions that are more complicated than
those described.

Galton, Sir Francis (1822–1911) English anthropologist and
pioneer in the application of statistical techniques to the analysis of
biological problems. He discovered the phenomenon of regression in
1875 and formulated his law of ancestral heredity shortly
afterwards. In 1888 he introduced his index of correlation.

gambler’s ruin A classic problem determining the probability that a
gambler becomes bankrupt in a series of games at each of which he
gains 1 unit of capital with probability p, or loses 1 unit with
probability q=1 – p. If the gambler has initial capital of C units, he
is ruined if he loses all C units. There is usually also a condition that
the game stops if the gambler attains a total fortune of a �xed
number of units N (> C), implying either that the opponent is then
ruined, or that one player or the other does not wish to continue.
When p=0.5 the probability of ruin is (N – C)/N, otherwise it is



qc pN-C – qN – C/pN – qN

The problem in essence involves a sequence of *Bernoulli trials and
is an example of a *random walk.

game theory In competitive situations di�erent parties may make
di�erent decisions when their interests con�ict, and the outcome is
then determined by these decisions. Such con�icting situations may
arise in business competition, politics, military operations, etc.

Game theory, �rst considered by Borel in 1921, was developed by
von Neumann to cover con�icting situations where:
(1) there may be any �nite number of players;
(2) each player may take one of a �nite number of actions (and
di�erent players may take di�erent actions);
(3) at each contest (play of a game) players do not know what
action will be taken by the other players; and
(4)the outcome of a game determines a set of payments (positive,
zero, or negative) to each player.

If the sum of payments to all players is zero the game is called a
*zero-sum game. A game with two participants is a two-person or
dual game.

The simplest game is a two-person zero-sum game, in which the
win (loss) for player A equals the loss (win) for player B. Crucial to
the theory is the payo� matrix. If player B may take any of four
actions and player A any of three actions, the payo� matrix for
player A takes the form:

B

A 1 2 3 4

1 a11 a12 a13 a14

2 a21 a22 a23 a24



3 a31 a32 a33 a34

Here aij is the amount (positive, zero, or negative)A wins if he takes
action i and his opponent takes action j. Player B’s payo� matrix has
each aij replaced by – aij (to conform with the zero-sum property).

If a player elects always to take the same action, this is a pure
strategy. If he selects an action each time using a probabilistic or
random choice, this is a mixed strategy. For optimality a player
should list each of his strategies together with the worst outcome
(from his viewpoint) that can result from his opponent’s strategies,
and then choose a strategy corresponding to the best of these worst
possible outcomes; this is the maximin criterion.

If there is an entry in the payo� matrix that is a minimum in its
row and a maximum in its column, it is called a saddle point. The
optimum policy for each player is then to take the actions (pure
strategies) corresponding to the saddle point.

If there is no saddle point, mixed strategies are appropriate and
one can only maximize expected minimum gain over a series of
contests. Von Neumann’s mini-max theorem (1928) shows that if
each player adopts his best mixed strategy, then one player’s
expected gain will exactly equal the other’s expected loss. This is
called the value of the game. Although at any play of a game neither
player knows what action the other will take, it is assumed that
players will behave rationally and may use information about their
opponent’s strategies from previous games to assess their likely
strategy in later games.

The theory of games has been extended to n-person nonzero-sum
games and to games in which a continuous range of strategies is
possible. In 1944, von Neumann and Morgenstern applied game
theory to economic competition. Since then it has found many
applications in commerce, politics, military strategy, etc. See
prisoner’s dilemma.

gamma distribution The gamma *distribution for a positive-valued
*random variable has *frequency function



where x, a, b > 0 and Г(a) is the *gamma function. It is an
asymmetric distribution exhibiting positive *skewness, and the
probability density function takes a wide range of shapes for
di�erent values of the parameters a and b. The case a=1 gives the
*exponential distribution important in waiting time problems (the
distribution of the time from zero to the �rst occurrence of an event
and of the interval between future occurrences).

gamma function The *function Γ de�ned by

wherexis real and greater than zero. The recurrence relation Γ(x +
1)=xΓ(x) is true for all x. Hence if n is a positive integer, Γ(n +
1)=n!Γ(1)=n!, and if n is also odd, Γ(½ n) can also be derived since
Γ(½)=√π. Г(x)for x≤0 can also be obtained using the recurrence
relation. If z is a complex variable, then

for Re(z) > 0. The function was also de�ned by Weierstrass as

where γ is *Euler’s constant.

Gantt chart A diagram used in scheduling problems in operational
research where, for example, separate time axes are allocated to
each of two machines, and blocks placed on the time axes are used



to indicate the time periods when each machine is performing
speci�ed jobs. It is useful to indicate when machines are necessarily
idle if operations that require more than one machine must be
performed in sequence, and later operations requiring one machine
cannot be started until certain earlier operations requiring another
machine are completed – and perhaps then only after additional
time delays (e.g. to allow paint to dry or adhesives to set). It is
named after the American management scientist Henry Laurence
Gantt (1861–1919).

gauge theory A theory developed by mathematical physicists to
study *�elds, and which uses the theories of *groups and *bundles.
The theory involves a group G, and in the simplest form of the
theory it is an Abelian group; in this case the theory is a modern
form of Maxwell’s electromagnetic theory.

The ideas behind the theory have been used by the English
mathematician Simon Donaldson to study the geometric and
topological properties of 4-dimensional spaces. He has shown that
their properties are fundamentally di�erent from what would be
expected by analogy with the study of spaces of either lower or
higher dimension. A key ingredient in his work is the study of the
set of all solutions of certain (nonlinear) di�erential equations; such
sets are called moduli spaces.

gauge transformation A mathematical reformulation of a physical
theory that does not change the physical interpretation. For
example, the magnetic �elds E and B can be written in terms of
scalar and vector potentials ø and A as

However, ø and A are not unique: they can be changed by the gauge
transformation



in which the physical quantities E and B are not changed, but the
purely mathematical ø and A have changed.

Gauss, Carl Friedrich (1777–1855) German mathematician who
began a lifetime of prodigious mathematical creativity by proving in
1799 the fundamental theorem of algebra. This was followed in
1801 by his masterpiece, Disquisitiones arithmeticae (Arithmetic
Disquisitions), in which he introduced into mathematics modular
arithmetic and presented his results on the construction of regular
polygons as well as proving the law of quadratic reciprocity. Later
work by Gauss in astronomy led him in his Theoria motus corporum
coelestium (1809, Theory of the Motion of Heavenly Bodies) to
propose general solutions to the problem of determining planetary
orbits, while in geometry he worked out the principles of hyperbolic
geometry, independently of Bolyai and Lobachevsky. Other
achievements were his method of least squares, and work in
electricity, geodesy, complex numbers, and the convergence of
series.

Gaussian curvature See curvature.

Gaussian distribution See normal distribution.

Gaussian elimination A formalization of the method of solving n
linear equations in n unknowns by successive *elimination of
variables. The equations are �rst written in *matrix form as Ax=b,
where A is an nxn nonsingular matrix andxand b are column vectors
of n components, xrepresenting the unknowns. The procedure is to
multiply the �rst equation by a21/a11 and subtract it from the second
equation, multiply the �rst equation by a31/a11 and subtract it from
the third equation, and so on. The e�ect is to eliminate x1, the �rst
element of x, from all equations except the �rst. The element a11

used as the �rst divisor is called the pivot, and the numbers ai1/a11
are the multipliers.

The process is repeated with the new set of n – 1 equations
(omitting the �rst) in n – 1 unknowns, then for n – 2 equations, and
so on, until after n – 1stagesthere results an equation in one



unknown only. This equation is immediately solved for that
unknown, and a process of substitution in the last but one equation
in two unknowns, and so on, is used to obtain all the unknowns in
the reverse order to that in which they were eliminated. The e�ect
of the process on the matrix A is to reduce it to an *upper triangular
matrix.

The same procedure can be applied to a system of m linear
equations in n unknowns. After min(m – 1, n) stages the mxn matrix
A is reduced to *row echelon form.

The process as described breaks down if one of the pivot elements
used as a divisor is zero. If, for example, a11 is zero, row and/or
column permutation can be used to bring a nonzero element to the
(1, 1) position, and the process continues as usual. To reduce the
e�ect of rounding errors in a computer calculation, it is usual to
choose as the pivot the element of greatest absolute value in the
column. Gaussian elimination is sometimes called pivotal
condensation.

Gaussian �eld The *�eld of all those *complex numbers whose
real and imaginary parts are both *rational, the �eld operations
being the usual complex addition and multiplication. See also
Gaussian integer.

Gaussian integer A*complex number whose real and imaginary
parts are both ordinary integers, as in 2 – 3i, 5, – i, and 1 + 2i.
Using complex arithmetic, Gaussian integers can always be added,
subtracted, and multiplied, and sometimes divided, with results that
are themselves Gaussian integers. With respect to these operations
Gaussian integers behave much like ordinary integers. There are
four Gaussian integers (±1, ± i) that divide 1 and so divide into
every Gaussian integer. They are called units, and apart from them
each Gaussian integer can be classi�ed as composite if it is a product
of two factors, neither of which is a unit, or prime otherwise. Thus

       2 = (1 + i)(1 – i)
46 + 9i = (5 + 12i)(2 – 3i)
5 + 12i = (3 + 2i)2



are composite Gaussian integers, whereas 1 + i, 4 – i, and 7 + 2i
are Gaussian primes. Apart from the four units, every Gaussian
integer has an (essentially unique) expression as a product of
Gaussian primes. See also fundamental theorem of arithmetic.

Gaussian integration rule A*numerical integration rule of the form

where w(x) is a non-negative weight function on the interval [a, b]
in which both the n nodes xi and the weights wi are chosen to make
the approximation exact when f is a polynomial of degree less than
or equal to 2n – 1. The purpose of the weight function is to build
into the rule any special behaviour of the integrand; common
choices include w(x)=1 with [a, b]=[–1, 1], and w(x)=e—x with [a,
b]=[0, ∞].

An example of a Gaussian integration rule is the three-point Gauss-
Tchebyshev rule:

The theory of Gaussian quadrature is intimately connected with the
theory of *orthogonal polynomials.

Gauss interpolation formula See Gregory-Newton interpolation.

Gauss-Jordan elimination A variant of *Gaussian elimination, due
to the German geodesist Wilhelm Jordan (1842–99), for solving a
system Ax=b of n linear equations in n unknowns in which the kth
unknown is eliminated from all the other n – 1 equations at the kth
stage. The e�ect of the process on the *matrix A is to reduce it to a
*diagonal matrix. As a means of solving a linear system Ax=b,
Gaussian elimination is preferred as its requires much less work.



Gauss-Jordan elimination is sometimes used to invert a square
matrix, for which task it has the same cost as Gaussian elimination.
With a �nal row scaling in which each nonzero row is divided by its
�rst nonzero element, Gauss-Jordan elimination applied to an mxn
matrix produces its *reduced row echelon form.

Gauss–Markov theorem The theorem that the *least-squares
estimator gives the *un-biased (linear) estimator of a parameter
having minimum *variance. Here ‘linear’ means linear in the sample
values. It is named after Gauss and A.A. Markov.

Gauss–Ostrogradsky theorem See Gauss’s theorem.

Gauss-Seidel method An *iterative method of solving a system of
linear equations Ax=b, published by P.L. von Seidel in 1874 but
based on earlier work by Gauss. For three equations in three
unknowns,

a11x1 + a12x2 + a13x3= b1

a21x1 + a22x2 + a23x3= b2

a31x1 + a32x2 + a33x3= b3

we may start with arbitrary solutions. In many practical problems
a11, a22, and a33 are large compared with a¡j, i ≠ j, and it is then
convenient to take x1=b1/a11, x2=b2 /a22, and x3=b3 /a33 as starting
values. Now, writing xn for the column vector of values of x1, x2,
x3 after the nth iteration, and

the iterative relationship is

xn + 1=L–1(b – Uxn)



where n=0, 1, 2, …. Note that L + U=A, and that x0 is the column
vector of starting values. The iterations are continued to
convergence.

Modi�cations of the Gauss-Seidel method produce a class of
procedures called successive over-relaxation methods.

Gauss’s formulae (Delambre’s analogies) Formulae relating the
angles (A, B, and C) and sides (a, b, and c, where a is opposite A,
etc.) of a *spherical triangle:

Gauss’s proof See fundamental theorem of algebra.

Gauss’s theorem For a *vector �eld F and a volume V enclosed by
a surface S,

where n is a *unit vector normal to S. Intuitively, if the vector
function F denotes the magnitude and direction of the �ow of a
�uid at a point, its *divergence is the net change at sources and
sinks. The total of these is the net �ow in or out of the region. The
theorem is also known as the divergence theorem or the Gauss-
Ostrogradsky theorem, after Gauss and Mikhail Vasilie-vich
Ostrogradsky (1801–62). See also Green’s theorem.

Gauss–Tchebyshev rule See Gaussian integration rule.

GCD Abbreviation for greatest common divisor. See common factor.



Gelfond-Schneider theorem (A.O. Gelfond, 1934; T. Schneider,
1934) The theorem that if a and b are *algebraic numbers, with a ≠
0 or 1 and b not rational, then ab is a *transcendental number. For
example, 2√2 and 3i are transcendental.

generalized coordinates Any set of coordinates

q1, q2, q3, …, qn

that is su�cient to specify the con�guration of a mechanical system.
A knowledge of the generalized coordinates implies a knowledge of
the position of every particle of the system. There are also
corresponding generalized velocities, forces, and momenta.

generalized eigenvalue For square matrices A and B of the same
dimension, the number λ is a generalized eigenvalue if Ax=λBx for
some nonzero vector x, the corresponding generalized eigenvector.
The generalized eigenvalues are the roots of the equation det(A –
λΒ)=0. If B is the *identity matrix, then λ is an *eigenvalue andxis
an eigenvector of A.

generalized function An object that behaves symbolically like a
*function. The commonest example is the Dirac delta function δa,
which has the properties that δa(x)=0 ifx≠ a but

and, more generally,

There are several theories to make the concept of a generalized
function more rigorous. The commonest regards one of them as a
linear *functional on a suitable space of functions; under this



interpretation the Dirac delta function δa corresponds to the
functional f → f (a).

generalized linear models (J.A. Nelder and R.W.M. Wedderburn,
1972) A model in which some function g(µ) of the mean μ of a
random variable Y is a linear function of one or more variables
called either explanatory or independent variables. For one
explanatory variable x,

g(µ)=β0 + β1 x

If Y is normally distributed with mean μ=E(Y)=β0 + β1x and
variance σ2, then g(μ)=μ, and the model reduces to the linear
*regression model.

The function g(μ) is called the link function, and its form depends
on the distribution of Y, which may be any member of the
*exponential family of distributions. For example, if Y is a Bernoulli
variable (see Bernoulli trials) with mean μ=p, then g(μ)=ln[p/(1 –
p)]. This is relevant to studies of the toxicity of insecticides: under
fairly commonly occurring conditions, if pi is the probability that an
insect will die if exposed to a dose xi of an insecticide, then

If batches of insects are subjected to doses x1, x2, …, xi, …, xn of the
insecticide, the proportion that dies in batch i provides an estimate
of pi. The parameters β0 and β1 may be obtained by *maximum
likelihood estimation. Iterative procedures are usually needed
because the variance of ln[p/(1 – p)] is a function of p. The model
extends readily to more than one explanatory variable.

If Y has a *Poisson distribution with mean λ that varies with x,
the link function is g(λ)=1nλ. *Probit analysis is another special
case, although, like least squares regression, its use preceded the
formulation of the generalized linear model. See deviance; logistic
regression.



general linear group The group GL(n, F) of all nxn *nonsingular
matrices with entries from a *�eld F. The *normal subgroup of
GL(n, F) consisting of all the matrices whose determinant equals 1 is
called the special linear group, SL(n, F).

general solution A solution of a linear *di�erential equation
containing the same number of arbitrary constants as the *order of
the equation.

general term See sequence; series.

generating angle The angle between the axis and the generators in
a circular *cone or conical surface.

generating function A *function f(t) such that if {Pi (x)} is a
*sequence of functions then

so that when f is expanded in powers of t, the coe�cient of ti gives
the ith function Pi (x). For example, the generating function of the
Legendre polynomials is

When the generating function is expanded it can be seen that
P0(x)=1, P1(x)=x, P2(x)=½ (3x2 – 1), and so on. See moment
generating function; probability generating function.

generation (of a vector space) See vector space.

generator 1. (element) Any of a set of straight lines or line
segments that make up a given surface, The generator can be
regarded as a line sweeping out the surface by moving according to
some rule. The feminine form generatrix is also used.
2. (of a group) A *set of elements in a *group that, with their
*inverses, can be combined by the group operation (allowing



repetitions) to produce all the other group elements. For example,
consider the eight 4x4 matrices

These form a group G with respect to matrix multiplication, and it is
generated by the two elements J and K since each element can be
written in terms of them: I=J4, J, K, L=JK, – I=J2, – J=J3, – K=K3,
– L=KJ. Note that the generators J and K satisfy the identities
J2=K2 and J2=(JK)2; or alternatively J2K—2=I and J—1KJK=1. Such
expressions of the identity element as products of powers of the
generators are called relations between the generating elements. The
two relations here are actually the de�ning relations for the group G
since it is the only group generated by two elements whose squares
and the square of whose product are all equal. Equivalently any
other identity in powers of J and K, such as J4=I, is a consequence
of J2=K2=(JK)2.

A group with only one generator a is described as cyclic. If the group
operation is denoted by juxtaposition, with the identity element
denoted by I, then any relation satis�ed by a would have to be of
the form an=I for some natural number n. The group would then be
�nite, consisting of the n elements I, a, a2, …, an—1 (with a—1=an—1,
etc.). If there is no such relation then the cyclic group is in�nite,



consisting of all the powers …, a—2, a—1, I, a, a2, …, and they are
necessarily all distinct. In general, a group with no nontrivial
relations between its generators is said to be free (see free group).

generator matrix See coding.

generatrix See generator.

Gentzen, Gerhard (1909–5) German mathematician noted for his
proof in 1936 of the consistency of elementary number theory. The
signi�cance of the proof was, however, muted somewhat by
Gentzen’s reliance on the principle of trans�nite induction, a
principle not provable in arithmetic or elementary logic. Earlier, in
1934, he had introduced one of the �rst systems of natural
deduction.

genus 1. The number of handles of a compact closed surface (see
manifold). For example, the surface of a teacup has genus one.
2. For a Riemann surface, the number of linearly independent
holomorphic 1-forms (i.e. expressions that can, locally, be written as
f (z) dz, where f is an *analytic function) that are de�ned on the
surface.
3. For plane *algebraic curves with no *singular points, the genus is

where d is the degree of the curve. For curves with singular
points, the genus is  – Σ δ, where each term in the sum
corresponds to a singular point of the curve and δ=1 for a *double
point but is a larger integer for more complicated singularities.

In appropriate circumstances it can be shown that the three
de�nitions are equivalent.

geodesic For a given surface, a geodesic is an arc on the surface
between two points that is the shortest curve joining the points. At
each point on the geodesic the principal normal to the geodesic
coincides with the normal to the surface. On a sphere, for example,
a geodesic is part of a great circle of the sphere.



geographical coordinates Coordinates used to locate position on
the earth’s surface with respect to the equator and to the prime
meridian. The position of a point is speci�ed by its *latitude
(angular distance from 0° to 90° north or south of the equator) and
*longitude (angular distance from 0° to 180° east or west of the
prime meridian).

geographical equator A*greatcircleonthe earth’s surface that is the
intersection of the surface with a plane through the centre
perpendicular to the axis through the poles.

geometric distribution A discrete *distribution in which the
frequencies decrease in *geometric progression as the variable
increases. For example, the distribution of the number of trials, X,
up to and including the �rst success in a series of *Bernoulli trials is
geometric. If p is the probability of success and q (= 1 – p) the
probability of failure, thenxhas *frequency function

Pr(X=r)=pqr—1, where r=1, 2, 3, …

This distribution has *mean 1/p and *variance q/p2.
The distribution of the number of failures before the �rst success

is also geometric. It has mean q/p and variance q/p2. See negative
binomial distribution.

geometric �gure See �gure.

geometric mean See mean.

geometric progression (geometric sequence) A *sequence in
which the ratio of each term (except the �rst) to the preceding term
is a constant, the common ratio. If the �rst term is a and the common
ratio is r, then the sequence takes the form

a, ar, ar2, ar3, …

and the nth term is



arn–1

If r ≠ 1, the sum of the �rst n terms is

a(1 – rn)/1 – r

Compare arithmetic progression.

geometric series A *series of the form

a + ar + ar2 + … + arn–1 + …

i.e. a series in which the terms are those of a *geometric
progression. If r ≠ 1 and the number of terms is n, the sum sn is
given by

sn = a(1 – rn)/1 – r

If |r| < 1, sn → a/ (1 – r) as n→ ∞, i.e. the in�nite series is then
*convergent and has sum a/ (1 – r).

geometry The branch of mathematics concerned with the properties
of space and of �gures in space.

Originally, geometry started as a practical subject in ancient
Egypt and Babylonia, used in surveying and building. In the time of
the ancient Greeks it was realized that properties of �gures could be
deduced logically from other properties. Around 300 BC, *Euclid
drew together a large amount of Greek knowledge in his Elements.

The book develops geometry as a formal logical structure based
on de�nitions and axioms, from which propositions (theorems) are
proved. The result is the traditional school geometry known as
*Euclidean geometry. It is divided into plane geometry (in two
dimensions) and solid geometry (for three-dimensional �gures).

Euclidean geometry is mainly concerned with points, lines,
circles, polygons, polyhedra, and the conic sections. In 1637,
*Descartes published his new *coordinate (or analytic) geometry in
which points could be represented by numbers, and lines and curves



by equations. The discovery gave mathematicians a new weapon
with which to attack geometric problems algebraically, and it also
introduced a large number of di�erent types of curve for study.
Around the same time, analytic geometry was independently
discovered by Fermat. The development of analytic geometry
in�uenced the discovery of the di�erential calculus, and this in turn
led to the study of surfaces by Euler and Monge and, in 1827, to the
development of *di�erential geometry by Gauss.

In 1639, two years after Descartes published his work on
coordinate geometry, Desargues invented what is now known as
*projective geometry. The subject was neglected at the time, but
interest in it was revived in the 19th century with work by Poncelet.

The 19th century saw other major advances in geometry. Cayley
developed algebraic geometry – i.e. analytic geometry of n-
dimensional space. Lobachevsky, Bolyai, and Gauss independently
developed *non-Euclidean geometries. Finally, Riemann in his
lecture Über die Hypothesen welche der Geometrie zu Grunde liegen
(1854, On the Hypotheses that Lie at the Foundation of Geometry)
put forward a view of geometry as the study of any kind of space of
any number of dimensions (see Riemannian geometry). See also
topology.

Gergonne, Joseph Diez (1771–1859) French mathematician who
from 1810 edited the Annales de Mathématiques, the �rst purely
mathematical journal to appear. He was a proponent of analytical
geometry; his most important mathematical discovery was the
principle of duality, which he formulated in about 1825, about the
same time as Poncelet, with whom he disputed priority in the
discovery.

Germain, Sophie Marie (1776–1831) French mathematician,
mainly self-taught, who initially fell it necessary to adopt in her
correspondence with other mathematicians the male pseudonym
Louis Le Blanc. As a result of her extensive work on *Fermat’s last
theorem, other mathematicians were able to show that the theorem
held for all n<100. In later life Germain’s interests turned to



mathematical physics where, following *Euler, she contributed to
the mathematical theory of elasticity.

GF(q) Symbol for the *Galois �eld with q elements.

Gibbs, Josiah Willard (1839–1903) American mathematician and
theoretical chemist who in his Vector Analysis (1881) introduced
into physics the mathematical tools which would eventually replace
such competing systems as the quaternions of W.R. Hamilton. In
chemistry, he is noted for his development of chemical
thermodynamics. He also did important work in the founding of
*statistical mechanics.

Gibbs sampler (S. Geman and D. Geman, 1984) A *Markov chain
*Monte Carlo technique used to give numerical approximations to
Bayesian posterior distributions involving two or more variables. An
initial set of values is speci�ed and new values of each variable are
successively simulated from their conditional distributions, given
the current value of all other variables. If the new value is more in
accord with the speci�ed distribution, it replaces the current value;
otherwise the current value is retained. The process is continued
until equilibrium is reached. The technique is named after Gibbs,
who was a pioneer of *statistical mechanics.

giga- See SI units.

Giorgi system See m.k.s. units.

Girard, Albert (1595–1632) Dutch mathematician who made
signi�cant contributions to trigonometry and algebra. He
established that an equation of the nth degree has n roots; he also,
unlike his contemporaries, allowed for negative and imaginary
roots. In trigonometry he introduced the abbreviations sin, tan, and
sec.

g.l.b. Abbreviation for *greatest lower bound.

glide re�ection An *isometry composed of a *re�ection in a line
and a *translation parallel to the line.



Gödel, Kurt (1906–78) Austrian-American mathematical logician
who proved in the completeness of the �rst-order functional
calculus. This was followed in by his Über formal unentscheidbare
Sätze der ‘Principia Mathematica’ und verwandter Systeme (On
Formally Undecidable Propositions in ‘Principia Mathematica’ and
Related Systems), in which he proved the �rst of his two remarkable
incompleteness theorems. In 1938 he threw light on Cantor’s
continuum hypothesis by proving that neither it nor the axiom of
choice could ever be disproved within standard set theory (see
Gödel’s proof).

Gödel’s proof The proof by Kurt Gödel (1931) that any formal
axiomatic system containing arithmetic contains undecidable
propositions – i.e. contains sentences S such that neither S nor the
negation of S can be proved. This result is known as Gödel’s �rst
incompleteness theorem.

The method of proof involved giving numbers to the variables and
symbols in the *formal system, and using these to assign numbers to
expressions so as to give to di�erent expressions di�erent Gödel
numbers. In this way it was possible to translate the syntax of the
system into arithmetic, thereby making the system capable of
making statements about its own syntax. It was then possible to
show that there is a sentence of the type ‘this statement is not
provable’.

A corollary, Gödel’s second incompleteness theorem, states that the
consistency of a formal system containing arithmetic cannot be
proved by means using the formalization of the system itself – only
by using a stronger system. Gödel’s work answered the second of
*Hilbert’s 23 problems and put paid to attempts, like that of
Whitehead and Russell, to develop pure mathematics from a few
fundamental logical principles. It also damages the scienti�c ideal of
�nding a small set of basic axioms in terms of which all natural
phenomena can be logically described.

Goldbach’s conjecture The conjecture that every even number
greater than 2 is the sum of two primes. It was put forward in 1742



by the German mathematician Christian Goldbach (1690–1764),
and published in 1770 in Waring’s book Meditationes algebraicae.

Although Goldbach’s conjecture is believed to be true, it has so far
resisted all attempts to prove it formally. Similar conjectures,
however, have been proved. In 1937 Vinogradov proved that all
su�ciently large odd integers are sums of three primes (see
Vinogradov’s theorem); in 1973 Chen Jing-run proved that every
su�ciently large even number is the sum of a prime and a number
that is either prime or has two prime factors; and in 1995 O.
Ramaré showed that every even number is a sum of at most six
primes.

golden section A division of a line into two segments such that the
ratio of the larger segment to the smaller segment is equal to the
ratio of the whole line to the larger segment. If a line AB is divided
at P, then the division is a golden section if

AP/PB=AB/AP

The ratio AP/PB is ½ (1 + (5), or approximately 1.618, a ratio
known as the golden mean or golden ratio. A golden rectangle is a
rectangle having sides in this ratio.

The golden section has a number of interesting mathematical (and
other) properties. It was known to the Pythagoreans, who described
it as ‘division in mean and extreme ratio’. They discovered it in
constructing a pentagram by taking a regular pentagon ABCDE, and
drawing the diagonals AC, AD, BE, etc. (see diagram (a)). The
diagonals intersect at the �ve points A’, B’, C’, D’, and E’. Each of
these points divides a diagonal into two segments in the golden
ratio.



golden section (a) in the construction of the pentagram; (b) constructed for a line AB.

A golden section can be constructed for a line AB. First, a square
ABCD is constructed (see diagram (b)). If E is the midpoint of the
side DA, DA is produced to F, where EF=EB. The square AFGH is
drawn on AF; H then divides AB in the golden section.

The golden ratio is also connected with the *Fibonacci sequence.
If un/un–1 and un are two successive terms of the sequence, then the
limit of un/un–1 as n ( ( is ½ (1 + (5).
The *continued fraction

is equal to the golden ratio.



The golden section was known simply as ‘the section’ to the
ancient Greeks. Its present name comes from the Renaissance when,
around 1500, it was taken up by artists as a ‘divine proportion’ and
used in painting, sculpture, and architecture.

goodness of �t In statistics, the closeness of agreement between a
set of observations and a hypothetical model which is suggested as a
possible data source. In particular, the term is used when
considering the �t of observations to a theoretical distribution such
as a *normal distribution with known mean and variance, and to
testing whether that �t is acceptable. Closeness of agreement is
often measured by a quantity involving the squares of the
di�erences between observed and theoretical values. When the
model is so chosen that the quantity has minimum value, the
goodness of �t is said to be best based on a *least squares criterion.
See also chi-squared test; Kolmogorov–Smirnov tests.

googol The integer that is written in *decimal notation as 1
followed by a hundred zeroes; in *exponential notation this is 10100.

googolplex The integer that is written in decimal notation as 1
followed by *googol zeroes; in exponential notation this is 10(10100)

Gordan, Paul Albert (1837–1912) German mathematician noted
for his proof in 1868 of his �nite base theorem, subsequently known
as Gordan’s theorem. His e�orts at generalization to higher-order
forms were completed in 1888 by David Hilbert.

grad See grade; gradient.

grade 1. (grad) A rarely used unit of angle equal to 1/100 of a right
angle. See angular measure.
2. See gradient.

gradient 1. (grade) In general a slope, i.e. an inclination to the
horizontal. A gradient is expressed in various ways:
(1) As the angle the line or path makes with the horizontal, i.e. the
slope angle.



(2) As the *tangent of this angle, i.e. the vertical distance travelled
per horizontal distance.
(3) As the vertical distance travelled with respect to the actual
distance along the path. For example, a gradient of 1 in 4 indicates a
vertical distance of 1 unit for 4 units along the slope. This is also
indicated as a ratio (1/4, i.e. the sine of the slope angle) or as this
ratio expressed as a percentage (a 25 percent gradient).

2. (grad) For a scalar function of position ø(r), the gradient of ø,
written as grad ø, is given by (ø, where ( is the operator *del. Thus

and

r=xi + yj + zk

See curl; divergence; potential.
3. For a *function y of n independent variables x1, x2, …, xn, the
*vector of �rst *partial derivatives of y with respect to the xi is
called the gradient vector of y. Compare Hessian.

Graeco-Latin square An extension of a *Latin square allowing
classi�cation by four mutually *orthogonal factors usually denoted
by rows, columns, Latin letters, and Greek letters. An example of a
three-by-three square is

Column

Row 1 2 3

1 Aα Bβ Cγ

2 Bγ Cα Aβ



3 Cβ Aγ Bα

Each Latin or Greek letter occurs once in each row or column, and
each Latin letter occurs once with each Greek letter. In theory the
design may increase precision, but it has technical limitations and,
for small squares, insu�cient degrees of freedom for the *error
mean square. See experimental design.

gram Symbol: g. The unit of mass in the *c.g.s. system, equal to
1/1000 of a kilogram.

Gram–Schmidt method A method for converting a set of vectors
forming a *basis into an orthonormal basis (see orthogonal basis). It
is based on the idea of orthogonalizing vectors against each other: if
a and b are given linearly independent column vectors, then

b’ = b -(aTb)/(aTa) a

is orthogonal to a. The Gram-Schmidt method e�ectively forms a
*QR factorization of the matrix whose columns comprise the basis
vectors. It is named after Jorgen Pedersen Gram (1850–1916) and
Erhard Schmidt (1876–1959).

graph 1. A diagram showing a relationship between two *variables.
Graphs are most commonly drawn using a Cartesian coordinate
system with an x-axis and a y-axis at right angles. In two
dimensions, the graph of an equation is a curve for which the
coordinates of points on the curve satisfy the equation. A graph of a
function f(x) is the graph of the equation y=f(x). A graph of an
inequality, in two dimensions, is generally a region in the plane
satisfying the inequality.

Graphs of equations (or functions) may be plotted by taking a
number of values ofxand calculating the values of y from the
equation. The points are marked on ruled graph paper and a smooth
curve is drawn through them. Graphs of observed or measured
values of physical quantities are drawn similarly. Although the most



common form of graph uses squared graph paper, other types are
sometimes employed for special purposes. A logarithmic graph is

graph (a) The complete graph with �ve vertices, K5. (b) The complete bipartite graph K2,
3.

one in which both axes are marked with a logarithmic scale. An
equation of the form y=axn has a straight-line graph when plotted
on logarithmic paper. A semilogarithmic graph is one with one axis
having a logarithmic scale and the other a linear scale. Such graphs
are especially useful for plotting relationships of the type y=ax.
2. A set of points (vertices or nodes) V connected by a set of edges E.
V and E are the vertex set and edge set of the graph. A directed graph
(digraph) or network is one in which direction is associated with the
edges; they are then a set of ordered pairs of vertices, and are called
arcs. A pair of vertices joined by an edge is adjacent. Where two or
more edges join a pair of vertices they are called multiple or parallel
edges. A graph may be represented by an *adjacency matrix.

A graph in which there are no edges joining a vertex to it self
(loops) and no multiple edges is said to be simple. (Sometimes the
term ‘graph’ is reserved for a graph of this type; a graph with loops
or multiple edges is then termed a multigraph.) A simple graph is



complete if every pair of vertices is joined by an edge. The complete
graph with n vertices is denoted by Kn.

A pair of edges meeting at a vertex is adjacent. The degree of a
vertex is the number of edges meeting at it. A vertex is odd or even
according to whether its degree is odd or even. If every vertex of a
graph has the same degree k, it is said to be regular or k-regular. For
example, the graph K5 (see diagram (a)) is 4-regular.

A graph whose vertices fall into two disjoint sets V1 and V2 with l
and m vertices and such that its edges only join vertices of V1 to
vertices of V2 is a bipartite graph. If the graph is simple and every
vertex of V1 is joined to every vertex of V2, it is a complete bipartite
graph and is denoted by kl,m

A planar graph is one that can be drawn in the plane without two
edges crossing. The graph K2, 3 can be drawn in such a way and is
planar (see diagram (b)); the graphs K5 and K3,3 are nonplanar.

See tree; walk; Eulerian graph; Hamiltonian graph; weighted
graph; network analysis; Chinese postman problem; travelling
salesman problem.

graphical solution A method of solving two *simultaneous
equations by plotting the *graphs of each equation. The solutions
are given by the coordinates of the points of intersection (since at
these points both equations are satis�ed by the same values ofxand
y).

A single equation f(x)=0 may be solved graphically by �nding
the intersections of y=f(x) and y=0.

Grassmann, Hermann Günther (1809–77) German mathematician
noted for his highly original but obscure Die lineale
Ausdehnungslehre, ein neuer Zweig der Mathematik (1844, The Theory
of Linear Extension, a New Branch of Mathematics) in which he
tried to develop a calculus of extension to describe and analyse
events in physical space. One manifestation of his theory is that
Grassmann coordinates are used to parametrize sets of spaces of the
same dimensions in a Euclidean space.



Graunt, John (1620–74) English merchant who, in his Natural and
Political Observations Mentioned in a Following Index and Made Upon
the Bills of Mortality (1662), introduced the �rst statistically based
ideas of life expectancy, population estimation, and sex ratio. Using
the data in the bills, issued weekly since 1603, which gave numbers
of christenings, burials, and causes of death, he made the �rst
reasonable estimate of the population of London as 384000, showed
that more boys than girls were born each year, and that women
lived longer than men; he also constructed the �rst *life table.

gravitation The tendency of all material bodies to attract one
another. The mutual attraction between bodies is considered as a
force – the gravitational force – that acts between the bodies and
arises because the bodies possess mass. The force decreases as the
distance between the bodies increases. This was �rst expressed in
mathematical form as Newton’s law of gravitation, which gives the
magnitude F of the force of attraction between two point masses m1
and m2 a distance d apart as

F=Gm1m2/d2

where G is the *gravitational constant. Gravitation is one of the
fundamental forces of nature.

The gravitational �eld due to a material body is the force on a
particle of unit mass arising from the mass of the body (see �eld).
The gravitational potential due to a material body is the potential
energy of a particle of unit mass arising from the mass of the body
(see potential). See also relativity (general theory).

gravitational constant Symbol: G. The universal constant
appearing in Newton’s law of *gravitation. Its value is 6.672x10(11

Nm2 kg(2.

gravitational �eld See gravitation; �eld.

gravitational force See gravitation.



gravitational mass The property of a body that determines the
gravitational �eld it can produce. Newton’s law of *gravitation is
expressed in terms of gravitational mass. The gravitational mass of a
body has been found to be equivalent to its *inertial mass.

gravitational potential See gravitation; potential.

gravity The tendency for a body to move downwards because it
possesses *weight. It is a local manifestation of gravitation on earth
or on some other celestial body. See acceleration of free fall.

gray Symbol: Gy. The *SI unit of absorbed dose of ionizing
radiation, equal to the energy in joules absorbed by 1 kilogram of
matter. [After L.H. Gray (1905–65)]

Gray code A *binary code invented by the American physicist Frank
Gray in 1947 but a similar code had already been used by Émile
Baudot in 1878. The codewords can be listed so that successive
words di�er in only one place. Gray codes are widely used in
transforming analogue data to digital data, and have very useful
error-correcting properties.

great circle A circle on a sphere that has its centre at the centre of
the sphere; the radius of a great circle therefore equals the radius of
the sphere. Compare small circle.

greatest common divisor (GCD) See common factor.

greatest integer function An alternative name for the �oor
function. See integer part.

greatest lower bound (g.l.b.; in�mum) A lower bound l (of a
function, sequence, or set) is a greatest lower bound if l ≥ m for any
other lower bound m. See bound.

Green, George (1793–1841) English mathematician noted for his
Essay on the Application of Mathematical Analysis to the Theory of
Electricity and Magnetism (1828), in which the fundamental notion of
the potential, used earlier by Laplace to determine gravitational



attraction, was �rst used to analyse electrical and magnetic
phenomena. It also contained the �rst formulation of *Green’s
theorem.

Green’s theorem A theorem in *potential theory. For a region R of
the x–y plane bounded by a curve C, if functions P(x, y) and Q(x, y)
have continuous *partial derivatives then

The analogue in three dimensions is *Gauss’s theorem. Both
theorems are special cases of the general *Stokes’s theorem.

Gregory, David (1661–1708) Scottish mathematician who
published many of his uncle James Gregory’s results on in�nite
series in his Exercitatio geometrica (1684, Geometrical Essays). He
was also the �rst to publish some of Newton’s results in both
mathematics and astronomy, and in 1703 he issued the �rst ever
edition of the collected works of Euclid.

Gregory, James (1638–75) Scottish mathematician noted for his
expansion of a number of trigonometric functions into in�nite
series. Gregory was, in fact, one of the �rst to distinguish between
convergent and divergent series. He is, however, known more
widely for his description in 1661 of a type of re�ecting telescope.

Gregory–Newton interpolation A method of *interpolation which,
in its basic form (sometimes called the forward di�erence formula),
uses *forward di�erences. In this form it is especially suited to
interpolation between x0 and x1, given values y0, y1, y2, …, yn of a
function f(x) for equally spaced values x0, x1, x2,…, xn of the
independent variable. If x0 < x’ <x1 and k =(x’ – x0)/(x1 – x0),
then y’=f(x’) is estimated by the formula



where is the *binomial coe�cient. Note that k is non-integral.
There is a related formula (the backward di�erence formula), useful

for interpolation between xn–1 and xn that uses *backward
di�erences.

The Gauss interpolation formula uses *central di�erences and is
appropriate for interpolation between x1 and xn_1.

It is named after James Gregory and Isaac Newton.

Gregory’s series (J. Gregory, 1667) The *series expansion for the
inverse tangent function:

This is valid for –1 ≤x≤ 1.

Grelling–Nelson paradox A *paradox stated by K. Grelling and L.
Nelson in 1908. An adjective is called autological if it has the
property denoted by itself. Thus the word ‘English’ is an English
word, ‘short’ is short, and ‘polysyllabic’ is polysyllabic. If an
adjective is not autological, it is heterological. Thus ‘German’ is not
German, ‘long’ is not long, and ‘monosyllabic’ is not monosyllabic.
What of the word ‘heterological’ itself? Is it heterological? It must
be either autological or heterological. Take each alternative in turn:
(1) If it is autological, the adjective ‘heterological’ has the property
denoted by itself, and it must be heterological. Thus, from the
assumption that ‘heterological’ is autological, it follows that it is
heterological.
(2) If it is heterological, the adjective ‘heterological’ does not have
the property denoted by itself, so it is not heterological and must



therefore be autological. Thus, from the assumption that
‘heterological’ is heterological, it follows that it is autological.
The paradox is also known as Grelling’s paradox.

gross 1. Prior to deductions. Gross pro�t, for instance, is pro�t
before taking away all operating costs.
2. The gross weight of an object includes the weight of any wrapper,
vessel, vehicle, etc. in which the object is weighed. Compare net.

group A *set G whose elements can be combined together in a way
similar to the addition of integers. If the result of combining the
elements a and b of G is denoted by a ° b, then G will be a group if
and only if ° is a *binary operation (so that a ° b must be in G) and
satis�es the following three properties:

(1) the operation is associative: given any three members a, b, and c
of G then a ° (b ° c)=(a ° b) ° c;
(2) there is a special element I, called the identity element, such that
for any element a, a ° I=I ° a=a;
(3) corresponding to each element a there is an element a, called the
inverse of a (and depending upon a), such that a ° a ‘=a ‘° a=I.

The set of all integers with the operation of addition is an
example of a group. In this case zero is the special element playing
the role of I in (2), and the integer which, combined with a, gives
zero is – a, since a + (–a)=0. The operation of addition of integers
has another helpful property, since it does not matter which way
round two integers are added: a + b=b + a for all integers a and b.
If the operation ° in the group G has the analogous property
(4) a ° b=b ° a for every pair of elements a, b in G,
then the group is said to be commutative or Abelian (see Abelian
group). So the set of integers with the operation of addition forms
an Abelian group. An example of a non-Abelian group is the set of
all non-singular 2x2 *matrices with matrix multiplication as the
group operation. In this case there are many pairs A and B of such
matrices with AB ( BA; for example



In both the above examples the groups concerned are in�nite groups
(i.e. they contain an in�nite number of elements). However, �nite
groups are just as common, and for each natural number n there is at
least one group having exactly n elements. For example, for each
natural number n the set of nth *roots of unity forms a �nite group
containing n elements (with complex multiplication as the group
operation). Indeed, the group concept �rst arose in �nite situations,
especially in Galois’s work on groups of permutations of the roots of
a polynomial equation (see Galois theory). Nowadays group theory
pervades most of modern algebra and has important applications in
several areas of science, such as *crystallography and quantum
theory.

grouped data Data consisting of counts of numbers of items with
observed values of a variable, such as a measurement of a physical
or other distinguishing characteristic, each lying in one of a set of
speci�ed non-overlapping intervals. For example, for 200 men the
exact height, xcm, of each may be measured and the information
reduced to numbers of men within each of the height intervals in
the following table:

Height, x(cm) Number of men

x < 165 6

165 ≤ x< 170 39

170 ≤ x< 175 93

175 ≤ x< 180 44

180 ≤ x< 185 15

x ≥ 185 3



With an appropriate choice of interval size, the grouping gives a
good ‘feel’ for the distribution underlying the sample data. The mid-
point of each interval other than the unbounded intervals at each
end is called the mid-interval value, and these are 167.5, 172.5,
177.5, and 182.5 cm. When, as in this example, it seems that most
entries within the end intervals are likely to be in the �nite intervals
160 ≤x<165 and 185 ≤x<190, it is not unreasonable to assume
the mid-interval values 162.5 and 187.5cm for these. Approximate
values for the *mean and *variance of the heightsxare computed by
assuming that eachxfor an observation in an interval takes the mid-
interval value, e.g. for the above example the mean height is
estimated as

If it is assumed that the exact measurements x follow a *normal
distribution, an improved estimate of the exact variance may be
obtained by subtracting h2/12, where h is the interval width, from
the estimate of variance based on mid-interval values. The
correction, known as Sheppard’s correction, is not always satisfactory
when there are open unbounded end intervals as in the above
example.

Approximate *quantiles are also obtainable from grouped data.
From the table, the median is clearly in the interval 170 ≤x< 175,
and the estimate may be made more precise by linear interpolation.

A grouped cumulative frequency table is obtained by combining
counts for groups with the measured variable less than the
maximum speci�ed for successive class intervals. With the data
above for heights of men, the cumulative frequency table is as
follows:

Height (cm) Cumulative frequency



165 6

170 45

175 138

180 182

185 197

190 200

grouping See randomized blocks; matched pairs.

groupoid A *set G, together with a rule or operation, that, given
any two elements a and b (in that order) in G, speci�es a unique
third element of G. An example of a groupoid is the set of all
integers together with the operation of subtracting the second of a
pair of integers from the �rst. Here any pair of integers a and b
speci�es a unique integer a – b. However, the set of natural numbers
1, 2, 3, … with the same operation of subtraction does not form a
groupoid. In this case there are pairs (e.g. 4, 7) for which the
operation of subtracting the second number from the �rst does not
lead to another natural number.

g-statistics The *statistics g1 and g2, which are sample equivalents
of (1 and (2, the population measures of *skewness and *kurtosis.

gyroscope A wheel spinning on a shaft and so mounted that it can
rotate freely about any direction. It has two basic properties, either
or both of which are used in a variety of instruments. First, the
spinning wheel tends to maintain the direction of its rotational axis
in space; it is said to have gyroscopic inertia. Second, if a twisting
force (a *torque) is applied to the shaft so as to try to rotate the
shaft about an axis perpendicular to the shaft, the resulting motion
will be a *precession, i.e. a rotation of the shaft about an axis that is
perpendicular both to the shaft and to the axis of the torque.



H

H0, H1 See hypothesis testing.

H Symbol for the set of all *quaternions.

HA Abbreviation for *hour angle.

Hadamard, Jacques (1865–1963) French mathematician noted for
his proof in 1896 of the *prime number theorem: that the number of
primes not greater than n approximately equals n/ln n. The theorem
was independently proved at the same time by Vallée-Poussin.

Hadamard matrix An nxn *matrix H of l’s and–l’s whose rows are
mutually orthogonal, so that HHT=nI.

A 2x2 Hadamard matrix is

A necessary condition for a Hadamard matrix of dimension n greater
than 2 to exist is that n is a multiple of 4, but it is not known
whether a Hadamard matrix of dimension n exists for every n that is
a multiple of 4.

Hadamard product The element-wise product of two square
*matrices of the same dimensions. If A and B are nxn matrices, their
Hadamard product is the nxn matrix C with cij=aijbij.

half-angle formulae 1. Formulae in plane trigonometry that give
trigonometric functions of an angle x in terms of the tangent of the
half-angle ½ x:

sin x = 2t/1 + t2

cos x = 1 − t2/1 + t2



tan x = 2t/1 − t2

where t=tan ½ x.
2. Formulae in plane trigonometry of the form

tan1/2A = r/s − a

tan1/2B = r/s − b

tan1/2C = r/s − c

where A, B, and C are angles of a triangle and a is the length of the
side opposite angle A, b is opposite angle B, and c is opposite angle
C; s is the semiperimeter, i.e.

s = 1/2(a + b + c)

and r is the expression

√(s − a)(s − b)(s − c)/s

Before the use of electronic calculators, these formulae were
sometimes used in solving triangles in place of the *cosine rule
because they were convenient for use with logarithmic tables.
3. Formulae used in spherical trigonometry to solve *spherical
triangles:

tan1/2α = r/sin(s − a)

tan1/2β = r/sin(s − b)

tan1/2γ = r/sin(s − c)

where α, β, and γ are angles of the spherical triangle, and a is the
length of the side opposite angle α, b is opposite angle β, and c is
opposite angle γ; s is the semi-perimeter, i.e.

s=½ (a + b + c)



and r is the expression

√sin(s − a)sin(s − b)sin(s − c)/sin s

half-line (ray) a straight line extending inde�nitely in one direction
from a �xed point.

half-plane a plane extending inde�nitely from a line (the edge).

half-range series See Fourier’s half-range series.

half-side formulae Formulae used in spherical trigonometry to
solve *spherical triangles:

tan1/2a = R cos (S − α)

tan1/2b = R cos (S − β)

tan1/2c = R cos (S − γ)

where α, β, and γ are the angles of the spherical triangle, and a, b,
and c are the lengths of the sides, a being opposite α, b opposite β,
and c opposite γ; S is half the sum of the angles, i.e.

S=½(α + β + γ)

And R is the expression

√ −cos S/cos(S − α)cos(S − β)cos(S − γ)

half-space a space lying on one side of a given plane.

Halley, Edmond (1656–1742) English astronomer and
mathematician. Although best known for his work on comets, and
for his role as editor of Newton’s Principia (1687), Halley also
published a number of mathematical papers. His work ranged over
such practical issues as how to use mortality tables to compute
annuities, and the computation of logarithms, to more theoretical
problems on the nature of in�nite quantities. In 1692, on the basis



of geometrical arguments, Halley disproved the common assumption
that all in�nite quantities are equal. In 1710 he produced a Latin
translation of the Conics of Apollonius.

Halley’s method (E. Halley, 1694) a method of solving an equation
in one variable, f(x)=0, by the iteration

where x0 is a �rst approximation to the root, and fn, f(n, and f(n
denote the values of f and its �rst two derivatives at xn. Halley’s
method has a faster ultimate speed of convergence than *Newton’s
method, but requires more computation per iteration.

halting problem Is there a systematic and mechanical method to
prove or disprove any mathematical statement? This fundamental
problem was reformulated by Alan Turing in terms of *Turing
machines: can a Turing machine A be programmed to determine
whether Turing machine B will halt (either solve the problem or
determine that the problem cannot be solved in a �nite number of
steps) when presented with problem X? Turing proved that no such
machine A could exist, and thereby demonstrated the existence of
undecidable problems in mathematics. See also Church’s theorem;
Gödel’s proof.

Hamilton, Sir William Rowan (1805–65) Irish mathematician
noted for his introduction in 1843 of *quaternions. Hamilton fully
published his results in 1853, while his de�nitive treatment of the
subject, Elements of Quaternions (1866), appeared posthumously. He
also contributed to dynamics, where the *Hamiltonian function and
*Hamilton’s principle are still in use.

Hamiltonian A function, H, used to express the rate of change with
time of the condition of a dynamic physical system, i.e. one
regarded as a set of moving particles. In classical mechanics (as



opposed to quantum mechanics) it is a function of the *generalized
coordinates qi and momenta pi of the system:

where L is the *Lagrangian function of the system, q ̇is the �rst
derivative of q with respect to time, and pi, the generalized
momenta, are given by

It follows that

If H (or L) does not depend explicitly on time, then H is equal to the
total energy, kinetic plus potential, of the system.

Hamiltonian graph A connected *graph that contains a closed
*path or cycle which includes every vertex (once only). A connected
graph that contains a path (not necessarily closed) which includes
every vertex is semi-Hamiltonian. Compare Eulerian graph.

Hamiltonian graph An example



Hamiltonian mechanics The study of mechanics based on
*Hamilton’s principle.

Hamilton’s principle a fundamental principle in dynamics stating
that in a *conservative �eld the motion of a mechanical system can
be characterized by requiring that the integral

be stationary in an actual motion during the time interval t1 to t2. T
and V are the kinetic and potential energies of the system.

Methods from the *calculus of variations are used to study the
circumstances under which the integral is stationary.

Hamming code One of a family of *linear single *error-correcting
codes that can also detect (but not correct) two errors. The
American mathematician Richard Wesley Hamming (1915–98)
published these codes in 1950, and they are in common use in
computer memory.

Hamming distance (Hamming metric) The Hamming distance
between two *code-words of the same length is the number of
places in which they di�er. For example, the Hamming distance
between 0101 and 1110 is 3. If all pairs of codewords are far apart
in the Hamming distance, then multiple transmission errors can be
corrected.

Hamming metric See Hamming distance.

handle See genus; manifold.

Hankel function A *Bessel function of the third kind, named after
the German mathematician Hermann Hankel (1839–73).

Hankel matrix A square *matrix whose antidiagonals are constant,
illustrated for n=3 by



A Hankel matrix is symmetric.

Hardy, Godfrey Harold (1877–1947) English mathematician noted
for his collaboration with J.E. Littlewood in which, between 1910
and 1945, they published nearly 100 papers covering work on
number theory, inequalities, and the Riemann hypothesis. On this
last topic Hardy proved that there are in�nitely many zeroes of the
Riemann zeta function on the line x=½ Hardy also encouraged the
Indian mathematician Ramanujan to come to England, and
collaborated with him between 1914 and 1917 on a number of
topics, of which their work on the partition of integers was the most
original.

Hardy-Weinberg law (G.H. Hardy, 1908; W. Weinberg, 1908) In
genetics, if two alleles a and a occur in a population in proportions p
and q=1–p, then after one generation of random mating the
genotypes AA, Aa, and aa are in proportions p2, 2pq, and q2 and are
said to be in Hardy-Weinberg equilibrium, because with random
mating these proportions are maintained in all future generations.

harmonic 1. A solution ø of the two-dimensional Laplace’s
di�erential equation

2. A solution of *Laplace’s (di�erential) equation in *spherical
coordinates. A spherical harmonic has the form



Pn being a Legendre polynomial and  an associated Legendre
function (see Legendre’s di�erential equation). If r = 1, the
expression is a surface harmonic. a surface harmonic of the form cos
mø (cos θ) or sin mø (cos θ) may be of two types: a tesseral
harmonic (m < n) or a sectoral harmonic (m=n). The function Pn
(cos θ) is a zonal harmonic.

harmonic analysis The study of functions by expressing them as
the sum of a series of a family of functions such as sine and cosine.
See Fourier series; wavelets.

harmonic mean See mean.

harmonic motion A form of *periodic motion, characteristic of
elastic bodies (see elasticity), in which there is a linear restoring
*force acting on the moving particle, point, etc. There may also be
additional disturbing forces. In the simplest case, known as simple
harmonic motion (SHM), there is periodic motion in a straight line: a
particle moves to and fro about an equilibrium position such that
the restoring force is proportional to the particle’s displacement x
from this point. The equation of motion is

d2x/dt2 = ω2x

This gives the displacement as

x=a cos (ωt + α)

where a is the maximum displacement, or amplitude, of the motion
from the equilibrium position, ω is the angular frequency, ωt + α is
the phase, and α is the initial phase or phase angle. At t=0 the
displacement is a cos α. The motion repeats itself in a time 2π/ω,
which is the period of the motion. Simple harmonic motion is thus a
pure sinusoidal displacement in time with a single amplitude and
frequency. Two sinusoidal quantities

x1=a1 cos(ωt + α1)



x2=a2 cos(ωt + α2)

where α1 ≠ α2 are said to be out of phase, with a phase di�erence of
|α1–α2|; if α1=α2, the two are said to be in phase.

More complex harmonic motion is made up of two or more simple
components. For example, uniform circular motion has two simple
harmonic components of the same period and amplitude moving at
right angles and out of phase by a quarter of the period (i.e. ½π). If
the phase di�erence is not a quarter of the period then the motion is
elliptical: the resulting motion follows an elliptical path.

See also damped harmonic motion.

harmonic pencil A set of four coplanar concurrent lines such that
the four points of intersection with a �fth line form a harmonic
range (see cross-ratio).

harmonic range or ratio See cross-ratio.

harmonic sequence (harmonic progression) A sequence a1, a2, a3,
… for which the reciprocals of the terms, 1/a1, 1/a2, 1/a3, … form
an *arithmetic sequence.

harmonic series A *series whose terms form a *harmonic sequence.
The name is sometimes con�ned to the divergent series

harmonic set See cross-ratio.

Harriot, Thomas (1560–1621) English mathematician, physicist,
and astronomer who, in his posthumous Artis analyticae praxis
(1631, Applied Analytical Arts), dealt with equations up to the
fourth degree and introduced into mathematics the signs > for
‘greater than’ and < for ‘less than’.

Hausdor�, Felix (1868–1942) German mathematician who worked
in set theory and was one of the main creators of modern topology.



He also introduced the concept of a partially ordered set. He was the
�rst to de�ne a fractional dimension (usually called the Hausdor�
dimension) of a fractal set.

Hausdor� dimension See fractal.

Hausdor� metric A distance de�ned between two *compact subsets
A and B in a *metric space X and which makes the set of all
compact subsets of X into a metric space. The distance d(A, B) is the
smallest r such that A and B are contained in r-neighbourhoods of
each other, where the r-neighbourhood of a compact subset K of X is

{x: there is a y ( K with d (x, y) ≤r}

Hausdor� space A *topological space X in which distinct points
have disjoint *neighbourhoods. That is, if x ≠ y ( X then there are
open sets U and V with U ( V=Ø and x ( U, y ( V. Every *metric
space is a Hausdor� space.

HCF Abbreviation for highest common factor. See common factor.

heat equation The *partial di�erential equation that models the
�ow of heat in a body. For a three-dimensional body, the equation
for the temperature u at time t and position (x, y, z) is

The equation can often be solved when the temperature on the
boundary of the body is known as a function of time.

hectare An *SI unit of area, equal to 10000 m2.

hecto- See SI units.

Heine–Borel theorem See compact.

helix A twisted *curve whose tangent always makes a constant
angle with a �xed line, called the axis of the helix.



A circular helix lies entirely on the curved surface of a right
circular cylinder, and the axis of the helix is the axis of the cylinder.
If the axes are as shown in the diagram, the *parametric equations
of the helix are x=a cos t, y=I sin t, and z=bt, where a is the radius
of the cylinder, b a constant, and t the parameter.

The pitch of a helix is the amount by which a point on the helix is
displaced, in a direction parallel to the axis, in making one
revolution about the axis. For the above circular helix the pitch is
2π/b.

helix A circular helix.

Helly’s theorem (E. Helly, 1923) If A1, A2, …, Ar ( ” are *convex
sets with r > n and with the property that every collection of n + 1
of the sets Ai have a point in common, then they all have a point in
common.

hemisphere A half-sphere: part of a sphere cut o� by a plane
through its centre. A hemisphere is a *zone of one base with an
altitude equal to the sphere’s radius.

Hénon attractor See chaos.

henry Symbol: H. The *SI unit of inductance, equal to the
inductance of a closed circuit that produces 1 weber of magnetic
�ux per ampere. [After J. Henry (1797–1878)]



heptagon A *polygon that has seven interior angles (and seven
sides).

heptahedron (plural heptahedra) A *polyhedron that has seven
faces, for example a pentagonal prism or a hexagonal pyramid.

Hermite, Charles (1822–1901) French mathematician who in 1873
demonstrated the transcendence of e. He also, using elliptic
functions, solved in 1858 the general quintic equation in one
variable. Other work on complex numbers led to the de�nition of
*Hermite polynomials, which have since found wide application in
modern quantum theory.

Hermite polynomial A *polynomial

(− 1)n exp(x2) dn/dxn[exp(− x2)]

that satis�es the di�erential equation

d2y/dx2 − 2xdy/dx + 2ny = 0

Hermitian conjugate A matrix that is the *transpose of the
*complex conjugate of a given matrix. The Hermitian conjugate of a
matrix A is denoted commonly by A*, sometimes by A†. It is also
called the associate matrix or, sometimes, as in quantum mechanics,
the *adjoint. If a matrix has a Hermitian conjugate that is equal to
the matrix itself, i.e. if A=A*, then the matrix is said to be
Hermitian. In a Hermitian matrix each element aij is equal to the
complex conjugate of the element aij. If A=–A*, then the matrix A
is said to be skew-Hermitian or anti-Hermitian. Every real symmetric
matrix is Hermitian. For example, the matrices

are Hermitian and skew-Hermitian, respectively. See unitary matrix.

Hermitian matrix See Hermitian conjugate.



Hero (or Heron) of Alexandria (�. AD 62) Greek mathematician and
engineer, author of a number of works on mensuration of which the
Metrica is the most important. In addition to showing how to work
out the volume of cones, prisms, pyramids, spherical segments, the
�ve regular polyhedra, and other �gures, Hero described a method
of approximating square roots and the formula for the area of a
triangle that bears his name. He also worked on optics. His best-
known book is the Pneumatica, in which he describes about a
hundred mechanical devices.

Hero’s formula (Heron’s formula) A formula for the area A of a
triangle:

A = √[s(s − a)(s − b)(s − c)

where a, b, and c are the lengths of the sides and s is the
semiperimeter, i.e.

s = 1/2(a + b + c)

Compare Brahmagupta’s formula.

Hero’s method (Heron’s method) An *iterative method of
approximating the square *root of a number by estimating the
value, dividing this into the number, and taking the average of the
result and the initial estimate. For example, the square root of 92
can be estimated as 8.5. Dividing 92 by 8.5 gives 10.8235. Taking
the average of this and 8.5 gives 9.6618. This value can then be
used similarly to give a better estimate, of 9.5919 (the ‘true’ value is
9.5917).

hertz Symbol: Hz. The *SI unit of frequency, equal to one cycle per
second. [After H.R. Hertz (1857–94)]

Hessian For a *function y of n independent variables x1, x2, …, xn,
the *matrix of second-order *partial derivatives of y with respect to
the xi is called the Hessian matrix of y. Its *determinant is the
Hessian of y. The element in the ith row and jth column of the



matrix (or determinant) is ∂2y/∂xi∂xj. The function is named after
the German mathematician Ludwig Otto Hesse (1811–74). See also
Jacobian; Wronskian.

hexadecimal system A *number system using the base sixteen, in
which the digits A to F are used for the numbers represented as 10
to 15, respectively, in the decimal system. For example, in
hexadecimal 4B is the number represented in decimal by 75 (=4x16
+ 11). See also duodecimal system.

Hexagon A *polygon that has six interior angles (and six sides).

hexahedron (plural hexahedra) A*polyhedron that has six faces. A
cube is a regular hexahedron.

highest common factor (HCF) See common factor.

Hilbert, David (1862–1943) German mathematician who made
major contributions to several branches of mathematics. In 1888 he
generalized an important theorem of *Gordan’s to higher-order
systems, while in 1899 he published his famous Grundlagen der
Geometrie (Foundations of Geometry) in which he provided a
rigorous axiomatic foundation for the subject. He also demonstrated
that geometry was as consistent as the arithmetic of the real
numbers. In 1900 Hilbert posed 23 problems as a challenge to the
mathematicians of the 20th century; solutions have been found or
substantial advances made for about three-quarters of them.

In later life, Hilbert devoted himself increasingly to work in
theoretical physics and the foundations of mathematics. In the latter
he developed a strictly formalist position (see formalism) which
culminated in the two-volume Grundlagen der Mathematik (1934,
1939; Foundations of Mathematics), co-written with Paul Bernays.
Other work of Hilbert’s included his proof of Waring’s conjecture,
his development of the notion of a *Hilbert space, and contributions
to the study of integral equations and algebraic number theory.

Hilbert matrix The nxn *matrix Hn whose (i,j)th entry is 1/(i + j–
1). It was introduced in 1894 by Hilbert, who obtained an explicit



formula for the determinant of Hn. The matrix is *symmetric
positive de�nite, and is extremely conditioned, even for moderate
values of n. For n=3,

and det(H3)=1/12160.

Hilbert’s axioms See Euclidean geometry.

Hilbert space A *complete normed *inner product space. Usually
the space is considered to have in�nite dimensions. See also
quantum mechanics.

Hindu-Arabic numerals Arabic numerals. See number system.

Hipparchus (c.190–c.126 BC) Greek mathematician and astronomer
noted as the author of the �rst chord table–the equivalent of a
modern table of sines–and also for his discovery of the precession of
the equinoxes.

Hippasus of Metapontum (c.470 BC) Greek mathematician, a
Pythagorean, who was said to have revealed the secret that (2 was
irrational. For this, and for his further discovery of the regular
dodecahedron, he was allegedly punished by death by drowning.

Hippias of Elis (c.420 BC) Greek mathematician best known for his
description of the *quadratrix, a curve which allows an angle to be
divided into any given ratio and thus provides a method for the
*trisection of an angle.

Hippocrates of Chios (�. 440 BC) Greek mathematician noted as the
�rst geometer to determine the area of a curvilinear �gure, namely
the lune. He is also supposed to have contributed to the problem of
duplication of the cube.



Histogram A graphical representation of *grouped data. The x-axis
is divided into segments with lengths proportional to each class
interval; on these segments as bases, rectangles are drawn with
areas proportional to the numbers in the classes. If all class intervals
are equal the heights are also proportional to the numbers.

Hodograph A curve used to determine the acceleration of a point P
moving with known velocity along a curved path. The hodograph is
drawn through the ends of lines drawn from a reference position, O,
whose length and direction represent the velocity of P at successive
positions, i.e. at successive instants, along its path; these lines are
thus vectors. If  and  represent the velocity of P at times t and
t + δt, then represents the change in velocity during a time (t.
Thus /(t represents the average change in velocity (i.e.
acceleration) of P during the interval, and also the average velocity
of the point H in the hodograph. It follows that, after letting δt → 0,
the velocity of the point H represents in magnitude and direction
the acceleration of P.

hodograph

Hölder’s inequality An inequality used in the study of both
Euclidean and function spaces. For the Euclidean plane, the
inequality is



It is named after the German mathematician Otto Ludwig Hölder
(1859–1937).

holomorphic function See analytic function.

homeomorphism Given *topological spaces X and Y, a continuous
map f: X(Y is a homeomorphism if there exists another continuous
map g: Y(X such that gf (x)=x for all x(X and fg(y)=y for all y(Y. If
such f and g exist, X and Y are said to be homeomorphic.

For example, the open interval (–½(, ½() and the real line 1 are
homeo-morphic, a suitable homeomorphism f being de�ned by f
(x)=tan x (since both the function and its inverse are continuous).

homogeneity of variance Statistical techniques such as those for
comparing population means on the basis of observed samples often
require it to be assumed that all population variances are equal. A
number of tests have been proposed for checking whether this is an
acceptable assumption, given some relevant data. Some of these
tests, such as Bartlett’s test (M.S. Bartlett, 1934), work well under an
assumption of normality, but sometimes less well if that assumption
is violated. If there is doubt about the assumption of normality, then
Levene’s test (H. Levene, 1960) is sometimes preferred to Bartlett’s
test. There are also a number of nonparametric tests, including the
Siegel–Tukey test (S. Siegel and J.W. Tukey, 1960), the Conover
squared rank test (W.J. Conover, 1980), and the Ansari–Bradley test
(A.R. Ansari and R.A. Bradley, 1960) and others similar to it. See
also variance ratio.

homogeneous Describing an expression in which the *variables can
be replaced by the product of a (nonzero) constant and the variable,
and the constant can then be taken out as a factor of the expression.



A homogeneous polynomial is one in which all the terms have the
same total degree. An example is

x2 + 3xy + y2

in which the degree of each term is 2. If x is replaced by kx and y by
ky, then the polynomial becomes

k2x2 + 3k2xy + k2y2

i.e.

k2 (x2 + 3xy + y2)

Similarly, a function such as

x2 sin (x/y) + y2 cos (x/y)

is homogeneous because if x and y are replaced by kx and ky,
respectively, the result is

k2[x2 sin (x/y) + y2 cos (x/y)]

A homogeneous equation is one formed by putting a homogeneous
polynomial (or other function) equal to zero. For instance,

x2 + y2=0

is a homogeneous equation, whereas

x2 + y2=3

is not homogeneous.

homogeneous coordinates Numbers a1, a2, and a3 associated with
a point (x, y)in cartesian coordinates, such that

x=a1/a3 and y=a2/a3



A polynomial equation in cartesian coordinates becomes a
homogeneous equation when changed to homogeneous coordinates.
For instance,

2x2 + x + 7=y

becomes

2a1
2 + a1a3 + 7a3

2=a2a3

homogeneous di�erential equation A*di�erential equation of the
form

dy/dx = f(y/x)

homology group A basic tool in *algebraic topology, �rst de�ned
by Poincaré (1895). The nth homology group Hn(X) of a topological
space X gives an idea of the number of independent ‘holes’ in X. For
example, if Г is a �nite graph, the number of independent
generators for the group H1 (Г) equals the number of independent
cycles in Г;and if X denotes 3-dimensional space with 28 (disjoint)
balls removed, then H2(X) has 28 independent generators.

There are a number of approaches to de�ne the homology groups
of a space X. All of them involve constructing, from X, a chain
complex–a sequence of groups Ck with di�erentials dk + 1: Ck + 1: Ck

satisfying dkdk + 1=0. Hk(X) is then de�ned to be the quotient
Ker(dk)/Im(dk + 1) of the *kernel Ker(dk) of one di�erential by the
image Im(dk + 1) of another. For example, if X=Sn, the sphere of
radius 1 in (n + 1)-dimensional space, then Hk(X)=0 unless k=0
or n, and equals the integers Z when k=0 or n. Brouwer’s *�xed-
point theorem follows from this calculation.

homomorphism A *map from one *algebraic structure to another
like structure, linked to the algebraic operations in the two
structures. Thus, suppose that G and G( are *groups whose
operations are written as ° and • respectively. A group



homomorphism from G to G( is a map ø whose *domain is G, whose
*range is contained in G(, and that satis�es

ø(x°y)=ø(x) • ø(y)

for every x and y in G.
For example, if G1 is the group of all nonzero real numbers with

multiplication as the operation, and G2 is the group of all positive
real numbers with the same operation, then the map ø1, given by
ø1(x)=x2 for each x in G1, is a homomorphism from G1 to G2. This is
because

ø1 (xy)=(xy)2=x2y2=ø1(x) ø1(y)

Similarly, a homomorphism from a *ring or *�eld R with operations
+ R and xR to another ring Q with operations + Q and x Q is a map f
whose domain is R, whose range is contained in Q, and that satis�es

f(a + Rb)=f(a) + Q f(b)

and

f(axRb)=f(a)xQ f(b)

for every a and b in R. Likewise, a homomorphism from a (left)
*module M to a (left) module N, both over the ring R, is a map g
from M to N satisfying

g(x + My)=g(x) + Ng(y)

and

g(ax)=ag(x)

for every a in R and x, y in M.



homoscedastic Having the same *variance, used in particular when
referring to observational error distribution.

homothetic Describing two �gures, one of which is mapped onto
the other by an *enlargement (homothety). Homothetic triangles have
corresponding sides parallel and proportional in length.

homothety See enlargement.

homotopy Two continuous maps f, g: X(Y between *topological
spaces are homotopic (written as f  g) if one can be ‘continuously
deformed’ into the other; that is, if there exists a continuous map F:
XxI(Y (where I denotes the closed unit interval [0, 1] in 1) such
that F(x, 0)=f (x) and F(x,1)=g(x) for all x(X. Such an Fiscalled a
homotopy between f and g.

For example, if Y is a subspace of some Euclidean space n, and
for all x(X the line segment in n from f(x) to g(x) is contained in Y,
then f  g by reason of F: XxI(Y, where F is de�ned by

F(x, t)=(1–t)f(x) + tg(x)

(this is called a linear homotopy).
A continuous map f: X(Y is a homotopy equivalence if there exists a

continuous map g: Y(X such that gf is homotopic to the identity map
of X and fg is homotopic to the identity map of Y (compare
homeomorphism). If such f and g exist, X and Y are said to be
homotopy-equivalent. A space X homotopy-equivalent to a single
point is said to be contractible: n, for example, is contractible for all
n.

A continuous map f: X(Y is an inessential map if it is homotopic to
a continuous map that sends all of X to a single point; otherwise, f is
an essential map.

See also homotopy group.

homotopy equivalence See homotopy.



homotopy group A tool in *homotopy theory. Given a *topological
space X, a point x0(X, and an integer n≥1, the nth homotopy group
of X, (n(X, x0), consists of the *equivalence classes of continuous
maps f: Sn(X (where Sn is the n-sphere) that send (1, 0, …, 0) to x0,
two such maps being de�ned to be equivalent if they are homotopic,
keeping the point (1, 0, …, 0) �xed. a continuous map g: Y(X gives
rise to homomorphisms

g*: πn(X, x0) ((n(Y, y0), where y0=g(x0)

and g* is an isomorphism for all n if g is a homotopy equivalence.
For n=1, (1(X, x0) is sometimes called the fundamental group or

Poincaré group of X; it can readily be calculated if X is a polyhedron,
although it is usually a non-Abelian group.

The fundamental group was de�ned by Poincaré in 1895.
Poincaré’s de�nition was extended to the case n>1 by E. Cech
(1932) and W. Hurewicz (1935).

homotopy theory A branch of *algebraic topology concerned with
the study of those properties of *topological spaces that are
invariant under homotopy equivalence. Many problems in
homotopy theory are attacked by calculating *homotopy groups.

Hooke, Robert (1635–1703) English mathematical physicist.
Hooke’s work ranged widely over much of the science of his day
and included major contributions to optics and mechanics. In
correspondence with Newton in 1679, Hooke made the important
proposal that planetary motion was compounded out of ‘an
attractive motion towards the central body’ and direct tangential
motion. The proposal turned out to be an essential ingredient in
Newton’s de�nitive analysis of curvilinear motion. He is
remembered for *Hooke’s law of elasticity: within certain limits,
strain is proportional to stress. He also invented the conical
pendulum.

Hooke’s law A law that is the basis of the theory of *elasticity,
stating in its most



Hooke’s law Stress-strain diagram of a material under tension.

general form that, up to a certain *stress, the *strain produced in a
body is proportional to the stress and disappears when the stress is
removed. The diagram shows a typical graph of stress versus strain.
The segment OA is linear and corresponds to the conditions under
which Hooke’s law holds. The slope of OA is the *modulus of
elasticity for the material under study; di�erent moduli apply to
di�erent types of strain. A body obeying Hooke’s law is said to be
perfectly elastic. A body can still be considered elastic if it returns to
its original shape once the stress is removed. This occurs for small
stresses and is represented in the diagram by the elastic region OB.
Above what is known as the yield stress, brittle materials tend to
crack while others become plastic; BD represents the plastic region
on the graph. A material stressed into the plastic state cannot
resume its original shape but takes on a permanent deformation or
set; OF represents the permanent set for a stress (load) removed at
point c. (The diagram may also be regarded as a plot of load versus
extension–the deformation of the body in the direction of the
applied load.) As the stress is increased the material will eventually
fracture; this is represented by point E, where the stress is known as
the breaking stress.

Hopf bifurcation See bifurcation.



horizon The circle that is the intersection of a horizontal plane
through the position of an observer with the *celestial sphere. The
zenith and nadir are poles of the horizon. See horizontal coordinate
system.

horizontal coordinate system An *astronomical coordinate system
in which measurements are based on the horizon. A point on the
*celestial sphere is located by two angular measurements. The
*azimuth (A) is the angular distance measured eastwards from the
north point. The altitude (h) is the angular distance north or south
of the horizon. Sometimes *zenith distance (ζ), which is the
complement of altitude (i.e. ζ = 90°–h), is used.

Horner’s method 1. A method for evaluating a polynomial, also
known as nested multiplication. a polynomial

p(x)=anxn + an-1xn-1 + … + a1x + a0

can be written in the nested form

p(x)=( .. ((anx + an-1) x + an-2) x + … + a1) × + a0

For example, the cubic 4x3–2x2 + 3x–1 may be written as

((4x–2) x + 3) x–1

Horner’s method corresponds to evaluating the polynomial in the
order suggested by the parentheses. It requires fewer multiplications
than the more obvious method that involves forming the powers xi,
multiplying each by the corresponding ai, and summing.

Horner’s method is closely related to the method of synthetic
division for dividing a polynomial by a linear factor. If we divide
p(x) by x–a, we obtain

p(x)=(x–a)q(x) + r

where q(x) is a polynomial of degree n–1 and r is a constant. When
we apply Horner’s method to evaluate p(a), the coe�cient an



together with the intermediate quantities produced as each pair of
parentheses is removed are the coe�cients of q, and the �nal result
is r=p(a). Thus, when a=2 the coe�cient and the intermediate
values for the above cubic are 4, 6, and 15, and the �nal result is
29. Moreover,

4x3–2x2 + 3x–1=(x–2)(4x2 + 6x + 15) + 29

2. An *iterative method for �nding real roots of *polynomial
equations. If, for example, the root required is the positive decimal
abc.def …, the process begins by �nding the leading digit a by
inspection. A new equation is formed whose roots are 100a less than
those of the given equation. This will have a root bc.def … (in
decimal form). The digit b is then found by inspection, a new
equation is formed with roots 10b less than before, and so on.

The method was given in 1819 by the English mathematician
William Horner (1786–1837), but also independently in 1804 by the
Italian algebraist Paolo Ru�ni (1765–1822), and is more properly
known as the Ru�ni-Horner method. Convergence to a root is
certain, but slow.

See also Qin Jiushao.

horsepower Symbol: hp. An *f.p.s. unit of power, equal to a rate of
doing work of 550 foot-pounds per second. 1 hp=745.7 watts.

Hotelling’s T-test (H. Hotelling, 1931) A generalization of the *t-
test to hypothesis tests about multivariate *normal distribution
means.

Hough transform A general technique now used to identify the
locations of features in digital images. The transform is a
development of the *Radon transform suitable for numerical
calculation and was invented in its original form by the American
physicist Paul Hough in 1959.

hour Symbol: h. A unit of time equal to 60 minutes. It was formerly
de�ned as 1/24 of a mean solar *day.



hour angle (HA) Symbol: t. The angle on the *celestial sphere
between an observer’s *meridian and the *hour circle of a given
point. It is measured westwards along the celestial equator and
expressed in units of hours, minutes, and seconds. The hour angle of
a star changes daily from 0 to 24 hours because of the rotation of
the earth. It is sometimes used in place of *right ascension. See
equatorial coordinate system.

hour circle A great circle on the *celestial sphere passing through
the celestial poles.

hull, convex See convex hull.

hundredweight Symbol: cwt. An *avoirdupois unit of mass, equal
to 112 pounds in the UK. In the USA it is equal to 100 pounds and is
sometimes known as the short hundredweight.

Huygens, Christiaan (1629–95) Dutch mathematical physicist and
astronomer known for his Horologium oscillatorium (1673, The
Pendulum Clock) in which he dealt with the problem of accelerated
bodies falling freely. He demonstrated that the *cycloid was the
tautochronous curve and introduced his theory of evolutes and
centrifugal force. Other mathematical work by Huygens was
concerned with the cissoid, the catenary, the logarithmic curve, and
probability theory.

hydrodynamics See hydrostatics.

hydrostatics The study of the mechanical properties and behaviour
of �uids, particularly liquids, that are not in motion. It is concerned
mainly with the forces that arise from the presence of �uids. The
study of �uid motion is more complex and is known as
hydrodynamics.

Hypatia (c.370–415) The �rst woman to be named in the history of
mathematics. She was the daughter of a mathematician and
astronomer, Theon of Alexandria, and is credited with commentaries
on Diophantus and Apollonius.



Hyperbola A type of *conic that has an *eccentricity (e) greater
than 1. It is an open curve with two symmetrical branches. In a
Cartesian coordinate system the standard equation of the hyperbola
is

x2/a2 − y2/b2 = 1

In this form of the equation each branch of the curve cuts the x-axis,
one on each side of the origin. The x- and y-axes are two axes of
symmetry for the curve. The one along the x-axis is the transverse
axis; the one along the y-axis is the conjugate axis. These terms for
the axes of symmetry are applied to any hyperbola (not necessarily
having axes that coincide with the coordinate axes). The terms are
also used for line segments on these axes. The transverse axis is the
segment between the two branches of the curve (length 2a). If two
ordinates are drawn at each of the points (vertices) at which the
branches of the curve meet the transverse axis, then these cut the
*asymptotes at four points: A, B, C, and D. The line segment on the
conjugate axis cut o� by two parallel sides of the rectangle ABCD is
also called the conjugate axis, and its leng this 2b. A line segment of
length a from the centre of the hyperbola along the transverse axis
is a semitransverse axis. One from the centre of length b along the
conjugate axis is a semiconjugate axis.

The hyperbola has two directrices and two foci, one each side of
the centre (see diagram (a)). The eccentricity of a hyperbola is given
by c/2a, where c is the distance between the two foci. Alternatively,
it can be given by

e2 = 1 + b2/a2



hyperbola (a) F1 and F2 are foci.

Either of the two chords through a focus and perpendicular to the
transverse axis is a latus rectum. The length of the latus rectum is
2b2/a.

With the equation in the form

x2/a2 − y2/b2 = 1

the two asymptotes of the hyperbola are the lines y=bx/a and y=–
bx/a. If the transverse and conjugate axes are equal (i.e. a=b), the
equation becomes

x2–y2=a2

In this case, the asymptotes are mutually perpendicular (the lines
y=x and y=–x) and the hyperbola is said to be a rectangular (or an
equilateral or equiangular) hyperbola. If the coordinate axes are
rotated clockwise through 45°, the equation of the hyperbola
becomes (with respect to new axes x and y) xy=c2, where c=a/(2.
In this form, the x- and y-axes are the asymptotes; the transverse
and conjugate axes are the lines y=x and y=–x, respectively, and
the hyperbola has the *parametric equations x=ct and y=c/t.

A circle with its centre at the centre of any hyperbola and passing
through the vertices (i.e. with radius a) is an eccentric circle of the
hyperbola (see diagram (b)). The similar circle with radius b is also



an eccentric circle. The one with radius a is called the auxiliary circle
of the hyperbola.

hyperbola (b) The eccentric angle of P is α

If the hyperbola has its centre at the origin and its transverse axis
along the x-axis, the eccentric angle, (, is de�ned as follows. For any
point P on the hyperbola an ordinate is drawn to the x-axis. From
the point at which this meets the axis a tangent is drawn to the
auxiliary circle at P( (on the same side of the x-axis); a is the
positive angle between the x-axis and the radius OP(. The
parametric equations of the hyperbola are x=a sec ( and y=b tan (.

The hyperbola has two properties connected with its foci, F1 and
F2. For any point P on the hyperbola, the di�erence |PF1–PF2| is
constant (equal to 2a). The focal property of the hyperbola is that the
tangent at any point P, APB, makes equal angles with straight lines
from the foci to the point; i.e. (F1PA=(F2PA (see diagram (c)). This
is also called the re�ection property, since a re�ector shaped like a
hyperbola would re�ect



hyperbola (c) |PF1–PF2|=2a, and angle F1PA=angle F2 PA.

rays of light from a source at one focus so as to appear to come from
the other focus (called the optical property). The analogous re�ection
of sound leads to the alternative term acoustical property.

hyperbolic functions Functions analogous to *trigonometric
functions, related to the *hyperbola, x2–y2=r2, in a similar way to
that in which the trigonometric functions are related to the circle.
They are termed hyperbolic sine, hyperbolic cosine, etc. The
abbreviations of hyperbolic functions are those for the
corresponding trigonometric functions with ‘h’ on the end: sinh
(pronounced ‘shine’), cosh, tanh (pronounced ‘than’ or ‘tansh’), csch
(pronounced ‘cosesh’), sech, and coth. The functions are de�ned as
follows:

Hyperbolic sine: sinh x = 1/2(ex − e−x

Hyperbolic cosine: cosh x = 1/2(ex + e−x

These two equations, together with the relationship

ex=cosh x + sinh x

are the hyperbolic analogues of *Euler’s identities. The other
hyperbolic functions are given by relationships analogous to those
for the trigonometric functions:



Hyperbolic tangent: tanh x = sinh x/cosh x

Hyperbolic cosecant: csch x = 1/sinh x

Hyperbolic secant: sech x = 1/cosh x

Hyperbolic cotangent: coth x = 1/tanh x

There are various identities between the hyperbolic functions:

sinh(–x)=–sinh x

cosh(–x)=cosh x

cosh2x–sinh2 x=1

coth2x–csch2x=1

sech2 x + tanh2 x=1

The hyperbolic functions can be written as series:

sinh x = x + x3/3! + x5/5! + …

cosh x = 1 + x2/2! + x4/4! + …

A hyperbolic function is related to the corresponding trigonometric
function:

sinh ix = i sin x

cosh ix = cos x

tanh ix = i tan x

See also inverse hyperbolic functions.



hyperbolic geometry See non-Euclidean geometry.

hyperbolic logarithm A natural *logarithm.

hyperbolic paraboloid See paraboloid.

hyperbolic spiral See spiral.

Hyperboloid A surface that has plane sections which are either
*hyperbolas or *ellipses. A special case is a hyperboloid of revolution,
generated by revolving a hyperbola about one of its axes. If the
hyperbola is revolved about its conjugate axis (which lies between
the two branches), a hyperboloid of one sheet is formed. If revolved
about the transverse axis (passing through the vertices), the surface
is a hyperboloid of two sheets. In each case, plane sections
perpendicular to the axis of revolution are circles; sections parallel
to the axis are hyperbolas (see diagram).

The general forms of the equation for a hyperboloid are

x2/a2 + y2/b2 − z2/c2 = 1

for a hyperboloid of one sheet, and

x2/a2 − y2/b2 − z2/c2 = 1

for a hyperboloid of two sheets.



hyperboloid of (a) one sheet and (b) two sheets.

Hypercube A regular *polytope in a space of four or more
dimensions which is the analogue of the cube in three-dimensional
space. A hypercube in four-dimensional space is called a tesseract.

hypergeometric di�erential equation A second-order *di�erential
equation of the form

where a, b, and c are constants.

hypergeometric distribution If a sample of n units is taken without
replacement from a *population with M satisfactory units and N
unsatisfactory units, M, N > n, then the number of satisfactory units
in the sample has a hypergeometric distribution. If X is the number
of satisfactory units, then



where , etc. are *binomial coe�cients. When M and N are large
compared with, the distribution approaches the *binomial
distribution with parameters and p=M/(M + N).

hypergeometric function The sum of a *convergent
*hypergeometric series.

hypergeometric series The power series

and (a)n denotes the rising factorial

(a)n=a(a + 1)(a + 2) … (a + n–1)

with n terms. It de�nes a solution to the *hypergeometric
di�erential equation.

hypocycloid A plane curve that is the *locus of a point on a circle
which rolls on the inside of a �xed circle. The hypocycloid is thus
similar to the *epicycloid (in which the generating circle rolls on the
outside of the �xed circle). The hypotrochoid is analogous to the
*epitrochoid. See also astroid; deltoid; cycloid.

hypotenuse The side opposite the right angle in a right-angled
triangle.

hypothesis See conjecture.

hypothesis testing A procedure for deciding whether a hypothesis
H0, known as the null hypothesis, should be accepted or rejected in
favour of an alternative hypothesis, H1. To perform the test, an
appropriate *statistic is calculated from observed sample values. The
sample space for this statistic is divided into an acceptance region



and a critical (or rejection) region, the latter being chosen such that
the probability that the statistic takes a value in this region when H0

is true takes a pre-speci�ed value a. Traditional choices for ( are
0.05, 0.01, and 0.001. If the probability that the statistic takes a
value in the critical region when H1 is true is always greater than (,
the test is said to be unbiased (see unbiased hypothesis test). If the
statistic takes a value in the acceptance region, then H0 is accepted;
if it takes a value in the critical region, H0 is rejected at signi�cance
level a (or the 100a percent signi�cance level). The value of the
statistic marking the boundary between the acceptance and critical
regions is called the critical value.

Critical values corresponding to (=0.05, 0.01, and 0.001 are
tabulated for many commonly used statistics, such as those for the
*t-test, F-test (see F-distribution), and *chi-squared test, and this has
made the use of these levels traditional. However, modern statistical
software makes it easy to calculate the probability p, called the *p-
value, that a statistic will take a value greater than or equal to (or
sometimes less than or equal to) a calculated value when H0 is true.
If p is less than a pre-assigned signi�cance level a, the term exact
signi�cance level is sometimes used for p. A statement that, for
example, p=0.023 is more informative than simply saying that a
result is signi�cant at the 5 percent but not at the 1 percent level.
While the ready availability of p-values gives us freedom to set
critical values at less conventional levels than (=0.05 or 0.01, these
conventional values should still be regarded as useful criteria for
declaring signi�cance.

Rejecting a hypothesis when it is true (and for a large number of
independent tests with �xed (, this will happen in 100( percent of
the tests) is called an error of the �rst kind or a Type I error.
Accepting H0 when it is not true is called an error of the second kind
or a Type II error. The probability of a Type I error is controlled by
�xing (, but in general the probability of a Type II error depends on
the alternative hypothesis H1, and for a particular H1 it is often
denoted by (. The probability of rejecting the null hypothesis when
it is false is called the power of a test. Thus the power is 1–(, and so



it also depends on H1. While H0 often, but not always, states the
speci�c value of a parameter (, say 2 (written as H0: (=2), the
alternative hypothesis is often more general, for example H1:(>2 or
H1:( (2. The former is called a one-sided alternative and the
corresponding test is a one-tail test; the latter is a two-sided alternative
(( may be either greater or less than 2), and the corresponding test
is a two-tail test.

A hypothesis is simple if the distribution function of the
population random variable is completely speci�ed, otherwise it is
composite. For example, the hypothesis ‘X is N(2, 9)’ is simple, but
the hypothesis ‘X is normally distributed with mean 2 but unknown
variance’ is composite.

See also estimation.

hypotrochoid See hypocycloid.



I

i The symbol for √ – 1; the *complex number wilh unit modulus and
an argument of ½π.

icosagon A *polygon that has 20 interior angles (and 20 sides).

icosahedron (plural icosahedra) A *polyhedron that has 20 faces.
A regular icosahedron, in which all the faces are equilateral
triangles, is one of the �ve regular polyhedra.

icosidodecahedron (plural icosidodecahedra) A type of
*polyhedron with 32 faces.

ideal A *set I of elements of a *ring R such that I is a *subring of
R, and for every a in R and x in I

(1) ax is in I; and
(2) xa is in I.
If just (1) is satis�ed, then I is a left ideal of R; if just (2) holds, it is a
right ideal. An ideal I is a principal ideal if it contains an element g
such that I is the smallest ideal containing g. It is the *intersection of
all the ideals containing g and is said to be generated by g.

For a �xed a in R, the coset (a+I) is the set of all elements of the
form (a+y), where y can be any element of I. If the subring I is an
ideal, then (and only then) the set of all cosets forms a ring, with
addition and multiplication of the typical cosets (a+I) and (b+I)
de�ned by

(a + I) + (b+I) = (a + b) + I

(a + I)(b + I) = ab + I

The resulting ring is called the quotient ring R/I, and the ideal I is its
zero element.



In the ring Z of all integers, with the usual addition and
multiplication, the set 3Z of all multiples of 3 is a principal ideal
generated by 3. The quotient ring Z/3Z consists of just three
elements:

0+3Z=3Z={0, ±3, ±6,…}

1+3Z={…, – 5, – 2, 1, 4, 7,…}

2+3Z={…, – 4, – 1, 2, 5, 8,…}

ideal point A point at in�nity in *projective geometry.

idempotent Describing a quantity that is unchanged by
multiplication by itself. Unity is idempotent, as is any *identity
matrix.

identical (of geometric �gures) See congruent.

identity A statement that two mathematical expressions are equal
for all values of their *variables.

Sometimes the sign≡is used to indicate that the statement is an
identity. For example,

a2 – b2 ≡ (a + b)(a – b)

See equation.

identity element For a given *binary operation, an element I of a
set for which

I°x = x°I = x

for all members x of the set. For example, in multiplication of
numbers, the identity element is 1 (x. 1=x); in addition of numbers
the identity element is 0 (x+0=x).

identity mapping (identity function) For any *domain X, the
mapping f:x x that maps each element x of X into itself. See
monoid.



identity matrix (unit matrix) A *diagonal matrix in which all the
elements on the leading diagonal are unity, and all other elements
are zero.

IEEE arithmetic A standard for �oating-point arithmetic published
in the 1980s by the Institute of Electrical and Electronic Engineers’
Computer Society Computer Standards Committee. The standard
speci�es, among other things, �oating-point number formats and
the results of the basic *�oating-point operations. IEEE standard
arithmetic is used on most modern computers.

i� Abbreviation for if and only if. See biconditional; equivalence.

ill-conditioned A problem is ill-conditioned if its solution is
sensitive to small changes in the input data. This sensitivity a�ects
any method for solving the problem, so ill-conditioned problems are
hard to solve accurately. Consider the zeroes of the polynomials
p(x)=x8 and q(x)=x8 – 10 – 8. The zeroes of p are all 0, whereas the
zeroes of q, a tiny perturbation of p, are all of modulus 0.1.
Therefore the zeroes of p are ill-conditioned functions of the
constant term (0 for p and – 10 – 8 for q) in the polynomial. For
another example, the solution of the equations

x – y = 1, x – 1.0001y = 0

is x=0 001, y=10 000, while the solution of the equations

x – y=1, x – 0.9999 y=0

is x= – 9999, y= – 10 000. Here, a change in the fourth decimal
place of one coe�cient has changed the solution completely. This
can be explained by the fact that the *coe�cient matrix is nearly
*singular; such a matrix is said to be ill-conditioned.

image If f is a *function that assigns to each element of its *domain
A a unique element of its *codomain B, then the element of B
assigned to a particular element of A is known as the image of that
element.



For example, if A={a, b, c, d} and B={w, x, y, z}, and the
function f assigns to a the unique element z, then z is the image of a.
If A′ is a subset of the domain A, then the image of A′ is the subset
of B containing the images of all the members of A′. The image of a
*function or mapping f: A→B is the subset Im(f)={f(a):a∈ A}.

imaginary axis See Argand diagram.

imaginary circle The set of (imaginary) points that satisfy an
equation of the form

(x – a)2+(y – b)2= – r2

imaginary number See complex number.

imaginary part See complex number.

imperial units A system of units that developed in the UK and was
formally de�ned in 1824. It has been widely used in various
derivative forms in most English-speaking countries. Imperial units
are usually *f.p.s. units. Factors of 12 and 60 frequently feature in
their submultiples. The imperial system, with its arbitrary and
illogical structure, has been replaced for many purposes by the
*metric system, and for scienti�c purposes by *SI units. See also
avoirdupois; British units of length; United States customary units.

Implication 1. (material implication) A truth-functional
connective (see truth function), often symbolized in a formal system
as ⊃ or →, whose meaning is given by the following *truth table:

Material implication is the relation between two statements A and B
when the conditional A⊃B (if A then B)is true. Material implication
does not necessarily represent the logical force of conditional
statements. Thus, if A is false, A⊃B is true, and if A is true, B⊃A is



true, no matter what the statement B is. On the basis of material
implication, the statement ‘if elephants have two heads, cats can
walk on water’ is true. These are the so-called paradoxes of material
implication, which have led to the search for de�nitions of strict
implication (see below).
2. (strict implication) A *connective of *modal logic, often
symbolized as ⇒ and usually de�ned as (A⊃B). As the truth value
of (A⊃B) does not depend wholly on the truth values of A and B,)
⇒ is not a truth-functional connective. For example, the truth of
‘snow is white ⊃ Aristotle was a philosopher’ does not determine
whether or not it is necessarily true.

The use of strict implication avoids the paradoxes of material
implication, while allowing the derivation of the following two
comparable paradoxes of strict implication:
(1) an impossible proposition strictly implies any proposition;
(2) a necessary proposition is strictly implied by any proposition.
Thus, the proposition ‘2+2=5’ strictly implies ‘grass is blue’, while
‘grass is blue’ strictly implies ‘2+2=4’. See also conditional.
3. (entailment) Attempts have been made to de�ne a connective
which avoids the paradoxes of material and strict implication by
insisting that, before p can imply q, it must be both relevant to and
actually used in the derivation of q; it is then said that ρ entails q
(written as p ⇒ q or p  q). This approach to implication rejects, on
the grounds of relevance, the classical inference known as the
disjunctive syllogism that, from ~p and pⅴq, wecan derive q, and
consequently that p→q can be de�ned as ~pⅴq.

implicit di�erentiation The *di�erentiation of an *implicit
function with respect to the *independent variable to �nd the
derivative. For example, the function

y3+2 x2y+8=0



can be di�erentiated with respect to x to give

3y2 dy/dx+4xy+2x2 dy/dx=0

whichcanthenberearrangedto give d y/d x in terms of y and x.

implicit function A *function de�ned by F (x1, x2,…, xn, y)=0
where y is the *dependent variable. An example is

It is sometimes possible to derive *ex-plicit functions exactly with
the form y= f(x1, x2,…, xn) from an implicit function. For example,
the implicit function x3+y2=1 gives explicit functions

y=+√(1 – x3), y= – √(1 – x3)

In other cases approximate explicit functions can be obtained.
Compare explicit function.

implicit function theorem The theorem that gives conditions on
derivatives which ensure that an implicitly de�ned set is (locally)
the *graph of a *function. For example, the circle x2+y2=1 is
locally the graph of a function near all points where y≠0. The
theorem is often used to check that a subset of a Euclidean space is
a *manifold.

improper fraction A fraction in which the numerator is greater
than the denominator. For example, 4/3 is an improper fraction
(3/4 is a proper fraction).

improper integral See in�nite integral.

impulse 1. The time integral of a *force F acting on a particle over
a �nite time, say from t1 to t2:



For a constant force this reduces to the product F(t2 – t1). Newton’s
second law of motion,

F=ma=d(mv)/dt

where m is the mass of a particle whose velocity and acceleration at
time t are v and a, indicates that the impulse of a force is equal to
the change of *momentum, mv, experienced by the particle in this
time.
2. (impulsive force) A large *force acting for a very short time,
such as the blow of a hammer.

incentre The centre of the *incircle of a polygon. In the case of a
triangle, the incentre is the point of intersection of the bisectors of
the interior angles of the triangle. Compare excentre.

inch Symbol: in. A *British unit of length equal to 1/12 foot. 1
inch=0.0254m.

incircle (inscribed circle) A circle *inscribed in a given *polygon.
Compare excircle.

inclined plane A plane that is not horizontal.

inclusion A *set A is included in a set B, denoted by A⊆B, if and
only if A is a *subset of B. See also proper inclusion.

incommensurable Not *commensurable. Two numbers are
incommensurable if they cannot be expressed as integral multiples
of the same number. Thus, 6 and √3 are incommensurable because 6
is rational and √3 is irrational.

incomplete decoding A *decoding that has detected some errors
but has been unable to correct them.

incompleteness theorems See Gödel’s proof.

inconsistent equations See consistent.

increasing function See monotonic increasing function.



increasing sequence A *sequence a1, a2,… for which an<an+1 for
all n is said to be strictly increasing. The sequence is described as
monotonic increasing if an≤an+1 for all n.

If a monotonic increasing sequence {an} has an upper bound (see
bounded sequence) then it tends to a �nite limit; without an upper
bound, an→∞ as n→∞.

Compare decreasing sequence.

increment A positive or negative change in a *variable. The term is
generally used to mean a small change.

inde�nite integral An integral without any speci�ed *limits, whose
solution includes an undetermined constant C (the constant of
integration). Compare de�nite integral; see integration.

independence 1. Events A and B are said to be independent events in
the probabilistic sense if the probability that both occur is the
product of the probability of either occurring: Pr(A&B) = Pr(A).
Pr(B). See probability.
2. *Random variables X and Y are said to be independent if the
*distribution function F(x, y) factorizes into the product of the two
marginal distribution functions F1(x) and F2(y). Corresponding
properties hold for the *frequency function. See random variable;
bivariate distribution.

independent 1. Describing an *axiom of a *formal (logical) system
that is not a formal consequence of any other axioms.
2. Describing a rule of *inference of a *formal system that cannot be
derived from the axioms and the remaining rules of inference. If an
axiom or a rule of inference fails to be independent then the formal
system may still be acceptable, even though it may not be
economical. See also proof theory.

independent equations See dependent equations.

independent events See independence.



independent variable See function; regression; variable.

indeterminate equation An equation in two or more variables with
an in�nite set of solutions. For example, the equation

3 x+4 y=50

is indeterminate.
A system of *simultaneous *linear equations with an in�nite set of

solutions is also said to be indeterminate. For instance, the system

x+y=5, x+z=6

with three variables, is indeterminate.

indeterminate expression (indeterminate form) An unde�ned
expression, such as 0/0, (/(, 0×(, (– (, etc.

index (plural indices) 1. (index number) In statistics, a measure of
change in magnitude of business activity, wages, cost of living,
share prices, imports, etc. with time. Constructing a meaningful
index requires reliable information on relevant components, usually
weighted according to importance. For the base year the index value
is usually 100 (sometimes 1000). If the price of an item is 50 in the
base year, and 55 and 70 in the next two years, the price indices for
that item would be 100, 110, and 140, respectively. Most indices are
weighted *means of a number of such simple indices, often called
relatives.

If the prices of a set of k commodities in the base year are p01, p02,
…, p0k, the quantities of each sold are q01, q02,…, q0k, and the
corresponding prices and quantities sold in year n are pn1, pn2,…,
pnk and qn1, qn2,…, qnk, then the index

is the Laspeyres index, and the index



is the Paasche index. The weights in the Laspeyres index are base
year quantities, and those in the Paasche index are current year
quantities (É. Laspeyres, 1871; H. Paasche, 1874).
2. See exponent.
3. See radical.
4. (of a subgroup) If G is a *group and H is a *subgroup of G, then
the index of H in G is the number of left *cosets of H in G. This is
also the number of right cosets of H in G. The index of H in G is
denoted by [G:H]; and if K is a subgroup of G which is also a
subgroup of H, then [G:K] = [G:H][H:K].

index notation See exponential notation.

index of determination See coe�cient of determination.

index set A *set whose elements are being used to label (or index) a
family of mathematical objects. For example, the index set for the
set of functions f1, f2, and f3 is {1, 2, 3}.

indicator diagram A curve in which the y-coordinates represent a
varying *force or pressure in a system and the x-coordinates
represent the corresponding distances through which a component
of the system has moved. The area under the curve, or enclosed by
the curve when a cycle is involved, indicates the *work done.

indicator function See characteristic function.

indices Plural of index.

indirect proof (proof by contradiction) A proof used in
circumstances when it is more convenient, in setting out to prove P,
to begin with the negation of P, ~P, and to show that this
assumption leads to a contradiction. Thus, if the assumption of ~P
leads to an absurdity, then ~P must be false and P must be true. For



example, to prove that there are an in�nite number of primes, begin
by assuming that there is in fact a greatest prime N. If from this we
can deduce that there is a prime greater than N, it will follow
indirectly that there can be no N such that N is the greatest prime,
and consequently that there must be an in�nite number of primes.
Such a method of proof was known traditionally as reductio ad
absurdum [Latin: reduction to absurdity].

Mathematicians sometimes adopt a double reductio ad absurdum.
Thus, to show that the area A of a circle is the same as the area T of
a certain triangle, Archimedes argued as follows:
(1) the assumption that A > T leads to a contradiction, therefore A 
 T;

(2) the assumption that A < T leads to a contradiction, therefore A 
 T;

(3)it follows that, since A  T and A  T, then A=T.

individual constant See constant.

indivisibles (method of) See calculus.

induction 1. (in mathematics) A common method of proving that
each of an in�nite *sequence of mathematical statements is true by
proving that
(1) the �rst statement is true;
(2) the truth of any one of the statements always implies the truth of
the next one.
For if (1) and (2) hold, then the truth of the �rst statement will
imply the truth of the second statement, which in turn will imply
the truth of the third statement, and so on.

As an example, consider the theorem that the sum of the �rst n
natural numbers is ½n(n+1). This is really an in�nite sequence of
statements: one for each n= 1, 2,…. The �rst statement is true, as
the �rst sum is 1=½×1×2. The requirement (2) amounts to
showing, for any n, that if



1+2+…+n=½n (n+1)

then

1+2 +…+n+(n+ 1) = ½(n+1)[(n+1)+1]

But if

1+2 +…+n=½n(n+1)

then

1+2 +…+n+(n+ 1) = ½n(n+1)+(n+1)

This equals ½(n+1)(n+2), so in this case the truth of the general n
th statement does imply the truth of the (n+1)th statement; and as
the �rst statement is true, then, by the method of induction, they
must all be true.

It is often convenient just to refer to the numbers that label the
various statements (as statement 1, statement 2, etc.) and to
concentrate attention on the set, or collection, of number labels of
the true statements. So the inductive method can be formulated
equivalently in the language of set theory as the principle of
induction: if a set of natural numbers contains 1, and if it contains
n+1 whenever it contains a number n, then it must contain every
natural number.

The above method of induction can still be used in some cases
where the �rst statement is not true, or does not make sense. If
there is a certain natural number k such that
(1) the k th statement is true; and
(2) the truth of each statement, from the k th one onwards, implies
the truth of the next;
then every statement, from the k th one onwards, is true. An
example of such a situation is given by the sequence of statements

n3 – 23>(4n – 7)2, n=1, 2,…



which are true only for n≥12.
There is another form of induction, called the method of complete

induction, which can sometimes be applied to sequences of state
ments where the original method is hard to use directly. If it can be
proved that
(1) the �rst statement is true; and
(2) for each n the truth of every statement, from the �rst to the nth
inclusive, would imply the truth of the (n+1)th; then each of the
statements must be true.

Again, this can be rephrased in set theory terms as the principle of
complete induction: if a set of natural numbers contains 1 and, for
each n, it contains n+1 whenever it contains all numbers less than
n+1, then it must contain every natural number. Complete
induction is used for example in proving that every natural number
is a product of primes.
2. (in logic) A method of reasoning in which general laws are
inferred from a number of particular observations. An example of
inductive reasoning is the observation of a large number of crows,
all of which are black, leading to the formulation of a general law
that all crows are black. The conclusion ‘all crows are black’ does
not follow logically from the premise ‘all crows observed so far have
been black’, and the observation of one white crow at any time
would disprove the law. Although inductive thinking is not, then,
rational in the logical sense, it is the basis on which people often
come to conclusions.

inductive See recursive.

inelastic collision See collision.

inequality 1. A mathematical statement that two expressions are
not equal to one another in value. The symbol≠is used; for
example, x≠y means ‘x is not equal to y’.



2. A mathematical statement that one expression is greater than or
less than another in value. The following symbols are used:

x>y for ‘x is greater than y’

x<y for ‘x is less than y’

The two expressions above are said to have opposite senses.
Obviously x>y is the same as y<x. The symbols ≥ for ‘greater than
or equal to’ and ≤ for ‘less than or equal to’ are also used. To
distinguish an inequality such as x>y from x≥y, the former is
called a strict inequality.

As with equations, inequalities can be unconditional or
conditional. An unconditional inequality is one that holds for all
values of the variables (i.e. it is the analogue of an identity in
equations). An example would be

2 x2+1>x – 1

which is true for all values of x. A conditional inequality is true only
for certain values of the variables: for instance,

2 x+1>11

is true only for x>5, i.e. the inequality is satis�ed by all values of x
greater than 5. Such a set of values satisfying an inequality is a
solution (or solution set) of the inequality.

Inequalities involve *transitive relationships. Thus, if a>b and
b>c, it follows that a>c. They can also be manipulated, but not
always in exactly the same way as equations. Thus, in algebraic
addition if x>y then x+a>y+a for all a, whereas for
multiplication if x>y then ax>ay if a> 0 and ax<ay if a< 0.

inertia 1. A property of all forms of matter, manifest in a body by
its resistance to *acceleration, i.e. by a tendency to remain at rest or
to resist any change in motion. The inertia of a body requires a force
to be exerted if the body is to be accelerated. The *mass of a body
can be considered as a consequence of its inertia, and thus as a



measure of the body’s inertia: the greater the inertia, the greater the
mass. See also inertial mass.
2. The inertia of a *Hermitian matrix is an ordered triple of integers
comprising the number of positive, negative, and zero *eigenvalues,
respectively.

inertial coordinate system Any set of coordinate axes moving at
constant velocity with respect to a set of axes that are �xed in space
relative to the positions of distant stars. These are axes of an inertial
*frame of reference.

inertial force A force, such as a *centrifugal force or *Coriolis
force, that is introduced in order to treat a noninertial *frame of
reference as though it were a Newtonian frame. Thus a particle at
rest in a frame rotating with constant angular speed ω can be
treated as a particle in a �xed Newtonian frame experiencing a
radial force mrω 2. Inertial forces are sometimes referred to as
‘�ctitious forces’.

inertial frame of reference See frame of reference.

inertial mass The property of a body that determines its resistance
to acceleration, and is thus a measure of the body’s *inertia.
Newton’s second law of motion is expressed in terms of inertial
mass. The *mass of a body is usually considered in terms of inertial
mass; this has, however, been found to be equivalent to the body’s
*gravitational mass.

inessential map See homotopy.

inf In�mum. See greatest lower bound.

inference 1. The drawing of a conclusion from a set of premises.
2. (rule of) A rule in *logic that allows us to pass from a set of
sentences (premises) to another sentence (conclusion). When a
formal language is interpreted, these rules should be such as to



guarantee that if the premises are true then the conclusion is also
true. See also consequence; logic; sound.
3. In *statistics, the process of drawing conclusions about a
*population or making predictions using *random samples. See
Bayesian inference; con�dence intervals; decision theory;
estimation; �ducial inference; hypothesis testing; random sample.

in�mum (inf) See greatest lower bound.

in�nite decimal (nonterminating decimal)
See decimal.

in�nite discontinuity See discontinuity.

in�nite group A *group with an in�nite number of elements.

in�nite integral (improper integral) An integral in which one or
both of the *limits is in�nite or in which the integrand is in�nite at
some point in the range or region of integration. An example of the
�rst type is

which is short for

If the limit exists, the integral is said to be convergent; if not it is
divergent.

An integral of the second type, whose integrand is a function f (x)
that is �nite for a≤x<b, but in�nite for x=b, is



which is short for

where δ>0. If the limit exists the integral is again said to be
convergent.

In�nite product A *continued product of an in�nite number of
terms. An in�nite product terms

T1×T2×…×Tn×…

is written using the notatio

Such a product might have a value of zero (e.g. 1×½×1/3×¼×)
or might be in�nite (e.g. 1 × 2 × 3 × 4 × ‘). In either case, the
product is said to be divergent. If the product has a nonzero value, it
is convergent. In this case the value of the in�nite product is the limit
of the sequence

T1, T1 × T2, T1 × T2 × T3,…

If the product is neither convergent nor divergent, it is an oscillating
product, for example

oscillates about the values 1 and – 1. See Wallis’s product; Viete’s
product.

in�nite sequence A *sequence that has an unlimited number of
terms. See convergent sequence; divergent sequence.

in�nite series A *series with an unlimited number of terms. See
convergent series; divergent series.



in�nite set A *set that is not �nite, i.e. one that can be put into a
*one-to-one correspondence with a proper *subset of itself. The set
of natural numbers is in�nite because it can be put into a one-to-one
correspondence with a proper subset of itself, e.g. the set of even
numbers. In�nite sets are either *countable (like the set of natural
numbers) or uncountable (like the set of irrational numbers). See
cardinal number.

in�nitesimal A variable whose *limit is zero. Two variables x and
y, each of which tend to zero, are in�nitesimals of the same order if
the ratio x/y is �nite, and does not tend to zero. See also order (of
in�nitesimals).

in�nitesimal calculus See calculus.

in�nity Symbol:(. The idea of something that is unlimited, in the
sense of being greater than any �xed bound. It arises in
mathematics in various ways:
(1) In limits. For example, the function y= 1/x, for positive values
of x, becomes larger as x decreases. In the limit as x tends to zero, y
tends to in�nity (y((). This means that for any number C greater
than zero, there is a number a> 0 such that y>C when 0<x<a.
Similarly, for negative values of x it can be said that y< – C when –
a<x< 0, in which case y approaches – (as x(0. When y(+ (it is said
to become positively in�nite and when y (– (it becomes negatively
in�nite. Ideas of in�nity in limits date back to Zeno of Elea (5th
century BC) and Eudoxus of Cnidus (4th century BC). The symbol ∞ for
in�nity was introduced by John Wallis in 1655.
(2) In geometry. In�nity is regarded as a ‘location’: for example,
parallel lines can be said to intersect at a point at in�nity; parallel
planes at a line at in�nity. The asymptote to a curve can be
regarded as intersecting the curve at in�nity. The idea of in�nity as
a location was introduced by Johann Kepler, who pointed out that a
parabola could be regarded as an ellipse or a hyperbola with one



focus at in�nity. The idea was developed by Girard Desargues in his
formulation of *projective geometry, which assumed the existence
of an ideal point at in�nity.

(3) In set theory. See in�nite set; Cantor’s theory of sets.

in�x notation The traditional notation for *binary operations in
which the operator is written between its arguments, as in 2+3. In
more complicated expressions this notation necessitates the use of
parentheses to avoid ambiguity: 2+(3×4) is ambiguous, whereas
2+(3×4) or (2+3)×4 makes the intended meaning clear.
Conventionally, however, multiplication takes precedence over
addition in mathematical notation, so that 2+3×4 would usually
be interpreted as 2+(3×4). In computer programming languages
rules of precedence are speci�ed for all binary operations. Compare
pre�x notation; post�x notation.

in�ection In general, change from concavity to convexity or vice
versa. A point of in�ection is a point on a curve at which the tangent
changes from rotating in one sense to rotating in the opposite sense.
A horizontal point of in�ection is an example of a *stationary point.
At a point of in�ection the second derivative is zero. Note that this
is a *necessary but not su�cient condition for a point of in�ection.
See turning point.

in�ectional tangent A *tangent to a curve at a point of *in�ection.

information 1. See information theory. 2. In *estimation theory, if
L is the logarithm of the *likelihood function for a parameter θ, the
amount of information is given by E((∂L/∂ë)2). For a sample of n
independent observations from a distribution with *frequency
function f (x, θ), the information I is given by



Under certain regularity conditions, and if the extremes do not
depend on θ,

and 1/I gives a lower bound (the Cramér – Rao lower bound) to the
variance of any *unbiased estimator of θ. An unbiased estimator T
such that Var(T)=1/I is called a minimum variance unbiased
estimator. An implication of this result is that, the smaller the
variance of an unbiased estimator, the greater its information
content. The concept may be extended to p≥2 parameters θi, i=1,
2,…, p, where I is now replaced by the p×p information matrix with
the element in row i, column j given by

See Cramér – Rao inequality.

information theory A branch of mathematics concerned with the
transmission and processing of information. A general theory of the
subject was propounded in 1948 by Claude E. Shannon, in his
article ‘A Mathematical Theory of Communication’. The subject is
based on the idea that it is possible to give a quantitative measure of
information. The usual method of assigning such a measure can be
illustrated by the example of transmitting and receiving a single
letter of the alphabet (i.e. any one of the 26 letters). The amount of
information in such a message (if correctly received) is measured
with reference to the situation in which there are only two letters,
and is given by log2 26/log2 2=4.7, i.e. there is 4.7 times as much
information in receiving a single letter of the 26-letter alphabet as in
receiving a single *bit. The information content is said to be 4.7
bits. In fact, this applies only if the letters in the alphabet are
equally likely to occur. In practice, this is not the case and
information content is measured by a quantity known as entropy,
given by



– p1 log2p1 – p2 log2p2 – p3 log2p3 –…

where p1, p2, p3,… are the probabilities of di�erent values of the
variable (in the example, the letter sent). This idea of entropy is
similar to the concept originally developed in thermodynamics and
statistical dynamics.

In considering information, it is usual to have a model consisting
of:
(1) a source of information;
(2) an encoder, which changes this into a form suitable for
transmission;
(3) a channel along which the information is transmitted;
(4) a decoder, which converts the information back into a useful
form; and
(5) a destination or user, which receives the information.
The signal transmitted via the channel may be subject to extraneous
noise. In its most restricted sense, information theory deals with the
entropies of sources and channels. More generally, the term is also
used to encompass *coding theory (ways of encoding information to
ensure e�ective transmission). The term communication theory is
often used to include both information theory and coding theory.

Information theory is essentially an application of probability
theory. It has obvious uses in telegraphy, radio transmission, and
the like, but has also been applied to language studies and
cybernetics.

initial conditions See boundary conditions.

initial meridian plane See spherical coordinate system.

injection An injection from a *set A to a set B is a *one-to-one
function whose *domain is A and whose *range is part of B. For
example, if A={3, 6} and B={9, 36, 150} then the function f:x x2

is an injection (or injective function). See also surjection; bijection.



inner product See scalar product.

inradius The radius of the *incircle of a polygon. Compare exradius.

inscribed Describes a �gure that is *circumscribed by another
�gure. For example, a polygon lying inside a circle with all its
vertices on the circumference is said to be inscribed in the circle. A
circle inside a polygon with all the sides of the polygon tangent to
the circle is inscribed in the polygon (it is the incircle of the
polygon).

instantaneous Occurring at or associated with a particular instant.
The instantaneous acceleration or velocity is strictly the limit of the
average value as the time interval over which the acceleration or
velocity is considered approaches zero. The instantaneous centre of
rotation is a point about which a moving body may be considered to
be rotating at a particular instant.

instanton See integrable system.

integer Any of the positive and negative whole numbers 0, ±1,
±2, ±3,…. The positive integers 1, 2, 3,… are called the natural
numbers or counting numbers.

The set of all integers is usually denoted by ; and the set of all
positive integers by + or N.

integer lattice See lattice (2).

integer part The integer part of a real number x is the largest
integer n such that n≤x; it is denoted by [x], or sometimes ⌊x⌋. The
di�erence x – n is called the fractional part of x. An alternative term
is that the function ⌊x⌋ is called the �oor function or greatest integer
function. Analogously, the ceiling function or least integer function is
denoted by ⌈x⌉, and de�ned as the smallest integer m such that m (x.
If x is not itself an integer, then ⌈x⌉=⌊x⌋+1. For example,
[4.35]=⌊4.35⌋=4, and ⌈4.35⌉=5.

integrability The property of having an integral (see integration).
The question of whether a function is integrable depends on the



sense in which the integral is de�ned. *Darboux’s theorem gives the
necessary and su�cient condition for a function to have a Riemann
integral. A function that has a Riemann integral also has a
*Lebesgue integral, although the converse is not necessarily true.

integrable Describing a *function that has an integral (see
integration).

integrable system A system of one or more *partial di�erential
equations which are nonlinear and whose solutions have very
special properties. An important example is the Korteweg – de Vries
equation of 1895:

where t denotes time and x denotes a space variable. It is named
after the Dutch mathematicians Diederik Johannes Korteweg (1848
– 1941) and Gustav de Vries (1866 – 1934). A solution of this
equation describes certain solitary water waves of the type that had
already been observed by the Scottish engineer John Scott Russell in
1834. These waves have remarkable stability properties and are
called solitons. They also appear in optical �bres. Closely related are
instantons, which arise as solutions of equations in *gauge theories.

integral 1. See integration. 2. Describing or denoting an integer.

integral calculus See calculus.

integral domain A commutative *ring that has an *identity
element, and in which there are no proper divisors of zero, i.e. there
are no nonzero elements a and b with ab= 0. The absence of proper
divisors of zero is equivalent to the existence of the cancellation
laws: namely that if a≠0 and ax=ay then x=y, and similarly, if
b≠0 and wb=zb, then w=z. The ring of all integers is a typical
integral domain.

integral equation An equation that involves an integral of an
unknown *function (see integration). A general integral equation of



the third kind has the form

where the functions u (x), f (x), and K (x, y) are known and g is the
unknown function. The function K is the kernel of the integral
equation and λ is the parameter. The limits of integration may be
constants or may be functions of x. If u(x) is zero, the equation
becomes an integral equation of the �rst kind, i.e. it can be put in
the form

If u(x)= 1, the equation becomes an integral equation of the second
kind:

An equation of the second kind is said to be homogeneous if f (x) is
zero.

If the limits of integration, a and b, are constants then the integral
equation is a *Fredholm integral equation. If a is a constant and b is
the variable x, the equation is a *Volterra integral equation.

integral function See entire function.

integral sign See integration.

integral test See Cauchy integral test.

integral transform A relationship between two *functions that can
be expressed by a homogeneous *integral equation, as in

f(t)=(K(x, t)F(x)dx



Here f (t) is an integral transform of F(x); K (x, t) is the kernel of the
transform.

Inversion of the transform is the process of �nding F(x), i.e. of
solving the integral equation. If this can be done there is a
reciprocal relationship

F(x)=∫K’(x, t)f (t)dt

Integral transforms are useful for simplifying problems, as in the
transformation of certain types of di�erential equations into linear
equations. Many special cases have been studied, di�ering in the
kernel and the limits of integration. See Fourier transform; Laplace
transform.

integrand An expression that is to be integrated. See integration.

integrating factor A quantity by which each term of a di�erential
equation is multiplied to enable integration to be performed. See
di�erential equation.

integration The inverse process to *di�erentiation, i.e. the process
of �nding a *function with a *derivative that is a given function. It
is sometimes called anti di�erentiation. If F(x) is a function of x
which, when di�erentiated, gives f(x), then F(x)is said to be an
integral (or antiderivative)of f(x), written as

F(x)=∫f (x)dx

which is equivalent to

The symbol ∫ is called the integral sign.
If F(x) is an integral o� (x), then F(x)+C will also be an integral

(since dC/d x=0). C is an arbitrary constant called the constant of
integration; f(x) is the integrand. An integral of this type is called an
inde�nite integral. Methods of integration include *change of



variable, *integration by parts, and *integration by partial fractions.
A table of integrals is given in the Appendix.

The di�erence between the values of an integral for two values of
the independent variable is a *de�nite integral. The two values of
the variable are the limits of the integral, and the notation is

Note that here the constants of integration cancel out. The values
x=b and x=a are called the upper and lower limits of integration.

An integral can also be regarded as the limit of a sum, as in
�nding the area under a curve between two points x=a and x=b
(see diagram). The area is divided into a number of narrow strips
parallel to the y-axis, each of width δx. For the curve y= f (x) the
area of each strip δ A is given approximately by f (x) δx (i.e.
regarding each as a rectangle). The approximate value of the total
area is given by the sum

A ≈Σf(x)δx

This method of forming an integral was �rst put forward by A.-L.
Cauchy; an integral so formed is sometimes called a Cauchy integral.

Formally, it is possible to de�ne a de�nite integral as the limit of
a sum in the following way. For a function f (x) with a≤x≤b, the
interval [a, b] is subdivided into n parts by points a=x0<x1…
<xn=b. The lengths of these subintervals are x1 – x0, x2 – x1,…, xn

In the



integration
n subintervals, n intermediate points are taken: t0 in [x0, x1], t1 in
[x1, x2],…. Then a sum, called the Riemann sum, is de�ned by

If the largest subinterval [xk, xk+1] is of length δ, the de�nite
integral of f (x) on the interval [a, b] is de�ned by

This integral is called the Riemann integral. The de�nition is in fact a
generalization of the ‘area under a curve’ idea above, in which the
strips have di�erent widths and the height of a strip is taken at any
point on the strip’s base. It can be shown that a function has a
Riemann integral if it is a continuous function. Note that this
de�nition of an integral is di�erent from that of an antiderivative.
Integrals and derivatives are connected by the *fundamental
theorem of calculus. In the 19th century the idea of an integral was
extended using the concept of *measure.

See also multiple integral; Darboux’s theorem; Lebesgue integral;
numerical integration; contour integral.



integration by partial fractions A method of integrating *rational
functions that are fractions in which the denominator has a higher
degree than the numerator. For example, in the integral

the integrand can be split into two *partial fractions, to give

integration by parts A method of integrating a product using the
formula

For example, it is possible to integrate x cos x using x=u and cos
x=dυ/dx, so that du/dx=1andυ=sin x. Then the formula gives

∫x cos x d x=x sin x – ∫sin x d x

=x sin x+cos x

The formula for integration by parts can be derived from the
formula for di�erentiating a product:

Integrating both sides gives the formula.

integration by substitution See change of variable.

intensive de�nition An attempt to de�ne a term by expressing its
meaning. Thus the set of regular convex polyhedra is {convex
�gures that have regular polygons forming their faces and all their
polyhedral angles congruent}. Compare extensive de�nition.



interaction See factorial experiments.

intercept A cutting of a line, curve, or surface by another line,
curve, or surface. In a Cartesian coordinate system, it is the distance
from the origin to the point at which a line, curve, or surface cuts a
given axis.

intercept form See line; plane.

intercept theorem (parallel transversal theorem) In a triangle
ABC, if a *transversal is parallel to BC and meets AB and AC at D
and E respectively, then AD/DB=AE/EC (see diagram). The
*converse is also true, i.e. if the points D and E on AB and AC are
such that AD/DB=AE/EC, then DE is parallel to BC. See also mid-
point theorem.

intercept theorem

interest Money paid by a borrower or to an investor for the use of
money. The amount borrowed (or invested) is the principal. Simple
interest is calculated on the principal only. For example, the interest
on £1000 borrowed at 8 percent simple interest per annum is £80
per annum. Compound interest is calculated by adding the interest to
the principal and calculating the interest at the end of agreed
conversion periods.

For example, suppose that £1000 is invested for 2 years at 8
percent per annum and it is agreed that the interest is compounded



half-yearly. At the end of the �rst six months the interest will be
8/100×½×£ 1000=£ 40. At the end of the next six months the
interest will be 4 percent of £ 1040=£ 41.60. After eighteen months
it will be 4 percent of £ 1081.60=£ 43.26; and after two years the
interest on the half-yearly period will be 4 percent of £ 1124.86=£
44.99. The total interest earned over the two-year period is £169.85.

The formula for compound interest is

I=P[(1+r)n – 1]

where P is the principal, r the rate for each conversion period, and n
the total number of conversion periods. In the second example
above, r is 0.04 (half of 8 percent) and n is 4.

The nominal rate of interest is the rate stated for a year when the
interest is calculated over periods of less than a year. The e�ective
rate of interest is the annual rate that would give the same yield as
the nominal rate calculated over conversion periods of less than a
year. In the second example above the nominal rate is 8 percent per
annum; the e�ective rate is 8.16 percent. Tables of compound
interest are used to help calculations. These generally give four
values based on 1 unit of money:
(1) The accumulation factor (1+r)n, which gives the amount to
which 1 unit will increase after n conversion periods at rate r.
(2) The discount factor (1+r) – n, which gives the amount that will
give 1 unit after n periods at a rate r. It is often written as yn.
(3) The amount of an annuity, which is the value after n periods of 1
unit invested per period after addition of compound interest at rate
r. It is also called the accumulated value and given the symbol Sn
(4) The present value of an annuity, which is the amount necessary
to provide one unit payment at the end of each of n payment
periods.

interior (of a set) See frontier.



interior angle 1. An angle between two sides of a *polygon lying
within the polygon. An interior angle greater than 180° is a re-
entrant angle; one less than 180° is a salient angle. 2. See transversal.

internal force A *force that is exerted by one particle of a body
(considered as a system of particles) on another particle of that
body, and to which there is an equal but opposite reaction by this
other particle. Internal forces thus occur in pairs whose individual
resultants are zero. Hence the resultant of all forces internal to a
body is zero. Only an *external force can a�ect a body considered as
a whole.

internal tangent See common tangent.

interpolation For known values y1, y2,…, yn of a *function f (x)
corresponding to values x1, x2,…, xn of the independent variable,
interpolation is the process of estimating a value y′ of the function
for a value x′ lying between two of the values of x, e.g. x1 and x2.

Linear interpolation assumes that (x1, y1), (x′, y′), and (x2, y2) all lie
on a straight-line segment (see diagram). This implies that

whence

Only if f (x) is a straight line (for x1<x<x2) is linear interpolation
certain to yield the correct value of f(x′).

Improved methods of interpolation take into account other data
values; examples are *Lagrange interpolation and *Gregory –
Newton interpolation. *Extrapolation is the process of estimating
f(x) when x′ lies outside the range of observed xi.

interpretation In *logic, a set of entities (the *domain) together
with a *function that assigns to suitable expressions of a *formal



language entities in the domain.

interpolation Linear interpolation.
By interpreting a formal language we confer meaning on its
expressions; for example, the sign ‘Aristotle’ has no meaning in
itself, but acquires meaning when interpreted as standing for the
person Aristotle. For a given expression, the function assigning it an
entity in the domain is called a semantic rule, and the entity so
assigned is the semantic value of the expression.

In the *propositional calculus, the domain consists of a set of
*truth values, usually ‘True’ and ‘False’, and the semantic rules
assign to each *w� of the propositional calculus one or other of
these truth values. The truth-functional connectives are assumed to
have some �xed meaning.

See model; logic; valid.

interquartile range In *statistics, a measure of *dispersion
represented by the di�erence between the �rst and third *quartiles
of a sample. Half this di�erence is called the semi-interquartile range.
See box-and-whisker diagram; quantiles.

intersecting chords theorem See circle.

intersection 1. (meet, product) The intersection of two *sets A and
B, denoted by A∩B, consists of those elements that belong to both A



and B:

A∩B={x:(x(A)&(x(B)}

For example, if A is {1, 2, 3, 4, 5, 6} and B is {1, 4, 5, 6, 7, 8} then
A ∩B is {1, 4, 5, 6}. Compare union.
2. The point, line, etc. that is common to two or more geometric
�gures. Two curves, for instance, may intersect at one or more
points. Two surfaces generally intersect in one or more curves.

interval A *set of numbers containing all *real numbers between
two given numbers. The given numbers are called the end points; the
interval can be represented as a segment of a number line. If the
interval contains the end points (a and b) it is a closed interval,
written as [a, b]. In this case the set is the set of numbers x for
which

a≤x≤b. If it does not contain the end points, it is an open interval,
written as (a, b). Here, a<x<b. An interval can also be partly open
(and partly closed). The convention is to use a combination of round
and square brackets:
(a, b] contains b but not a;
[a, b) contains a but not b.
The idea of an interval can be generalized to n dimensions by
de�ning a closed interval as a set of *n-tuples for which a1≤x1≤b1,
a2 ≤x2≤b2,…, an≤xn≤bn. Open intervals are similarly de�ned using
< rather than ≤. See also bound.

interval estimate See estimation.

interval of convergence See power series.

interval scale See scales of measurement.

intraclass correlation A concept now superseded by the related
idea of a variance ratio in the *analysis of variance.



intransitive relation See transitive relation.

intrinsic equation A method of de�ning a curve without reference
to a set of coordinate axes. For a plane *curve this can be done by
relating *arc length s to the *curvature κ or the radius of curvature
ρ at the locus point. For example, an intrinsic equation for the
*catenary is

cp=c2+s2

where c is a constant.
The name is also given to equations relating s to ψ, the inclination

of the tangent at the locus point to a �xed line. The equation of the
catenary can then be put in the form

s=c tanψ

intuitionism The view, originated by Brouwer, that mathematical
objects are mental entities that do not exist independently of our
ability to provide a proof of their existence in a �nite number of
steps,

intrinsic equation of the catenary: cp=c2+s2 or s=c tan ψ.

and that a mathematical statement is true only if it is proved to be
so in a �nite number of steps. This is in contrast to a classical



conception of mathematics and logic according to which
mathematics, like natural science, is concerned with discovering
truths about a world independent of human mentality.

According to the intuitionist, the sequence of natural numbers is
to be taken as primitive, as are the familiar operations of arithmetic.
But any mathematical proof is unacceptable to the intuitionist if it
requires an in�nite number of steps to complete, and is thus noncon-
structive since no person would have time to carry it out.

Acceptance of intuitionism is incompatible with classical logic.
The principle of *bivalence, according to which every sentence is
either true or false, is rejected on the grounds that we may not be
able to prove the truth or falsity of the sentence. Thus, the claim
that *Goldbach’s conjecture is either true or false is denied by the
intuitionist, since we have neither a proof nor a disproof of the
conjecture. As a result, intuitionists reject the law of the excluded
middle, ‘A∨~A’, and, consequently, many other laws of classical
logic, such as that of *double negation.

Intuitionists also reject impredicative de�nitions, those in which a
particular member of a set is de�ned by reference to the totality of
members of the set.

See formalism; logicism.

invariance 1. The property of being *invariant.
2. In statistics, either:
(1) a quantity that is unchanged by a transformation; e.g. the
statistic t used in the *t-test is unchanged by a *linear
transformation of the sample values such as replacing xi by 3 x + 7;
or
(2) a property that is not changed by a transformation, e.g. the
property of independence and normality of a set of independent
normal variables is invariant under an *orthogonal transformation.
3. An essential property of *tensors under admissible
transformations.



invariant Describing a property or quantity that is unchanged by a
given *transformation. For example, the *discriminant of a conic is
an invariant under translation or rotation of axes.

Hilbert proved important general results about the set of all
algebraic invariants of certain groups of transformations. However,
the calculation and full description of all possible invariants can be
rather an intractable problem. The algebraic invariants for the group
of all permutations of the variables x1, x2,…, xn are those generated
by the elementary symmetric polynomials

p1=x1+x2+…+xn

p2=x1x2+x1x3+…+xn – 1xn

pn=x1x2…xn

see form.

invariant measure Given a map T of a space X to itself, a *measure
μ that associates to each set A the same measure as its pre-image
(see function); i.e if T – 1(A)={x:T(x)∈A}, then μ(Τ – 1(A))=μ(A).
For example, the standard measure given to arcs on the unit circle
{z:|z|=1} is invariant under the map T(z)=z2. If T:X→X is a
*bijection, then μ is such that μ(Τ(A))=μ(A).

Similarly, given a *�ow x(t), this is a measure μ for which every
set A has the same measure at all times.

inverse 1. (of a function) A *function that assigns to every element
y of a *set Y a unique element x=g(y) of a set X, where X is the
*domain of the given (single-valued) function f and Y is the *range
of the function. y= f (x) is equivalent to x= g(y) and g is said to be
the inverse of f, written as f – 1. Also, f(f – 1(y))=y for all y in Y and f
– 1(f (x))=x for all x in X, the domain of f being the range of g and
vice versa.



If f is continuous, monotonic, and de�ned on a real interval [a, b]
then a continuous monotonic inverse f – 1 exists. For instance,

f (x)=y=2x+ 3

where 0≤x≤1, has inverse

f – 1(y)=x=½(y – 3)

where 3≤y≤5. The variables x and y are often interchanged in the
inverse function, so that in this instance

f (x)=y=2x+ 3

is said to have inverse

f – 1(x)=y=½(x – 3)

This can be written as

f:x 2 x+ 3 on [0, 1]

f – 1:x ½(x – 3) on [3, 5]

2. In a *group (or, more generally, a *groupoid) with an *identity 1
(and operation°) an inverse for the element u is an element υ such
that u°υ=υ°u= 1. If the operation is addition (multiplication), the
element υ is said to be an additive (multiplicative) inverse of the
element u. The element υ is a right inverse for u if u°υ=1; it is a left
inverse if υ°u= 1.

In a group, such as the positive rational numbers under
multiplication, every element has an inverse. Thus 4/23 and 5¾ are
mutual inverses since (4/23)(23/4) = (23/4)(4/23) = 1. For
another example consider the *monoid of real continuous functions
with domain and codomain the interval [0, 1] and function
composition as operation. Some functions here do not have inverses,
but, for instance, the function that maps each number to its positive
square root is the inverse of the function that squares each number.
3. (of a matrix) (reciprocal) A square matrix constructed from a
given *nonsingular matrix A by taking the *cofactors of the



elements of A, dividing each by the *determinant of A, and taking
the *transpose. The inverse is denoted by A-1, and AA-1=I, where I is
the *identity matrix.

For example, if ad-bc≠0 then

See also pseudoinverse.
4. (of a relation) See relation.
5. (of a point, curve, or surface) See inversion.

inverse function theorem The theorem that guarantees the
existence of a (local, single-valued) di�erentiable inverse for a
function f: n → n if the *Jacobian matrix of f is nonsingular at the
locality. The function f(x)=x2 does not have a local inverse around
x= 0(because f′(0)=0), but it does have a local inverse around
every a≠0 (because f′(a)≠0). The theorem is closely related to the
*implicit function theorem.

inverse hyperbolic functions The *inverses of the *hyperbolic
functions, written as cosh – 1 x, sinh – 1 x, etc. They are also called
arccosh, arcsinh, etc. It can be shown that

where x≥1, and

where – 1<x< 1.

inversely proportional See variation.



inverse probability A term used in*Bayesian inference when
applying a probability approach that reasons from observed events
to hypotheses which may explain them. In a more general context,
the term is sometimes used in a problem that attempts to �nd the
probability of an event (a cause) conditional on another event (a
consequence or e�ect) having taken place. For instance, �nding the
probability that a person has a disease (a cause) given that they
have tested positive for it (an e�ect) is a problem in inverse
probability that may be solved using Bayes theorem if other relevant
information for the application of this theorem is available (see
Bayes’ theorem for an example).

inverse ratio (reciprocal ratio) The recipro-
caloftheratiooftwoquantities.

inverse sine series the *series expansion for the inverse sine
function:

This is valid for – 1≤x≤1.

inverse square law A relation between two variables, one of which
is proportional to the reciprocal of the square of the other. Examples
include laws relating the *force of interaction between two particles
to the reciprocal of the square of the distance between them, as in
Newton’s law of *gravitation, or relating the intensity of an e�ect to
the reciprocal of the square of the distance from the cause, as with
the illumination provided by a source of light.

inverse tangent series See Gregory’s series.

inverse trigonometric functions (antitrigono-metric functions)
Functions that are the *inverses of trigonometric functions. For
example, if



y= tan x

then the inverse is written as

x= tan – 1y

i.e. x is the angle whose tangent is y. The inverse trigonometric
functions sin – 1, cos – 1, tan – 1, etc. are sometimes written as arcsin,
arccos, arctan, etc. Graphs of the inverse functions are like graphs of
the original functions with axes interchanged. The inverse
trigonometric functions are regarded as single-valued functions,
having values (principal values) lying within a restricted range:

inverse sine[-½π, ½π]

inverse cosine [0, π]

inverse tangent [-½π, ½π]

See Gregory’s series; inverse sine series.

inversion 1. For a circle of radius r with centre at O, and a point P
outside the circle, inversion is the process of �nding another point
P′ on OP for which OP. OP′=r2. It is said that P′ is the inverse of P (it
follows that P is the inverse of P′). O is the centre of inversion and r
the radius of inversion. The inverse of a given curve is the curve
produced by the inverses of the points on the given curve. A curve
f(x, y)= 0 has an inverse f (x′, y′)= 0, where

The inverse of a circle is a circle unless the circle passes through the
centre of inversion, in which case the inverse is a straight line. Two
curves intersect at the same angle as their inverses, i.e. inversion is
a *conformal transformation. Inversion can also be performed on
surfaces with respect to a sphere.



inversion Inverse points: OP.OP′=r2.

2. See integral transform.

invertible Possessing an *inverse.

involute A curve that is the *locus of a �xed point on a *tangent
line to a given curve as this tangent line rolls on the given curve.
The involute is the path that would be followed by a point on a
string ‘unwound’ under tension from the curve. In the case of a
circle, the parametric equations of the involute are

x=r(cos θ+θ sin θ)

y=r(sin θ-θ cos θ)

where r is the radius of the circle and θ the angle between the x-axis
and a radius to the point of contact. See also evolute.

involution The process of �nding a *power of a number or
expression. Compare evolution.
involutory Describing a *matrix A such that A2=I, where I is the
*identity matrix. Compare nilpotent.

irrational number A number that cannot be written as an *integer
or as a quotient of two integers. The real irrational numbers are
in�nite, nonrepeating decimals. Every *complex number with a
nonzero imaginary part is irrational.



There are two types of irrational number. Algebraic irrational
numbers are irrational numbers that are roots of polynomial
equations with rational coe�cients; an example is (5(2.2360…),
which is a root of x2-5=0. Transcendental numbers are irrational
numbers that are not roots of polynomial equations with rational
coe�cients; π and e are transcendental numbers. Compare rational
number; see also Dedekind cut; real number.

irreducible equation See reducible polynomial.

irreducible fraction A common fraction such as 2/7 in which the
numerator and denominator are *relatively prime. Compare
reducible fraction.

irreducible polynomial See reducible polynomial.

irreducible radical A *radical that cannot be written in a
rationalized form, i.e. a form not containing radicals. For example,
(3 and (7 are irreducible. Compare reducible radical.

irre�exive relation See re�exive relation.

irrotational vector (in a region) A *vector function V such that curl
V=0 at every point in a given region. See curl.

ISBN Abbreviation for International Standard Book Number. A
*codeword assigned to every book by its publisher. One of the digits
represents the language, two represent the publisher, and there is a
*check digit to detect errors in transcription.

isochrone (tautochrone) A curve with the property that a particle
sliding freely down the curve will reach the lowest point in the same
time, irrespective of its starting point on the curve. See cycloid.

isogonal Having equal angles.

isogonal transformation See conformal transformation.

isolate (a root) To �nd two numbers between which a *root of an
equation lies.



isolated point (acnode) A *singular point that does not lie on a
given curve but does have coordinates that satisfy the equation of
the curve. For instance, the curve y2=x3 – x2 has an isolated point at
the origin (0, 0).

isolated singularity See singular point.

isometry (isometric map) A*transformation that preserves
distances between points. Thus any two points P and Q will have
images P′ and Q′ such that P′Q′=PQ. Translation, rotation, and
re�ection are isometrics. An isometry transforms a geometric �gure
into a directly or oppositely *congruent �gure.

isomorphism If A and B are two *sets in each of which a *binary
operation is de�ned, a one-to-one mapping f of A onto B (see one-to-
one function) that preserves the binary operations is known as an
isomorphism. For example, the natural numbers can be mapped onto
the even natural numbers by the one-to-one mapping that assigns, to
each n of the set of natural numbers, the number 2 n of the set of
even natural numbers. The binary operation+de�ned on the natural
numbers is preserved by the mapping, and the two sets are
consequently isomorphic for addition.

isoperimetric Describing �gures that have equal *perimeters.

isoperimetric inequality If C is a simple, closed, plane curve of
length l enclosing an area A, then l 2 ≥4#A. If equality holds, i.e. if
l2= 4#A, then C is a circle. In other words, amongst all curves of a
given length, the circle encloses the greatest area. There are
numerous generalizations of this result to surfaces and higher-
dimensional manifolds. Closely related results are also used in
applications of mathematics to other subjects.

isosceles trapezium A *trapezium in which two sides (the
nonparallel sides) are of equal length.

isosceles triangle A triangle that has two sides equal (and unequal
to the third). The angles opposite the equal sides are also equal.



iterated integral See multiple integral.

iterated map A*map Τ:x Τ(x) of a space X to itself with an
associated *iteration xn+1=Τ(xn), n= 0, 1, 2,… See Julia set; logistic
map; Mandelbrot set.

iteration Successive repetition of a mathematical process, using the
result of one stage as input for the next. Iteration is the basis of
many approximation methods in numerical analysis. To solve an
equation of the form x = (x), direct or �xed-point iteration is often
appropriate, in which we iterate

xn+1= (xn), n= 0, 1, 2,…

where x0 is chosen as a �rst approximation to the desired root. The
given equation can be rearranged in other ways, for example x =  –

1(x), and the same technique applied. For example, the iteration
xn+1= cos xn with x0= 1 may be used to �nd the root of the
equation x= cos x (see diagram). Perhaps the most widely used
iterative method is *Newton’s method. See also bisection method;
Halley’s method; secant method.

iteration Direct iteration:xn+1= cos xn.
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jack-knife (M.L. Quenouille, 1949) A statistical procedure used
mainly for estimating *bias in a sample *estimator of a population
parameter. It is particularly useful when there is no analytic theory
to estimate bias, as in the case when the sample correlation
coe�cient r is used as an estimator of the population coe�cient ρ.
The method involves computation of the sample estimator with the
omission of one observation at a time over the entire set, and at that
stage computation is equivalent to that for leave-one-out *cross-
validation.

The computations are computer intensive, and the method has
largely given way to use of the more versatile *bootstrap.

Jacobi, Carl Gustav Jacob (1804 – 51) German mathematician
noted for his Fundamenta nova theoriae functionum ellipticarum (1829,
New Elements in the Theory of Elliptic Functions) in which, starting
from Legendre’s work on elliptic integrals, he de�ned and explored
the properties of elliptic functions obtained by inverting the
integrals. Abel and Gauss had independently discovered their double
periodicity earlier; Jacobi applied them to the theory of numbers
and was able to prove with them Fermat’s conjecture that every
integer is the sum of four squares. He also contributed to the theory
of determinants, to the theory of Abelian functions, and to the
discipline of dynamics.

Jacobian For n *functions, f1, f2,…, f n in n variables x1, x2,…, xn,
the Jacobian is the *determinant



It is often written as

For m functions f1, f2,…, f m in n variables x1, x2,…, xn, the Jacobian
matrix is the m×n matrix whose element in the i th row and jth
column is ∂f i /∂xj. See also chain rule; Hessian; Wronskian.

Jacobi method An *iterative method for solving a system of linear
equations Ax = b published by Jacobi in 1845. Let A = D + B,
where D denotes the diagonal matrix with (i, i)entry aii and the aii
are assumed to be nonzero. Let x0 be a �rst approximation for the
vector x. The Jacobi method generates a sequence of vectors x1, x2,
… from the formula

xn+1 = D – 1(b – Bxn)

The iteration is intended for matrices with relatively large diagonal
elements, such as matrices that are *diagonally dominant.

Jeans, Sir James Hopwood (1877 – 1946) English mathematician
and astronomer who, before he devoted himself to the study of
astrophysics and cosmology, published a number of in�uential
works in mathematical physics. They include Dynamical Theory of
Gases (1904), Theoretical Mechanics (1906), and The Mathematical
Theory of Electricity and Magnetism (1908).

Jiuzhang suanshu (Chiu-chang Suan-shu) The ‘Nine Chapters on
the Mathematical Art’, the classic text of ancient Chinese
mathematics; its authorship is unknown. Commentaries and



extensions appear from the 2nd to the 15th century AD. It contains
applications of Pythagoras’ theorem, rules for extracting square and
cube roots, and methods for the solution of simultaneous equations
which foreshadow *Gaussian elimination.

join See union.

joint distribution See bivariate distribution; multivariate
distribution.

Jonckheere – Terpstra test (A.R. Jonck-heere, 1954; T.J. Terpstra,
1952) A *non-parametric test where the null hypothesis (H0) is that
three or more independent samples all come from the same
population, against an alternative hypothesis (H1) that the means,
μi, taken in order, show a monotonic trend. For k samples the test is
one of H0: μ1 = μ2 = · · · = μk against either H1: μ1 ≤ μ2 ≤ · · · ≤ μk
or H1: μ1 ≥ μ2 ≥ · · · ≥ μk, where in either version of H1 at least one
inequality is strict (i.e. of the form < or >).

Jones polynomial See knot polynomial.

Jordan, Camille (1838 – 1922) French mathematician who, in his
Traité des substitutions et des équations algébriques (1870, Treatise on
Substitutions and Algebraic Equations), revived interest in the work
of Galois and established several fundamental results in group
theory. His in�uential Cours d’analyse de l’École Polytechnique (1882)
describes his research on analysis and (in a later edition) the
*Jordan curve theorem.



Julia set (a) Julia set for c = – 0.13 + 0.75i. (b) Filled Julia set for
c = – 0.75.

Jordan canonical form A certain *block diagonal *canonical form
to which any square matrix can be reduced by a similarity
transformation. The diagonal blocks are *Jordan matrices and
contain the eigenvalues on the principal diagonal.

Jordan curve theorem The theorem, �rst stated by C. Jordan
(1893) and proved by O. Veblen (1905), to the e�ect that a *simple
*closed curve (a Jordan curve) divides the plane into two connected
regions, an ‘inside’ and an ‘outside’.

Similarly, any *connected *manifold M of dimension n – 1 and
without *boundary which is embedded in Euclidean space n
divides the space into an inside and an outside.

Jordan-Hölder theorem (C. Jordan 1869, O. Hölder 1889) Suppose
that a *group G with *identity element e has two *composition
series, say {e}= H0, H1,…, Hn = G and {e} = F0, F1,…, Fm =



G.Then n = m, and the two sets of *factor groups, H1/H0, H2/H1,…,
Hn/Hn – 1 and F1/F0, F2/F1,…, Fm/Fm– 1, consist of exactly the same
set of groups, apart possibly from their order of occurrence.

Jordan matrix A square *matrix in which the elements are equal on
the main diagonal, unity on the �rst superdiagonal, and zero
elsewhere: for example,

An n×n Jordan matrix is not *diagonalizable when n > 1.

joule Symbol: J. The *SI unit of work or energy, equal to the work
done when the point of application of a force of 1 newton moves
through a distance of 1 metre in the direction of the force. 1 joule =
107 erg. [After J.P. Joule (1818 – 89)]

Julia set A closed subset of the *extended complex plane which is
invariant under a *rational map. Julia sets were introduced by the
French mathematician Gaston Maurice Julia (1893 – 1978) in 1918.
The Julia set J of an *iterated rational map is the *boundary of the
set of those points whose *orbits are bounded (see diagram (a)); the
�lled Julia set is the set itself of those points whose orbits are
bounded (see diagram (b)). The Julia set for the map z → z2 is the
unit circle. However, most Julia sets are *fractal. In the case of the
quadratic maps z → z2 + c, the Julia set is a *connected set
precisely when c is in the *Mandelbrot set.

jump discontinuity See discontinuity.
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Kakeya’s problem (S. Kakeya, 1917) The problem of determining
the smallest possible area of a * set in the plane inside which a
needle of length 1 can be moved continuously to reverse its
direction. It was shown by A.S. Besicovitch in 1928 that, for any
ε>0, however small, there is a set of area ε in which this can be
done.

kappa curve A plane * curve with the equation

x4 + x2 y2 = a2y2

in rectangular Cartesian coordinates. The curve is symmetrical
about the axes and the origin, and has asymptotes × = ± a. There
is a double * cusp at the origin.

kappa statistic See Cohen’s kappa statistic.

Karmarkar’s algorithm (N.K. Karmarkar, 1984) An * algorithm for
solving *linear programming and some more general constrained
optimization problems that for large problems is often faster than
the * simplex method. The latter searches the boundaries of the
feasible region for the optimum solution, whereas Karmarkar’s
method, and some re�nements thereof, commence the search from
an interior point.

Kelvin, Sir William Thomson, Baron (1824 – 1907) Scottish
mathematical physicist responsible for numerous innovations in
both the theory and formalism of electro-magnetism and
thermodynamics. In the latter �eld he introduced the concept of
absolute zero and the absolute scale of temperature since known as
the kelvin scale, and published one of the �rst formulations of the
second law of thermodynamics.



kelvin Symbol: K. The * SI unit of thermodynamic temperature,
equal to 1/273.16 of the thermodynamic temperature of the triple
point of water. The kelvin is equal in magnitude to the degree *

Celsius. A temperature in kelvin is equal to the temperature on the
Celsius scale plus 273.15. (The freezing point of water is 273.15 K.)
[After Lord Kelvin]

Kendall, Sir Maurice George (1907 – 83) English statistician noted
for his work on time series, multivariate analysis, and
nonparametric methods, especially those involving correlation and
concordance. His The Advanced Theory of Statistics (2 vols, 1943,
1946) was the �rst all-embracing treatment of the subject.

Kendall’s coe�cient of concordance See coe�cient of
concordance.

Kendall’s rank correlation coe�cient See correlation coe�cient.

Kepler, Johann (1571 – 1630) German astronomer and
mathematician who in his Stereometria doliorum (1615,
Measurement of the Volume of Barrels) made one of the �rst ever
attempts to determine the areas and volumes of �gures generated by
curves with the aid of in�nitesimals. He is best known for his
exposition of * Kepler’s laws of planetary motion.

Kepler-Poinsot solid See Poinsot; polyhedron.

Kepler’s conjecture (J. Kepler, 1611) The packing of three-
dimensional space by balls of radius 1 has the greatest possible
density when the balls are centred at the points of a face centred *

cubic lattice; the density is π/(18. The conjecture was proved in
2006 by T.C. Hales. This packing can be described as made up of
layers of balls placed on top of each other, the centres of the balls in
each layer forming a planar equilateral triangular lattice as depicted
in diagram (b) of * lattice.

Kepler’s laws Three laws of planetary motion established
empirically by Johann Kepler and based on detailed observations



made by Tycho Brahe. The �rst two laws were published in 1609,
the third in 1619.

They are as follows:
(1) Each planet moves in a path that is an * ellipse with the sun at
one focus.
(2) The line joining a planet to the sun sweeps out equal areas in
equal times during orbital motion.
(3) The squares of the periods of revolution of any two planets are
proportional to the cubes of the major axes of their elliptical orbits.

Kepler realized that the sun was a controlling factor in planetary
motion but he was unable to explain how the control was exercised.
The explanation was to be provided by Newton when he formulated
his law of * gravitation, which can be universally applied and from
which Kepler’s laws can be derived.

kernel If f: G1 → G2 is a * homomorphism between two groups G1 and
G2, its kernel is the subset consisting of those elements of G1 that are
mapped to the identity of G2 by f, i.e. Ker(f) = {g (G1:f(g) = e (G2}.
Ker(f) is always a * normal subgroup of G1. A special case is when f:
V →W is a linear transformation between vector spaces; then Ker(f)
is a * vector subspace of V called the null space of f. See integral
equation; integral transform

kernel density estimation A * nonparametric method for
estimating a * frequency function f(x) of a continuous * random
variable X based on data forming a (usually large) sample. The
‘kernel’ is a probability function k(u) symmetric about u = 0.
Suppose that there are n data points, x1, x2,…, xn. For each data
point xi, substituting u = (x – x,)/h, where h is a constant called the
bandwidth, produces a function of x. The estimated density function
is then given by



There are several widely used choices for k(u), a common one being
the Gaussian or normal kernel

Choice of bandwidth strongly in�uences the estimate, and rules
exist to select a width that avoids either overemphasizing local
irregularities or obtaining an over-smoothed estimate. In practice
the method is highly computer intensive.

key A piece of information held by the recipient that allows a *

ciphertext to be decoded. A (possibly di�erent) key is used by the
sender to encode a message.

kilo- See SI units.

kilogram Symbol: kg. The * SI unit of mass, equal to the mass of the
international prototype maintained by the Bureau International des
Poids et Mesures at Sèvres, near Paris. 1 kilogram = 2.204 62
pounds.

kilogram-force Symbol: kgf. A unit of force, equal to the force
required to impart to a mass of 1 kilogram an acceleration equal to
the standard acceleration of free fall. 1 kilogram-force = 9.806 65
newtons.

kilowatt-hour Symbol: kWh. A unit of energy, widely used in
charging for electrical energy, equal to the energy expended when a
power of 1000 watts is applied for 1 hour. It is equal to 3.6 × 106

joules.

kinematics The study of the motion of objects without regard to the
mechanisms that cause motion. Kinematics is thus concerned with
the position of an object at di�erent times, and hence with its
velocity and acceleration. The object is usually considered as a *

particle or system of particles. The motion can be along a straight
line or a curve, and can therefore be considered in one, two, or



three dimensions with respect to some coordinate system. See also
dynamics; kinetics.

kinetic energy * Energy possessed by virtue of motion. It is
equivalent to the work that would be required to bring a moving
body to rest. Kinetic energy is a scalar quantity, usually denoted by
T. A body with speed v has kinetic energy ½mv2, where m is the
body’s mass; this holds only when v is considerably less than the
speed of light (see rest mass). A body with rotational motion, with
angular speed ω, has kinetic energy ½Iω2, where I is the body’s *

moment of inertia about the rotational axis. Kinetic energy can be
converted to * potential energy and vice versa. For motion under a
conservative force, such as gravitation, the total energy (kinetic plus
potential) is conserved in an isolated system.

kinetic potential See Lagrangian function.

kinetics The study of the e�ects of * forces and * torques on the
motion of material bodies. The word is used in classical mechanics
in several ways. It can be considered as synonymous with *

dynamics, the two �elds being e�ectively concerned with the same
subject matter; alternatively it can be used to denote a subsection of
dynamics, usually with * kinematics forming the other subsection.
Some prefer not to use the word kinetics: they divide classical
mechanics into dynamics and kinematics, and consider * statics as a
part of dynamics.

kite A convex * quadrilateral that has two pairs of equal adjacent
sides. See convex polygon; compare deltoid; see also Penrose tiles.

Klein, Christian Felix (1849 – 1925) German mathematician who
in 1871 proved the relative consistency of the various geometries by
providing projective models of hyperbolic, elliptic, and Euclidean
geometry. In the following year Klein announced his Erlangen
Programm in which he sought to set up invariants of groups on
which various geometries were based. Other work by Klein was
concerned with group theory, the theory of functions, and topology.



Klein bottle An example of a one-sided closed surface. Formally, it
is the 2-manifold obtained from the square

{(x1, x2) Є 2: |x1|, |x2| ≤ 1}

by identifying the edges x1 = ±1 ‘with a twist’ and the edges x2 =
±1 ‘without a twist’; that is, by identifying (– 1, x2) with (1, – x2)
for all x2 and(x1, – 1) with (x1,1) for all x1 . See manifold.

Klein bottle

Klein’s four group A * group with four elements, say e, a, b, and c,
that are combined according to the following table:

It is an * Abelian group with e as its * identity element. A
geometrical instance of this group is the group of all * symmetries of
a non-square rectangle, where e is the identity map, a is rotation in
its plane through 180° about its centre, and b and c are re�ections in
a line that bisects a pair of opposite sides.

klothoid See spiral.

knot 1. See knot theory.



2. A unit of speed or velocity equal to 1 * nautical mile per hour.
Because the international nautical mile (de�ned as 1852 metres)
di�ers from the UK nautical mile (6080 feet) the unit is not suitable
for accurate measurements. 1 knot is approximately equal to 1.15
(land) miles per hour.

knot polynomial A polynomial that is associated with a knot. If
two knots are equivalent, then their knot polynomials are equal; if
the associated polynomials are di�erent, the knots are not
equivalent. The Alexander polynomial was discovered in 1928 by the
American mathematician J.W. Alexander (1888 – 1971) using
homology theory. In the late 1960s the English mathematician J.H.
Conway discovered a simpler and explicit method of �nding the
Alexander polynomial, by using transformations applied to the
planar representation of the knot. In 1984 the New Zealand born
mathematician V.F.R. Jones, using ideas from mathematical physics,
discovered another polynomial associated with a knot. The Jones
polynomial can also be calculated using the approach discovered by
Conway to calculate the Alexander – Conway polynomial. More knot
polynomials have been found, but a common framework within
which to understand them has yet to be discovered. One was
suggested in 1990 by the Russian mathematician V.A. Vassiliev who
introduced Vassiliev invariants based on his work in singularity
theory.

knot theory The branch of geometry that studies entwined circles
in Euclidean space (3. It was �rst studied by Gauss and his student
J.B. Listing, and then in more detail by the Scottish physicists
Kelvin, Maxwell, and P.G. Tait in the late 19th century. Tait
constructed tables of knots whose planar representations had few
crossings, and made a particular study of those with alternating
diagrams – those in which the string crosses over and under
alternately. He conjectured that such a knot could not be
‘unknotted’, and this was eventually proved to be correct using the
Jones polynomial (see knot polynomial). Much of knot theory is



studied using the planar diagrams representing the knots; an
example is shown in diagram (a).

There are three basic Reidemeister moves that can be applied to a
small portion of the diagram of a knot without changing any other
part (see diagram (b)). Such moves applied successively re�ect all
the possible equivalences of knots in space. Each of the Reidemeister
moves corresponds to moving a piece of string in space. They are
named after the German mathematician Kurt Werner Friedrich
Reidemeister (1893 – 1971).

Knot theory is used in the study of complicated molecules such as
DNA.

knot theory (a) Trefoil knot.



knot theory (b) The three types of Reidemeister move.

Koch curve A * fractal curve in the plane constructed by iterating a
procedure. The procedure starts with a line segment and replaces
the middle third by two sides of an equilateral triangle erected upon
it. The same process is then applied to each of the four new
segments (see diagram). Continuing the process inde�nitely
produces the Koch curve, introduced in 1904 by the Swedish
mathematician Helge von Koch (1870 – 1924) in demonstrating a
curve of in�nite length joining the ends of a �nite segment and
enclosing a �nite area. See snow�ake curve.

Kolmogorov, Andrei Nikolaevich (1903 – 87) Russian
mathematician best known for his work in probability theory. In
1933 he presented the �rst general axiomatic treatment of
probability theory, later translated into English under the title
Foundations of the Theory of Probability (1950). He also made
important contributions to the study of Markov processes, Fourier
analysis, and topology. In 1925, following the work of Heyting,
Kolmogorov succeeded in establishing new foundations for
intuitionistic logic. In later work, based on topological analysis, he
demonstrated the stability of the solar system.

Kolmogorov-Smirnov tests A.N. Kolmogorov (1933) proposed a
nonparametric test to determine whether sample data are consistent
with a speci�ed distribution function; it was extended by N.V.
Smirnov (1939) to test whether two samples may reasonably be
supposed to come from the same unspeci�ed distribution. The tests
require the calculation of the sample cumulative distribution
functions. See nonparametric methods.

Koch curve A stage in its construction.



Königsberg bridge problem A famous problem solved by Euler in
1736. The problem was to plan a walk in which each of the seven
river-bridges of Kö nigsberg (see diagram) would be crossed once
and once only. Euler showed that such a walk was impossible, since
each of the four areas of land had an odd number of bridges
connecting it to the other areas, and so would have to contain either
the starting point or the end point of such a walk. See Eulerian
graph.

Korteweg-de Vries equation See integrable system.

Kovalevsky, Sonya (1850 – 91) Russian mathematician who in
1875 improved and generalized a result of Cauchy’s on partial
di�erential equations, and thus established the Cauchy – Kovalevsky
theorem. She also worked on elliptic integrals. Other work was
concerned with the rings of Saturn, the propagation of light in a
crystalline medium, and the rotation of bodies.

Königsberg bridge problem The seven bridges of Kö nigsberg.

kriging (D.G. Krige, 1951) A generalized * least-squares technique
for * interpolation widely used in geostatistics for problems such as
establishing contour lines when given a set of spot values of a
relevant random variable, e.g. spot heights, or rainfall at a number
of weather stations.

Kronecker, Leopold (1823 – 91) German mathematician noted for
his work on algebraic numbers, beginning with his De unitatibus



complexis (1845, On Complex Units) and continuing through much
of his career. Kronecker was also well known for his opposition to
the proposed trans�nite cardinals of Cantor, declaring that only the
whole numbers came from God, all else is Menschenwerk (‘the work
of Man’). He consequently rejected the treatment of irrationals put
forward by Weierstrass and at one time went so far as to deny the
existence of such numbers.

Kronecker delta The function dij de�ned by the equations

δij = 1 when i = j

δij = 0 when i≠j

The * tensor notation for the Kronecker delta is δij.

Kruskal’s algorithm See tree.

Kruskal-Wallis test (W.H. Kruskal and W.A. Wallis, 1952) An
extension of the * Wilcoxon rank sum test to three or more
independent samples.

K-theory A method introduced by Alexandre Grothendieck in 1956
to enable a loose classi�cation of vector * bundles in algebraic
geometry. The method has been very successfully adapted to enable
the study of a wide range of objects in algebra and geometry and
hence the solution of a number of di�cult problems. It takes its
name from Klasse, German for ‘class’.

k-tuple point See multiple point.

Kummer, Ernst Eduard (1810 – 93) German mathematician noted
for his creation in 1845 of the theory of ideals. In 1850 he
demonstrated that Fermat’s last theorem holds for every exponent
that is a regular prime.

kurtosis The degree of peakedness of a * frequency function near
the mode. The normal distribution is said to be mesokurtic, one less
peaked is said to be platykurtic, and one more peaked is said to be



leptokurtic. If μi is the i th * moment about the mean the coe�cient of
kurtosis is

It has the value zero for the normal distribution; it is positive for
leptokurtosis and negative for platykurtosis. See also g-statistics.
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labelled tree See tree.

lag See autocorrelation.

Lagrange, Joseph Louis, Comte (1736 – 1813) Italian-French
mathematician noted for his Mécanique analytique (1788), the
de�nitive text on the post-Newtonian mechanics of the 18th
century, written in a purely formal rigorous manner and lacking any
diagrams. As a pure mathematician, Lagrange published two
important memoirs on the theory of equations in 1770 and 1771,
advancing a uniform principle for the solution of all equations up to
the quintic. In the course of this work the result known as *

Lagrange’s theorem (on groups) was �rst formulated.
Other mathematical work was on the foundations of the calculus,

the theory of di�erential equations, and number theory. Lagrange
also contributed to astronomy, publishing a special solution of the
three-body problem. In addition he played a leading role in the
introduction of the metric system into revolutionary France.

Lagrange multipliers A means of evaluating maxima or minima of
a * function f(x1, x2,…, xn), subject to one or more equality
constraints g i(x1, x2,…, xn) = 0. The solution is found by minimizing
L = f + λ1 g1 + λ2 g2 +… with respect to the xi and the λi, where the λi
are Lagrange multipliers (sometimes called undetermined multipliers).

For example, to �nd the maximum of u = xy subject to the
constraint x + y = 1, we write L = xy + λ (x + y – 1). Di�erentiating
with respect to x, y, and λ, and equating derivatives to zero, then
gives y + λ = 0, × + λ = 0, and × + y – 1 = 0. The solutions
are easily found to be λ = – ½, × = y = ½, giving u = ¼. It may
be veri�ed that this is a maximum.

Lagrange’s equations See Lagrangian function.



Lagrange’s interpolation formula A formula for * interpolation. If
a function y = f(x) has known values y1, y2, y3,…, yn at points x1, x2,
x3,…, xn, and a value y(is to be estimated at x(, the formula is

and so on for n terms.
It is equivalent to interpolating by the polynomial in x of degree

at most n – 1 whose graph passes through all the n points (x1, y1),
(x2, y2),…, (xn, yn).

Lagrange’s theorem 1. (J.L. Lagrange, 1772) The theorem that
every * natural number can be written as a sum of four squares of
integers. It is sometimes called the four squares theorem. For
example,

1 = 12 + 02 + 02 + 02

23 = 32 + 32 + 22 + 12

59 = 72 + 32 + 12 + 02

= 52 + 52 + 32 + 02

= 52 + 42 + 32 + 32

Every natural number that, like 23, is of the form 8 k + 7, or a
power of four times such a number, needs four nonzero summands.

2. The theorem that if G is a �nite * group and H is a * subgroup of
G then the number of elements in H (called the order of H) must
divide the number of elements of G (the order of G). It is not always
true that a given divisor d of the order of G must be the order of
some subgroup, but this is so if d is a power of a prime.



Lagrangian function Symbol: L. A * function of the * generalized
coordinates, qi, and generalized velocities, vi, of a dynamical system.
In a conservative system, in which both a * potential energy V and a
* kinetic energy T can be de�ned, the Lagrangian function is given
by

L=T – V

The function is then also known as the kinetic potential. The
equations of motion for a conservative system are

This is the simplest form of what are known as Lagrange’s equations.
They are derived using the * calculus of variations from the
stationary nature of L. See also Hamiltonian.

Lagrangian mechanics The development of mechanics through the
application of Lagrange’s equations.

Laguerre’s di�erential equation The * di�erential equation

It is satis�ed for (= n by a Laguerre polynomial L n(x), given by

The equation is named after the French mathematician Edmond
Nicolas Laguerre (1834 – 86).

Lambert, Johann Heinrich (1728 – 77) German mathematician,
physicist, and philosopher, who in 1767 was the �rst to prove that π
is irrational. He also worked on Euclid’s parallel postulate, coming
close to the discovery of non-Euclidean geometry. In this work he
suggested that a surface might exist on which triangles had an



angular sum of less than two right angles (a surface later discovered
and named the pseudosphere). He also developed the notation and
theory of hyperbolic functions.

Lamé’s theorem See Euclidean algorithm.

lamina An idealized plane material object having area and density,
but no thickness. If the density is constant, the lamina is said to be
uniform.

Lamy’s theorem (B. Lamy, 1679) The theorem that if three forces
acting at a point have zero * resultant, then the magnitude of each
force is proportional to the sine of the angle between the directions
of the other two forces.

Lanczos method An iterative method for computing the
eigenvalues of a * symmetric matrix. It is most often used for large, *

sparse matrices, for which it is particularly appropriate because
each iteration involves just a single product between the matrix and
a vector. It is closely related to the * conjugate gradient method for
solving linear systems. Named after the Hungarian-Irish physicist
Cornelius Lanczos (1893 – 1974).

language See formal language.

Laplace, Pierre-Simon, Marquis de (1749 – 1827) French
mathematician and physicist noted for his Traité de mécanique céleste
(1799 – 1825, 5 vols, Celestial Mechanics) in which he tried to
develop a rigorous mechanics capable of describing all motions of
heavenly bodies including the various anomalies and inequalities
that had emerged since the time of Newton. Equally notable was his
Théorie analytique des probabilités (1812, Analytic Theory of
Probability) which advanced the subject considerably. Speci�c
contributions of Laplace’s include the development of the concept of
potential and the related * Laplace’s equation, the * Laplace
transform, and, in astronomy, the nebular hypothesis.

Laplace’s equation The partial * di�erential equation



or (2 V = 0, where (is the di�erential operator * del.

It is important in potential theory, and when expressed in spherical
coordinate form becomes

See also harmonic.

Laplace transform The * transformation of a * function into another
function of a di�erent variable by multiplying by e – pt and
integrating with respect to t between the * limits 0 and (If f(t) is the
original function, integration will give a function in p, say F(p); this
is the Laplace transform of the original function, written as L(f (t)):

See also di�erential equation.

Laplacian (Laplace operator) The di�erential operator

or (2,where (is the di�erential operator * del. See also Laplace’s
equation.

Laspeyres index See index number.

latent root Alternative name for an * eigen-value.



lateral Denoting or concerned with a surface, edge, etc. that is
regarded as on the side of a geometric �gure, as opposed to the
base. See cone; cylinder; prism; pyramid.

Latin square An * experimental design allowing classi�cation by
three mutually * orthogonal factors, usually denoted by rows,
columns, and Latin letters. Treatments are designated by Latin
letters and allocated to units under restricted randomization, each
treatment occurring exactly once in each row or column. An
example of a three-by-three Latin square is

The Latin square provides a useful double-blocking system to
increase precision by reducing two potential sources of variation not
related to treatments. In the * analysis of variance, the degrees of
freedom for the error mean square are low for Latin squares smaller
than six by six; this di�culty may be overcome by using more than
one Latin square. The restriction that the number of treatments
equals the number of rows or columns sometimes leads to practical
di�culties.
See also Graeco-Latin square.

latitude 1. The angular distance of a point on the earth’s surface,
measured from the equator along the *meridian passing through the
point. Latitude is measured from the equator, from 0° to 90° north
and from 0° to 90° south.
2. See celestial latitude.
3. See galactic latitude.

lattice 1. (in algebra; R. Dedekind, 1894) A partially ordered set in
which any two elements have a *least upper bound and a *greatest
lower bound. See partial order.



2. (in geometry; C.F. Gauss, 1831) The *set of all expressions of the
form

a1v1 + ··· +anvn

where v1, ···, vn are n �xed linearly independent vectors or points, in
a Euclidean space, and a1, ···, an are any integers. Each expression a1

v1 + ·· + anvn is called a lattice point. Equivalently a lattice is a
*group with respect to the operation of vector addition and has a
�nite number of *generators (v1, ···, vn here).

The set {v1,…,vn} is a basis for the lattice and n (the number of
vectors in a basis) is its dimension. The lattice may have several
bases, but the quantity|det(v1, ···,vn)| (the absolute value of the
*determinant of the matrix formed by writing the coordinates of v1,
···, vn in rows) is independent of the choice of basis and is called the
determinant of the lattice.

An example of a lattice in n dimensions is the integer lattice
formed by the collection of all n-dimensional vectors with integer
coordinates. A basis for it is the set of n vectors (1,0,0,…,0),
(0,1,0,0,…,0),…, (0,…,0,0,1), and it has determinant equal to 1.
The lattice points of the two-dimensional integer lattice are shown
in diagram (a). As well as the basis {(1,0), (0,1)}, this lattice has the
basis {(0, – 1), (1,1)}, for instance. Another two-dimensional lattice
is that in diagram (b), which is generated by the vectors (2, 0) and
(1, √3).

The most e�cient way to pack circles of unit radius in the plane
is to place their centres at the lattice points in this example. See
crystallography; cubic lattice; Kepler’s conjecture.



lattice (a) The points of the two-dimensional integer lattice. (b) The
points of the lattice generated by vectors (2, 0) and (1, √3).

latus rectum A focal chord of a *conic that is perpendicular to an
axis through the vertex or vertices. [Latin: right side]. See ellipse;
hyperbola; parabola.

Laurent expansion (of an analytic function) If a function f is an *
analytic function in

then the Laurent expansion is the *series

for r1 < |z – z0| < r2,where



and C is a circle with centre z0 and radius r, r1 < r < r2(see contour
integral). f (z) is the sum of two expressions:

called the principal part, and

called the analytic part. The expansion is named after the French
mathematician and physicist Pierre Alphonse Laurent (1813 – 54).
See also singular point.

law of cosines See cosine rule.

law of sines See sine rule.

law of species (law of quadrants) See species.

laws of indices See exponent.

laws of large numbers If {Xi}, i = 1,2,…, n is a *sequence of
*random variables with *expectations µi,the weak law of large
numbers gives conditions under which

for any given Є > 0. If the Xi are independently and identically
distributed random variables, the weak law holds if and only if the
means E(Xi) exist and equal µ. This implies that



converges to μ with probability tending to 1.
There is also strong law of large numbers �ves conditions under

which

laws of motion See Newton’s laws of motion.

LCD Abbreviation for least common denominator. See common
denominator.

LCM Abbreviation for least common multiple. See common multiple.

leading coe�cient The coe�cient of the highest-degree term in a
*polynomial.

leading diagonal An alternative name for the main *diagonal of a
square array.

least action, principle of A principle �rst put forward by Pierre de
Maupertuis in 1744 and since modi�ed. It states that for a
dynamical system moving under *conservative forces, the actual
motion of the system from point A to point B takes place in such a
way that the *action has a stationary value with respect to all other
possible paths from A to B with the same kinetic plus potential
energy.

least common denominator See common denominator.

least common multiple See common multiple.

least integer function An alternative name for the ceiling function.
See integer part.

least squares 1. A method in *approximation theory for estimating
true values of quantities from observed values subject to error. The
criterion used is to estimate the true values so as to minimize the
sums of squares of deviations of the observed values from these



estimates. For example, if two items are weighed, �rst individually
and then together, on a faulty balance and the recorded weights are
17 g and 25 g for the separate items and 40 g for the combined
weight, then the least-squares estimates
mates of the true weights are the values of ŵ1 and ŵ2 that minimize

L = (w1 – 25)2 + (w2 – 17)2 + (w1 + w2 – 40)2

Di�erentiating with respect to w1 and w2, equating derivatives to
zero, and solving gives ŵ1 = 16.33 and ŵ2 = 24.33.
2. A method used in statistics for estimation of parameters,
especially in regression models (see regression). For example, if the
expected value of a response y is of the form

E(y) = α + βx

and a set of n pairs (xi, yi) is given, the least-squares estimators of
the unknown parameters α and β are a and b, chosen to minimize

If the x-variable is error-free and errors in y are assumed to be
identically and independently normally distributed with mean zero,
the method is equivalent to *maximum likelihood estimation. The
method extends to nonlinear models; related procedures known as
weighted least squares and generalized least squares may have
optimum properties when the assumption of identically distributed
and independent errors is relaxed, or the x-variables are not error-
free. See Gauss-Markov theorem.

least upper bound (l.u.b.; supremum) An
upper bound u (of a function, sequence, or set) is a least upper
bound if u  v for any other upper bound v. See bound.

leave-one-out See cross-validation.



Lebesgue, Henri Léon (1875 – 1941) French mathematician noted
for his work on measure theory and the theory of integration. He
developed, around the end of the 19th century, a concept of
integration more general than that of the Riemann integral, based
on the Lebesgue measure of the set. This work was stimulated by
Borel’s work on sets. He also worked on point-set theory and on the
calculus of variations.

Lebesgue integral For a bounded *measurable function f(x) over a
measurable *set E having �nite measure, the Lebesgue integral is
de�ned as follows. U is the upper bound of f (x) over E, and L is the
lower bound. The interval [L, U] is divided into n subintervals by
numbers L = t0 < t1 < t2<.. < tn = U. The set E is divided into sets
e1, e2,…. Here, e1 is the set of points of E for which t0  f (x) t1; e2 is
the set for which t1  f (x)  t2; and in general ei is the set for which ti

– 1  f (x)  ti. The Lebesgue *measure of the set ei is written as m(ei).
Two sums can be formed:

If δ is the greatest of the numbers ti– ti – 1, then the Lebesgue integral
is de�ned as the limit of either of the above sums as δ→0. A
function that has a Riemann integral necessarily has a Lebesgue
integral, although the converse is not necessarily the case. See also
calculus; integration.

Lefschetz, Solomon (1884 – 1972) Russian-American who trained
as an engineer but, following a serious accident in which he lost
both hands, became a mathematician. He pioneered much of
algebraic topology, including his *�xed-point theorem, and made
notable discoveries in algebraic geometry. He also made many
contributions to other parts of mathematics, particularly in the
theory of nonlinear ordinary di�erential equations.

Lefschetz number See �xed-point theorem; Euler-Poincaré
characteristic.



Lefschetz theorem See �xed-point theorem.

left coset See coset.

left-handed triad See Cartesian coordinate system.

leg One of the sides containing the right angle in a right-angled
triangle.

Legendre, Adrien Marie (1752 – 1833) French mathematician who
spent many years studying elliptic integrals. He also worked on
problems in number theory, collecting his results in his Théorie des
nombres (1830). Legendre wrote a popular and in�uential geometry
textbook, Elements de géométrie (1794), and contributed to the
development of the calculus and mechanics.

Legendre’s di�erential equation The *di�erential equation

Its solutions are a set of polynomials P n(x) (Legendre polynomials).
These are obtained by expanding

in ascending powers of y and taking the coe�cients in the resulting
series, P0(x)=1, P1 (x)=x, etc. The associated Legendre functions are
functions Pn

m(x) de�ned by

where P n(x) are Legendre polynomials. See harmonic.

Legendre symbol A symbol that concisely represents whether or
not an *integer a is a *quadratic residue modulo an odd *prime p. It
is actually a *function of two variables, an integer a and an odd



prime p, and is traditionally written as (a/p). The function is de�ned
as follows:

For instance, (2/7)= + 1, since 32 ≡ 2(mod 7); but (3/7) = – 1,
since x2 ≡ 3(mod 7) has no solutions. There are rules for
manipulating and evaluating Legendre symbols, and so determining
whether any integer a is a quadratic residue modulo a given odd
prime p. See also quadratic reciprocity.

Leibniz, Gottfried Wilhelm (1646 – 1716) German mathematician,
physicist, and philosopher noted for his discovery of the di�erential
*calculus which he �rst made public in his Nova methoduspro
maximis et minimis (1684, A New Method for Determining Maxima
and Minima). In subsequent works Leibniz also developed the
integral calculus (the now-familiar symbols are in fact his
innovations). Much of Leibniz’s time was spent on his attempts to
develop a characteristica generalis, a universal language, work which
can be seen now as one of the earliest attempts to advance beyond
the traditional logic of Aristotle to the mathematical logic later
formulated by Boole.

Leibniz theorem The formula for �nding the n th *derivative of the
product of two *functions. If u and v are functions of x, and their
�rst, second, etc. derivatives are u1, u2,…, v1, v2,…, then the n th
derivative (uv)n is given by

(uv) n =unv0 + nun – 1v1 + [n(n – 1)]un – 2v2/2! + … + nu1 vn – 1 +
uvn

For example,



lemma See theorem.

lemniscate A type of plane curve, with the equation in Cartesian
coordinates

(x2 + y2)2 = a2 (x2 – y2)

It is the *locus of a point that is the foot of the perpendicular from
the origin to a variable tangent on a rectangular hyperbola. The
curve is also known as the lemniscate of Bernoulli. See also Cassini’s
ovals.

length For a line segment, the length is taken as the *absolute value
|a – b| where a and b are the *position vectors of the end points.
For a curve, arc length is obtained by integration. In a Cartesian
coordinate system a curve y = f (x) has an element of length d s
given by √(dx2 + dy2). The length of the curve between points x =
a and x = b is given by the integral

In polar coordinates, the length between r = u and r = v is

Alternatively, in polar coordinates the length between θ = α and θ
= β is



For a curve given in terms of a paramenter t, the length between t
= t1 and t = t2 is

Leonardo of Pisa See Fibonacci.

leptokurtic See kurtosis.

Leslie matrix (P.H. Leslie, 1945) An n×n matrix of the form

This type of matrix can be used to model population growth, with
the ai describing birth rates and the bi survival rates associated with
di�erent age groups in a population.

Levene’s test See homogeneity of variance.



lever The three types of lever.

lever A simple *machine composed essentially of a rigid bar pivoted
in such a way that a *force can be transferred to a load, usually with
a mechanical advantage. The lever pivots about a point known as
the fulcrum. The position of the fulcrum, F, relative to that of the
load, L, and applied force, or e�ort, E, determines the type of lever
(see diagram). In equilibrium the algebraic sum of the*moments of
all forces about the fulcrum is zero. Thus in all three types
(assuming the system to be frictionless)

La = Eb

The mechanical advantage, L/E, is then b/a.
Many everyday mechanical devices employ the principle of the

lever: pliers and scissors are type 1 levers; wheelbarrows and
traditional nutcrackers are type 2 levers. Type 3 levers amplify
movement rather than force, working at a mechanical advantage
less than unity; foot treadles are type 3 levers. The skeletal elements
to which muscles are attached are often lever systems, mainly type
3, where a joint acts as the fulcrum.



Levi ben Gerson (1288 – 1344) French-born Jewish mathematician
and astronomer who produced in his Sefer ha mispar (1321, Book of
Number) one of the �rst texts to establish simple rules for
calculating permutations and combinations, and use the principle of
mathematical induction. He also published in his De sinibus, chordis
etarcubus (1342, On Sines, Chords, and Arcs) one ofthe earliest
works on trigonometry.

Levi-Civita, Tullio (1873 – 1941) Italian mathematician who was
the �rst, in 1896, to apply to dynamics the work of Ricci-Curbastro
on the absolute di�erential calculus, better known as the tensor
calculus. Further work with Ricci-Curbastro in 1900 led to their
algorithm for the expression of physical laws in both Euclidean and
Riemannian curved space, a result which later proved to be of value
to Einstein.

L’Hôpital (or L’Hospital), Guillaume François Antoine, Marquis
de (1661 – 1704) French mathematician noted for his Analyse des
in�niment petits (1696, Analysis with In�nitely Small Quantities), the
�rst textbook on di�erential calculus. It contains the �rst
formulation of *L’Hôpital’s rule for the limiting value of fractions
whose numerators and denominators tend to zero. The rule was, in
fact, devised by Jean Bernoulli (around 1694), who taught calculus
to L’Hôpital, and later accused him of plagiarism. L’Hopital also
wrote a textbook on analytic geometry, Traité analytique des sections
coniques (1707, Analytical Treatise on Conic Sections).

L’Hôpital’s rule (L’Hospital’s rule, de L’Hopital’s rule) A rule for
�nding the *limit of a ratio of two *functions each of which
separately tends to zero. It states that for two functions f (x) and g
(x) the limit of the ratio f(x)/g(x) as x → a is equal to the limit of
the ratio of the derivatives f′(x)/g′ (x) as x → a. For example, the
functions x2– 4 and 2 x – 4 have a ratio (x2 – 4)/(2x – 4). As x→ 2,
this ratio takes the indeterminate form 0/0, i.e. the limit of the ratio
cannot be found directly. L’Hôpital’s rule states that the limit of the
ratio is equal to the limit of the ratio of the �rst derivatives, i.e. the



limit of 2 x/2as x → 2,which is 2. If the ratio of the �rst derivatives
is also indeterminate, higher-order derivatives can be used.

Li(x), li(x) See logarithmic integral.

liar paradox The *paradox that if someone says ‘I am lying’, then if
what is said is true then it is false, and if what is said is false then it
is true. Traditionally it is thought to have been put forward in the
6th century BC by the Cretan philosopher Epimenides. The liar
paradox is an example of a sentence that may be grammatically
correct yet is logically self-contradictory. See paradox.

Li Chih See Li Ye.

Lie, Marius Sophus (1842 – 99) Norwegian mathematician noted
for his work on transformation groups, which he described in his
major treatise, Die Transformation-gruppen (1888 – 93). He was also
the �rst to make a methodical study of continuous groups, an
important class of which have since become known as Lie groups.

life tables (J. Graunt, 1662) Tables that show, for a speci�c
population of class of individuals (e.g. English males, Canadian
females) and for a given number (e.g. 1000) alive at a speci�ed age
(e.g. 40), the numbers who live to or are expected to live to
successive higher ages. Life tables may be based on retrospective
studies of particular populations or groups of people, and actuaries
use such information to produce tables to predict such outcomes for
similar populations in the future. The latter are sometimes called life
expectancy tables, and may be updated to take account of new
factors that are expected to increase or decrease expectancy (e.g.
improved health care, or greater exposure to accident risks) for a
particular group. Life tables are also referred to as mortality tables.
These tables have a useful role in comparing age-speci�c mortality
rates for di�erent illnesses, or for the same illness in di�erent age
groups.

lift An upward *force that is experienced by a body moving through
a �uid, such as air or water, and that acts perpendicularly to the



direction of motion. Lift thus acts at right angles to *drag and causes
the body to rise. The amount of lift is given by cpAv2,where ρ is the
�uid density, A is a representative area of the body (such as the area
of a wing), and v is the magnitude of the velocity of the body
relative to the �uid. The coe�cient c depends on the circulation
around the body and is a function of the Reynolds number vl/v,
where l is a representative length of the body and ν is the coe�cient
of kinematic viscosity. Compare drag.

light year A unit of distance used in astronomy equal to the
distance travelled by light (electromagnetic radiation) in a vacuum
in one year. 1 light year = 9.4605 × 1015 metres or approximately
5.88 × 1012 miles.

likelihood See likelihood function.

likelihood function The *frequency function of a continuous
*random variable X belonging to a family of distributions dependent
on a parameter θ may be written as f (x, θ) where x is variable and
θ is �xed. However, if x1 is an observed or sample value of X and we
regard θ as a parameter that can be varied to specify di�erent
members of the family, then L(θ) = f (x1, θ), regarded as a function
of θ for any given x1, is called the likelihood function. The value of
L(θ) for any particular value of θ is called the likelihood.

For a sample of n independent observations from the same
distribution, the likelihood function is L(θ) = f(x1, x2,…, xn), and
independence implies that

L(θ) = f(x1, θ)f (x2, θ) ··· f(xn, θ)

Then if, for two values θ1 and θ2 of θ, one �nds that L(θ2) <
L(θ1),this implies that the sample has a smaller value of the joint
frequency function if the unknown parameter is θ2 rather than θ1.
This in turn implies that the sample is less likely to have come from
a population where θ = θ2 than from one where θ = θ1. This
reasoning leads to the concept of *maximum likelihood estimation



of a parameter as determining the value of the parameter that
maximizes the likelihood function.

The concept of a likelihood function can be extended to discrete
random variables and to samples from distributions having more
than one parameter. See also likelihood ratio.

likelihood ratio (J. Neyman and E.S. Pearson, 1928) If the
*likelihood is L1 when θ = θ1, and L2 when θ = θ2, then the ratio
L2/L1 may be used as a basis of a test of the null hypothesis θ = θ1

against the alternative θ = θ2. The concept may be extended to test
the hypothesis that θ takes a value in a speci�ed subset of all
possible values by taking L2 as the maximum for that subset. See also
hypothesis testing.

Lim See limit.

limaçon of Pascal A type of plane curve. It is generated by �rst
taking a �xed point O on a circle and drawing a variable line
through this point. The limacon is the locus of a point P that lies on
the line and is a �xed distance a from Q, the other point of
intersection of the line with the circle. If the �xed point O is taken
to be the pole of a polar coordinate system, the equation of the
limaçon is

r = d cos θ + a

where d is the circle’s diameter. If d = a the curve is a *cardioid.
[French: snail; so named by Étienne Pascal (1588 – 1640)]



limaçon of Pascal: a>d.

limit 1. (of a function) A value that can be approached arbitrarily
closely by the dependent variable when some restriction is placed
on the independent variable of a *function. For example, as x
increases, f(x) = 1/x decreases, getting closer to zero. f(x) = 1/x is
said to approach or tend to zero as x tends to in�nity, written as
(1/x)→ 0 as x→ ∞. Alternatively, this can be expressex as ‘the limit
of 1/x as x tends to in�nity is zero’, written as

The function sin x/x also approches zero as x tends to in�nity but it
alternates between positive and negative values.

In general, f(x) → l as x → ∞ if, for every positive real number ε,
there exists a positive real number ε, there exists a positive real
number N dependent on ε such that whenever x > N, then

|f(x) – l| < ε

In other words, by choosing a large enough value of x, f (x) can be
made as near to l as is required. Also f(x) → ∞ as x → ∞ if, for
every positive real number M, there exists a real number N
dependent on M such that whenever x >N, f (x) > M ; i.e. by



choosing a large enough value of x, f(x) can be made arbitrarily
large.

If f(x) approaches a value l as x approaches a from the right (i.e.
from ∞ to a) then the value l is said to be the right-hand limit of f (x)
at x = a; if f (x) approaches a value k as x approaches a from the
left (i.e. from – ∞ to a)then k is said to be the left-hand limit of f (x)
at x = a.

A function may become arbitrarily large when x is su�ciently
close to a, written as f(x) → ∞ as x → a. Formally, for every real
positive number M there exists a number d dependent on M such
that whenever

|x – a| < δ, then f(x) > M

Functions that tend to – ∞ as x → a or x → ∞ are de�ned similarly
to those that tend to +∞.

See also continuous function.
2. (of a sequence) A number, A say, that an in�nite * sequence

a1,a2,a3,…, an,…

may approach (or tend to) as the number of terms n becomes very
great, i.e. tends to in�nity. This is written as

A �nite limit exists only if, given any positive number e, however
small, it is possible to �nd a term aN such that all subsequent terms
di�er from A by less than ε,i.e.

|ar– A | < ε for all r > N

If an in�nite sequence has a �nite limit it is said to be convergent,
otherwise it is divergent. See also convergent series.



3. One of the values of the variable between which a de�nite
integral is evaluated. See integration.

limit inferior (of a sequence) See limit point.

limit of convergence See power series.

limit point (accumulation point, cluster point) 1. (of a sequence)
A point associated with an in�nite *sequence in whose
neighbourhood lie an in�nite number of terms of the sequence. In a
sequence of real numbers, if there are an in�nite number of terms
greater (or less) than any number k, then +∞ (or – ∞) is a limit
point of the sequence. There may be more than one limit point. For
a sequence of real numbers the largest limit point is known as the
limit superior, and the smallest one as the limit inferior.
2. (of a set) A point P is a limit point of a *set A if every
*neighbourhood of P contains a point that is distinct from P and is a
member of A.

limit superior (of a sequence) See limit point.

Lindemann, Carl Louis Ferdinand von (1852 – 1939) German
mathematician noted for his proof in 1882 that π is transcendental,
thus �nally demonstrating that it is impossible to square the circle
using purely Euclidean constructions. He also published several
‘proofs’ of Fermat’s last theorem (since shown to be erroneous) and
also propagated the views of Weier-strass on the arithmetization of
calculus.

line 1. A *curve.
2. A straight line; i.e. a curve that, geometrically, is completely
determined by two of its points. In plane *coordinate geometry a
line is a set of points satisfying a *linear equation of the type

ax + by + c = 0



where a and b are not both zero. In simple rectangular Cartesian
coordinates the equation of a straight line has various standard
forms as follows:

Slope-intercept form. A line with the equation

y = mx + c

has a gradient m and an intercept of c on the y-axis. For instance,
the line y = 2x + 4 has a gradient of 2 (the angle between the line
and the x-axis is tan – 1 2) and it cuts the y-axis at the point (0, 4).

Intercept form. A line with an equation of the form

x/a + y/b = 1

intersects the x-axis at (a, 0) and the y-axis at (0, b). For example,
the line

4 y = 2 x – 8

can be put in the form

x/4 – y/2 = 1

The intercept on the x-axis is 4 and the intercept on the y-axis is – 2.
Point-slope form. A line with a slope m passing through a known

point (x1, y1) has the equation

y – y1 = m(x – x1)

An example is the line with a gradient of 2 passing through the
point (5, 4). Its equation is

y – 4=2(x – 5)

which rearranges to give

y = 2 x – 6



A negative value of m indicates a slope downwards from left to
right.

Two-point form. A line passing through two known points (x1, y1)
and (x2, y2) has an equation of the form

x – x1/x2 – x1 = y – y1/y2 – y2

For example, the line passing through the points (2,1) and (– 6,7)
has the equation

x – 2/ – 6 – 2 = y – 1/7 – 1

which rearranges to give

4 y = – 3 x + 10

The forms above are the ones used in Cartesian coordinates in two
dimensions. In three-dimensional Cartesian coordinates, the
equation of a line in space may also have various forms:

Symmetric form (or standard form). The equation is written in
terms of direction numbers l, m and n (see direction angles) together
with one point on the line (x1, y1, z1):

Two-point form. The equation is written in terms of two points on
the line with coordinates (x1,y1,z1) and (x2,y2,z2). It has the form

Parametric form. The line is described in terms of its direction
cosines l, m, and n (see direction angles), a point on the line (x1, y1,
z1), and a variable parameter d. The parametric equations are

x = x1 + ld



y = y1 + md

z = z1 + nd

Here, d is the distance of the variable point (x, y, z)from (x1, y1, z1).
Vector form. The line through points with position vectors a and b

has the parametric equation

r = a + t(b – a)

or the equation

(r – a) × (b – a)= 0

linear Describing an equation, expression, etc. that is of the �rst
*degree. A linear equation is one in which all non-constant terms
have degree 1. For example,

x + 3y + 2z = 7

is a linear equation in three variables.
A linear combination of variables x1, x2, x3,… is the sum

a1x1 + a2 x2 + a3x3 + ···

where a1, a2, a3,…are constants.
It is also possible to apply the term ‘linear’ to particular variables

in an expression. Thus 3 xyz2 is linear with respect to x and y.
See also vector space.

linear algebra 1. The branch of algebra that studies *linear
equations, *matrices, *vector spaces, and *linear transformations.
2. A *vector space V over a *�eld F which is also a *ring and for
which the law

(nu)v = n(uv)=u(nv)



holds for all n Є F and u,v Є V is called a linear algebra (or
associative algebra)over F. For example, the set of all 2 × 2 matrices
(with real or complex elements) is a linear algebra over , the �eld
of real numbers. See algebra.
linear code See coding.

linear combination A sum of *scalar multiples of elements of a set.
For example, 3u + 4v is a linear combination of the *vectors u and
v. See also vector space.

linear congruence A *congruence of the type ax ≡ b (mod n)where
n is a given natural number, a and b are given integers, and x is an
unknown integer. Such a congruence can be solved for x if and only
if b is divisible by the *highest common factor of a and n. If so, then
HCF (a, n) gives the maximum number of solutions that are
mutually incongruent modulo n. For example:
2 x ≡ 7 (mod 18) is not solvable since HCF(2,18) = 2 does not

divide 7; but 15x ≡ 6 (mod 18) is solvable since HCF(15,18) = 3
does divide 6, and it has three incongruent solutions modulo 18,
namely x = 4, 10, and 16.

7 x ≡ 8 (mod 30) is solvable since HCF(7,30) = 1 divides 8, and it
has a unique solution modulo 30, namely x = 14 (i.e. every
solution will be congruent to 14 modulo 30).

linear convergence See order (12).

linear di�erential equation A *di�erential equation of the form

P0(x)y + P1(x)d y/d x +… + P n(x)d ny/d xn = Q(x)

which is *linear in y and its derivatives, and in which the
coe�cients of y and its derivatives are functions of x only. An
example is

linear equation See linear.



linear form See form.

linear function A *polynomial function of *degree one. A linear
function of one variable has the form

f(x) = a0 + a1x

where a0 and a1 are constants. The graph of the function is a straight
line with gradient a1 and intercept a0 on the y-axis. A linear function
of two variables has the form

f(x, y)= a0 + a1x + a2y + a3xy

where a0, a1, anda2 are constants. Here, f(x, y)islinearinx and linear
in y.A linear function of several variables is similarly de�ned.

linear hypothesis In general, a hypothesis concerning linear
*functions of parameters; more speci�cally the term is applied to
tests on linear functions of parameters in *regression analysis and
*analysis of variance, e.g. a hypothesis that the di�erence between
two treatment means τ1 and τ2 is zero, or takes a speci�c value, is a
linear hypothesis about the function τ1 – τ2.

linear interpolation See interpolation; false position (rule of).

linearly dependent, independent See vector space.

linear mapping See linear transformation.

linear model In *statistics, a model in which the *expected value of
a *random variable is a linear function of the *parameters in the
model. See regression, generalized linear models.

linear momentum See momentum.

linear programming A method for determining optimum values of
a *linear function subject to constraints expressed as linear
equations or inequalities. In practice, functions to be maximized
often represent pro�ts or volume of goods that can be produced,



while functions to be minimized may be production costs or
production times. A practical problem may involve 100 or more
variables, in which case it is usually solved by using the *simplex
method and a computer.

Simple problems with only two variables may be solved
graphically. For example, to minimize

U = 4x + 3y

subject to the constraints

x + y ≤ 20, 3 x + y ≤ 30,

x ≥ 0, y ≥ 0

it is easily seen that the constraints require any permissible solution
(usually called a feasible solution) to lie in or on the boundaries of
the stippled area (the feasible region) in the diagram. Here the line
AB represents the equation x + y = 20, and the line CD the
equation 3 x + y = 30. These lines and the axes determine the
boundaries of the region of feasible solutions. The dashed parallel
lines represent the equations 4 x + 3 y = U for several values of U,
these lines shifting to the right as U increases. Thus the optimum
(maximum feasible) value of U occurs when U is chosen so that the
line passes through the point E, where the lines x + y = 20 and 3 x
+ y = 30 intersect. Solving these equations gives x = 5 and y =
15, and so the maximum feasible value of U is U = 4 × 5 + 3 ×
15 = 65, the required solution. See Karmarkar’s algorithm.



linear programming

linear regression See regression.

linear scale See scales of measurement.

linear space See vector space.

linear transformation (linear mapping) 1. A *t ransformation of n
variables expressed by n equations:

y1 = a11x1 + a12x2 +… + a1n xn

y2 = a21x1 + a22x2 +… + a2n xn

:

yn = an1x1 +… + ann xn

The *matrix of such a transformation is the n ×n matrix A with
elements aij. lf A is a *nonsingular matrix, then x1, x2,… can be
expressed as linear combinations of y1, y2,… with matrix A-1 (i.e. the
inverse). If the x-variables are expressed in terms of a third variable
z by linear equations having a matrix B, then the y-variables are
linear combinations of the z-variables with a matrix AB.



In general, a linear transformation is a mapping from one *vector
space into another, L: V →V′, with the following properties:
(1) For any two vectors u and v

L(u+v)= L(u) + L(v)

If n is a number

L(nu) = nL(u)

For a given transformation, there is an associated matrix A such that
for any vector u in the space, L(u) = Au (where Au denotes matrix
multiplication of A and the column vector u). See transformation;
a�ne transformation.
2. (homographie transformation, Möbius transformation) A *t
ransformation of a complex variable z having the form

and where ad – bc ≠ 0.

line of apsides See apsis.

line of best �t Given a set of n points (x1, y1),(x2, y2),…, (xn, yn), the
line of best �t y = a + bx is often taken to mean the *least squares
regression of y on x, obtained by choosing values a and b of α and β
that minimize

leading to b = sxy/sxx, where sxy = Σ(xi-x)̄(yi-ȳ), sxx = Σ(xi-x)̄2, ȳ – bx,̄
x ̄= Σxi/n, and ȳ = Σyi/n. This choice of a and β minimizes the sum
of squares of deviations from the line y = α + βx measured in the
direction of the y-axis. If we wished instead to minimize the sum of
the absolute deviations, the function to be minimized would be



Furthermore, the least-squares regression of x on y is not in general
the same line as the least-squares regression of y on x,so what is
meant by the line of best �t to a data set depends on what
assumptions are made about the nature of any deviations from a
�tted line.

line segment A portion of a straight line between two points. Note
that strictly a line extends inde�nitely in both directions; a line
segment has a �nite length. See also half-line.

Liouville, Joseph (1809-82) French mathematician noted as the
editor of the Journal de Mathématiques pures et applique’es, launched
in 1836 and more commonly known as Liouville’s Journal. As a
mathematician Liouville worked in the �eld of transcendental
numbers. In 1844 he proved their existence and went on to
construct an extensive class of *Liouville numbers. He also edited
and published (1846) some manuscripts left by Galois on
polynomial equations.

Liouville number An *irrational number θ with the property that
for each natural number n there is at least one rational number p/q
≠ θ with |θ – (p/q)| < 1/qn. All Liouville numbers are
*transcendental. See Roth’s theorem.

Liouville’s theorem See entire function.

Lissajous �gures Curves that are the *locus of a point in two
dimensions with components that are simple *harmonic motions.
The shape depends on the relative frequencies and phases of the two
motions. The curves are named after the French mathematician
Jules Antoine Lissajous (1822-80).

litre Symbol: 1 (alternatively, L). A *met-ric unit of capacity or
volume, not an SI unit but used for some purposes as a special name
for the cubic decimetre (dm3). It is not recommended for use in
high-precision measurements. The symbol *ml for millilitre is



sometimes used as an alternative to cc. In *SI units, the symbol cm3
is recommended for this quantity. The litre was formerly de�ned as
the volume of 1 kilogram of pure water at 4 °C and a pressure of
760 millimetres of mercury; by this de�nition the litre is equivalent
to 1000.028 cm3.

Littlewood, John Edensor (1885-1977) English mathematician
best known for his long collaboration with G.H. Hardy during which
they published nearly 100 papers. Littlewood worked on Fourier
series, the Riemann zeta function, the partition of numbers,
inequalities, the theory of functions, and the distribution of primes.

lituus See spiral.

Liu Hui (c. ad 263) Chinese mathematician whose inventive
Commentary on the Nine Chapters on the Mathematical Art
contained an interpolated value of 3.1416 for π based on a
succession of regular polygons inscribed in a circle, and a proof of
the formulae for the volume of a square pyramid and a tetrahedron
which uses a form of *exhaustion. His Haidao suanjing (Sea Island
Mathematical Manual) solved problems of surveying, and thus
mapping, inaccessible objects using his ‘method of double
di�erences’, which involves pairs of similar triangles.

Li Ye, Li Zhi (Li Chih) (1192-1279) Chinese mathematician whose
Ceyuan haijing (1248, Sea Mirror of Circle Measurements)
introduced the ‘method of the celestial element’ – a system of
notation for polynomials in one variable (the ‘celestial element’),
and techniques for manipulating them and solving problems.

ln See logarithmic function.

load An *external force exerted on a body, such as a weight
supported by a structure, or applied to a *machine.

Lobachevsky, Nikolai Ivanovich (1793 – 1856) Russian
mathematician noted for his discovery in 1826, independently of
Bolyai, of hyperbolic geometry, the �rst *non-Euclidean geometry to



be described. Lobachevsky also worked on in�nite series,
probability, and algebraic equations.

local coordinates See manifold.

locally connected A set of points or a space X is locally connected at
a point a (X if, within every *neighbourhood N of a, there is a
subneighbourhood M of a contained in N such that any two points
of M lie in a *connected subset of N. Asetorspaceis locally connected
if it is locally connected at each of its points.

located vector A *vector with a speci�ed starting position.

location The notion of centrality in a sample or distribution
measured by *mean, *median, or *mode.

locus (plural loci)A set of points satisfying given conditions. For
instance, the locus of points in a plane that are all a distance r from
a given point in the plane is a circle. The equation of the locus, in
Cartesian coordinates, is

x2 + y2 = r2

loess See lowess.

logarithm (log) For a positive number n, the logarithm of n
(written as log n)is the *power to which some number b must be
raised to give n. Here b is the base of the logarithm, i.e.

log b n = x; if bx = n

An *antilogarithm is a number whose logarithm is a given number.
Logarithms obey certain laws:

log(nm)= log n + log m

log(n/m)= log n – log m

log(nm)=m log n



Formerly, they were used extensively in computation, in the form
of tables of logarithms to the base 10. Such logarithms are called
common logarithms (or Briggsian logarithms). Logarithms to the base e
(2.718…) are natural logarithms (also called Napierian or hyperbolic
logarithms – see Napier). By convention loge n is often written as In
n, and log10n is often written as log n or lg n.

Common logarithms for computation are used in the form of an
integer (the characteristic) plus a positive decimal fraction (the
mantissa). For example, to �nd the logarithm of 657.3, the number
is written in standard form as 6.573 χ 102. The logarithm of this is
log 6.573 + 2log 10, which is 2 + log6.573, or 2.8178. Here 2 is
the characteristic and 0.8178 the mantissa. For a number such as
0.06573, say, the standard form is 6.573 χ 10 – 2. The logarithm is
then – 2 + log 6.573, which is written as 2̄.8178 (where 2̄ is read as
‘bar two’). In tables of common logarithms, only the mantissae are
tabulated. See also modulus (of logarithms).

logarithmic coordinate system A Cartesian coordinate system in
which the axes are marked with logarithmic scales. See also graph.

logarithmic di�erentiation Amethodof �nding *derivatives in
which logarithms are taken before di�erentiating. For example, if y
= 2 x, then, taking logarithms of both sides, ln y = x ln 2, and
di�erentiation with respect to x gives

Thus

The method is useful when di�erentiating a *continued product, e.g.

x(1+2x)(1+3x)



logarithmic distribution (R.A. Fisher, 1941) A *discrete
distribution of a *random variable X for which

where θ is a parameter taking some value in the open interval (0,
1). The distribution is sometimes known as the log-series distribution
and is widely used instudies of species diversity.

logarithmic function The function ln x or logex, de�ned, for x > 0,
as the inverse function of the *exponential function so that ln x = y,
where x = ey and exp(ln x) = x. It is also de�ned by

The term is also used for functions of the type log a x, where a > 0,
which satisfy loga(ax)=x.

logarithmic graph See graph.

logarithmic integral The logarithmic integral of x is the *function
Li(x) de�ned by

where ln t is the *natural logarithm of t. Some authors use the
function li(x) de�ned by

For x > 1 this is an *improper integral interpreted as the limit as ε
→ 0 of the sum of integrals over the intervals [0, 1 – є]and [1+є,
x], where є > 0. When x > 2 the two functions di�er by just a



constant. Both Li (x)andli (x) are *asymp-totic to π(x), the number
of *primes less than or equal to x. For example, when x = 106 the
values of Li(x)and π(x) are 78 628 and 78 498, respectively.

logarithmic scale See scales of measurements.

logarithmic series The *power series

x – x2/2 + x3/3 – x4/4 +…

The n th term is (– 1)n+1 xn/n.

If – 1 < x ≤ 1 the series converges and has the sum ln(1 + x),
hence the name.

logarithmic spiral See spiral.

logarithmic transformation A transformation of a positive-valued
*random variable X to Y = ln X. In many situations Y has (or is well
approximated by) a normal distribution. If Y has a normal
distribution, X is said to have a lognormal distribution.

logic The study of deductive *argument. The central concept of
logic is that of a valid argument where, if the premises are true,
then the conclusion must also be true. In such cases the conclusion
is said to be a logical consequence of the premises. Logicians are not,
in general, interested in the particular content of an argument, but
rather with those features that make an argument valid or invalid.
So for the simple argument ‘If Jones is a man then Jones is mortal;
Jones is a man; therefore Jones is mortal’ there is a structure ‘If A
then B; A; therefore B’. This argument form (called modus ponens) is
valid no matter what sentences are substituted for A and B. This
focus on structure leads to the logician’s concern with the logical
form of sentences irrespective of their content.

This distinction between form and content mirrors closely the
distinction between a formal language and its “Interpretation A
formal language is built from



(1) a set of symbols organized by syntactic rules that delineate a
class of *w�s; and
(2)a set of rules of inference that permit us to pass from a set of w�s
(intuitively, the premises) to another w� (intuitively, the
conclusion).

The speci�c way in which (1) and (2) are met determines the type
of arguments that we can analyse in a formal language. The
*propositional calculus was devised to analyse arguments whose
only logical constants are truth-functional connectives, such as ‘&’
(see and) and ‘⊃’(see implication). But such a language is not
su�ciently re�ned to capture all those arguments that we
intuitively recognize as valid.

Consider ‘All men are mortal; John is a man; therefore John is
mortal. Although valid, this argument cannot be represented by
means of truth-functional connectives alone: we also need
*quanti�ers. The above argument would then be formalized as

(∀x)(Man(x)⊃ Mortal(x))

Man(John)

∴Mortal(John)

The rules of inference that permit the passage from premises to
conclusion in this argument are universal instantiation (from
‘(∀x)F(x)’ we can infer ‘F(a)’) and modus ponens.

The *predicate calculus is a language that can be used to analyse
sentences containing quanti�ers. For more complex types of
argument we need to construct other languages, for example *modal
logic.

The branch of logic concerned with the study o�ormal languages
independentlyof any content the symbols may have is called proof
theory. From a proof-theoretic standpoint there is no way of telling
whether a rule of inference will allow us to pass from true premises
to a false conclusion. In order to judge the adequacy of a formal



language as a tool for reasoning we need to turn to the branch of
logic called model theory, which is concerned with the
interpretations of formal languages. For example, the propositional
calculus is interpreted by assigning truth values to w�s. More
complex languages require more complex types of interpretation. A
valid argument can be de�ned in model-theoretic terms as one
where the conclusion is true in all those interpretations under which
the premises are true. Those formal languages in which the rules of
inference preserve truth in that we cannot pass from true premises
to false conclusions are called sound. A formal language is complete
if there are no valid arguments expressible in the language that
cannot be proved by use of the rules of inference. By linking proof
theory with model theory, completeness and soundness proofs are
two of the most important ways of showing that a formal language
is satisfactory.

logical consequence See consequence.

logical constant See constant.

logical equivalence See equivalence.

logical form The logical structure that an “argument or sentence
possesses independently of its content. For example, consider:
(1) All men are mortal; Alfred is a man; therefore Alfred is mortal.
(2) All dogs are four-legged; Rover is a dog; therefore Rover is four-
legged.
Both (1) and (2) have the same logical form, and are instances of
the (valid) argument form:
(3) (∀x)(M(x) ⊃ F(x)) ;M(a); therefore F(a).
The validity or invalidity of anargument is thus seen to follow from
its logical form (in the above cases, the logical form as given by
(3)), and inparticular the distribution of the logical *constants,
rather than from any speci�c content. See logic; quanti�er.



logical syntax See proof theory.

logical truth An instance of a *valid *w�. For example, from the
valid w� ‘A v ~A’ we can obtain as a logical truth ‘snow is white V
~ snow is white’. Logical truths are thus true by virtue of their
*logical form rather than their content.

logicism The thesis, �rst propounded by Frege, that mathematics is
reducible to *logic in the sense that (1) mathematical concepts can
be explicitly de�ned in terms of logical concepts, and (2) the
theorems of mathematics can be derived through logical deduction.
The truth of logicism would show that mathematical truths are
analytic (that is, true by virtue of meaning) and thus known a
priori’. See formalism; intuitionism.

logistic curve See sigmoid curve.

logistic map An *iterated map of the interval [0,1] of the form × 
 ax(1 – x), with parameter a where 0 < a (4. For 0 < a < 1, the

point 0 is an attracting �xed point (for all starting points in the
interval). For 1< a < 3, the point 0 is a repelling �xed point and 1
– 1/a is an attracting �xed point. For 3<a<1 + √6, the attracting
�xed point is replaced by two repelling *periodic points of period 2.
For increasing values of a the periodic orbits bifurcate (see
bifurcation) into orbits of period 2, 4, 8,…. See Feigenbaum number.

logistic method The study of formal logic through the construction
of *logistic systems.

logistic regression Many experiments are e�ectively sets of
independent *Bernoulli trials, the i th trial giving rise to a binary
variable Yi which may take only the value 0or1. If Pr(Yi = 1) = pi,
this probability often depends on one or more explanatory variables,
for example the treatment level or dose level xi of an insecticide
when the response of interest Yi is death (Yi = 1) or survival (Yi =
0) . The *odds of death for the i th individual are then θi = pi/(1 –
pi), and it is often found that the empirical relationship between xi
and θi is well described by the logistic regression equation



ln (θi) = α + βxi

Since the expected value of Yi is p i, this is a special case of a
*generalized linear model. See also logit.

logistic spiral See spiral.

logistic system A *formal system that contains only logical axioms.
The *predicate calculus, for example, is a logistic system. See logic.

logit (J. Berkson, 1944) The quantity Y = ln [p/(1 – p)], i.e. the
logarithm of the *odds, is called the logit of p. If p satis�es a logistic
relationship with an *explanatory variable x of the form p – [1 +
exp{– (α + βx)}]– 1, it follows that Y = α + βx. See also logistic
regression; probit analysis.

loglinear model A model widely used in the analysis of association
between categories in a *contingency table. In an r × c table with
independence between row and column categories, the expected
frequency in cell (i, j)is mij = n i+n+i/N,where N is the total for the
table, and ni+ and n+j denote the totals for the i th row and j th
column. Taking logarithms gives

In mij = In ni+ + In n+j – In N

i.e. under independence, the logarithm of the expected number in
any cell is a linear function of the logarithms of the row, column,
and grand totals. Further additive terms may be used to represent
various kinds of association (the analogue of interactions in
*factorial experiments). For 2×2 tables, it is easily veri�ed that
under independence

in accordance with the condition for independence that the *odds
ratio θ = (m11/m22/m12m21) = 1.

lognormal distribution See logarithmic transformation.



log-series distribution See logarithmic distribution.

long arc See arc.

longitude 1. The angle by which a point is east or west of the prime
*meridian (the meridian through Greenwich) taken as the angle
measured along the equator between the prime meridian and the
meridian through the point. Longitude is measured from Greenwich,
from 0° to 180° east and from 0° to 180° west.
2. See celestial longitude.
3. See galactic longitude.

longitudinal wave A form of *wave motion in which energy is
propagated by the displacement of the transmitting medium along
the direction of propagation. The wave velocity depends on the
elastic properties of the medium and on its density. There is no
propagation in a vacuum. Sound waves are longitudinal. Compare
transverse wave.

long radius See polygon.

loop 1. Apartofaplane*curvethat intersects itself, so that it encloses
a bounded set of points.
2. See graph.

Lorentz-Fitzgerald contraction The apparent contraction of a
moving object in the direction of motion that is observed by
someone in a di�erent inertial *frame of reference. If υ is them
agnitude of the relative velocity of the two frames and c is the speed
of light, the contraction amounts to a factor of √(1 – υ2/c2), i.e.the
contraction is negligible at speeds considerably less than c. It was
predicted independently by G.F. Fitzgerald (1889) and H.A. Lorentz
(1895), and was later explained by the special theory of *relativity.

Lorentz transformation See relativity.

Lorenz attractor See chaos.



Löwenheim, Leopold (1878-c.1940) German mathematician noted
for his proof in 1915 of the Löwenheim-Skolem theorem, which
showed that any formula valid in a denumerably in�nite domain is
universally valid.

lower bound See bound.

lower limit (of integration) See integration.

lower triangular matrix See triangular matrix.

lowess (W.S. Cleveland, 1979) A method for �tting smooth curves
to large data sets that is resistant to *outliers. It extends the concept
of a weighted *moving average widely used in *time series analysis.
A low-degree *polynomial in x is �tted at each data point xi using a
generalization of *least squares called weighted least squares, where
weights are allocated in a way that reduces the in�uence of points
as x moves away from xi, these weights being zero outside a
distance determined by a bandwidth. Further iterations with a
di�erent choice of weights then markedly reduce the in�uence of
outliers or a few extreme observations. The method is computer
intensive.

The name lowess is an acronym derived from ‘locally weighted
smoothing scatter-plots’. The word loess is sometimes used as an
alternative, though some confusion can arise as loess is also used for
a modi�cation that does not invoke the separate process for
reducing the in�uence of outliers.

loxodrome A curve on the surface of a sphere that cuts *meridians
at a constant angle. It is also called a rhumb line.

l.u.b. Abbreviation for *least upper bound.

Lucas sequence The *sequence1, 3,4, 7, 11, 18, 29,…, in which
each term after the �rst two is the sum of the preceding pair of
terms. It is named after the French mathematician Francois Edouard
Anatole Lucas (1842-91). See also Fibonacci sequence.



LU factorization For a square matrix A,a factorization A = LU into
the product of a *lower triangular matrix L and an*upper triangular
matrix U. Usually,either L or U is taken to have a unit diagonal. An
example of an LU factorization is

The method of *Gaussian elimination e�ectively computes an LU
factorization: U is the reduced upper triangular matrix, and the
elements of L are the multipliers.

Lukasiewicz, Jan (1878-1956) Polish logician, and one of the
founders of the important school of mathematics and logic that
�ourished in Poland during the inter-war years. Lukasiewicz left
Poland in 1944 and �nally settled in Ireland, where he spent the
remainder of his life at the Royal Irish Academy, Dublin. Among his
important contributions to logic are the development of *three-
valued logic, the construction of a novel system of modal logic, the
creation of a new logical notation, and an important study:
Aristotle’s Syllogistic (1951).

lumen Symbol: lm. The *SI unit of luminous �ux, equal to the
amount of light emitted in 1 second into a solid angle of 1 steradian
by a uniform point source of 1 candela intensity.

lune 1. One of the parts of the surface of a sphere bounded by two
intersecting *great circles. The area of a lune is 4 πr2θ/360, where θ
is the spherical angle (in degrees) between the great circles and r is
the radius of the sphere.
2. The area enclosed between the arcs of two intersecting circles.

lux Symbol: l x. The *SI unit of illuminance, equal to the
illumination of 1 lumen uniformly spread over an area of 1 square
metre.



M

machine Any system that replaces or augments human or animal
e�ort in order to accomplish a physical task. Machines vary widely
in function and complexity, but in general the performance of useful
work is achieved by means of the motions of interconnected
components – gears, cranks, levers, pulleys, screws, etc. A force
known as the e�ort is applied to one component and produces an
e�ective force of di�erent magnitude at some other part of the
system. This e�ective force is applied to a load. The ratio load/e�ort
is called the *mechanical advantage; the ratio of the distance moved
by the e�ort to the distance moved by the load is called the velocity
ratio. The machine’s performance can be measured in terms of
*e�ciency.

Mach number Symbol: M or Ma. The ratio of the speed of a body in
a �uid to the speed of sound in that �uid. The speed of sound in air
at ground level is about 330 ms-1. A Mach number in excess of unity
thus indicates a super-sonic speed. A high Mach number will a�ect
the motion of a body through a �uid. [After E. Mach (1836 – 1916)]

Maclaurin, Colin (1698 – 1746) Scottish mathematician who, in his
Geometrica organica (1720, Organic Geometry) and Treatise of
Fluxions (1742), made a number of contributions to the newly
developed calculus of Newton. His best-known result is the
expansion since referred to as the Maclaurin series.

Maclaurin series See Taylor’s theorem.

McNemar’s test (Q. McNemar, 1947) A nonparametric test for
di�erences in proportions in related samples. It is often used to test
whether a stimulus has produced a response in a particular
direction. For example, the political allegiance of a sample of voters
to party A or B may be determined prior to a party political
broadcast; after the broadcast any changes in allegiance are noted



and the test is used to indicate whether the proportion changing
from A to B di�ers signi�cantly from that changing from B to A. See
nonparametric methods.

Madhava of Sangamagramma (c. AD 1400) Indian astronomer-
mathematician. All his worksthathavebeendiscoveredsofarare
astronomical treatises. His mathematical contributions – which
include in�nite series expansions of trigonometric and inverse
trigonometric functions and �nite series approximations which
foreshadowed results usually attributed to Leibniz, Newton and
Gregory, and Taylor – are known only from reports by his
contemporaries and successors.

magic constant See magic square.

magic square A square *array of numbers in which the numbers in
any row, column, or full diagonal have the same sum. This sum is
called the magic constant of the square. The earliest known example
is the Luo-shu (Lo-shu) square

4  9  2

3  5  7

8  1  6

found in ancient Chinese writings. Another well-known magic
square is

16  3  2  13

5  10  11  8

9  6  7  12

4  15  14  1

which is included in an engraving, Melancholia, by Albrecht Dürer
(1514).

A square is semi-magic if the numbers in just any row or column
have the same sum. A magic square is pandiagonal or diabolic if, in



addition to the usual magic square properties, every diagonal
(including the broken ones) adds up to the same magic constant. For
example, in the pandiagonal square

1  8  11  14

12  13  2  7

6  3  16  9

15  10  5  4

All the rows, columns, full diagonals, and broken diagonals, such as
11, 7, 6, 10, add up to the same total, 34.

Mahavira (�. AD 850) Indian mathematician. In his Ganita Sara
Samgraha (The Compendium of Arithmetic) there is a detailed
examination of operations with fractions, permutations and
combinations, and mathematical series, as well as – something
unusual in Indian mathematics – an (unsuccessful) attempt to derive
formulae for the area and perimeter of an ellipse.

main diagonal, main antidiagonal See diagonal.

major arc See arc.

major axis The longest diameter of an *ellipse or *ellipsoid.

major segment See segment.

Malthus, Thomas Robert (1766 – 1834) English sociologist,
classicist, and mathematician famous for his theory, expressed in An
Essay on the Principle of Population (1798), that population growth
will always tend to outgrow food resources unless strict limitations
are placed on human reproduction. His theory had a profound
in�uence on social policy, for it had previously been regarded as
almost axiomatic that high birth rates added to natural wealth.

Mandelbrot set (B.B. Mandelbrot, 1980) A subset of the *complex
plane associated with complex numbers c for the family of maps on
the complex plane given by Tc: z (z2 + c see diagram (a)). In



particular, c is in the Mandelbrot set if the *orbit 0, Tc (0), Tc
2 (0),…

of 0 is bounded. The boundary is *fractal and self-similar.

Mandelbrot set (a) The Mandelbrot set and (b) the analogous set
for the map z  z4 + c.

The Mandelbrot set is closed, *connected, and lies in the disc |z| ≤
2. On the real line it contains the interval [ – 2, ¼]. If c lies in the
central, cardioid-like region of the set, then Tc has an attracting
�xed point. The other regions correspond to where Tc has di�erent
attracting *periodic points. For example, if c lies in the circular
region to the left of the central region, then Tc has a pair of
attracting points of period 2, whereas if c lies in the regions directly
above or below the central region, then Tc has three points of period
3. It is not certain whether the Mandelbrot set is *locally connected.
An analogous set can be de�ned for other families of maps such as z
(z4+ c (see diagram (b)). See also Julia set.

manifold A *topological space M is called an n-manifold (or
manifold of dimension n) if it ‘looks locally like’ n-dimensional



Euclidean space n. More precisely, M is an n-manifold if for each
point x ЄM there is an open *neighbourhood Ux of x in M and a
*homeomorphism f x from Ux to an open set in n. The coordinates
de�ned by f x are called local coordinates.

Thus n itself is an n-manifold, as also are the n-sphere Sn and any
open subset of an n-manifold. The torus, projective plane, and Klein
bottle are all examples of 2-manifolds (sometimes called surfaces).

More specialized classes of manifold may be de�ned by restricting
the homeo-morphisms f x in various ways. For example, whenever
two of the open neighbourhoods Ux and Uy meet, f y f x – 1 is a
homeomorphism between open sets in n; if these homeomorphisms
are all required to be in�nitely continuously di�erentiable, the
manifold M is said to be a di�erential (or smooth) n-manifold.

An important topic in topology is the classi�cation of manifolds to
within homeomorphism. The problem has been solved (by M. Dehn
and P. Heegaard, 1907) for (compact) 2-manifolds: each of them is
homeomorphic to one of either of two sets of ‘standard’ 2-manifolds,
Mg(g≥0) and Nh (h ≥ 1). Here, Mg (the ‘orientable 2-manifold of
genus g’) is obtained from S2 by attaching g handles, where a handle
is a homeomorphic copy of the cylinder

{(x1, x2, x3)Є 3;x1
2 + x2

2 = 1, |x 3|≤1}

the two circles x3 = ± 1 being identi�ed with the boundary circles
of two discs removed from S2(see diagram). Similarly, Nh is obtained
from S2 by attaching h cross-caps, where a cross-cap is a
homeomorphic copy of the *Möbius strip, whose boundary circle is
identi�ed with the boundary circle of a single disc removed from
S2.Thus S2 itself is M0, the torus is M1, the projective plane is N1, and
the *Klein bottle is N2.



manifold The 2-manifold M1.

Mann-Whitney test See Wilcoxon rank sum test.

mantissa (plural mantissae) The decimal part of a logarithm, or the
fractional part of the *�oating-point representation of a number.

many-one correspondence A *correspondence between two sets X
and Y in which some element y of Y is paired with more than one
element x of X. For example, the correspondence de�ned by x2 = y
between the set of real numbers and the set of non-negative
numbers is many-one. A one-many correspondence between sets X
and Y has the property that some element x of X is paired with more
than one element y of Y. For example, the correspondence de�ned
by x = sin y, where x Є [ – 1, 1] and y Є , is one-many. See also
one-to-one correspondence.

many-valued function See multiple-valued function.

many-valued logic A *formal system in which more than two
*truth values are permitted.

Classical logic is essentially two-valued logic, and is committed to
the view that all propositions must be either true or false; or, more
formally, that they take the value 1 or 0 (see truth table). In 1921
Emil Post introduced an alternative approach which allowed
variables to take any one of n > 2 di�erent values. Since then,
numerous many-valued systems have been constructed, and, as



formal systems, they contain nothing exceptional. Thus, one
approach would be to assign values on the basis of the following
rules:

|~A| = 1 – |A|

|A v B|= max{|A|, |B|}

|A & B|= min{|A|,|B|}

|A → B| = 1 i� |A|≤|B|

|A → B| = 1 – |A| + |B| i� |A| > |B|

where |A| denotes the value of A.
The main problem with many-valued logics has been to �nd an

acceptable and interesting interpretation. See also three-valued logic.

mapping (map) See function.

marginal distribution See bivariate distribution; multivariate
distribution.

Markov, Andrei Andreevich (1856 – 1922) Russian mathematician
noted for his work in probability theory and his introduction in
1906 of what has since become known as a *Markov chain.

Markov chain A *stochastic process in which a discrete *random
variable X(t) may change state (i.e. value) at times t1, t2, t3,…
(usually equally spaced) is called a Markov chain if the *conditional
distribution of X(ti+1) at ti+1 depends only on X(ti) and not on the
value of X at any earlier time. This is often expressed by saying that
the state of the system in the future is una�ected by its history. The
simplest case is that in which X takes values 0 and 1 only
(corresponding, for example, to a circuit in which current may be
either o� (0) or on (1)). At any transition time ti there is a
probability Prs that the system, if in state r, will change to state s,
where r, s = 0, 1. Thus p01 is the probability of a change from state



0 to state 1, and p11 is the probability of the system remaining in
state 1 if it is already there (see diagram). The matrix

where p00 + p01 = p10 + p11 = 1 is called the transition matrix. If
p10 = p01 = 1 this implies that p00 = p11 = 0, and the system
oscillates repeatedly from state 0 to state 1. If p00 = p11 = 1 the
system never changes state, remaining in one of them at all times,
and that state is called an absorbing state. If all the elements in the
transition matrix are nonzero then, for equally spaced ti, the system
approaches a condition in which at any time it has a probability
p10/(p01 + p10) of being in state 0 and a probability p01 /(p01 + p10))
of being in state 1. This property is called *ergodicity. If changes
may take place continuously in time, but future behaviour depends
only on the present state, the system is called a Markov process. See
also random walk.

Markov chain

martingale A *stochastic process in which, if observations xi are
taken at times ti, where t1 < t2 <… < tn < t n+1, and

E(xn+1 |x1, x2,…, xn)= xn

for all n ≥ 1, the mean is �nite for all t. It is a process in which the
expected value of the observation at any stage, conditional on all
earlier observations, is equal to the last of these earlier observations.
For a simple *random walk with equal probabilities p = 0.5 of a
unit step left or right, the sequence of positions xi at times ti form a



martingale because, if the walk is at position xn at time tn, then at
time tn+1 we have xn+1 = xn ± 1, each with probability 0.5, whence

E(xn+1)= ½ [(xn + 1) + (xn – 1)] = xn

Mascheroni, Lorenzo (1750 – 1800) Italian mathematician who in
his Geometria delcompasso (1797, Geometry with the Compass)
demonstrated that all Euclidean constructions can be made with the
compass alone. Such compass-only constructions are sometimes
called Mascheroni constructions. A Danish mathematician, Georg
Mohr, had in 1672 covered the same ground in an obscure book.

mass Symbol: m. A fundamental characteristic of a body related to
the quantity of matter in the body. In classical mechanics it is
considered constant, unlike volume or weight. The SI unit of mass is
the kilogram; mass is also measured in pounds. The mass of a body
characterizes its interactions with other bodies. A body’s
*momentum is partly determined by its mass. Mass is also the
constant of proportionality between the force F on a body and the
resulting acceleration a, i.e. F = ma. Mass can thus be considered
as a measure of a body’s *inertia (resistance to acceleration); this is
known as inertial mass. Mass can also be considered in terms of the
gravitational �eld produced by the body; this is known as
gravitational mass. The inertial mass of an object is equal to its
gravitational mass. Einstein’s special theory of *relativity predicts
that the mass of a body is not constant, but increases with speed ν:

m = m0/√ (1 – ν2/c2)

m0 being the *rest mass and c the speed of light. This has been
veri�ed experimentally but is signi�cant only at very high
velocities. See also mass-energy equation; relativistic mass;
conservation of mass; weight.

mass centre See centre of mass.



mass-energy equation (Einstein’s equation) The equation stating
the relationship between *mass m and *energy E:

E = mc2

where c is the speed of light in vacuum. It was proposed by Albert
Einstein as part of the special theory of *relativity and has since
been veri�ed experimentally. It indicates the equivalence of mass
and energy. Mass can be considered as a form of energy, there being
conservation of mass-energy in an isolated system (see conservation
of energy), and can be converted to energy and vice versa. For
example, the *rest mass of an atomic nucleus is somewhat less than
the masses of the constituent neutrons and protons, where the mass
di�erence is equivalent to the energy required to bind neutrons and
protons together. Again, under the right conditions, an electron and
its antiparticle, the positron, can form simultaneously from a high-
energy photon, the photon having no rest mass. See also relativistic
mass.

matched pairs The pairing of units in an experiment so that each
member of a pair is as close as possible to the other in
characteristics that might in�uence response to a treatment. If two
treatments are being compared, one is allocated at random to each
member of a pair. For example, in a test to determine whether one
method of teaching reading is superior to another, pupils might be
matched in pairs on the basis of age, or of IQ or some similar
measure of aptitude. The procedure can be extended to form
matched groups for comparing more than two treatments. See
randomized blocks.

material Consisting of or relating to matter; having mass.

material equivalence See equivalence.

material implication See implication.

mathematics The study of numbers, shapes, and other entities by
logical means. It is divided into pure mathematics and applied



mathematics, although the division is not a sharp one and the two
branches are interdependent. Applied mathematics is the use of
mathematics in studying natural phenomena. It includes such topics
as *statistics, *probability, *mechanics, *relativity, and *quantum
mechanics. Pure mathematics is the study of relationships between
abstract entities according to certain rules. It has various branches,
including *arithmetic, *algebra, *geometry, *trigonometry,
*calculus, and *topology.

Mathieu’s equation A second-order *di�erential equation of the
form

The general solution is

Aerx φ(x) + B e – rx φ (– x)

where r is a constant and φ a periodic function (period 2π). The
equation was studied by the French mathematician and physicist
Émile Léonard Mathieu (1835 – 90).

matrix (plural matrices) A set of quantities (called elements or
entries) arranged in a rectangular *array, with certain rules
governing their combination. Conventionally, the array is enclosed
in round brackets or, less commonly, in square brackets. Unlike a
determinant, a matrix does not have a numerical value, but matrices
can be used to treat problems involving relationships between the
elements.

The horizontal lines of elements are rows and the vertical lines are
columns. A square matrix has the same number of rows as columns.
The element in the i th row and jth column of a matrix A is usually
denoted by a¡j, and may be referred to as the (i, j) element or entry.
A diagonal line of elements in a square matrix is a diagonal. The
elements in the positions from top left to bottom right form the main
or principal diagonal. The diagonals lying above the main diagonal
are the superdiagonals, and those lying below the main diagonal are
the subdiagonals. Diagonal lines of elements perpendicular to the



main diagonals are called antidiagonals. Elements not lying on the
main diagonal are called o�-diagonal.

The dimension or order of a matrix is expressed as m x n, where m
is the number of rows and n the number of columns. A square
matrix of dimension n × n is sometimes said to be ‘of dimension n’.
A matrix consisting of a single row is a row matrix or row vector; one
consisting of a single column is a column matrix or column vector.

The rules of combination for matrices are as follows:
(1) Multiplication of a matrix by a number k. Each element aij of the
matrix is multiplied by the number:

For two matrices A and B, k(A + B) = kA + kB.
(2) Addition of two matrices. The sum of the matrices is a matrix in
which the elements are obtained by adding corresponding elements.
Thus, if the elements of A are a¡j and those of Β are bij, then the
elements of C (= A + B) are a¡j + bij, where i is the row number
and j the column number:

Two matrices can be added only if they have the same number of
rows and columns, i.e. they must be of the same type.
(3) Multiplication of two matrices. A has elements a¡j with i = 1, 2,…
and j = 1, 2,… ; similarly, B has elements bij. The elements of C (=
AB) are given by

cij = ai1b1j + ai2 b2j +… ainbnj

provided that n, the number of columns of A, equals the number of
rows of B (i.e. the matrices are conformable). If the dimensions of A



and B are m × n and n × p, respectively, then the dimension of C
will be m × p (see �gure below).

A square matrix can be converted into another equivalent matrix
by a combination of any of the following operations:
(1) Interchange of two rows or two columns.
(2) Multiplication of a row or column by a nonzero scalar.
(3) Addition to the elements of one row (or column) multiples of the
corresponding elements of another row (or column).

It is often convenient to simplify a matrix by putting it into an
equivalent form, especially one in which the only nonzero elements
appear along the leading diagonal. It can be shown that any square
matrix is equivalent to some *diagonal matrix. A change from one
matrix B to an equivalent matrix A is an equivalence transformation.
Such transformations can be e�ected by multiplying B by other
nonsingular matrices X and Y, such that A = XBY. There are certain
special transformations depending on the connection between X and
Y, asfollows:
(1)Collinearity (or similarity) transformation (collineation) in which X
is the inverse of Y, i.e. a transformation of the type A = Y – 1 BY. In
this case, A and B are said to be similar matrices.
(2) Congruence transformation in which X is the *transpose of Y, i.e.
a transformation of the type A = YT BY. A and B are congruent
matrices.
(3) Conjunctive transformation in which X is the *Hermitian
conjugate of Y, i.e. a transformation of the type A = Y* BY.
(4) Orthogonal transformation in which X is the inverse of Y, and Y is
an *orthogonal matrix.
(5)Unitary transformation in which X is the inverse of Y, and Y is a
*unitary matrix.



The *determinant of a square matrix is the determinant of the
elements of the matrix.

See also adjacency matrix; augmented matrix; block matrix;
complex conjugate; correlation matrix; covariance matrix; diagonal
matrix; elementary matrix; Hankel matrix; Hessian; Hilbert matrix;
identity matrix; inverse; Jacobian; Jordan matrix; permutation
matrix; symmetric matrix; triangular matrix; Vandermonde matrix.

matrix of coe�cients See augmented matrix.

Maupertuis, Pierre Louis Moreau de (1698— 1759) French
mathematician and astronomer who formulated the principle of
least action. He also led an expedition to measure the length of a
degree along a meridian; the result veri�ed that the earth is an
oblate spheroid.

max Abbreviation for *maximum.

matrix multiplication of two matrices

maximal An element x is said to be a maximal element of a
partially ordered set A if there is no element y Є A such that y > x.

There may be more than one maximal element in a partially
ordered set. For example, consider the diagram, in which x > y if
there is a sequence of lines successively sloping downwards from x
to y, and x cannot be compared with y if there is no line joining
them. So a > e and b > c, but neither d > c nor c > d is true.
There are two maximal elements, namely a and b.

For another example, take the set of �ve numbers {1,3,5,7,9} and
consider those subsets that do not contain both 3 and 5, where two
such subsets A and B satisfy A > B if A contains B. In this collection
of partially ordered subsets both the subsets {1,3,7,9} and {1,5,7,9}
are maximal.



Similarly, an element x in a partially ordered set A is called
minimal if there is no element y Є A with y < x. In the diagram
there are two minimal elements. c and d. See partial order.

maximin criterion See game theory.

maximum (plural maxima) Greatest possible. The maximum value of
a function is the greatest value that it attains. A point x is a local
maximum of a function f if f (x) ≥ f(y) for all points y in a
neighbourhood of x (sometimes a strict local maximum is considered,
which means that f (x) > f(y)). Often a local maximum is found by
the study of *stationary points. See turning point.

maximum likelihood estimation The procedure whereby the value
of an *estimator of a parameter is chosen to maximize the
likelihood. Maximum likelihood estimators are usually *consistent
and e�cient (see e�ciency), though not always *unbiased. The
estimates are usually obtained by di�erentiating the logarithm of
the *likelihood function with respect to θ, equating the erivative to
zero, and solving the resulting equation to determine any extremum
and selecting the maximum.

An iterative solution may be needed. The maximum likelihood
estimator of the mean μ of a normal distribution is unbiased and is
the sample mean x, but the maximum likelihood estimator of σ2 is
biased and must be multiplied by n/(n – 1) to produce an unbiased
estimator.



maximal

maximum modulus theorem If the *holomorphic function f (z) is
not constant on an *open *connected set, then its *modulus |f (z)|
does not attain a *maximum value on the set.

Maxwell, James Clerk (1831 – 79) Scottish mathematical physicist
who, in his A Dynamical Theory of the Electromagnetic Field (1865),
�rst presented his famous �eld equations (see Maxwell’s equations),
to appear later in the form described below in his Treatise on
Electricity and Magnetism (1873). Maxwell was also one of the
founders of statistical mechanics and in 1860 published his
distribution law. Such work suggested a statistical interpretation of
thermodynamics.

Maxwell’s equations *Di�erential equations relating the magnetic
�eld strength (H), the electric displacement(D), the magnetic �ux
density (B), the electric �eld strength (E), and the current density
(j) at any point in a region containing a varying electromagnetic
�eld:



where t is the time and q the volume charge density.

mean 1. The arithmetic mean or common average of a set of
observations is their sum divided by the total number of
observations. A weighted mean is one in which each observation xi is
given a weight wi and is de�ned as

In a *frequency table, if xi occurs � times the ordinary mean is
obtainable by putting wi= �, whence

It is a measure of *location.
2. The geometric mean of n observations is the n th root of their
product. For two observations the geometric mean is the square root
of their product and is sometimes called their mean proportional.
3. The harmonic mean is the reciprocal of the arithmetic mean of the
reciprocals of the observations. It is not widely used in statistics.
4. The arithmetic-geometric mean of two positive numbers a and b is
the common limit of the sequences a1, a2,… and b1; b2,… formed as
follows:

a1 = ½(a+b), b1 = √(ab)

a2 = ½(a1+b1), b2 = √(a1 b1)

etc.



5. The mean of a *random variable is its *expectation, i.e. its �rst
*moment about the origin. See also arithmetic—geometric mean
inequality; centrality.

mean absolute deviation The *mean of the modulus or magnitude
of the deviation of observations from some measure of centrality,
usually the mean but sometimes the median. It is a measure of
*dispersion. If x1, x2,…, xn have mean X then the mean absolute
deviation about the mean is

If X is a random variable, the mean absolute deviation is the �rst
absolute moment about the chosen measure of centrality. Thus if X
is continuous with *frequency function f (x) the mean absolute
deviation about the median m is

mean axis See ellipsoid.

mean deviation For a distribution or sample the mean deviation
about the mean (�rst *moment about the mean) is identically zero,
but unless the mean and median coincide the mean deviation about
the median is not zero. See mean absolute deviation.

mean proportional See mean.

mean squared error The expected value (see estimation) of the
square of the di�erence between an *estimator T and the true
parameter value θ. For an *unbiased estimator it is equal to the
variance of T. For a biased estimator the mean squared error is the
sum of the variance and the square of the bias. See estimation.

mean square deviation The second *moment about a point a is the
mean square deviation about that point. In statistics, the mean



square deviation about the mean is of particular interest. For a set of
n observations xi, the mean square deviation about the mean × (i.e.
the *variance) is less than the mean square deviation about any
other point.

mean value (of a function) For a *function f (x), the value

where f (x) is de�ned on the real *interval [a, b]. In general, if f is a
function with domain D and m is a *measure, the mean value of f is

mean-value theorem The theorem that if a *function f (x) is
*continuous for a ≤x ≤b and f ′(x) exists for a < × < b, then
there exists some value of x between a and b for which

The second (or extended) mean-value theorem states that i� (x) and f′
(x) are continuous for a ≤x ≤b, and f″(x) exists for a < × < b,
then

where a < x2< b. The mean-value theorem for integrals states that
there exists some value of x (e, say) between a and b for which



See continuous function.

measurable function A *function f with *domain D that is a
measurable set (see measure) contained in a space in which an outer
measure is de�ned, and *range R contained in a *topological space,
such that for every *open set A in R, its preimage f-1(A) is
measurable. In particular, if �s a �nite real-valued function it is
measurable if the set {x:a < f (x) < b} is measurable for arbitrary a
< b.

measure A property, akin to area or volume, associated with *sets.
For a collection of *subsets A1, A2,…, a measure μ is a set function
associating a non-negative real number (or +oo) with each subset,
such that
(1) μ(Ø) = 0
(2) If A1 ∩ A2 = Ø, then
μ(A1 ∪ A2) = μ(A1) + μ(A2)

(3) μ(A1 U A2 U A3…)
= μ(A1) + μ(A2) + μ(A3) +…

where the Ai are disjoint. A set which has measure is called
measurable. Various types of measure may be de�ned, the most
important being Lebesgue measure de�ned in Euclidean space.
Measure theory is important in the theory of integration and
probability.

The theory of measure is complicated by the existence of non-
measurable sets. They can be constructed only indirectly using the
*axiom of choice. Examples are subsets An, n≥1, of the interval [0,
1] which are disjoint and whose union is the whole of [0, 1] but, by
their construction, if they were measurable would have to have the
same measure. It is then straightforward to obtain the contradiction
that 0 = ∞, and so the sets An cannot be measurable. The subsets
of three-dimensional space involved in the *Banach-Tarski paradox
are necessarily non-measurable.

See Lebesgue integral.



measurement The assignment of a number to an object or
observation according to some *scale of measurement.

measures of dispersion See dispersion.

measures of location See location.

mechanical advantage Of a *machine, the ratio of the force
exerted by the machine to the force exerted on the machine, i.e. the
ratio of load to e�ort. It expressesthe ability of an available force to
overcome a resisting force: if an e�ort E balances a load W then the
mechanical advantage is W/E. For a simple machine, such as a lever
or pulley system, mechanical advantage is used as an indicator of
e�ectiveness.

mechanics The study of the behaviour of systems under the action
of *forces, i.e. the study of *motion and *equilibrium. Classical or
Newtonian mechanics is concerned with systems that can be
adequately described by *Newton’s laws of motion. When speeds
approach the speed of light then the principles of *relativity must be
taken into account. Such systems are the subject of *relativistic
mechanics: the equations reduce to those of classical mechanics for
speeds which are very much less than that of light. The behaviour of
systems of extremely small particles – atoms, molecules, nuclei, etc.
– cannot be described by Newton’s laws alone but requires the
principles of *quantum mechanics, primarily that certain quantities
such as energy can change only in discrete steps, and not
continuously. These systems can be relativistic in nature. When
there are a large number of particles in a system, the equations of
motion are treated on a statistical basis rather than by considering
individual particles. These systems are the subject of statistical
mechanics.

median (midline) 1. A line joining the vertex of a triangle to the
mid-point of the opposite side. A triangle has three medians, which
intersect at a single point (called the centroid).



2. The line joining the mid-points of the two nonparallel sides of a
trapezium.
3. A measure of *centrality or location. For a *random variable with
*distribution function F (x) the median is the value m such that
Pr(X≤m) = F(m) = 0.5. It equals the 50th percentile. Special
conventions are needed for uniqueness in discrete distributions. For
a sample of n observations arranged in ascending order the median
is the ½(n + 1)th observation if n is odd, and the mean of the ½nth
and (½n + 1)th observations if n is even. See quantiles.

median formula A formula for �nding the length of a *median of a
triangle. If, in a triangle ABC, the side BC has midpoint D, then the
length of the median AD can be calculated from the lengths of the
sides by means of the formula AD2 = ½AB2 + ½AC2 – ¼BC2.

median test A distribution-free test for whether two *populations
have the same *median. A sample is taken from each population,
the median of all values in both samples (the combined sample) is
calculated, and a 2 × 2 table is formed with rows corresponding to
each sample and columns corresponding to numbers of sample
values above and below the median of the combined sample. A
*Fisher’s exact test is performed to test for any di�erence in
proportions above and below the combined median; di�ering
proportions indicate that the populations have di�erent medians.
The test extends readily to more than two samples. See distribution-
free methods.

mediator The perpendicular *bisector of a line segment.

meet See intersection.

mega – See SI units.

member (element) Any of the individual entities belonging to a
*set. The membership relation is denoted by the symbol Є. Thus the
expression x ЄA is read as ‘x is a member of A’(or ‘x is an element of



A’, or ‘x belongs to A’), while the expression x Є A is read as ‘x is
not a member of A’(or ’x is not an element of A’, or ‘x does not
belong to A’).

Menaechmus (�.350 BC) Greek mathematician who is traditionally
supposed to have been the �rst to describe the conic sections.

Menelaus of Alexandria (�. AD 100) Greek mathematician noted
for his Sphaerica (Spheres), which contains the earliest known
theorems of spherical trigonometry, and also the theorem since
known as *Menelaus’ theorem (rediscovered by Giovanni Ceva in
1678). Menelaus is also reported to have written Chords in a Circle
and Elements of Geometry, neither of which has survived.

Menelaus’ theorem In a triangle ABC, L, M, and N are points on
the sides AB, BC, and CA, respectively. The theorem states that the
*necessary and su�cient condition for L, M, and N to be collinear
is:

(AL/LB). (BM/MC). (CN/NA) = – 1

Compare Ceva’s theorem.

Mengoli, Pietro (1626 – 82) Italian mathematician who worked on
in�nite series. In 1650 he established that the harmonic series is
divergent, and that the series formed by the reciprocals of triangular
numbers is convergent.

mensuration The measurement of angles, lengths, areas, or
volumes of geometric �gures.

Mercator’s projection A *projection from a sphere onto a plane,
often used for maps of the earth’s surface. It is obtained by placing a
cylinder around the sphere (for the earth, the axis of the cylinder
lies along the earth’s axis). The projection of a point on the sphere is
obtained by a line drawn through the point from the centre of the
sphere to cut the cylinder. In Mercator’s projection, lines of
longitude are the same distance apart, but lines of latitude get



farther apart farther from the equator. It is named after the Flemish
geographer Gerhardus Mercator (1512 – 94).

Mercator’s series The series *expansion for ln (1 + x). It is named
after the Danish mathematician Nicolaus Mercator (c.1619 – 87),
who published it in 1668. See logarithmic series.

meridian 1. A *great circle on the earth passing through the
geographical poles. The principal meridian is the one through
Greenwich from which longitude is measured.

2. See celestial meridian.

meridian section A *section of a *surface of revolution made by a
plane that contains the axis of revolution. For example, a meridian
section of a paraboloid of revolution is a parabola.

meromorphic function A *function whose only singularities are
*poles. See singular point.

Mersenne, Marin (1588 – 1648) French mathematician and
philosopher noted for his introduction into number theory of
*Mersenne numbers in his Cogitata physico-mathematica (1644,
Physico-Mathematical Thoughts).

Mersenne numbers Numbers Mn of the form 2n – 1 where n is a
natural number. Much e�ort has gone into �nding Mersenne primes –
those Mersenne numbers that are prime; Mersenne’s own guess as to
which Mn are prime with n ≤ 257 was incorrect. It is known that
for Mn= 2n– 1 to be prime the number n must itself be prime, but
not every prime p leads to a Mersenne prime Mp (e.g. M11 = 211 – 1
= 23 × 89). After the �rst few values, the primes p leading to
Mersenne primes Mp start to occur very infrequently and show no
discernible pattern. At present (2008) there are 44 known Mersenne
primes with values of p ranging from 2 to 32 582 657. Every
Mersenne prime is associated with an even perfect number, and vice
versa. See perfect number.

mesokurtic See kurtosis.



m-estimator An *estimator that behaves like an optimum estimator
when the assumptions for that estimator hold, and gives estimates
which are almost as e�cient when there is some breakdown in
assumptions, is said to be robust. Robust estimators that give
*maximum likelihood estimations when they are optimum, and are
little in�uenced by departures from requirements for optimality, are
called m-estimators. Typically, they reduce or eliminate the in�uence
of *outliers. See also robustness.

metalanguage When we use a language ML to discuss a language
OL, then ML is called the metalanguage and OL the object language.
An OL is to be thought of as a *formal language, and quotation
marks are used to indicate that the expressions of a language are
under consideration independently of anything that the expressions
may stand for. An ML is used to talk about the world, including
expressions. An OL may be, but need not be, di�erent from the ML;
we can use English as a metalanguage to talk about either German
or English as an object language. For example, to say that ‘Arthur’ is
a word is to say something about an English word using English as
the metalanguage, and not anything about the person Arthur.

metamathematics (metalogic) See proof theory.

metatheorem A *theorem in the *metalanguage about a *formal
system, rather than atheorem of a formal system. For example, ‘~~p
⊃ p’is a theorem of the *propositional calculus, while the
completeness theorem for the propositional calculus is a
metatheorem proved in the metalanguage.

method of false position See false position (rule of).

method of least squares See least squares.

method of moments See moments, method of.

metre Symbol: m. The *SI unit of length, equal to the length of the
path travelled by light in vacuum during a time interval of 1/299
792 458 of a second. The original unit was de�ned by the Paris



Academy of Sciences in 1791 as one ten-millionth of the length of
the quadrant of the earth’s meridian that passes through Dunkirk.
This de�nition was replaced in 1927 by one based on the length of a
‘standard’ platinum-iridium bar, and in 1963 it was rede�ned in
terms of the wavelength of an electronic transition in the krypton-86
atom. The present de�nition dates from 1983.

metric (distance function) A measure of distance between points
that can be used to form a *metric space.

metric space A set of points is a metric space if there is a *metric d
which gives to any pair of points x and y a non-negative number d
(x, y), their distance (or separation), and is such that

(1) d (x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x);and

(3) d(x, y) + d(y, z)≥d(x, z) for any points x, y, and z of the set.
This last condition is known as the triangle inequality.

A Cauchy sequence or regular sequence is a set of points x1, x2,… of
a metric space such that for any ε > 0 there is an integer N such
that d(xi, xj) < ε for all i, j≥N. A metric space is complete if every
Cauchy sequence converges to a point of the space. For example,
with the metric d(x, y) ≡ |x – y|, the space of all real numbers is
complete, but the space of all rational numbers is not. Examples of
metric spaces are spaces of functions such as L2( ), which consists of
square-integrable real-valued functions f (i.e. such that  f (x)2 dx is
�nite); the metric d is de�ned by

See Euclidean space; Riemannian geometry; topological space.

metric system A system of units based on the decimal *number
system. First suggested in 1585 by Simon Stevin, it later found a
champion in Lagrange, and was formally adopted in 1795 when



French laws gave basic de�nitions for various metric units,
including the metre, litre, and gram. During the �rst quarter of the
19th century the metric system was adopted in most European
countries. The UK, however, persisted with its own *imperial units
until 1963, when the yard was formally de�ned in terms of the
metre. Since then there has been in the UK a gradual change to
themetricsystem. See also m.k.s. units; SI units.

metric ton See tonne.

micro – See SI units.

micron A former name for the micrometre (10 – 6 metre).

midline See median.

mid-point See bisect.

mid-point theorem If a line joins the midpoints of two sides of a
triangle, then it is parallel to the third side, and is half its length.
The *converse is also true. See also intercept theorem.

mil An *imperial unit of length, equal to one-thousandth of an inch.
This unit, which was used in engineering, is also called a thou. 1 mil
= 2.54 × 10 – 5 metre.

mile A *British unit of length equal to 1760 yards. This unit is also
called the statute mile. 1 mile = 1.609 344 kilometres. See also
nautical mile.

Millennium Prize problems A set of seven research problems
chosen by the Clay Mathematics Institute and announced in 2000. A
signi�cant prize would be awarded for the solution of any of them.
The announcement in 2000 was in�uenced by the fact that David
*Hilbert had posed his famous set of 23 problems in 1900. The titles
given to the seven problems are:
(1)P versus NP;
(2)the Hodge conjecture;



(3)the Poincaré conjecture;
(4)the Riemann hypothesis;
(5)Yang-Mills existence and mass gap;
(6)Navier-Stokes existence and smoothness;
(7)the Birch and Swinnerton-Dyer conjecture.
The third problem was solved by Grigori Perelman in 2004. See NP
problem; Poincaré conjecture; Riemann hypothesis; Navier-Stokes
equations.

milli – See SI units.

millimetre of mercury Symbol: mmHg. A *metric unit of pressure,
equal to the pressure that will support a column of mercury (density
13 595. 1 kgm-3) 1 millimetre high under the standard acceleration
of free fall. 1 millimetre of mercury = 133.322 pascals.

million One thousand thousand (106).

min Abbreviation for *minimum.

minimal See maximal.

minimal polynomial For an element a of a *ring R, its minimal
polynomial over a *�eld F contained in R is the *monic polynomial
m(x) of least degree such that m(a) = 0. For example, the minimal
polynomial of √2 over the *rational numbers is x2 – 2. The minimal
polynomial of a square *matrix A is the polynomial of least degree
such that m(A) = O, where O is the *zero matrix. For example, if A
is a 2 × 2 matrix and A is neither a multiple of the *identity matrix
I nor the zero matrix, then its minimal polynomial is x2 – ax + b,
where a = trace(A) and b = det(A). (One can easily check that A2 –
aA + bl = O.) If A is a multiple of the identity, say A = kI, then its
minimal polynomial is x – k. The minimal polynomial of a matrix
divides the *characteristic polynomial.



minimal surface A surface on which the mean *curvature vanishes,
i.e. the principal curvatures are equal but of opposite sign. Minimal
surfaces are well illustrated by soap bubbles, and are con�gurations
of least energy (see calculus of variations). Computer graphics have
enabled the discovery of many new examples. See catenoid.

minimax principle (A. Wald, 1939) In *decision theory, the rule
that one minimizes the maximum risk in making a wrong decision.
It is generally regarded as undue pessimism.

minimax theorem See game theory.

minimum (plural minima) Least possible. The minimum value of a
function is the least value that it attains. A point x is a local
minimum of a function f if f (x) ≤ f (y) for all points y in a
neighbourhood of x (sometimes a strict local minimum is considered;
then f (x) < f (y)). Often a local minimum is found by the study of
*stationary points. See turning point.

Minkowski, Hermann (1864 – 1909) Russian-German
mathematician best remembered for his Raum und Zeit (1907, Space
and Time) in which he argued for the need to think in terms of a
four-dimensional spacetime continuum. He also made important
contributions to number theory.

Minkowski universe See spacetime.

minor See cofactor.

minor arc See arc.

minor axis The shortest diameter of an *ellipse or *ellipsoid.

minor segment See segment.

minuend The quantity from which another quantity is subtracted in
�nding a di�erence. See subtraction.

minus sign 1. The sign – used to denote a *negative number, as in –
7. It �rst occurs in a book by Johannes Widmann in 1489. More



generally it is the sign used to denote the *additive inverse of an
element a, as – a.

2. The sign – denoting *subtraction, as in 5 – 3. It was �rst used in
this sense by Henricus Grammateus in 1518. See also plus sign;
plus/minus sign.

minute 1. Symbol:′. A unit of angle equal to 1/60 of a degree. See
angular measure. 2. A unit of time equal to 60 seconds.

minute of arc See degree of arc.

missing-plot techniques Techniques for simplifying the *analysis
of variance of designed experiments when some planned
observations are lost, e.g. by accident or failure of equipment.

mixed decimal See decimal.

mixed fraction A fraction consisting of an integer together with a
proper fraction, for example 1½.

mixed strategy See game theory.

mixed surd See surd.

mixed tensor See tensor.

m.k.s. units A system of units based on the metre, kilogram, and
second. In its extended form, them.k.s.A. or Giorgi system (after
Giovanni Giorgi (1871 – 1950)), the ampere was introduced; this
eventually became the SI system (see SI units) now widely used for
scienti�c purposes.

ml A *metric unit of capacity or volume equal to 1 millilitre (of
which it is a contracted form). This unit is used for some
pharmaceutical purposes, but for scienti�c work the cubic
centimetre is preferred. See litre.

Mobius, August Ferdinand (1790 – 1868) German mathematician
noted for his work in geometry and topology, in which latter



discipline he �rst described the one sided surface since known as the
*Möbius strip.

Möbius function The *function μ(n) de�ned for each positive
integer as follows:

Thus μ(1) = 1, μ(2) = – 1, μ(4) = 0; μ(6) = 1. One of the most
important properties of this function is that it is *multiplicative.

Möbius inversion formula If f (n) is a function de�ned on the
positive integers and g(n) is de�ned by

where the sum is over all the positive *divisors d of n,then

where μ(n) is the *Möbius function.

Möbius strip (Möbius band) A one-sided surface that can be
formed by taking a strip of paper, giving it a half-twist, and sticking
the ends together.

Möbius strip



Möbius transformation See linear transformation.

mod See modulus.

modal class The class (not always unique) that has the greatest
frequency in classi�ed data. See class intervals; mode.

modal logic The *logic of necessity and possibility. Systems of
modal logic are constructed by taking the notion of strict
implication as primitive, or by using the modal operators ‘ ’ (or ‘L’)
and ‘ ’ (or ‘M’). A and A are to be read as ‘It is necessarily the
case that A’ and ‘It is possibly the case that A’, respectively. Only ‘ ’
need be taken as primitive, ‘ ’ being de�nable in terms of ‘ ’
through the de�nition ‘ A’ is equivalent to and replaceable by ‘~
~A’. Also, the notions of strict implication and necessity are interde-
�nable: A ⇒ B is equivalent to and replaceable by  (A ⊃ B). Modal
logics are intensional in that the truth value of a w� A does not
determine the truth value of A.

As an example of a modal system, consider S5, which is the
system that contains the axioms and rules of inference of the
*propositional calculus together with the axioms:

(1) A ⊃ A;
(2)  (A ⊃ B) ⊃ ( A ⊃ B); and
(3) A ⊃ A.

In addition, S5 has a rule of inference: if  A then  A (see
theorem). In order to interpret S5 we need to state the conditions
under which a w� of the form A is to be assigned the truth value
‘True’. We can do this through the clause ‘  A is true if and only if A
is true in all possible worlds’. This clause, together with the
de�nition of , leads to: ‘ A is true if and only if A is true in some
possible world’.

mode A measure of centrality or *location. For a *random variable
X, the modes are the values of X corresponding to any maxima of
the *frequency function; thus a distribution may have more than



one mode. For a sample, the mode is the observation with the
greatest *frequency, or for *grouped data the class with the greatest
frequency. Again, there may be more than one mode. The term
bimodal is used for a distribution or sample with two modes. See
bimodal distribution.

model 1. (of a set of w�s) An *Interpretation I. (of a *set of *w�s
such that each member of the set is true in I.

2. (of a formal system) An *interpretation.

3. (mathematical) Any system of de�nitions, assumptions, and
equations set up to discuss particular natural phenomena. Thus,
Newtonian mechanics is a mathematical model of the motion and
equilibrium of physical bodies.

A model which incorporates random elements or processes is
called a stochastic model; otherwise it is said to be a deterministic
model.

model theory The study of the *interpretations (models) of *formal
systems. Of particular importance in model theory are the notions of
logical consequence, validity, completeness, and soundness. See
logic.

modular arithmetic See congruence modulo n.

module An *Abelian group, with operation written as addition,
whose elements can be ‘multiplied’ by the elements of a *ring R.
There are two closely related kinds of module.

A left R-module is a set M that forms an Abelian group with respect
to an operation + such that each element x in M can be combined
with any element a in R to form another element ax in M. This ‘left
multiplication’ by ring elements has to satisfy each of the following
conditions:

(1) a(x + y) = ax + ay, for a in R and x and y in M;
(2) (a + b)x = ax + bx, for a and b in R and x in M;



(3) (ab)x = a(bx).
If the ring R has a (multiplicative) identity 1 and if it satis�es
(4) 1 x = x for each x in M
then M is called a unitary left R-module.

A right R-module is similarly an Abelian group M’ with respect to
an operation written as +, together with a way of combining any
element x in M0 with any a in R to give another element, denoted by
xa, in M’. For any a and b in R and x and y in M’ the right
multiplication must satisfy

(1) (x + y)a = xa + ya;
(2) x(a + b) = xa + xb;
(3) x(ab) = (xa)b.
Again, if R has an identity 1 and if it satis�es
(4) x 1 = x for each x in M’
then M’ is a unitary right R-module.

A *vector space over a �eld F is an F-module (both left and right)
since the axioms for a vector space are the same as those for a
unitary module, except that in the former case the multiplying
numbers come from �eld and not just a ring. Also, any Abelian
group A, written additively, can be regarded as a module over
the integers where, for x in A and n a natural number, nx means x
+ x + ··· x (n summands), (– n)x = (nx), and 0 x is the zero element
of A.

moduli space See gauge theory.

modulo See congruence.

modulus (plural moduli) 1. (absolute value) The magnitude of the
length of a *vector representing a given *complex number. For
example, the modulus of a + i b is √(a2 + b2). If the complex
number is put in the form r (cos θ + i sin θ), then the modulus is r.



The modulus of a complex number a + i b is written using the
notation |a + i b for example, |7 + i24| is √(72 + 242) = 25.
2. (of logarithms) The number by which *logarithms to one base are
multiplied to give logarithms to a di�erent base. The value of the
modulus can be obtained from the formula for change of base. Thus,
in converting logarithms to base a into those to base b,

log b n = log a n. log b a

the multiplying factor, log b a, is called the modulus of base b (the
resulting logarithm) with respect to base a (the original one).

Most frequently, interconversion is between common logarithms
(base 10) and natural logarithms (base e). Thus, natural logarithms
can be converted into common logarithms by multiplying by log10 e
(0.434 294…); this is the modulus of common logarithms with
respect to natural logarithms. Conversely, common logarithms can
be converted into natural logarithms by multiplying by loge 10
(2.302 585…); this is the modulus of natural logarithms with
respect to common logarithms.
3. A number by which another number is divided in a *congruence.
Division by a number n is expressed as ‘modulo n’.
4. See elliptic integral.
5. (elastic modulus) The ratio of stress to strain for a body or
material obeying *Hooke’s law: this is the slope of the linear region
of the stress-strain diagram. Di�erent moduli apply to di�erent
types of strain. These include *Young’s modulus (longitudinal
strain), *bulk modulus (volume strain), and *rigidity modulus
(shear).

modulus sign The symbol | | used to denote the *absolute value of
a number or *vector.

modus ponens Either the rule of *inference that permits us to infer
from A ⊃B and A that B, or an argument that takes this form. See



logic. [Latin: method of a�rming]

modus tollendo ponens Either the rule of *inference that permits us
to infer from A ∨ B and ~A that B, or an argument that takes this
form. [Latin: method of denying and a�rming]

modus tollens Either the rule of *inference that permits us to infer
from A ⊃ B and ~B that ~A, or an argument that takes this form.
[Latin: method of denying]

mole Symbol: mol. The *SI unit of amount of substance, equal to
the amount of substance that contains as many elementary units as
there are atoms in 0.012 kilogram of carbon-12. The elementary
unit must be speci�ed and may be an atom, molecule, ion, radical,
electron, photon, etc., or a speci�ed group of such entities.

molecular sentence See compound sentence.

moment For a *random variable X the r th moment about the origin
is the *expectation of g(X)= Xr, written as E(Xr). The r th moment
about a point a is E(X – a)r. The moments most frequently
encountered in statistics are moments about the origin or moments
about the mean. The r th moment about the mean is often denoted
by μ r. The �rst moment about the origin is the mean and the
second moment about the mean, μ2, is the variance. For bivariate
distributions product moments may also be de�ned. If X and Y are
random variables with means μx and μy, respectively, then

E(x – μx)(Y – μy)

is the *covariance of X and Y, writtenas Cov(X, Y). For a random
sample of size n the k th sample moment about the origin is

and the corresponding moment about the sample mean x̄ is



The k th moment about the sample mean is often denoted by mk.

momenta Plural of momentum.

moment generating function For a *random variable X, the
*expectation of exp (tX), where t is a constant. It is denoted by
M(t)= E[exp(tX)]. If the associated sum or integral is convergent for
some t > 0, the coe�cient of tr /r! is the r th moment about the
origin, E(Xr), of X. This is also the value of the r th derivative of
M(t) at t = 0. In particular, E(X) = M’(0) and Var(X)= M”(0) –
[M’(0)]2. When it exists, the moment generating function
characterizes a distribution uniquely.

For the exponential distribution with parameter λ, if t < λ then

giving the series expansion

where the coe�cient of tr /r! is (r!)/λ r, so that E(Xr) = (r!)/λr .
Inparticular,

and

Var(X) = E(X2) – [E(X)]2



= 2/λ2 – 1/λ2 = 1/λ2

Moment generating functions are also de�ned for *multivariate
distributions. See also characteristic function; probability generating
function.

moment of a couple See couple.

moment of a force (torque) A measure of the turning power of a
*force. For a force F acting at a point P on a body and causing it to
turn about a point O, the moment of the force about O is the *vector
product of the vector (=r) and the force F, i.e. r×F (see diagram).
Its magnitude is |F| |r| sin θ or |F| d; where d is the perpendicular
distance from the turning point O to the line of action of the force.
Its direction is perpendicular to the plane containing O and the line
of action of F

moment of a force

moment of inertia Symbol: I. A rotating body consisting of a
collection of n particles of mass mi(i = 1, 2,…, n), whose
perpendicular distance from the *axis of rotation is ri, has moment
of inertia I about that axis given by



The *angular momentum and *kinetic energy of the body are equal
to Iω and ½Iω2, where ω is the angular velocity about the axis and
ω is its magnitude. In many ways the role of moment of inertia in
rotational motion is similar to that of mass in translational motion;
the distribution of mass does, however, play a major part in
rotation.

Moments of inertia can be calculated about coordinate axes O x,
O y, and O z passing through a point O on the rotational axis, and
are denoted by Ixx, Iyy, and Izz. If the particles comprising the body
have coordinates (xi, yi, zi) these moments of inertia are given by

Ixx = Σmi (yi2+ zi2)

Iyy = Σmi (zi2+ xi2)

Izz = Σmi (xi2 + yi2)

For a continuous mass distribution, these sums will be replaced by
integrals.

There are also additional quantities, known as products of inertia,
given by

Iyz = Σmiyizi

Izx = Σmizixi

Ixy = Σmixiyi

The moment of inertia I about the axis of rotation is then

Ixxl2 + Iyym2 + Izzn2– 2Iyzmn – 2Izxnl – 2Ixylm

where l, m, and n are the direction cosines of the rotational axis
with respect to the coordinate axes (see direction angles). There
always exists a set of axes for which the products of inertia are zero.
These are called the principal axes, and the associated moments Ixx,
Iyy, and Izz are called the principal moments of inertia.



A table listing the moments of inertia of certain bodies is given in
the Appendix. See

moment of inertia

parallel axes theorem; perpendicular axes theorem.

moment of mass The moment of mass of a particle about a point,
line, or plane is the product of the mass of the particle and its
perpendicular distance from the point, line, or plane.

moment of momentum See angular momentum.

moments, method of The estimation of k parameters of a statistical
*distribution by equating the �rst k sample *moments to their
population equivalents and solving the resulting equations.
Although more e�cient methods of estimation are often available,
the method has intuitive appeal and in some situations provides a
relatively simple means of obtaining reasonably simple estimators.
See also plug-in estimator.

momentum (linear momentum) (plural momenta)Symbol: p. The
product of the mass m of a particle and its velocity v. It is a *vector
quantity that acts in the direction of motion.

The momentum of a system of particles, i.e. a body, is the vector
sum of the momenta of the component particles. If a particle is
subject to a force F, there is a change in its momentum, known as



the *impulse of the force. By Newton’s second law of motion the
rate of change of momentum is equal to the force experienced by
the particle:

F = dp/d t = m dv/d t=ma

where a is the acceleration of the particle, and v its velocity, at time
t. See also angular momentum; conservation of momentum.

Monge, Gaspard (1746 – 1818) French mathematician noted for his
Géométrie descriptive (1799) in which he demonstrated the value of
geometry in showing how three-dimensional objects could be
represented accurately on the two-dimensional plane. Instead of
using numerous ad hoc constructions, Monge worked exclusively
from general principles in a rigorous manner. He also contributed to
the development of analytical geometry.

monic polynomial A *polynomial of the form xn + a1xn-1 +… +
an-1x + an, where the coe�cient of the highest-degree term is +1.

mono-alphabetic substitution cipher A *substitution cipher in
which each individual character is replaced by a character (or group
of characters) chosen from a single *alphabet. Compare
polyalphabetic substitution cipher.

monoid A*set M together with a *binary operation ° on it that
satis�es the following two conditions:

(1) the operation is associative: given any three elements a, b, and c
in M,

a ° (b ° c) = (a ° b) ° c

(2) there is an element I in M (the identity element) such that for
any element a in M,

a ° I = I ° a = a



So a monoid is a *semigroup which possesses an identity element.
The set N of natural numbers, with the operation multiplication,

forms a monoid. A more complicated, but still typical, example is
the monoid whose elements are the real *continuous functions f
with domain the interval [0, 1] and range [0, 1] (i.e. 0 ≤ x ≤ 1 and
0 ≤ f (x) ≤ 1). The operation ° here is function composition (i.e. f °
g(x) = f (g(x))) and the identity is the function I, where I(x) = x for
each x in [0, 1].

monomial An algebraic expression with a single term.

monotonic (monotone) Changing always in the same direction. See
monotonic decreasing function; monotonic increasing function.

monotonic decreasing function A *function f with *domain and
*codomain that are sets of real numbers such that the dependent
variable decreases or stays the same as the independent variable
increases. Formally, if for every x1 and x2 such that a≤x1< x2≤b we
have f(x1)≥f(x2), then f is said to be monotonic decreasing on [a, b].
If f (x1) > f (x2), then f is said to be strictly monotonic decreasing on
[a, b]. If f(x) is di�erentiable and f′(x)≥0 in [a, b], then f(x) is
monotonic decreasing on the interval. If f′(x)>0 then f (x) is strictly
monotonic decreasing on the interval. Compare monotonic
increasing function.

monotonic sequence See decreasing sequence; increasing sequence.

monster group The largest of the sporadic simple groups; it has

246 × 320 × 59 × 76 × 112 × 133 × 17 × 19 × 23 × 29 × 31 ×
41 × 47 × 59 × 71

elements, but it has no nontrivial *normal subgroups. It is closely
related to the group of symmetries of the Leech *lattice, a subset in
24-dimensional Euclidean space.

Monte Carlo methods 1. The solution of a problem by sampling
experiments. For example, to estimate the area of a bounded region



A it might be enclosed by a square of side length a, area a2; n points
are selected at random from inside the square; if r of these fall in the
region A then an estimate of the area of A is ra2/n. The technique is
useful in numerical problems such as evaluation of multiple
integrals.
2. A method used for making inferences or exploring distribution
properties by repeated sampling; it is especially useful when an
analytic solution is di�cult to obtain. For example, to estimate the
probability of the event at least one of four bridge players will hold
more than 6 cards of any one suit when each is dealt a hand of 13 cards
from a well-shu�ed pack, we could obtain a Monte Carlo estimate of
this probability by dealing, say, 1000 such sets of hands and
recording the number of occasions, r, at which the event occurred.
The probability of the event is estimated as p = r/ 1000 or, more
generally, if N samples are used, by p = r/N. It is often possible to
obtain a *con�dence interval that indicates the precision of a Monte
Carlo estimate; this interval may be shortened by increasing N, the
number of samples. Most practical applications are carried out on
computers using random number generators.

mood See syllogism.

Moore-Penrose conditions, Moore-Penrose pseudoinverse See
pseudoinverse.

Mordell’s conjecture The conjecture, made by L.J. Mordell in
1922, that algebraic equations with *genus greater than 1 have only
a �nite number of rational solutions. It was eventually proved by G.
Faltings in 1983.

Morley’s theorem (F. Morley, 1899) If in a triangle ABC, the
adjacent *trisectors of angles B and C meet at P, of angles C and A
meet at Q, and of angles A and B meet at R, then P, Q, and R are the
vertices of an equilateral triangle.



Morley’s theorem The triangle PQR is equliateral.

morphism A *mapping between mathematical objects that
preserves some structure, for example a *homomorphism, a
*homeomorphism, or an *isomorphism. More generally, a morphism
is part of the de�nition of a *category.

Morse theory A theory, �rst introduced by the American
mathematician Marston Morse (1892 – 1977) in the 1920s. It gives
a means by which the topological properties of a manifold M can be
described in terms of the singularities of (almost) any function
de�ned on M. For example, there is an algorithm for calculating the
*homology groups of M in this way. See singularity theory.

mortality rate See death rate.

mortality tables See life tables.

motion A change in the position of a particle or a system of
particles (i.e. a body), as seen by a particular observer. The motion
may be along a straight line or along a curve, and may be periodic
in nature. See also Newton’s laws of motion; equation of motion.

moving average A method of smoothing *time series by replacing
each observation by a (usually weighted) *mean of that observation
and its near neighbours. For example, given a seriesy1,y2,…,yt,…,
with observations equally spaced in time, a possible three-point
moving average would replace ys by ys′= ¼ (ys – 1 + 2ys + ys+1)



for all s ≥ 2. More elaborate weighting systems are often used in
practice. See lowess.

Moxon, Joseph (1627 – 1700) English mathematical lexicographer.
He wrote a number of elementary textbooks on such subjects as
astronomy, geography, and mechanics. Moxon’s best-known work,
however, remains his Mathematicks made Easie: or, a Mathematical
Dictionary Explaining the Terms of Art, and Di�cult Phrases used in
Arithmetick, Geometry, Astronomy, Astrology, and other Mathematical
Sciences (1679), the �rst mathematical dictionary to be published in
English.

Muller, Johann See Regiomontanus.

multinomial An algebraic expression that is a sum of two or more
terms. See also polynomial.

multinomial distribution A generalization of the *binomial
distribution to r (>2) possible outcomes with *probabilities p 1, p 2,
…, pr at each of n trials, where Σ Pi = 1. The probabilities of the
various outcomes are given by the terms of the multinomial
expansion of (p1+ p2+… +pr)n.

multinomial theorem A generalization of the *binomial theorem
for positive integral n which states that (x1 + x2 +… + xr)n may be
expressed as

where the summation is taken over terms with all possible integral
values of a, b, c,…, k between 0 and n, subject to the constraint that
a + b + c +… k = n.

multiple A number that is a product of a given number and an
integer. For example, 6 is a multiple of 2, and 5.6 is a multiple of
1.4. See also common multiple.



multiple-angle formulae Formulae in plane trigonometry that give
trigonometric functions of multiple angles in terms of

functions of the angles, for example

sin 3 x = 3sin x – 4sin3x

cos3 x = 4cos3x – 3cos x

See also double-angle formulae.

multiple comparisons When a number of non-independent
comparisons are made between treatment means (i.e. means for all
units receiving the same treatment) in a designed experiment (see
experimental design), signi�cance tests and interval estimates based
on the *t-or *F-distributions are no longer valid. Similar di�culties
arise if a large number of comparisons are possible and attention is
con�ned to those that look interesting because they appear to
indicate large di�erences. Multiple-comparison tests overcome these
di�culties.

multiple correlation coe�cient In *multiple regression, if

E(y) = β0 + β1x1 + β2 x2+…

and the *least-squares regression estimators of y corresponding to
the observed yi are yi, then the multiple correlation coe�cient is the
product moment *correlation coe�cient between the yi and yi and is
denoted by R. No other linear function of the xi has a higher
correlation with the yi. R2 is sometimes referred to as the coe�cient
of multiple determination.

multiple integral (iterated integral) An integral involving two or
more successive *integrations, in which one variable is integrated at
a time, the others being kept constant. Multiple integration is the
inverse process of successive *partial di�erentiation. A multiple
integral involving two integrations (called a double integral)is
written as



which is the same as

An iterated integral having three integrations is a triple integral. See
also area; volume.

multiple point (k-tuple point) A*singular point on a curve at
which two or more (k) *arcs (or branches) of the curve intersect.
The simplest type involves two arcs (see double point).

multiple regression See regression.

multiple root A repeated *root of an equation. For example, the
cubic equation

x3– 3 x2+ 4 = 0

has factorized form

(x – 2)(x – 2)(x + 1) = 0

The roots are – 1 and 2, and the value 2 appears twice, i.e. it is a
double root.In general, if (x – r)n is a factor of a polynomial equation,
then r is an n-tuple root or root of multiplicity n of the equation.

For any equation f (x)=0 a multiple root is also a root of the �rst
derived equation f′(x) = 0. A double root is a root of the equation
and of the �rst derived equation, but not of the second derived
equation. A triple root is a root of the equation and of the �rst and
second derived equations, but not of the third derived equation. In
general, an n-tuple root is a common root of the equation itself and
of all the derived equations up to the (n – 1)th, but not of the nth
derived equation. Compare simple root.

multiple-valued function (many-valued function) A one-to-many
mapping from one *set to another set. Each element x of the �rst set



can be mapped to more than one element y1,…, yr of the second set.
A multiple-valued function is not a true function but consists of
single-valued branches that are separate functions. If the graph of a
multiple-valued function is drawn, some parallels to the y-axis cut
the resultant curve at more than one point. The circle x2+ y2 = 1
may be regarded as the graph of a multiple-valued function
consisting of two branches:

y = +√(1 – x2) and y = – √ (1 – x2)

See function.

multiplicand The number or term that is multiplied by another (the
multiplier)ina multiplication.

multiplication A mathematical operation in which two numbers
are combined to give a third number (the product). It is denoted by
a × b or a x b,or(forsymbols) by ab. Multiplication of integers can
be regarded as repeated addition: for example, 2 × 3 = 6 is the
integer obtained by adding three 2’s (2 + 2 + 2) . This is the same
as adding two 3’s (3 + 3),ademon-stration of the *commutative
nature of multiplication of numbers. Fractions are multiplied by
multiplying the numerators and denominators separately:

a/b × c/d = ac/bd

For irrational numbers a more formal, set-theoretic de�nition must
be used (see Dedekind cut). Multiplication can be regarded as the
process of multiplying one number (the multiplicand)byanother (the
multiplier), although the result is the same which ever number is
chosen for the multiplicand.

Polynomials are multiplied by using the *distributive law (see also
expansion). *Complex numbers can be multiplied similarly:

(a + ib)(c + id) = ac + iad + ibc + i2 bd

= (ac – bd)+ i(ad + bc)



The concept of multiplication has been extended to other entities,
such as *vectors, *matrices, and sets (see Cartesian product).

multiplication sign The sign x,or . denoting *multiplication. The
cross × appeared in an anonymous article of 1618, was advocated
by William Oughtred in 1631, and eventually became common in
arithmetic. Christopher Clavius used a dot for multiplication in
1583, as did Thomas Harriot in a posthumous work of 1631. The
dot came to be used more often in algebra since it did not resemble
the letter x, but now the usual practice is to indicate multiplication
by writing unknowns side by side, as in ‘xy’.

multiplication table A rectangular table giving the results of
multiplying together pairs of numbers, or combining pairs of
elements in a *group or other *algebraic structure. A multiplication
table for a group is sometimes called a Cayley table after A. Cayley,
who proposed the idea in 1854.

multiplicative function 1. A *function f is multiplicative if f (xy)
= f (x). f(y) for all x and y in its domain. Compare additive
function.

2. An *arithmetic function f is multiplicative if f (mn) = f (m). f(n)
whenever m and n are *coprime. It is completely multiplicative if f
(mn) = f (m). f (n) for every m and n.

multiplicative group A *group where the result of combining a and
b is written as ab and the group identity is denoted by 1. In a *�eld,
the phrase is often used to refer to the group obtained by just
considering the �eld’s nonzero elements with respect to its
operation of multiplication.

multiplicative inverse See inverse.

multiplicity See multiple root.

multiplier The number or term by which another (the multiplicand)
is multiplied in a *multiplication.



multivariate data See data.

multivariate distribution An extension of *bivariate distribution
concepts of joint, marginal, and conditional distributions to more
than two *random variables.

mutually exclusive events See probability.

mutual variation See variation.



N

N A symbol for the set of all natural numbers.

nabla See del.

nadir A point on the *celestial sphere directly below the observer.
The nadir is one of the poles of the horizon. Compare zenith.

nano- See SI units.

Napier, John (1550 – 1617) Scottish mathematician who worked
on trigonometry and methods of computation. In 1614 he published
his Miri�ci logarithmorum canonis descriptio (Description of the
Marvellous Rule of Logarithms) – the �rst tables of logarithms for
aiding calculation. Napier started work on this around 1594. His
method was based on geometric principles and his logarithms could
be obtained from the formula

N = 107(1 – 1/107)L

where L is the logarithm of N (the 107 was used to avoid decimals).
Natural logarithms (to base e) are sometimes called Napierian
logarithms in his honour, although the logarithms invented by
Napier actually had a base close to 1/e. The device known as
Napier’s bones is an early mechanical calculator. *Napier’s analogies
and *Napier’s rules of circular parts are formulae in spherical
trigonometry.

Napier’s analogies Relations between the sides and angles of a
*spherical triangle:



where A, B, and C are the angles and a is the side opposite A, b the
side opposite B, and c the side opposite C. Napier’s analogies are
used in solving oblique spherical triangles.

Napier’s bones See Napier.

Napier’s rules of circular parts A pair of rules used for
remembering the formulae for solving right *spherical triangles.
Suppose the triangle has angles A, B, and C, with C as the right
angle, and sides a, b, and c (a is opposite angle A, etc.). The method
is to omit the right angle and to take the two sides a and b together
with the complements of angles A and B and side c. These are then
arranged on a circle in the order in which they occur in the triangle
(a, 90 ° – B, 9 0 ° – c, 9 0 ° – A, b). Each circular part has two
adjacent parts and two opposite parts on the circle. The rules are:
(1) The sine of a part is equal to the products of the tangents of the
two adjacent parts.
(2) The sine of a part is equal to the products of the cosines of the
two opposite parts.
Applying the two rules to each of the �ve parts generates the ten
formulae required.

Napoleon’s theorem If on the sides of a triangle ABC, equilateral
triangles with sides equal to BC, CA, and AB are drawn outwardly
(see diagram), then O1,O2,and O3, the centres of the triangles
opposite A, B, and C, are the vertices of an equilateral triangle.



Napoleon’s theorem The triangle O1 O2 O3 is equilateral.
If the triangles are drawn inwardly, their centres also form an

equilateral triangle. The origin of the attribution of this theorem to
Napoleon Bonaparte (1769 – 1821) is uncertain. The earliest known
statement of the result is by W. Rutherford in 1825.

nappe Either of the two parts into which a *conical surface is
divided by the vertex.

n-ary relation See relation.

Nash equilibrium (J.F. Nash, 1950) In *game theory if a set of
strategies has the property that no player can bene�t by changing
his or her strategy while the other players keep their strategies
unchanged, then that set of strategies and the corresponding payo�s
are in Nash equilibrium. Nash equilibria exist for all �nite games
with any number of players.

natural deduction A *formal system that uses a large set of rules of
*inference, and permits the deduction of conclusions from premises
rather than from a set of *axioms. As rules of inference and axioms
are closely related, natural deduction systems and logistic systems
share many attributes. The �rst system of rules for natural
deduction was proposed by Gerhard Gentzen in 1934. See also logic.

natural logarithm See logarithm.



natural number See integer.

nautical mile A unit of length used in navigation, originally de�ned
in the UK as the mean length of one *minute of longitude. The value
6082 feet was later adopted. The international nautical mile was
de�ned in 1929 as 1852 metres. 1 international nautical mile =
0.999 363 UK nautical mile.

Navier-Stokes equation Partial di�erential equations that model
the �ow of a �uid such as a liquid or a gas in three-dimensional
space. If v(x, t) is the velocity of the �uid at point x and time t and
p(x, t) is the pressure, then, assuming that the �uid is
incompressible, the Navier – Stokes equations are the three
components of the vector equations

where ρ is the density of the �uid, υ is the viscosity, and f represents
external force; ∇ is the operator *del. The additional equation

∇•v = 0

corresponds to the incompressibility of the �uid. One of the
*Millennium Prize problems is to show that, from a certain wide
class of initial conditions, there are smooth solutions v and p that
are valid throughout space and for all time. The equations are
named after Claude-Louis Marie Henri Navier (1785 – 1836) and
G.G. Stokes.

nearest-neighbour decoding A *decoding method by which an
inadmissable codeword (i.e. one that has probably been corrupted
during transmission) is replaced by the codeword that is closest to it
in *Hamming distance.

necessary condition Statement A is a necessary condition for
statement B if A is true whenever B is true. A is a su�cient condition
for B if B is true whenever A is true. A is a necessary and su�cient



condition for B if A and B are both true (or both false) together. This
is often written as ‘A if and only if B’ or ‘A i� B’.

Thus, for an integer to be divisible by 6 a necessary (but not
su�cient) condition is that the integer be even; a su�cient (but not
necessary) condition is that the integer be divisible by 12; and a
necessary and su�cient condition is that it be even and divisible by
3.

needle problem See Bu�on’s needle problem.

negation A sentence of the form ‘It is not the case that A’, often
symbolized in a formal language as ‘∼A’. In practice, it is not
necessary for the term ‘not’ to occur. Thus, for example, the
negation of x > y is x  y. See not.

negative angle A rotation angle measured from an initial axis in a
clockwise sense.

negative binomial distribution The *distribution of the number of
failures, X, prior to the k th success in a sequence of *Bernoulli
trials. If p is the probability of success and q(= 1 – p) the
probability of failure, then X has frequency function

It has mean kq/p and variance kq/p2. The case k = 1 is a *geometric
distribution. See also binomial distribution.

negative number A real number that is less than zero.

negative series A *series whose terms are all negative real
numbers.

neighbourhood 1. The neighbourhood of a point P is the set of all
points whose distance (see metric space) from P is less than some
arbitrarily chosen distance. For example, the ε-neighbourhood of a
point P is the set of all points whose distance from P is less than ε.



2. In a *topological space X, a neighbourhood of a point x  X is a
subset A of X which contains an open set U such that x  U. See also
Hausdor� metric.

nephroid A plane curve that is the locus of a point on the
circumference of a circle that rolls on the outside of a �xed circle of
twice its radius. It has two *cusps and is an example of an
*epicycloid.

nested multiplication See Horner’s method.

nested sets A family of *sets A is nested if and only if for any two
sets B and C in A, either B is included (see inclusion) in C or C is
included in B. For example, the family of sets A = {{1}, {1, 2}, {1,
2, 3}} constitutes a nest. Such a family of sets is also known as a
chain or tower.

net 1. Remaining after all deductions. Net pro�t, for instance, is the
pro�t after taking away all operating costs. Compare gross.

net of a pyramid.



network analysis of the cheapest routes between towns.

2. The net weight of an object is the weight remaining after
subtracting an allowance (the tare) for the weight of any wrapper,
vessel, vehicle, etc. in which the object is when its weight is
measured. Compare gross.
3. A plane �gure composed of polygons from which, by folding
along certain edges and joining others, a *polyhedron can be
constructed (see diagram).

network See graph.

network analysis A class of procedures for solving optimization
problems used in *operational research; it is especially relevant to
scheduling problems and to routing and capacity problems in
communication. One of the best-known applications is *critical path
analysis. More generally, speci�c problems in network analysis may
be solved by *dynamic programming or by algorithms developed for
particular applications.

In the network shown in the diagram, the nodes represent towns
and the arcs are permissible routes between each. The problem of
interest is to determine the cheapest routes from town A to each of
the towns B, C, D, E, F, and G. The �gures beside each arc indicate
the cost for a journey over that route. Clearly, it is cheaper to go
from A to D via C and F than to go directly.

In this simple example the optimum routes can be determined by
inspection, but for more complex situations with many towns and
routes, algorithms are needed for the solution. One appropriate
algorithm in this case is Dijkstra’s algorithm (E.W. Dijkstra, 1959). If
optimum routes from one town to any number of other towns are all
unique (i.e. if there are no alternatives with the same cost), the
optimum routes may be displayed on a *tree diagram.

The cost associated with routes may be distances or times taken to
traverse routes rather than monetary sums, and are sometimes
referred to as penalties. Another problem amenable to analysis as a



network problem is that where the penalties are maximum altitudes
on each segment of a number of routes over a mountain, and it is
wished to select a route such that the maximum altitude over all
segments is a minimum. This may be relevant to a transport
company in winter, if the probability of passes being blocked by
snow increases with altitude. A similar class of problem is one
where there are load restrictions on each segment, and a trucking
company may wish to identify the route for which the minimum of
all restrictions is as large as possible, so that each truck may carry as
large a load as possible between any two nodes.

In other network analyses there may be a requirement that every
node in a network be visited, and that this is to be done with the
least possible travel (all possible route distances between nodes
being known). This problem is commonly called the *travelling
salesman problem. The complementary problem, where every arc
between nodes must be traversed with the total distance covered a
minimum, is sometimes called the *Chinese postman problem. Many
problems in the economic design of pipelines or other distribution
systems are amenable to network analysis.

Neumann function A *Bessel function of the second kind. Named
after the German mathematician Karl Gottfried Neumann (1832 –
1925).

Newton, Sir Isaac (1642 – 1727) English mathematician and
physicist who, in work beginning in the late 1660s, developed for
the �rst time the principles and methods of both the di�erential and
integral calculus. Although some of his results were shown to
friends and reported in letters, nothing of any substance was
published by Newton before his De quad-ratura curvarum (On the
Quadrature of Curves) appeared as an appendix to his Opticks
(1704). Fuller details were published in his Analysis per quantitatum
series… (1711, Analysis by Means of Various Series) and the
posthumously published The Method of Fluxions and In�nite Series
(1736). Other important mathematical work by Newton includes his
discovery of the binomial theorem, announced in letters written in



1676, his discovery of 72 of the possible 78 cubic curves, published
in his Enumeratio linearum tertii ordinis (1704, Enumeration of Lines
of the Third Order), and his work in algebra collected in his
Arithmetica universalis (1707). In his major work, Philosophiae
naturalis principia mathematica (1687, The Mathematical Principles
of Natural Philosophy, known as Principia), Newton formulated his
laws of motion, derived his law of universal gravitation, and
presented a system of mechanics capable of precise and accurate
descriptions of the motions of all bodies, whether celestial or
terrestrial.

newton Symbol: N. The *SI unit of force, equal to the force required
to impart to a mass of 1 kilogram an acceleration of 1 metre per
second per second. 1newton = 105 dynes = 7.233 poundals. [After
Sir Isaac Newton]

Newton – Cotes rule A rule for *numerical integration which
approximates  by a formula  obtained by integrating a
polynomial that takes the same values as f at equally spaced points
x1 < x2 < ··· < xn in the interval [a, b], where xi+1 – xi = h. The
rule is closed if and x1 = a and xn = b, and open if x1 = a + h and
xn = b – h. Examples of Newton – Cotes rules are *Newton’s rule,
*Simpson’s rule, and the *trapezoidal rule.

Newton – Gregory interpolation See Gregory – Newton
interpolation.

Newtonian frame of reference See frame of reference.

Newtonian mechanics See classical mechanics.

Newton – Raphson method See Newton’s method.

Newton’s identities (I. Newton, 1707) A set of *identities relating
sums of powers of the roots of a *polynomial equation to the
coe�cients of the polynomial. Suppose that the equation is

an xn + an-1 xn-1 + ···+a1 × + a0 = 0



If s1 is the sum of the roots of the equation, s2 is the sum of the
squares of the roots, and in general sk is the sum of the k th powers
of the roots, then Newton’s identities are

where ai is taken to be 0 if i<0.

Newton’s law of gravitation See gravitation.

Newton’s law of restitution The relative velocities before and after
the impact of two bodies, resolved along the common normal at the
point of contact, are in the ratio 1: – e, where e is the coe�cient of
restitution and 0  e  1. For a perfectly elastic collision, e = 1.
When e = 0, the collision is perfectly inelastic and the bodies
coalesce.

If the resolved components of velocity along the common normal
of the two bodies are v1, υ1 and v2, υ2 before and after impact, the
law states that

υ2 – υ1 = – e(u2 – u1)

This empirical law was stated at the same time as Newton’s laws of
motion.

Newton’s laws of motion Three fundamental laws that are the
basis of *classical mechanics as expounded in Newton’s Principia
(1687):
(1) Every particle remains at rest or moves with uniform motion
(i.e. at constant speed) in a straight line unless or until acted upon
by an external force.
(2) The rate of change of momentum is proportional to the applied
force, and takes place in the direction in which the force is applied.



(3) For every force (the action) acting on a particle there is a
corresponding force (the reaction) of the same magnitude exerted by
the particle in the opposite direction.
The �rst law is concerned with *inertia, and the second and third
are concerned with *force. Since the momentum p of a particle is
the product of its mass m and velocity v, the second law can be
restated thus – the acceleration a of a particle is directly
proportional to the applied force F:

F = dp/d t = m dv/d t = m a

The third law is known as the principle of action and reaction. The
laws can be extended to systems of particles, and to continuous
bodies by the assumption
that such bodies are collections of particles.

Newton’s laws have proved valid in most circumstances but are
limited to cases in which speeds are small compared with the speed
of light (3 × 108 ms – 1) and to systems that do not involve atomic
or nuclear particles. See also mechanics.
Newton’s method (Newton – Raphson method) (J. Raphson,
1690) A method for solving an equation in one variable, f(x) = 0,
by carrying out the iteration

where x0 is a �rst approximation to the root (see diagram).
Convergence can be slowed or prevented if x0 is not chosen
appropriately, or if the desired root α is a multiple root (i.e. f′
(α)=0).

For a system of n equations with n variables, f i (x1, x2,…, xn) =
0, the Newton – Raphson iterative formula in matrix notation is



Xm+1= Xm– J – 1(Xm)f(Xm)

where m = 0, 1, 2,…. Here Xm and f(Xm) are n×1 column vectors,
J-1 (Xm) is the inverse of the *Jacobian matrix evaluated at Xm, and
x0 is the column vector of the initial values of x1, x2,…, xn.

Newton’s method Newton – Raphson iteration to solve f (x) = 0.

Newton’s rule A rule for *numerical integration. The integration of
a real *function y = f (x) from a to b is approximated by �rst
dividing the interval [a, b] into 3 n equal parts at points x1, x2,…,
x3n – 1 lying between a and b. The ordinates at these points are y1,
y2,…, y3n – 1. The width of each strip so formed is h = (b – a)/3n.
An approximate value of the area under the curve of the function
between a and b is then given by

A = ⅜ h(ya + 3 y1 + 3 y2 + 2 y3 + 3 y4 + 3 y5 + 2 y6 +···+
yb)

The rule is sometimes known as Newton’s three-eighths rule. See also
Simpson’s rule; trapezoidal rule.

Neyman – Pearson lemma (J. Neyman and E.S. Pearson, 1937) A
theorem giving the best critical region of size α for testing a simple



null hypothesis H0 against a simple alternative H1, based on the
*likelihood ratio. See hypothesis testing.

n-gon A *polygon with n sides.

nilpotent Describing a *matrix, A, that vanishes when raised to
some power, i.e. An = 0 for some value of n.

Nine Chapters on the Mathematical Art See: Jiuzhang suanshu.

nine-point circle (C.J. Brianchon and J.V. Poncelet, 1820; K.W.
Feuerbach 1822) A circle associated with a triangle and passing
through nine points:
(1) the mid-points of the three sides;
(2) the feet of the three altitudes;
(3) the mid-points of the three line segments between the vertices
and the ortho-centre.
Feuerbach also proved that it touches the *incircle and the three
*excircles of the triangle.

nine-point circle

node 1. (crunode) A *singular point at which a curve intersects
itself such that there are two di�erent *tangents at the point. A node
is a special case of a *double point in which the tangents are not
coincident.
2. See graph.



3. See approximation theory.
4. See decision tree.

Noether, Amalie (Emmy) (1883 – 1935) German mathematician
who developed the study of *ideals in abstract *rings, and was
largely responsible for directing algebra away from detailed
arithmetical calculations to the study of structure in *axiom
systems. As a woman she found few willing to accept her as either
pupil or colleague. It took all of * Hubert’s in�uence to get her
appointed to a position (honorary until 1922) at Göttingen.

noise Alternative name for random disturbance or error, commonly
used in communications engineering.

nominal data Data that cannot be ordered, for example the eye
colours of ten children, or the marital status of groups of individuals
as single, married, widowed, or divorced. Compare ordinal data.

nominal rate (of interest) See interest.

nomogram (alignment chart) A chart usually consisting of three or
more parallel lines, each graduated with a scale. The scales are
chosen so that relationships between three (or more) variables can
be read by placing a straightedge across the chart.

nonagon (enneagon) A *polygon that has nine interior angles (and
nine sides).

nonconstructive Describing a proof or de�nition that fails to be
*constructive. Normally at some stage in a nonconstructive proof,
reference will be made to a set or number with certain properties
without giving an *e�ective procedure for constructing the set or
number. For example, the *axiom of choice permits the formation of
a set consisting of single elements taken from an in�nite number of
sets without indicating how such a choice could be made. Thus
proofs relying on the axiom of choice are often held to be
nonconstructive.



nondenumerable Describing an in�nite set that cannot be put into
a *one-to-one correspondence with the set of positive integers. An
example of such a set is the set of *real numbers. See countable;
diagonal argument.

nondeterministic polynomial time See NP problem.

non-Euclidean geometry Any of various forms of *geometry based
on a set of *axioms other than those of *Euclidean geometry. In
particular, non-Euclidean geometry does not depend on the �fth
(parallel) postulate of Euclid. This postulate is often stated in the
form: for a given point outside a given line, only one line can be
drawn through the point parallel to the given line. To many
mathematicians, this seemed less fundamental than the other
axioms, and numerous attempts were made to derive it from the
others (see Saccheri; Lambert). In the 19th century, three
mathematicians independently came to the conclusion that the
postulate could not be proved, and that quite self-consistent
geometries could be constructed using alternative axioms.

Lobachevsky, between 1826 and 1829, developed a version of
geometry based on the axiom that more than one line can be drawn
through the point not meeting the given line. Bolyai, around 1829,
also developed similar ideas, based on the postulate that an in�nite
number of lines can be drawn through the point. Gauss had come to
similar conclusions earlier, although he did not publish his results.
An alternative form of non-Euclidean geometry was put forward by
Riemann in the 1850s (see Riemannian geometry). Riemann’s
geometry involves the postulate that no line can be drawn through
the point parallel to the given line.

The geometry of Riemann (sometimes known as elliptic geometry)
is one in which the ‘plane’ can be thought of as the surface of a
sphere, with lines as great circles on the sphere. The angle sum of a
‘plane’ triangle (i.e. a spherical triangle) is greater than 180°. In the
geometry of Lobachevsky and Bolyai (sometimes called hyperbolic
geometry), the opposite is the case – the angle sum of a triangle is
less than 180°. A model for this type of geometry is the



pseudosphere (see tractrix). Euclidean geometry, in which the angle
sum of a triangle is 180°, can be regarded as intermediate between
the two. See also relativity.

nonlinear Describing an equation, expression etc. that is not of the
�rst degree. For example, the equation y = x2 is a nonlinear
equation in the variables x and y.

nonlinear dynamics The study of dynamical systems for which the
underlying equations are nonlinear. See chaos.

non-negative number A real number which is greater than or equal
to zero.

nonparametric methods Inference procedures in which no
assumptions are made about any population parameter. The term is
often taken to be synonymous with *distribution-free methods, and
is widely used in this way, but it is better restricted to the above
de�nition. With this usage, if we have random samples from two
populations with unspeci�ed continuous cumulative distribution
functions F (x) and G (y), then a test of the hypothesis G(x) = F(x)
for all x against the alternative G(x) < F(x) for all x would be both
distribution-free and non-parametric; but a test of the hypothesis G
(x)=F (x) against the alternative G(x) = F(x – θ),where θ is some
speci�ed nonzero parameter, would be distribution-free but it would
not be nonparametric because it involves a parameter θ.

The distinction is more one of logic than one of practical
importance, so the term ‘nonparametric’ is commonly used some-
what loosely when ‘distribution-free’ would be logically more
appropriate.

See also coe�cient of concordance; correlation coe�cient;
Friedman’s test; Jonck-heere – Terpstra test; Kolmogorov – Smirnov
tests; Kruskal – Wallis test; median test; Page test; sign test;
Wilcoxon rank sum test; Wilcoxon signed rank test.

nonperiodic decimal See decimal.

nonperiodic tiling See periodic tiling.



nonrepeating decimal See decimal.

nonsingular matrix A square *matrix whose *determinant is not
equal to zero; a matrix that has an inverse.

nonstandard analysis A theory of the foundations of analysis,
invented by Abraham Robinson and based on the idea of an
*in�nitesimal. The proof of the existence of in�nitesimals is
technical, but it leads to an intuitive theory based on the properties
of an extended set * of real numbers.

nonterminating decimal See decimal.

nonterminating fraction An in�nite *continued fraction.

norm A generalization to *vector spaces of the *modulus (or
*absolute value) of a complex number. The purpose of a norm is to
give a single number that indicates the size of an element in a
vector space.
1. (of a vector space) A mapping that assigns a real number to every
element in a *vector space. The norm of a vector v is denoted by
||v||, and is required to have the following properties:

(1) ||v|| ≥ 0 for all v and ||v|| = 0 only for v = 0.

(2) If n is a number, ||nv|| = |n| ||v||, where |n| denotes the
absolute value of n. This applies to all v in the vector space and all n
in the �eld.

(3) ||u + v|| ≤||u|| + ||v|| for all u and v in the space. This is
known as the triangle inequality.

These axioms give a general de�nition for a norm of a vector space.
A vector space with a norm is a normed space. A norm is used to
de�ne a *metric, i.e.

d(x, y) = ||x – y||



The Euclidean norm, in particular, is de�ned by ||v|| √ (v . v), where
v . v is a scalar product and the positive value of the square root is
taken. This gives a length in n-dimensional Euclidean space. Any
*inner product space can be given a norm in this way.

2. (of a matrix) A norm on the *vector space of matrices. One
commonly used norm is the Frobenius (or Euclidean) norm, de�ned
as the positive square root of the*trace of A*A, where A is the given
matrix and A* is its *Hermitian conjugate (the Frobenius norm is
just the square root of the sum of squares of moduli of elements of
the matrix). The general class of subordinate (or operator) matrix
norms is de�ned by

where on the right-hand side of the equation ||•||denotes a given
vector norm.

normal 1. In general, perpendicular; at right angles.

2. (normal line) A line through a given point on a curve (or
surface) perpendicular to the *tangent line (or tangent plane) at that
point.

normal approximation The use of a *normal distribution as an
approximation to a given *distribution. Many distributions,
including some discrete ones, approach a normal distribution for
certain parameter values or combinations of parameter values. For
example, if both np and nq are large, the *binomial distribution may
be approximated by a normal distribution with mean np and
variance npq. For large λ, the *Poisson distribution may be
approximated by a normal distribution with mean and variance both
equal to λ. For discrete distributions, the approximations may
usually be improved by using a *continuity correction.

normal component See acceleration.

normal deviate See normal distribution.



normal distribution An important *distribution in *statistics, also
sometimes called the Gaussian distribution. It is a two-parameter
distribution of a *random variable X with frequency function

The mean E(X) = μ, and the variance var(X) = σ2, and X is
described as N(μ, σ2). The frequency function f (x) is symmetric
about the ordinate x = μ,

normal distribution Standard normal distribution curve.

and is often described as bell-shaped (see diagram). If Z = (X – μ)/σ,
then Z is N(0,1) and is called a standard (or standardized) normal
variable. Tables of the distribution function of Z are widely
available, and probabilities associated with X may be derived from
these tables using the above transformation.

The importance of the distribution lies not only in the fact that
much experimental data exhibit properties of a random sample from
a normal distribution (sometimes after appropriate transformation),
but also in its key role in the *central limit theorem. As a
consequence of this theorem, we may often make inferences about
population means on the basis of sample means, even for non-
normal populations. However, for small samples asymptotic theory



based on this theorem may give misleading results, and
*nonparametric methods are often preferred. Normal distribution
theory inference is generally inappropriate for survival-time studies
where data tend to be highly skewed (see skewness), or for studies
involving counts where the *Poisson distribution plays a key role.

normal form (of a matrix) See canonical form.

normal functions (normalized functions) See orthogonal function.

normalized number See �oating-point representation.

normalizing transformation A *transformation Y = f (X) of a
*random variable X so that Y is normally distributed. See
logarithmic transformation.

normal modes In general, once disturbed from equilibrium, an
oscillating system will have a complex motion that may be regarded
as a combination of a number of independent normal modes of
vibration. The contribution of each mode to the motion is
determined by the initial disturbance. This disturbance can be
chosen so as to make the system vibrate exclusively in any one of
these modes, with all the elements of the system performing simple
*harmonic motion and passing simultaneously through their
equilibrium positions. The period of each mode depends solely on
the constitution of the system, and not on the initial disturbance.

The number of modes is equal to the number of degrees of freedom
of the system, i.e. the number of independent variables needed to
specify completely the con�guration of the system at any particular
time.

normal number A real number whose *expansion to a given base b
is such that all possible blocks of digits of equal length occur and
are equally likely is said to be normal to base b. In 1909 Borel
showed that almost all real numbers are normal. If a number is
normal to every base b it is absolutely normal. Almost all real
numbers are absolutely normal. See also Champer-nowne’s number;
Copeland – Erdős number.



normal section A *section of a �gure made by a plane
perpendicular to its surface.

normal series A sequence H0, H1,…, Hn of *normal subgroups of a
*group G with *identity element e such that {e} = H0 ⊂ H1 ⊂···⊂
Hn = G. See also composition series.

normal space A *topological space in which every pair of *disjoint
*closed sets A and B is contained in a pair of disjoint open sets U
and V, i.e. A ⊂U, B ⊂V, and U ∩ V = Ø.

normal subgroup If the operation in the *group G is indicated by
juxtaposition, the *subgroup H is normal in G if and only if g-1Hg =
H for each element g of G. This means that for every h in H the
element g-1hg must also be in H. Alternatively the condition can be
expressed as gH = Hg for each g, and this says that each left *coset
of H is also a right coset. The importance of the concept is that
when H is a normal subgroup of G, then – and only then – do the
cosets of H themselves form a group with the operation of
combining the cosets g1 H and g2 H:

(g1 H) (g2 H) = g1 g2 H

This group of cosets is called the factor group or quotient group ‘ G
over H’, written as G/H. The subgroup H is itself a coset and is the
identity element of G/H.

A group that has no normal subgroups other than itself and the
subgroup consisting of the identity element is said to be simple.
Every group can be built of simple groups. A complete list of �nite
simple groups is known. They consist of 16 in�nite families and 26
‘sporadic simple groups’.

normed space See norm.

north polar distance (NPD) See declination.

northwest-corner rule See transportation problem.



not A truth-functional connective (see truth function), often
symbolized in a *formal system as’~’ ‘-’or’¬’, and whose meaning is
given by the following *truth table:

See negation.

NP complete Describing a problem that belongs to the class of *NP
problems.

NP problem The abbreviation NP stands for ‘nondeterministic’
polynomial time’, and is used in connection with decision problems:
those for which a yes/no answer is required. Such a problem is then
said to be of type P if it can be solved by an algorithm running in
*polynomial time.

For some problems no such simple algorithm is known. The
*travelling salesman problem, to �nd the shortest route visiting a
number of cities exactly once, is one such problem and can be put in
the form ‘Is there a route shorter in length than some number C?’ An
algorithm which systematically generated and checked all routes
while looking for a route shorter than C would run in exponential
time. However, whether a particular randomly chosen or
‘nondeterministic route is shorter than C can be decided in
polynomial time. Thus, while particular examples of the travelling
salesman problem – produced at random or by guessing – can be
decided nondeter-ministically in polynomial time, no solution is
available for the general problem itself. It is thus said to be an NP
problem.

Many of the problems for which no general polynomial time
algorithm is known are NP problems. Moreover, as demonstrated by
Stephen Cook in 1971, many of them – the NP-complete problems –
are ‘equally hard’ in the sense that, if any one of them can be shown
to be solvable by a polynomial time algorithm, then so, in theory,



must all the others. However, whether or not any NP-complete
problems possess a general polynomial time algorithm (the P = NP
problem) remains an open question.

n-tuple A *set of n items listed in a particular order. The n-tuple
consisting of the numbers x1, x2,…, xn in that order is written as (x1,
x2,….,xn). See ordered pair.

nuisance parameter A *parameter that, despite it being needed to
specify a *population distribution, is a nuisance in formulating
statements about other parameters. In the formation of a con�dence
interval for the mean of a normal population when the *variance σ2

is unknown, the latter is a nuisance parameter. The di�culty this
causes is overcome by basing the interval on the *t-distribution,
which does not involve σ2.

null angle (zero angle) An angle of 0 °.

null element An element n of a *partially ordered set S (see partial
order) which is such that n  a for all a  S. If a null element exists,
it is unique, and is usually denoted by O (or 0).

null hypothesis See hypothesis testing.

nullity See null space.

null matrix A *matrix in which all the elements are zero.

null sequence An in�nite *sequence whose *limit is zero.

null set (empty set) The null *set, denoted by Ø, is the set lacking
all members:

Ø = {x: x ≠ x}

It follows from the de�nition of a null set that it is included in every
set, and from the *axiom of extensionality that it is unique. Compare
universal set.



null space The null space (or *kernel) of a *linear transformation is
the set of all vectors that are mapped into zero. Thus the null space
of a matrix A consists of all vectors x such that Ax = 0. The
dimension of the null space is called the nullity.

null vector See zero vector.

number 1. (natural number) A positive *integer.
2. A member of the *set of all *complex numbers. The real numbers
are numbers that do not involve √ – 1. These are classi�ed into
*rational numbers and *irrational numbers.
3. See cardinal number.
4. See ordinal number.

number �eld A *�eld whose elements are numbers.

number line See real number.

number sieve A numerical procedure for �nding *factors of large
numbers. See sieve of Eratosthenes.

number system Some early numeral systems.

number system A method of writing numbers. The earliest systems
probably simply used the requisite number of marks: l, ll, lll, etc.
Very early in the development of mathematics, groupings of



numbers were given special symbols. Around 5000 BC the Egyptians
had a number system based on 10. Di�erent symbols were used for
10, 100, 1000, etc., and numbers were written by drawing the
symbol the required number of times. An ancient Egyptian would
write 764 by drawing seven snares, six heel bones, and four vertical
strokes.

The fundamental grouping unit is called the base of the number
system. In common with the Egyptians, most peoples have used a
base of 10 in their counting, simply because they have eight �ngers
and two thumbs. The quintal system, based on 5, was also quite
common. The V for 5 in Roman numerals probably represented a
hand with the �ngers together and thumb outstretched. Twenty
(vigesimal system) was also used as a base, and a remnant of this can
still be seen in some present-day names. For example, in Welsh 20 is
ugain, 30 is deg ar ugain (ten and twenty), 40 is deugain (two
twenties), etc.

The next development in notation occurred in Mesopotamia
around 3000 BC. Babylonian numbers were written using wedge-
shaped (cuneiform) marks impressed in clay. The Babylonians
developed a notation, using the two symbols  for 1 and 10, in
which sets of symbols were used in di�erent positions to represent
di�erent numbers. For example,  indicated two 60
(sexagesimal system) survives in our units of time and angle. The
Babylonian notation had the drawback that there was no way of
representing an empty position. Around 300 BC a special symbol
came into use to indicate an empty place between groupings (i.e. to
indicate a zero). A system of this type, in which a small set of
symbols is used and the grouping is shown by relative position, is
called a positional notation.

Our present number system is a positional notation with the base
ten. It was �rst used in India – the earliest recorded occurrence is in
AD 595, and the earliest record of the system with a zero is from AD

876. The system was taken up by the Arabs and introduced into
Europe later, largely through 12th-century translations of the book
Algebra written by the Arab mathematician al-Khwarizmi. It is



known as the Hindu-Arabic system. The use of positional notation to
indicate fractions was introduced around 1579 by Francois Viète.
The dot for a decimal point came a few years later, but did not
become popular until its use by Napier.

In our present method of writing numbers, positions to the left of
the point represent numbers of increasing powers of 10. Numbers to
the right of the point represent successive numbers of tenths,
hundredths, thousandths, etc. For example, 6735.249 is a shorthand
way of writing (6 × 103) + (7 × 102) + (3 × 10l) + (5 × 10°) +
(2 × 10-l) + (4 × 10-2) + (9 × 10-3). The same method for
denoting numbers can be used for other bases. The number of
characters required is equal to the base: a *binary system (base 2)
requires two characters (0 and 1); an *octal system (base 8) requires
eight characters (0 – 7); a *duodecimal system (base 12) requires
twelve characters (0 – 9 and two other characters); see also
hexadecimal system.

A number written in a base other than 10 can be changed to its
decimal equivalent by writing it in powers of the base in decimal.
For example, the binary number 1101 is equivalent to (1 × 23) +
(1 × 22) + (0 × 21) + (1 x20) = 13. The number 215 in octal is, in
decimal, (2 × 82) + (1 × 8l) + (5 × 80) = 141.

The opposite process – conversion from decimal notation to some
other base – is accomplished by successive divisions. For example,
to convert 19 in decimal into binary:

19 = 18 + 1

= (2 × 9) + 1

= [2 × (8 + 1)] + 1

= [2 × (23 + 1)] + 1

= 24 + 2 + 1

This can be written as



(1 × 24) + (0 × 23) + (0 × 22) + (1 × 21) + (1 × 20)

and hence the binary equivalent of 19 is 10011.

number theory The study of the arithmetic properties of *integers
and closely related *number systems. Ancient Babylonian, Chinese,
and Greek mathematicians were among the �rst to investigate
numbers as interesting objects in themselves. Nowadays number
theory is a large and many-sided discipline using, and stimulating
the development of, sophisticated methods in several other areas of
mathematics such as algebra and analysis. See Diophantine
equation.

numerator The dividend in a fraction, i.e. the number on the top. In
¾, 3 is the numerator (4 is the denominator).

numerical analysis The branch of mathematics concerned with
�nding numerical solutions to problems, especially those for which
analytical solutions do not exist or are not readily obtainable. Many
methods currently in use depend heavily on the concepts of
*interpolation, *iteration, and *�nite di�erences. Typical
applications include:

(1) *Interpolation (See Gregory-Newton interpolation; Lagrange’s
interpolation formula; extrapolation).
(2) Approximations to functions whose values are known only at
certain points or to complicated functions by methods such as *least
squares (see approximation theory).
(3) *Numerical di�erentiation, usually based on interpolation
formulae or function approximations.
(4) *Numerical integration using the *trapezoidal rule, *Simpson’s
rule, *Newton’s rule, or more sophisticated methods.
(5) Solution of an equation by *iteration.
(6) Solution of *simultaneous linear equations by *Gaussian
elimination or by the *Gauss – Seidel method.



(7) Solution of di�erential equations by, for example, the *Runge –
Kutta method.
(8) Solution of *integral equations, often by using numerical
integration formulae to convert the integral equations into systems
of equations that may be solved numerically.
(9) Optimization, which often e�ectively involves solutions of
nonlinear systems of equations by interative methods (see iteration),
for example the Newton-Raphson method.

Pure-mathematics aspects of numerical analysis are concerned
with approximation *errors when functions are approximated by
simpler functions, and truncation errors when, for example, a Taylor
series expansion is terminated after a few terms (see Taylor’s
theorem). Practical di�culties include round-o� errors, and the
noncon-vergence of algorithms or convergence to inappropriate
values (e.g. local rather than global optima). Speed of convergence
may also be of importance, especially for procedures that require a
considerable amount of computer time.

numerical di�erentiation The use of formulae, often expressed in
terms of *�nite di�erences, for estimating the *derivatives of a
*function f(x), given the value of x. Examples are the forward-
di�erence estimate of the �rst derivative:

and the second di�erence estimate of the second derivative:

where h is a small positive increment.

numerical equation An equation in which the coe�cients and
constant term are numbers (rather than symbols). Thus, 2 x2 = 5 is
a numerical equation; ax2 = k is not.



numerical integration The numerical approximation of a *de�nite
integral. The integration formula is known as a rule. Simple well-
known rules are the *trapezoidal rule, *Newton’s rule, and
*Simpson’s rule. Most integration rules are derived by the
integration of polynomials �tted to function values (see Newton –
Cotes rule, of which the three rules above are examples) or by
choosing the rule in an optimal way (see Gaussian integration rule).
An analysis of the error is possible for most rules. A repeated rule,
e.g. the repeated trapezoidal rule, breaks the range of integration
into equally sized subintervals and applies the basic rule over each
subinterval.



O

 Symbol for the set of all *octonions.

object See category.

objective function In*operational research, a function which is to
be maximized or minimized subject to speci�ed constraints on the
variables. In *linear programming, both the objective function and
the constraints are linear functions of the variables.

object language See metalanguage.

oblate See ellipsoid.

oblique Not at right angles; not containing a right angle.

oblique angle An angle that is not a multiple of 90°.

oblique cone A *cone with a vertex that is not directly above the
centre of its base.

oblique coordinate system A *coordinate system in which the axes
are not at right angles. See Cartesian coordinate system.

oblique prism A *prism with lateral edges that are not
perpendicular to its bases.

oblique pyramid A*pyramid with a vertex that is not directly
above the centre of its base.

oblique triangle A triangle that does not contain a right angle.

obliquity of the ecliptic See ecliptic.

oblong A *rectangle with adjacent sides unequal.

obtuse angle An angle between 90° and 180°.



obtuse triangle A triangle that has one interior angle greater than
90°.

octagon A *polygon that has eight interior angles (and eight sides).

octahedron (plural octahedra) A *polyhedron that has eight faces.
A regular octahedron, in which all the faces are equilateral
triangles, is one of the �ve regular polyhedra.

octal notation The method of positional notation used in the *octal
system.

octal system A *number system using the base eight. The eight
numerals 0 – 7 are used. Eight is written as 10, nine as 11, etc. For
example, the number 273 in octal would, in the decimal system, be
(2 (82) + (7 (81) + (3 (80) = 187. Octal numbers are commonly
used in computer systems to represent bytes of information, since
one byte equals eight bits.

octant One of the eight regions into which three-dimensional space
is divided by the three planes containing the axes in a *Cartesian
coordinate system.

octonion See Cayley algebra.

odd function A *function f such that for every x in the *domain,
f((x) = (f(x). For example, f(x) = x3 is an odd function. The *graph
of an odd function has the origin as its centre of symmetry. Compare
even function.

odd number An integer that is not divisible by 2.

odd permutation A *permutation equivalent to an odd number of
*transpositions. For example, 321 is an odd permutation of 123
since it is equivalent to the single transposition (13). Compare even
permutation.

odds If an event A has associated probability p, the probability of
the event not occurring is 1 (p. The quotient p/(1 (p) speci�es the
odds on A. Thus, if p = 1/3, the odds on A are ½, or ‘one to two on’,



sometimes inverted to ‘two to one against’. The concept is in
everyday use in gambling parlance, but statistical statements are
better framed in terms of probability rather than odds, except in the
context of *odds ratios.

odds ratio If the *odds on an event A are θΑ = pA/(1 (pA) and the
odds on an event B are θB = pB/(1 (pB), the ratio θ = θΑ /θΒ

represents the odds ratio of A to B. An alternative name sometimes
used is relative risk, but this term is more commonly used for the
ratio pA/pB. The empirical odds ratio θ* is the ratio of the observed
proportions A: not A and B: not B. For example, if among 150
smokers 12 have a certain disease and 138 do not, whilst among
100 nonsmokers 2 have the disease and 98 do not, the empirical
odds ratio of having the disease relative to smoking or nonsmoking
is θ* = (12/138)/(2/98) = 4.26. A common *hypothesis test is
whether pA = pB, and this is equivalent to testing whether θ*is
signi�cantly di�erent from θ = 1. In *contingency table format:

  Diseased Not Diseased

Smokers 12 138

Nonsmokers 2 98

and, more generally, for a 2 × 2table:

a   b

c   d

the empirical odds ratio θ* is then the ratio ad/bc. If the expected
numbers in the four cells are m11, m12, m21, and m22, then θ =
m11m22/m12, m21, and θ = 1 implies no association, equivalent to pA

= pB in the disease and smoking example. For any 2 (2 table, 0
≤θ*≤∞. It is often more convenient to work with ln θ*, which is



symmetrically distributed about zero (the condition for
independence). See also loglinear model.

ODE Abbreviation for *ordinary di�erential equation.

o�-diagonal See matrix.

ogive The graph of the *distribution function of a *random variable.
Its literal meaning implies a *sigmoid type curve, and the term is
unnecessary and best avoided.

ohm Symbol: Ω. The *SI unit of electrical resistance, equal to the
resistance between two points on a conductor when a constant
potential di�erence of 1 volt between these points produces a
current in the conductor of 1 ampere. [After G. Ohm (1787 – 1854)]

Omar Khayyam (c.1048-c.1122) Persian mathematician,
astronomer, and poet, best known for his poems freely translated
and adapted in 1859 by Edward FitzGerald (The Rubaiyat of Omar
Khayyam). His Algebra included rules for solving quadratic equations
by both algebraic and geometric methods. More originally, he gave
a discussion of the general solution of cubic equations by geometric
methods (using conics), although he did not recognize the existence
of negative roots and believed that these equations could not be
solved algebraically.

one – many correspondence See many – one correspondence.

one-tail test See hypothesis testing.

one-time pad An encryption method that relies on a random key
that is used for a single message only. Use of a one-time pad has
been proved to be unbreakable and is the only known method with
this property.

one-to-one correspondence (one – one or 1 – 1 correspondence)
A correspondence between two*sets in which each member of either
set is paired with one and only one member of the other set. The
two sets must have the same number of members: for example, the



elements of the set A = {2, 4,6,8} can be paired with the elements
of the set B = {3,5,7,9},but not with the elements of C = { 1,2,3}
or D = {1,2,3,4,5}. A can be put into a one-to-one correspondence
with B, but not with C nor with D. See also bijection.

one-to-one function (one-to-one mapping, one-to-one map) A
*function f whose domain is the *set X and whose range is the set Y
is one-to-one if, for each element y of Y, there is only one element x
in X such that f(x) = y. For example, the function y = x3 with
domain and range  is a one-to-one function. A function which is
one-to-one has an *inverse function. A one-to-one function is
sometimes called a one – one function or 1 – 1 function.

one-way classi�cation See analysis of variance.

O notation, o notation See order notation.

onto See surjection.

open curve (arc) A curve that has *end points; one that is a
continuous transformation of an *interval [a, b] in which the
*images of a and b do not coincide. Compare closed curve.

open interval A *set of real numbers {x: a < × < b} written as (a,
b). The interval does not contain the end points a and b. In n-
dimensional space, if a =(a1,…, a n) and b = (b1,…, b n) are two
distinct points with a j≤b j(j = 1, 2,…, n), then the open interval
(a, b) is the set {(x1,…, xn): a j < xj < b j}j = 1, 2,…, n. An interval
is partly open and partly closed if it contains just one of its end
points, and is written as (a, b] if it does not contain a and as [a, b) if
it does not contain b. Compare closed interval.

open mapping A *function f with *domain X and *codomain Y that
are both spaces such that f(A) is an *open set in Y whenever A is an
open set in X.

open region See region.

open sentence See variable.



open set (of points) A *set of points A is open if every point that is
a member of A has a *neighbourhood completely in the set A. For
example, the points corresponding to the real numbers greater than
0 and less than 1 constitute an open set. An open set is the
complement of a *closed set. See also topological space.

operand See operator.

operating characteristic curve See acceptance sampling.

operation For any *natural number n, an n-ary operation on a *set
S is a *function f whose domain is S × S x… × S (the set of all n-
tuples of elements of S), and whose codomain is S. An example of an
n-ary operation on the set of real numbers is the function which
maps the n-tuple of real numbers (x1, x2,…, xn) to their largest value.
See binary operation; unary operation.

operational research (OR) (US: operations research) The
application of mathematics and statistics to problems of
management, business, organization, and production in services,
commerce, and industry. Optimization problems arise in minimizing
costs, maximizing pro�ts, scheduling interrelated tasks, and
determining stocking and replacement policy for perishable items,
machinery, and so on. *Linear programming and *dynamic
programming are widely used techniques. Problems about reliability
and about stock control with variable demand have a high statistical
content. *Critical path analysis is used to determine optimal
allocation of resources and scheduling of tasks subject to constraints
on order of performance. *Network analysis is widely used to study
the optimal loading of pipelines, roads, and distribution systems,
subject to capacity or cost constraints. *Game theory and
*simulation studies also have applications in operational research.

operator A symbol indicating that a mathematical operation is to be
performed on an associated symbol or expression (the operand).
Examples are the di�erential operator d/d x, indicating
di�erentiation with respect to x, and the symbol √, meaning ‘take
the square root of’.



Strictly, operators are the same as *functions in the sense that
they de�ne a mapping between one set and another. The concept of
operators is used particularly when it is possible to treat them as
entities obeying laws similar to the laws of ordinary algebra. See
di�erential operator.

opposite 1. In a triangle, a side and an angle are said to be opposite
if the side is not one of the sides forming the angle.
2. In a *quadrilateral, two sides are said to be opposite if they join
entirely di�erent pairs of vertices, and two angles are opposite if
they are formed by entirely di�erent pairs of sides. Thus in a
quadrilateral ABCD, the sides AB and CD are opposite and the
angles ABC and CDA are opposite.
3. In a �gure having a centre of *symmetry, two sides, angles, etc.
are opposite if they are joined by a line through the centre. In the
�gure formed by two intersecting lines, opposite angles are
commonly called vertically opposite and are equal.

oppositely congruent See congruent.

optical property The *focal property of a conic. See ellipse;
hyperbola; parabola.

optimization theory The mathematics of determining maxima and
minima of *functions (see turning point). Constrained optimization
applies to problems with restrictions on values that may be taken by
certain variables or combinations of variables, with consequent
restrictions on permissible values of the function itself. *Linear
programming problems are typical constrained optimization
problems. If there are no constraints, we speak of unconstrained
optimization.

The vast majority of optimization problems arising in modern
science and engineering have no analytic solution, so *numerical
analysis plays a key role in their solution. See also Lagrange
multipliers; dynamic programming.



or A truth-functional connective (see truth function), often
symbolized in a *formal language as ‘ν’, and whose meaning, in its
inclusive sense (see disjunction), is given by the following *truth
table:

The connective is both commutative and associative, and thus
obeys the following laws:

A ν B ↔ B ν A

A ν (B ν C) ↔ (A ν B)ν C

The connective ‘or’ can also be de�ned in terms of conjunction (&)
and negation (~) alone in accordance with *De Morgan’s laws by
the following equivalence:

A ν B ↔ ~(~ A & ~ B)

The use of ‘ν’ between two statements indicates only that at least
one of the statements is true. Thus, while the propositions ‘Either 2
+ 2 = 4 or 6 is an odd number’ and ‘Either 2 + 2 = 4 or 6 is not
an odd number’ are both true, the proposition ‘Either 2 + 2 = 5 or
6 is an odd number’ is false.

See also disjunction.

OR Abbreviation for *operational research.

orbit 1. A path followed by a particle or body under the in�uence
of a *central force.
2. See dynamical system.



order 1. (of a derivative) The number of times a *di�erentiation is
performed. If y = f(x), the �rst-order derivative (or �rst derivative)
is d y/d x = f′(x). The second-order derivative is

The n th-order derivative is written as d ny/d xn or f(n)(x)
2. (of a di�erential equation) The order of the highest-order
*derivative in a *di�erential equation.
3. (of a curve or surface) The *degree of the equation representing
the curve or surface.
4. (of a determinant) The number of rows (or columns) in the
*determinant.
5. (of in�nitesimals) Two *variables x and y, both of which tend to
the *limit zero, are *in�nitesimals of the same order if the ratio x/y
is �nite. If x/y→0, x is an in�nitesimal of higher order than y, and if
x/ y→∞, x is of lower order than y. If the limit of x/yn is �nite and
nonzero, x is said to be an in�nitesimal of the n th order if y is taken
as being of the �rst order.
6. (of a group or element) If the number of *elements in a *group is
�nite, the group is �nite and the number of elements is the order of
the group. The order of an element a of a group is the least positive
integer m such that am = e, where e is the identity element and the
group operation is denoted by juxtaposition. If no such integer
exists, then a has in�nite order.
7. (of a modulo m) If a is *coprime to m, the least positive *integer
k such that ak ≡ 1:1 (mod m) is called the order of a modulo m. See
also congruence modulo n.
8. (of a matrix) The dimension of a *matrix.
9. (of a polynomial) The degree of a *polynomial.



10. (of a graph) The number of vertices of a *graph.
11. See symmetry.
12. (of convergence of a sequence) If x1, x2, x3,… is a sequence of
numbers (or vectors in a normed vector space) converging to a limit
l, then the order of convergence of the sequence is the largest
integer p such that |xn+1 (l| ≤ c|xn (l|p for all su�ciently large n and
for some nonzero constant c. Important special cases are �rst-order
or linear convergence (p = 1) and second-order or quadratic
convergence (p = 2). The order of convergence is also called the rate
of convergence.

ordered �eld See order properties.

ordered pair A *pair set in which x is designated the �rst element
and y the second, denoted by (x, y) or (x, y). It was de�ned by N.
Wiener in 1914 as

(x, y) = {{x}, {x, y}}

which leads to the result

(x, y) = (u, v) ((x = u) & (y = v)

An ordered triple (x, y, z) has x, y, and z as its �rst, second, and third
elements; an ordered n-tuple, or simply n-tuple, (x1, x2,…, xn) has xi as
its i th element for i = 1, 2,…, n.

ordered set A set with an order relation between its elements. See
partial order.

ordered triple See ordered pair.

order notation A notation using the symbols O and o for comparing
the values of *functions as the independent variable tends to in�nity
or to a limit.



Suppose that f(x) and g(x) are two functions. Usually g(x) is a
simple function such as a power of x.

(i) O notation. The statement f = O(|g|) when x → ∞ means that
there is a constant K such that |f(x)| < K|g(x) for all su�ciently
large values of x, and f = O(|g|) when × → a means that |f(x)| <
K| g (x)| for all x di�ering from but su�ciently near to a. For
example, x2 + x = O(x2) when x → ∞, and x2 + x = O(x) when x
→ 0. The ‘big O’ notation is often used to describe the *Complexity
of algorithms. For example, if n is a measure of the size of an imput
to an algorithm and the number of steps needed to carry out the
algorithm is 3 n4, then the complexity of the algorithm is said to be
O(n4). See also polynomial time.
(ii) o notation. The statement f = o(g) when x → ∞ (or when x →
a) means that f /g → 0 when x → ∞ (or when x → a). For example,
x2 + x = o(x3) when x → ∞,and x2 + x = o(1) when x → 0. See
also asymptotic.

order properties (of real numbers) The properties satis�ed by the
relation < (‘less than’) in the *�eld  of real numbers. The basic
properties are:
(1) Trichotomy law: if r and s are real numbers, then one and only
one of the statements r < s, r = s, and s < r holds.
(2) Transitive law: if r, s, and t are real numbers with r < s and s <
t, then r < t.
(3)If r < s, then r + u < s + u for any real number u.
(4) If r < s and u is a real number, then ru < su if u > 0.
(5) Completeness property: any nonempty set of numbers that is
bounded above has a least upper bound.
The �rst four properties above are summarized by saying that  is
an ordered �eld. There are other ordered �elds. For instance, the
rational numbers satisfy (1) to (4) (reading ‘rational’ for ‘real’ each



time), but  is the only ordered �eld which also has the
completeness property (5), i.e. is a complete �eld.

In  a set S of real numbers is bounded above if there is a real
number m that is greater than or equal to every member of S. Such
an m is an upper bound for S and it is a least upper bound if there is
no number less than m which is also an upper bound (see also partial
order). Similarly, a number l is a lower bound for S if it is less than
or equal to every member of S; and it is a greatest lower bound if no
larger number is a lower bound. It follows from the above properties
that every nonempty set of real numbers that is bounded below (has
a lower bound) must have a greatest lower bound.

The notation ‘s > r’ (‘s is greater than r’) means the same as ‘r <
s’; ‘r ≤ s’ means that either r = s or r < s. Properties (1) and (2)
above imply that ≤ is a *partial order. All the other order
properties of the �eld of real numbers follow from (1) to (5) above.
For example, if r < s and u < 0 then ru > su; the square of any
nonzero number x is positive (i.e. x2 > 0); and there is a rational
number between any two distinct real numbers.

order statistics When a sample of n observations is arranged in
ascending order, the i th value is called the i th order statistic. It is
often written as x(i) to distinguish it from the observation labelled
x(i); before ordering. If there are 2 n + 1 observations, x(n+1) is the
*median. Other examples of order statistics are the *quantiles, the
least observation x(1), and the greatest observation x(n). See extreme
value distribution; �ve-number summary; rank; sample distribution
function.

ordinal data Data that can be ordered, for example the heights of
seven children or the weekly wages of each of 15 workers. See rank;
compare nominal data.

ordinal number 1. A number denoting position in a sequence e.g.
‘�rst’, ‘second’, ‘third’.



2. A number that describes the order property of a set as well as its
*cardinal number. Two ordered sets that can be put into *one-to-one
correspondence in a way that preserves the ordering property have
the same ordinal number. The ordinal number of the set of all
positive integers is given the symbol ω.

ordinary di�erential equation (ODE) See di�erential equation.

ordinate The y-coordinate, measured parallel to the y-axis in a
*Cartesian coordinate system. Compare abscissa.

Oresme, Nicole (c.1323 – 82) French mathematician and the author
of a number of texts on the subject, including De proportionibus
proportionum (c.1350), which gave rules similar to the present laws
of exponents, and his Algorismus proportionum (c.1350), which
contained the �rst known use of fractional exponents. He also
suggested that it was possible to use irrational powers. Oresme’s
most in�uential discovery was that a uniformly varying quantity
(e.g. a body with uniform acceleration) may be represented by a
graph (velocity against time), and that distance is given by the area
under the line.

orientation A sense of a handedness in a real *vector space. A plane
has two possible orientations: clockwise and anticlockwise. Three-
dimensional space has right-handed and left-handed orientations.
An orientation of a vector space is determined by an ordered basis.
Two ordered bases determine the same orientation if the matrix
representing one of them in terms of the other has positive
determinant.

An orientation of a di�erential *manifold is a continuous choice
of orientations for each of its *tangent spaces. Some manifolds (e.g.
*Möbius strip, real projective plane) are non-orientable: it is
impossible to �nd a continuous orientation for them since they are
‘one-sided’.

origin The point from which distances are measured in a
*coordinate system.



orthocentre The point of intersection of three lines drawn from
each of the vertices of a triangle perpendicular to the opposite sides,
i.e. the point of intersection of the altitudes of the triangle.

orthogonal At right angles. For instance, two curves are said to be
orthogonal at a point of intersection if their tangents at that point
are perpendicular.

orthogonal basis A *basis of a *vector space in which the elements
of the basis are orthogonal. If the lengths of the elements are all
unity, the basis is also orthonormal.

orthogonal complement For a given vector in a *vector space, the
orthogonal complement is the set of all vectors that are orthogonal
to the given vector. See orthogonal vectors.

orthogonal functions A system of *functions {f1,f2,f3,…}, integrable
on the interval [a, b] such that the inner product, denoted by (f m, f
n), is such that

when m ≠ n. If, for all m,

the functions are said to be normal or normalized. Normal orthogonal
functions are called orthonormal.

orthogonal group The *group O(n) of all orthogonal n ( n real
matrices.

orthogonal matrix A square matrix that is equal to the inverse of
its transpose. Two examples of 2 (2 orthogonal matrices are



The matrix P is called a rotation matrix, because premultiplying a

vector  by P rotates the vector θ radians anticlockwise. The

matrix Q is called a re�ection matrix, because its e�ect on vectors 
is to re�ect them in the line y = xtan½θ.

orthogonal polynomials A set of *orthogonal functions, with
respect to a continuous or a discrete (weighted) inner product,
comprising polynomials of degree 0, 1, 2,…. In general, the
polynomials p0(x), p1(x), p2(x),…, where pk has degree k, are said to
be orthogonal with respect to an interval [a, b] and a continuous
non-negative weight function w(x) on [a, b]if

Orthogonal polynomials can be generated from a three-term
*recurrence relation. The *Tchebyshev polynomials are an example
of a set of orthogonal polynomials. Orthogonal polynomials are used
in many applications, including quadrature (see Gaussian integration
rule) and *least-squares data �tting (for example, in *regression).

orthogonal projection A *projection that involves perpendiculars.
The orthogonal projection of a point P onto a line or plane is the
point P′, where PP′ is the perpendicular from P to the line or plane.
The orthogonal projection of a line or �gure is formed by
orthogonal projection of the points of the line or �gure.

orthogonal transformation See matrix.

orthogonal vectors Two elements of a *vector space that have a
*scalar product equal to zero. In the case of simple geometric



vectors in Euclidean space, orthogonal vectors are perpendicular.

orthonormal Describing mathematical entities that are both
orthogonal and normalized. See orthogonal functions.

orthonormal functions See orthogonal functions.

oscillating product An *in�nite product that alternates between
two values and does not converge or diverge.

oscillating sequence A *sequence that tends neither to a �nite
limit nor to in�nity as the number of terms in the sequence tends to
in�nity. It is a *divergent sequence that is not properly divergent.
An example is

1, – 1, 1, – 1, 1,…

oscillating series (oscillating divergent series A *divergent series
that is not properly divergent. Examples are:

1 – 2 + 3 – 4 +…

1 – 1 + 1 – 1 +…

oscillation A regular �uctuation in the magnitude of the
displacement about a mean or reference position, value, or state.
Common examples are the oscillations that occur in mechanical and
electrical systems. Mechanical oscillations include the swinging
motion of a pendulum and the very much faster motion of a tuning
fork. Oscillation is usually considered synonymous with vibration,
although the latter is sometimes restricted to mechanical systems.

osculating circle The circle of*curvature of a curve at a given
point.

osculating plane For a given twisted *curve at a point P, the
osculating plane is the limiting position of a plane through P and
two other points on the curve, P′ and P″, as P′ and P″ approach P.



osculation See cusp.

osculin�ection See cusp.

Oughtred, William (1575 – 1660) English mathematician who, in
his popular Clavis mathematicae (1631, The Key to Mathematics),
introduced (as the familiar sign of multiplication and the
abbreviations ‘sin’ and ‘cos’ into trigonometry. He also invented the
slide rule in 1622, although it was not until 1632 that he announced
his discovery.

ounce See avoirdupois; apothecaries’ system; troy system.

outer product For two column vectors x and y, the matrix xyT,
whose (i, j) element is xi yj. This matrix has *rank 1. See also scalar
product.

outlier An observation that departs in some way from the general
pattern of a data set. For example, in the set {7,9,3,5,4,202} the
observation 202 is an outlier. Outliers may be correct observations
re�ecting some abnormality in the measured characteristic for a
unit, or they may result from an error in measurement or recording;
for example, in the above example 202 could be a mistyping of 2, 2.
See robustness.

oval A closed curve like an elongated circle; an elliptical curve or
an egg-shaped curve. See also Cassini’s ovals.



P

Paasche index See index.

Pacioli, Luca (c.1445 – 1517) Italian mathematician who in his
Summa (1494) published a compilation of the mathematics of his
day, the �rst such work to appear in Europe since Fibonacci’s Liber
abaci of 1202.

Padé approximation (H.E. Padé, 1892) The approximation of a
*function by a *rational function where the numerator and
denominator polynomials have a speci�ed *degree and are chosen
so that the *Maclaurin series of the function and the approximation
agree to as many terms as possible. The approximation is called a
Padé approximant to the function. For example,

is a Padé approximant to e x with numerator and denominator
polynomials of degree 2.

Page test (E.B. Page, 1963) A *nonparametric test for monotonic
trends in *means using ranks in a *randomized block design. The
hypotheses involved are the same as those in the *Jonckheere –
Terpstra test.

paired observations See matched pairs.

pair set Given any two elements x and y, it is possible to form the
pair *set, denoted by {x, y}, consisting of just the two elements x
and y:

{x, y} = {z:(z = x)(z = y)}



pair-wise disjoint Describing a collection of sets, A, B, C, D,… in
which each pair of sets is *disjoint.

pandiagonal See magic square.

Pappus of Alexandria (c. AD 320) Greek mathematician who
produced valuable commentaries on Euclid and Ptolemy, parts of
which are extant. His most important work, however, remains his
Synagoge (Collections), of which Books III – VII of the original eight
have survived, providing an indispensable guide to much of the lost
mathematics and astronomy of late antiquity. His name has also
survived as the discoverer of *Pappus’ theorems. See also problem of
Pappus.

Pappus’ theorems Three theorems named after Pappus of
Alexandria:
(1) If a plane *curve is revolved about a line in its plane (not cutting
the curve), then the area of the surface of revolution is equal to
2πrs,where s is the length of the curve and r the radius of the circle
described by its *centroid.
(2) If a plane area is revolved about a line in its plane (the line not
cutting the plane area), then the volume enclosed by the surface of
revolution is equal to 2πrA, where A is the area of the plane and r
the radius of the circle described by its centroid.
(3) If A, B, and C are three points on one line, and D, E, and F are
three points on another, and if the three lines AE, BF, and CD meet
DB, EC, and FA, respectively, then the three points of intersection
are collinear (see diagram). This theorem can



Pappus’ theorems (3).

be regarded as a special case of *Pascal’s theorem when the conic
degenerates to two lines.

parabola A type of *conic that has an *eccentricity equal to 1. It is
an open curve symmetrical about a line (its axis). The point at
which the curve cuts the axis is the vertex. In a Cartesian coordinate
system the parabola has a standard equation of the form

y2 = 4ax

Here, the axis of the parabola is the x-axis, the directrix is the line
× = – a, and the focus is the point (a,0). The length of the chord
through the focus perpendcular to the axis, the latus rectum, is equal
to 4 a. The parametric equations of the parabola are

x = at2, y = 2at



parabola Re�ection property of the parabola.

The focal property of the parabola is that for any point P on the
curve, the tangent at P (APB) makes equal angles with a line from
the focus F to P and with a line CP parallel to the x-axis, i.e. ∠FPA
= ∠ CPB. This is also called the re�ection property, since for a
parabolic re�ector light from a source at the focus would be
re�ected in a beam parallel to the x-axis (the optical property), and
sound would be similarly re�ected (the acoustical property). See also
projectile; cubical parabola.

parabolic Denoting or concerning a *parabola or *paraboloid.

parabolic spiral See spiral.

paraboloid A surface such that sections parallel to at least one
plane are *parabolas. There are two types:

paraboloid (a) Elliptical and (b) hyperbolic paraboloids.



(1) The elliptical paraboloid has an equation, in Cartesian
coordinates, of the form

y2/b2 + z2/c2 = 2 ax

In this case, the sections parallel to either the x – z or x – y
coordinate planes are parabolas. Sections parallel to the y – z plane
are ellipses. A paraboloid of revolution, formed by rotating a parabola
about its axis, is a special case of an elliptical paraboloid in which
the ellipses are circles. The shape is used in re�ectors, radar
antennae, etc. on account of the focal property of the *parabola.
(2) The hyperbolic paraboloid has an equation of the form

Here, sections parallel to the x – z and y – z coordinate planes are
parabolas. Those parallel to the x – y plane are hyperbolas.

paradox An *argument involving a set of apparently true premises
P1,…, Pn and a further premise Q such that a *contradiction is
derivable from both

P1& ··· & Pn & Q

and

P1& ··· & Pn & ~ Q

A distinction is often made between logical paradoxes (e.g. *Russell’s
paradox and *Burali-Forti’s paradox) and semantic paradoxes (e.g.
the *liar paradox, and *Richard’s, *Berry’s, and the *Grelling –
Nelson paradoxes). The former arise from purely formal
considerations that are independent of any interpretation, while the
latter involve semantic concepts, such as ‘truth’ and ‘denotation’. See
also implication (material).



parallactic angle Symbol: q. An angle at a point on the *celestial
sphere between two segments of *great circles: one from the point
to the zenith and the other from the point to the north celestial pole.
These two great circles, together with a third great circle joining the
zenith to the pole, form a spherical triangle called the astronomical
triangle. The parallactic angle is given by

sin q = (cos (sin t) / sin ζ

where Ø is the terrestrial latitude, t the hour angle, and ζ the zenith
distance. It is also given by

sin q = (cos (sin A) / cos δ

where A is the azimuth and δ the declination.

parallel Describing lines, curves, planes, or surfaces that are always
equidistant, and that will never meet no matter how far they are
produced. Parallel lines and curves must both lie in the same plane.

parallel axes theorem A result that relates moments of inertia of a
body: if the moment of inertia of a body about an axis through its
centre of mass is I, then the moment of inertia about any other axis
parallel to it is I + Md2, where M is the mass of the body and d is
the distance between the axes.

parallelepiped A *prism all of whose faces are parallelograms. A
right parallelepiped has lateral faces that are square or rectangular. If
the bases are also square or rectangular, it is a rectangular
parallelepiped or cuboid. A parallelepiped in which the lateral edges
are not perpendicular to the base is an oblique parallelepiped. The



parallelepiped An oblique parallelepiped.

volume of a parallelepiped is the distance between the bases (the
altitude) multiplied by the area of a base. The total surface area of a
rectangular parallelepiped (lateral area + bases) is

2(ab + bc + ca)

where a, b, and c are the lengths of the sides, and the volume is abc.
A parallelotope is a parallelepiped whose sides a, b, and c are in

the ratio 4:2:1.

parallel of latitude A line of *latitude.

parallelogram A *quadrilateral that has both pairs of opposite sides
equal. The area of a parallelogram is the length of any side
multiplied by the perpendicular distance from that side to the
opposite side.

parallelogram law The law stating that if the two shorter sides and
the two longer sides of a *parallelogram represent the magnitude
and direction of two vectors a and b, then the sum of these vectors,
i.e. their resultant c, is represented by the diagonal of the
parallelogram (see diagram). It can be seen that

a + b = b + a

i.e. vector addition is commutative. Applied to velocities, the result
is a parallelogram of velocities; to forces, a parallelogram of forces.



parallelogram law

parallelotope See parallelepiped.

parallel postulate The �fth postulate of *Euclidean geometry, often
stated as: for a given point outside a given line, only one line can be
drawn through the point parallel to the given line. This statement of
the postulate is sometimes called Playfair’s axiom and is not the
original version given by Euclid. See non-Euclidean geometry.

parallel transversal theorem See intercept theorem.

parameter 1. A *constant or *variable that distinguishes special
cases of a general mathematical expression. For example, the
general form of the equation for a line,

y = mx + c

contains parameters m and c, representing the gradient and y-
intercept of any speci�c line. See parametric equations.
2. In statistics, the term usually refers to a constant occurring in the
frequency function associated with a speci�c family of distributions,
or to constants that determine the precise form of the deterministic
component of a model that also contains a random element.
Examples of the former are the parameters μ and σ2 for the *normal
distribution; λ for the *Poisson distribution; and n and p for the
*binomial distribution. Examples of the latter are the parameters α,
β1,and β2 in the linear *regression model

E(Y|x1, x2) = α + β1 x1 + β2 x 2

parametric equations Equations that determine the *coordinates of
points on a curve in terms of a single common *variable. In two-
dimensional Cartesian coordinates, if the parameter is p the
equations have the form x = f(p) and y = g(p). For instance, the
circle



x2 + y2 = 16

has parametric equations

x = 4cos θ and y = 4sin θ

Each value of θ over the range 0°-360° determines a point on the
circle. In this case the parameter θ is the angle the radius makes
with the x-axis. The standard parametric equations of the *ellipse

are

x = a cos Ø and y = b sin Ø

and depend on the eccentric angle Ø of the point on the ellipse.
Parametric equations can also be used to give coordinates of

points on a *surface in terms of two common variables. More
generally, the term describes any system of equations that gives one
set of equations explicitly in terms of a second set of independent
variables (the parameters). See line; plane; hyperbola; parabola.

parametric form See line.

parametric methods Methods of *inference about *parameters
based on the assumption that observed data constitute a *random
sample from a speci�ed family of distributions, as distinct from
*nonparametric or *distribution-free methods. For data that are
samples from a continuous distribution, parametric inference is
often based on the *normal distribution or the *exponential
distribution, while for discrete data it is often based on the
*binomial distribution, *Poisson distribution, or *multinomial
distribution. Because of the *central limit theorem, inference based
on assumptions of normality are often not misleading, even when
the data indicate some departure from normality, but in cases of



doubt a *nonparametric method or use of the *bootstrap is often
preferable.

parametrization The description of a curve, surface, etc. by
*parametric equations.

Pareto distribution (V.F.D. Pareto, 1897) A *random variable X
with *frequency function

f(x) =αkαx-(α+1), x≥k

where k and α are positive parameters has a Pareto distribution.
Pareto proposed the distribution because he believed that the
cumulative *distribution function gave a good approximation to the
proportion of incomes in a population that were less than x.
Variation between regions or countries may be accounted for by
changing the parameters k and α.

parity Two integers that are both odd or both even have even parity.
If one is odd and the other even they have odd parity.

parity check matrix A *matrix H whose rows form a basis for the
*dual code of a code C de�ned over a *Galois �eld F. A codeword x
is in C if and only if the matrix product HxT evaluated in the �eld F
equals the zero vector.

parsec Symbol: pc. A unit of length used in astronomy, equal to the
distance at which a baseline of 1 *astronomical unit subtends an
angle of 1 second. 1 parsec = 3.085 × 1016 metre or approximately
3.26 light years. The name is a contraction of ‘parallax second’.

partial correlation coe�cient The *Correlation coe�cient
between two *random variables in a conditional distribution when
one or more other variables are held �xed. For example, if X1

represents height, X 2 weight, and X 3 age, a high positive
correlation between X 1 and X 2 may partly re�ect the high positive
correlation of each with X 3. The partial correlation coe�cient



eliminates the e�ect of age. The partial correlation coe�cient
between X1 and X2 with X3 �xed is written as r123.

partial derivative The rate of change of a *function of several
variables with respect to one of the variables involved, the other
variables being treated as constants. If u = f (x, y, z,…), the partial
derivative of u with respect to x is the rate of change of u when x
increases, written as δu/δx, with y, z,… held constant. For example,
if

V = π r2 h, then

See also total di�erential.

partial di�erential equation (PDE) See di�erential equation.

partial di�erentiation The *di�erentiation of a *function of more
than one variable with respect to one variable, the others being
treated as constants; i.e. the process of �nding *partial derivatives.

partial fractions Fractions whose algebraic sum is a given fraction.
For instance, ½ and ⅓ are partial fractions of 5/6 since

5/6 = 1/2 + 1/3

The decomposition of a given fraction into partial fractions is
achieved by �rst factorizing the denominator. For example, the
fraction (x + 3)/(x2 + 3 x + 2) can be put in the form

A/x+2 + B/x+1

A and B are found by putting this expression in the form

Then



x + 3 = (A + B)x + (A + 2 B)

Coe�cients of like powers are equated to give

A + B = 1 and A + 2B = 3

i.e. B = 2 and A = – 1. The partial fractions are thus – 1/(x + 2)
and 2/(x + 1). Decomposition into partial fractions is a method of
simplifying certain expressions for integration (see integration by
partial fractions).

partial order A relation ≤ between the elements of a *set S that
satis�es the following three conditions:

(1) Re�exive condition: a≤a for each a in S.
(2) Antisymmetric condition: for a and b in S, a≤b and b≤a can both
hold only if a = b.
(3) Transitive condition: if a, b, and c are in S, then a≤b and b≤c
together imply a≤c. If b≤a, then also a≥b; and if a≤b but a ≠b
then a < b.

An example of a set with a partial order is the set of natural
numbers with n≤m if and only if n divides m.

If every pair of elements a and b in the set is comparable (i.e.
either a≤b or b≤a) then the partially ordered set (poset) is called
totally ordered or a chain. The above partially ordered set of natural
numbers is not totally ordered since, for example, 3 and 5 are not
comparable. An example of a totally ordered set is the set of real
numbers with the relation ≤ being the ordinary ‘less than or equal
to’ relation.

Another standard way of classifying such sets is to use the
concepts of upper bound and lower bound for some of the elements.
An upper bound for a subset S′ of the poset S is an element u of S
such that a≤u for each a in S′. It is a least upper bound (l.u.b.), or
supremum (sup), for S′ if u≤v for every other upper bound v of S′.
Similarly, an element l of S is a lower bound for S′ if l≤a for each a



in S′; and it is a greatest lower bound (g.l.b.), or in�mum (inf), for S′ if
k≤l for every other lower

partial order

bound k of S′. The poset is a lattice if every pair of its elements has
both a l.u.b. and a g.l.b., as in the diagram; here each element is
represented by a dot, and a line segment joining element a to a
higher element b indicates that a < b.

Every totally ordered set is a lattice. A poset which is a lattice is
the example given above, of the set of the natural numbers with
n≤m, meaning that n divides m. In that case the l.u.b. of a pair of
numbers is their least common multiple, and the g.l.b. is their
highest common factor.

partial quotient 1. See division.
2. See continued fraction.

partial sum (of an in�nite series) Any sum of a �nite number of
consecutive terms in an in�nite *series, starting with the �rst. For
the series

a1 + a2 + ··· + an + ···

the partial sums are

s1 = a1



s2 = a1 + a2

sn = a1 + a2 + ···+ an

If the sequence s1, s2,…, sn of partial sums tends to a limit S as
n→∞, then S is the sum of the in�nite series. See convergent series.

particle A mathematical concept, used especially in mechanics, of
an entity that possesses mass and an observable position in space
and time but has negligible size. When a particle is subject to forces,
these act at one point. Its kinematic behaviour is completely
described by specifying its position vector at each instant. In
mechanics, matter is considered to be made up of collections of
particles (see rigid body). In practice, the theoretical results
obtained for a particle are a good approximation when the size of a
real body is small compared with the linear dimensions of the
system being studied, as for a planet moving around the sun.

particular integral A *particular solution used, together with the
*complementary function, in solving linear *di�erential equations.

particular solution Any solution of a *di�erential equation that
does not involve arbitrary constants.

partition 1. (of a set) A partition or dissection of a *set A is a
collection of mutually *disjoint nonempty *subsets of A (i.e. the
intersection of any pair of subsets is the empty set) whose *union
equals A. For instance, the even numbers and the odd numbers
constitute a partition of the set of natural numbers.
2. (of an interval) A partition or dissection of an *interval [a, b] is a
�nite set of points {x0, x1, x2,…, xn} such that

a = x0 < x1 < x2 < ··· < xn = b

3. (of an integer) A representation of a positive integer as a sum of
positive integers. For example, the partitions of 4 are 4, 3 + 1, 2 +
2, 2 + 1 + 1, and 1 + 1 + 1 + 1.



4. (of a matrix) A separation of all the elements of a *matrix into a
number of matrices of lower order, called submatrices or blocks. For
instance, a partition of the matrix

where

are the submatrices.

partition function The *function p(n) that gives the number of
*partitions of a *natural number n. Thus p(1) = 1, p(2) = 2, p(3)
= 3 and p(4) = 5. For |q|< 1 the partition function satis�es

where p(0) is interpreted as 1.

Pascal, Blaise (1623 – 62) French mathematician and physicist
noted for his Essai pour les coniques (1640, Essay on Conic Sections),
which contained *Pascal’s theorem. Later, in 1653, he constructed
his arithmetical triangle, and in his �nal years he described the
cycloid and solved the problem of its quadrature. Other work of
Pascal’s was concerned with probability theory and with the
invention of the �rst calculating machine (1642).

pascal Symbol: Pa. The *SI unit of pressure, equal to the pressure
resulting from a force of 1 newton acting uniformly over an area of
1 square metre. [After B. Pascal]

Pascal’s theorem The theorem that if a hexagon is inscribed in a
*conic, the three points of intersection of opposite pairs of sides all
lie on a straight line. The dual theorem (see duality) – that the



opposite vertices of a hexagon circumscribed about a conic are
connected by three lines that intersect in a point – is called
Brianchon’s theorem.

Pascal’s triangle A triangular arrangement of numbers as shown
above. The numbers give the coe�cients for the expansion of (x +
y)n. The �rst row is for n = 0, the second for n = 1, etc. Each row
has 1 as its �rst and last number. Other numbers are generated by
adding the two numbers

Pascal’s triangle

immediately to the left and right in the row above.
See also binomial theorem; Zhu Shijie.

path 1. See walk.
2. A path (or arc) between two points a and b in a *topological
space X is a *continuous map f: [0, 1]→X with f(0) = a and f(1) =
b. See connected space.

payo� matrix See game theory; decision theory.

PDE Abbreviation for *partial di�erential equation.

Peano, Giuseppe (1858 – 1932) Italian mathematician and logician
who developed a clear notation for the new discipline of
mathematical logic as well as proposing �ve simple axioms for
number theory (see Peano’s postulates). He is also remembered for



his discovery in 1890 of the space-�lling curve now known as
*Peano’s curve.

Peano arithmetic The form of *number theory based on *Peano’s
postulates.

Peano’s curve A space-�lling curve discovered by Peano in 1890. It
may be

Peano’s curve The �rst three stages of its generation.

developed by �rst drawing the diagonal of a square. The square is
then divided into nine equal squares and certain diagonals are
joined, as shown in the diagram. In the next stage each small square
is subdivided into nine and, again, certain diagonals are joined.
Continuing this process inde�nitely gives a curve that passes
through every point in the original square.

Peano’s curve is a *fractal with *similarity dimension 2, and is an
example of a fractal with integral dimension.

Peano’s postulates A set of �ve *axioms, originally formulated by
Dedekind, for *number theory:

(1) 0 is a natural number.
(2) Every natural number x has another natural number as its
successor (often denoted by S(x) or x′).
(3) For all x, 0 = S(x).
(4) If S(x) = S(y) then x = y.
(5) If P is a property and 0 has P, and whenever a number x has P,
then S(x) also has P, and it follows that all numbers have P. This
axiom is the principle of *induction.



Pearson, Karl (1857 – 1936) English mathematician who
introduced into statistics such basic concepts as the standard
deviation, the coe�cient of variation, and the chi-squared test. As
the founder of the journal Biometrika and its editor from 1901 until
his death, Pearson exercised a considerable in�uence on the manner
in which statistics came to be applied to biology.

Pearson distributions Karl Pearson showed that the *frequency
function f(x) of many distributions satis�es a di�erential equation of
the form

Setting a = – 1 and b = c = d = 0 gives the standard *normal
distribution.

Pearson further divided these distributions into 12 types, based
mainly on the nature of the roots of the equation a + bx + c x2 =
0, which determine such features as the range and shape of the
distributions.

Pearson’s product moment correlation coe�cient The product
moment correlation coe�cient. See correlation coe�cient.

pedal curve A curve generated from a given curve: the *locus of the
feet of perpendiculars from a �xed point to all the *tangents of the
given curve.

pedal triangle 1. The triangle formed inside a given triangle by
joining the feet of the three lines drawn from each vertex of the
given triangle perpendicular to the opposite side. These three
perpendiculars (the altitudes of the given triangle) bisect the
interior angles of the pedal triangle. This is sometimes called the
orthic triangle.
2. (of a point with respect to a triangle) The triangle formed by
joining the feet of the three perpendiculars from the given point to
the sides of the triangle. If the point lies on the *circumcircle of the



triangle then the pedal triangle degenerates into a straight line: the
*Simson line of the point.

Peirce, Charles Sanders (1839 – 1914) American mathematician,
logician, and philosopher who in 1883, on the basis of earlier work
by Boole and De Morgan, developed the �rst comprehensive formal
theory of relations.

Pell’s equation The *Diophantine equation

x2 – Ay2 = 1

where A is a positive integer which is not a perfect square. It can be
solved by considering the *continued fraction expansion of √A. It is
named after the English mathematician John Pell (1611 – 85).

pencil A set of geometrical objects sharing a common property. All
the planes passing through a given line form a pencil of planes. All
the circles that lie in the same plane and intersect at two common
points form a pencil of circles. All the spheres intersecting in a given
circle form a pencil of spheres.

pendulum A body mounted so that it can swing freely about a �xed
point under the in�uence of gravity. The simple pendulum is a
mathematical model in which a particle of mass m is suspended by a
weightless rod of length l and swings in a vertical plane. When the
amplitude of the swing, i.e. the angular displacement θ is small, the
motion is approximately simple *harmonic and the period of
oscillation is

where g is the *acceleration of free fall.
In an actual pendulum, often called a compound pendulum, a *rigid

body of convenient shape, such as a bar, swings about a horizontal
axis through a point a distance h from the body’s *centre of mass.



When the amplitude of the swing, θ, is small, the motion is
approximately simple harmonic and the period is

where k is the *radius of gyration about an axis through the centre
of mass and parallel to the axis of swing, I is the body’s *moment of
inertia about the axis of swing, and M is its mass.

pendulum property See cycloid.

Penrose tiles (R. Penrose, 1974) Two special tiles whose rules of
combination make them *aperiodic, i.e. they can be used to tile the
plane but cannot form a *periodic tiling (diagram (a)). The two tiles
are a kite and a dart. Both have two sides of length 1 and two sides
of length (= ½ (1 + √5), the *golden mean. Three angles of the
kite are 72° and the other angle is 144°. Two angles of the dart are
36°, one is 72°, and the other is 216°.



Penrose tiles (a)

To form a Penrose tiling, the vertices must match: a vertex labelled
a cannot be placed next to one labelled b. Diagram (b) shows part of
a Penrose tiling.



Penrose tiles (b)

There are three-dimensional analogues that can be used to
describe the structure of certain chemical substances.

pentagon A *polygon that has �ve interior angles (and �ve sides).

pentagram A symmetrical �ve-pointed star *polygon formed by
drawing all the diagonals of a regular pentagon. See golden section.

pentahedron (plural pentahedra) A *polyhedron that has �ve
faces. Particular examples are a triangular prism and a square
pyramid.

percent Symbol %. Indicating hundredths. A fraction can be
expressed as a percentage by multiplying it by 100, e.g. ¼ is 25
percent. A change in a quantity from a to b is a change of 100(b –
a)/a percent.

percentage decrease See percentage increase.

percentage error The quantity

often applied to a *mean or other measure. If the true value of a
population mean is 45 and an estimate of it based on a sample is
47.2, the percentage error of the estimate is

47.2-45/45 × 100 = 4.9%

to two signi�cant �gures.

percentage increase The quantity



often applied to a price or other measure. For example, if the price
of an item increases from £400 to £500, then the percentage

increase is .

Similarly, a percentage decrease is de�ned to be

Thus if the value of an item is reduced from £500 to £400, then the
percentage decrease is 500-400/500 × 100.

percentage point A term used mainly in connect on with statistical
tables for signi�cance testing. If a *statistic T has a continuous
distribution such that Pr(T < tL) = θ/100, then tL is the lower θ
percentage point. If Pr(T > tU) = θ/100 then tU is the upper θ
percentage point. For example, if T has a standard normal
distribution, the lower and upper 5 percentage points relevant to
one-tail tests are – 1.64 and 1.64. Values outside the interval (-1.64,
1.64) indicate signi�cance at the 5% level in an appropriate one-tail
*hypothesis test.

The term is also used in association with two-tail tests, especially
when a statistic T has a symmetric distribution with zero mean. In
this case the value t such that Pr(|T| > t) = θ/100 is the θ
percentage point. Thus, if T has a standard normal distribution, the
5 percentage point for a two-tail test is 1.96, implying signi�cance
at the 5% level if T lies outside the interval (-1.96, 1.96). There is a
close connection between percentage points and percentiles. See
quantiles.

percentile See quantile.

perfect code A type of *error-correcting code that is particularly
e�ective. A k-perfect code has the maximum possible number of
codewords such that it is k-error correcting. A perfect code may well
have Hamming distance less than 2k + 1 between its codewords.



perfect number A natural number that is equal to the sum of its
*proper divisors. Thus, the number 6 has proper divisors 1, 2, and 3,
which add to give 6. The �rst four perfect numbers are 6, 28, 496,
and 8128. It is known that if 2n – 1 is prime, then n is prime and 2n-1

(2n – 1) is a perfect number. All even perfect numbers are of this
type; it is not known whether there are any odd perfect numbers.
Numbers for which the sum of their proper divisors is less than the
number are called de�cient or defective numbers; ones for which the
sum exceeds the number are abundant numbers. See also amicable
numbers; Mersenne numbers.

pericycloid An *epicycloid in which the rolling circle encloses the
�xed circle.

perigon (round angle) An angle equal to one complete turn (360°
or 2π radians).

perimeter The length of a *closed curve. The curve may be a
smooth curve (e.g. an ellipse or circle) or a broken curve (e.g. a
polygon).

period Symbol: T. The time taken to make one complete *oscillation
or cycle. If a particular form of motion is represented by

x = a cos (ωt + α)

the motion repeats itself after a time 2π/ω, where ω is the *angular
frequency; this is the period T of the motion, the motion being
described as periodic. The constants a and (are the *amplitude and
initial *phase of the motion. See also periodic function.

period doubling The change in the periodic orbits of a
parametrized family of transformations in which a periodic orbit of
period n becomes a pair of periodic orbits of period 2 n. This occurs
in the �ip *bifurcations, and is related to the *Feigenbaum number.

periodic decimal See decimal.



periodic function A *function f of a real variable x for which there
exists a number a (> 0) such that f(x + a) = f(x) for all x; a is a
period of f and the least possible period is called the fundamental
period or simply the period of f. For example, sin x is a periodic
function with period 2π since sin(x + 2π) = sin x for all x.

periodic motion Any to-and-fro motion that is repeated in an
identical manner at regular intervals. The duration of these intervals
is the *period of the oscillation.

periodic point A point x which �rst returns to its initial position
after n applications of an *iterated map T is a periodic point for T of
period n. The set of points {x, T(x), T2(x),…, Tn-1(x)} is called the
periodic orbit of the point. For example, z = i is a point of period 2
for the map T:z (z3 of the complex plane, because T(i) = – i and T(-
i) = i; it has periodic orbit {i, – i}.

periodic tiling A tiling or tessellation of the plane that can be
translated in two di�erent nonparallel directions without essential
change. A tiling that cannot be so translated without change is said
to be a non-periodic tiling. The three-dimensional analogue of
periodic tiling is fundamental in *crystallography. See aperiodic
tiling.

permanent For a square *array, the sum of all possible products of
numbers (*elements) in which each product contains exactly one
number from each row and each column. The permanent of the
matrix

is

1 × 5 × 9 + 1 × 6 × 8 + 2 × 4 × 9 + 2 × 6 × 7 + 3 × 4 ×
8 + 3 × 5 × 7 = 450



The permanent di�ers from the determinant in that signs are not
associated with the products being summed. The permanent is much
more expensive to compute than the determinant.

Permutation 1. The number of ways of selcting r≤n objects from n
distinguishableable objects when order of selection is important;
denoted by nPr or nPr. Since the �rst may be chosen in n ways, the
second in n − 1 ways, the third in n − 2 ways, and so on,

nPr = n(n −1)(n − 2)…(n − r + 1)

When r = n, nPn= n! The permutations of two objects from four
objects A, B, C, and D are AB, AC, AD, BC, BD, CD, BA, CA, DA, CB,
DB, and DC. Note that the second six are simply the �rst six
reversed. See combination.
2. A one-to-one mapping (see one-to-one function) of a *set of
elements onto itself. In this sense the permutation is regarded as an
operation that may involve rearranging the members of the set. For
a set of three items a1, a2, and a3, the notation

indicates a permutation in which a1 is replaced by a3, a2 by a1, and
a3 by a2. This type of permutation, in which each member of the set
replaces a successive member, is a circular (or cyclic) permutation
(see diagram). Permutations can be regarded as a combination of
transpositions of pairs of members of the set. Any permutation can
always be e�ected either by an even number or an odd number of
transpositions (but not both). In the former case the permutation is
an even permutation, and in the latter case it is an odd permutation.
The example above is even (two transpositions: (12) then (23)).

A permutation (or substitution) group is a *group whose elements
are permutations, where combination of two permutations is



interpreted as applying them successively. In particular, if there are
n members of a set, the total number of permutations is n!, and
these form a permutation group. For example, the six (= 3!)
permutations of three members of a set are

permutation A cyclic permutation.

Here P1 is the identity element of the group. The product of two
members is itself a member: for example, P4P2 = P6. Each
permutation has an inverse: for example, P4P5 = P1. The
combination is associative.

A permutation group of all the permutations of a set (i.e. a group
of order n! when n is the number of members) is a symmetric group.
A group of all the even permutations (of order n!/2) is an alternating
group. A permutation group of order n (the same as the number of



elements in the set) is a regular group. See also Cayley’s theorem;
group; permutation matrix.

permutation group See permutation.

permutation matrix A square *matrix having an element equal to 1
in each row (or column), the other elements in the row being zero,
used to represent a given *per-mutation. For example, for
permutation of three items, 1, 2, and 3:

Here

is the permutation matrix mapping 123 into 231, i.e. the
permutation matrix of the permutation

For a given permutation group, the corresponding permutation
matrices form an isomorphic group under matrix multiplication.

permutation test (E.J.G. Pitman, 1937) A type of *distribution-free
*hypothesis test. For example, if the null hypothesis is that two
independent samples of 5 and 7 observations are from identical
populations and the alternative hypothesis is that the population
distributions di�er only in their means, a test may be based on a
*statistic d, the absolute di�erence between the sample means.
Large values of d support rejection of the null hypothesis. Suppose
that d = 3.5. If the null hypothesis holds, the 5 + 7 = 12
observations may be treated as a pooled sample from one



population. The value of d is calculated for all (12/5) equally likely
sample pairs of 5 and 7 obtainable by *random sampling without
replacement from the pooled sample. If d≥3.5 for, say, 30 of the
792 pairs, then p = 30/792 = 0.0379 is the *p-value that gives the
exact probability of making an error of the �rst kind if the null
hypothesis is rejected when the observed d = 3.5. A p- value may
be calculated for any observed d for any sample sizes m and n, and
appropriate computer software enables exact p- values to be quickly
computed for small or medium values of m and n, and gives
asymptotic approximations for large values of m and n.

The permutation test analogues of one-or two-sample *t-tests are
sometimes called Pitman tests. The idea extends to location tests
based on rank and other transformations, and to any number of
samples and to tests about *correlation, *dispersion, and other
properties. Permutation tests are sometimes called randomization
tests, but some writers restrict the latter term to tests using the
original data only.

perpendicular A line or plane that is at right angles to another line
or plane; a normal.

perpendicular axes theorem A result that relates the *moments of
inertia of a *lamina about three mutually perpendicular axes. If the
moments of inertia of a lamina about two perpendicular axes Ox
and Oy in its plane are Ix and Iy, respectively, then the moment of
inertia about an axis through O perpendicular to the plane of the
lamina is Ix + Iy.

perspective Two planar �gures whose points can be put in a *one-
to-one correspondence in such a way that the lines joining pairs of
corresponding points pass through a common point P are in
perspective from a point, and P is the centre of perspective. If the
correspondence is such that pairs of corresponding lines meet in
points lying on a common line, then the �gures are in perspective
from a line and that line is the axis of perspective.



A consequence of *Desargues’s theorem is that two planar �gures
which are in perspective from a point are also in perspective from a
line, and vice versa.

PERT See critical path analysis.

peta- See SI units.

Peurbach, Georg (1423 – 61) Austrian mathematician and
astronomer who produced in his Theoricae novae planetarum (1454,
New Theory of the Planets) a popular description of the Ptolemaic
system. He was also responsible for an in�uential table of sines and
chords published posthumously in 1541.

P-group A *group in which the *order of each element is a power of
the *prime number p. A �nite group is a p-group if and only if its
*order is a power of the prime p.

phase 1. (of a periodic phenomenon) For a particular value of the
independent *variable, the part or fraction of the *period through
which the variable has advanced, as measured from some arbitrary
origin.
2. See harmonic motion.

phase space Given a *�ow

x(t) = (x1(t),…xn(t))

describing a solution to a di�erential equation in n-dimensional
Euclidean space, phase space is the space of all the vectors of the
form

(x1(t), x1(t),…,xn(t),xn(t))

in 2 n-dimensional Euclidean space. For example, a solution to the
harmonic motion equation x + ω2 x = 0 is the �ow x = a sin ωt,
where a and ω are positive constants. Since x = aω cos ωt, the



phase space is the set of all points (a sin ωt, aω cos ωt), i.e. an
ellipse, as shown in the diagram.

phase space

phi function See Euler’s phi function.

physical quantity A characteristic of matter or energy, instances of
which can be reproduced and quanti�ed. The physical quantity
itself is de�ned by specifying the method used to measure the ratio
of two magnitudes of the quantity. If one of these magnitudes is
taken as a standard, any other instance of that physical quantity can
be expressed in terms of that standard. The standard so obtained is
called a unit of measurement. For example, the physical quantity
called ‘mass’ can be de�ned by specifying the way in which two
masses are compared using a simple balance. If one of the masses is
taken as a standard and given a name (such as ‘kilogram’ or ‘pound’)
any other mass can be expressed in terms of this unit. In general, the
magnitude of a physical quantity is the product of a number and a
unit.

pi Symbol: π. The ratio of the length of the circumference of a circle
to its diameter. The symbol π was �rst used in this sense by the
Welsh writer William Jones in 1706. Ancient approximations to π
include 3 (Old Testament), 25/8 (Babylonian), 256/81 (Egyptian),
22/7 (Greek), 355/113 (Chinese), and √10 (Indian). In 1429 the



Arab mathematician Al-Kashi calculated a value of π correct to 16
decimal places. At present, over a trillion digits of π are known. The
problem of *squaring the circle is equivalent to �nding a
construction for π that uses only unmarked straightedge and
compasses.

Pi was proved to be *irrational by Lambert in 1767, and
*transcendental by Lindemann in 1882.

π (x) Symbol for the *function that gives the number of *prime
numbers less than or equal to the real number x. Thus π (10) = 4,
and π (1000) = 168.

Picard iteration An iterative method for �nding the numerical
solution of ordinary di�erential equations. The proof that it is
e�ective is usually based on the *contraction mapping principle.
The method was �rst introduced by Charles Émile Picard (1856 –
1941).

Pick’s theorem (G. Pick, 1899) If the vertices of a polygon are
points of the integer *lattice, then the area A of the polygon is given
by the formula A = i + ½b − 1, where i is the number of points in
the interior of the polygon and b is the number of points on the
boundary, including the vertices.

Pick’s theorem For this polygon,



i = 2, b = 6, and A = 2 + 3 − 1 = 4.

pico- See SI units.

pictogram A visual representation of statistical information using
drawings or pictures – icons – of a relevant nature to indicate data
patterns. Suitable icons are used to indicate appropriate units, and
the information is presented in what is essentially a pictorial *bar
chart. The diagram shows a pictogram for numbers of cars produced
by a factory in each of four months. Each represents 100 cars. Part

pictogram of factory output of cars per month, each complete
symbol representing 100 cars. symbols give a crude representation
of a proportion of 100 cars.

PID Abbreviation for *principal ideal domain.

piecewise continuous See continuous function.

pie chart A circle with sectors marked with areas representing the
proportion of units in each of a set of given categories. For example,
if 50 percent of the people on a beach were children, 25 percent
adult males, and 25 percent adult females, a semicircle would
represent the children and two quarter circles the adult males and
females.

piercing point See trace.

pigeonhole principle (Dirichlet’s principle) If n objects are put
into p pigeonholes, where 1≤p<n, then some pigeonhole must
contain at least two objects. An alternative formulation is that if n



objects are coloured with p<n colours, then at least two of them
have the same colour.

pint 1. An *imperial unit of capacity or volume equal to ⅛ of a
*gallon.
2. A unit of liquid measure in the *United States customary system
equal to ⅛ of a US *gallon.

pitch 1. See helix.
2. Angular movement of an aircraft, spacecraft, projectile, etc. about
a horizontal axis at right angles to the direction of motion. Compare
roll; yaw.

Pitman, Edwin James George (1897 – 1993) Australian statistician
best known as a pioneer in distribution theory and inference,
especially for the development of exact tests based on permutation
or randomization theory. He also introduced the concept of
asymptotic relative e�ciency as a guide for indicating which of two
or more statistical procedures might be preferable under speci�c
distributional assumptions.

Pitman tests See permutation test.

pivotal condensation See Gaussian elimination.

plaintext In cryptology, the text to which the *cipher is to be
applied; that is, the original message.

planar graph See graph.

plane 1. A surface such that a (straight) line that joins any two
points of the surface lies in the surface. The general form of the
equation of a plane in Cartesian coordinates is

Ax + By + Cz + D = 0

The normal form is



lx + my + nz = p

where l, m, and n are the *direction cosines of the normal from the
origin and p is the length of this normal.

The equivalent vector form is r.n = p, where r is the position
vector of a point on the plane and n is a unit vector normal to the
plane.

The intercept form is

a, b, and c being intercepts on the x-, y-, and z-axes, respectively.
The equation of a plane that passes through three points (x1, y1,

z1), (x2, y2, z2), and (x3, y3, z3) is (see determinant):

The plane that passes through the three points with position vectors
a, b, and c has the parametric equation

r = a + λ(b − a) + μ(c − a)

2. Lying entirely in one plane, as in plane curve.

plane of symmetry A plane about which a geometrical �gure is
symmetrical. A geometric �gure has a plane of symmetry if every
point in the �gure has a corresponding point in the �gure such that
the plane bisects at right angles the line segment joining the points.
See also re�ection.

plane section See section.

planetary motion, laws of See Kepler’s laws.



plane trigonometry See trigonometry.

plastic Describing a material that has been stretched beyond its
range of *elasticity: when the *stress is removed the material cannot
return to its original shape but assumes a permanent deformation.
The ability to undergo such an irreversible deformation without
fracturing is referred to as plasticity. See Hooke’s law.

Plateau problem The problem of �nding the minimum surface that
is bounded by a given twisted curve. The problem is named after the
Belgian physicist Joseph Antoine Ferdinand Plateau (1801 – 83),
who experimented with soap �lms on wire formers.

Plato (c.428 – 348 BC) Greek philosopher whose name has become
identi�ed with the view that mathematical objects have a real
existence independent of human thought. His name is also linked
with the �ve regular polyhedra or Platonic solids – the tetrahedron,
cube, octahedron, dodecahedron, and icosahedron (see polyhedron)
– �rst described by him in Timaeus. Plato’s insistence that
mathematics be an essential part of the education of the guardians
of his ideal Republic did much to establish the high reputation of
mathematics in Western civilization.

platykurtic See kurtosis.

Playfair, John (1748 – 1819) Scottish mathematician noted for the
proposal in his Elements of Geometry (1795) of an alternative version
of Euclid’s *parallel postulate since known as Playfair’s axiom.

Plimpton 322 An Old Babylonian cuneiform tablet in the Plimpton
Collection at Columbia University. It was excavated at the ancient
Iraqi city of Larsa and is dated to around 1800BC. It is at able of
numbers with 15 rows and 4 columns. Allowing for errors, the
middle two numbers in each row are pairs such as 119 and 169 or
4601 and 6649, belonging to *Pythagorean triples. Several theories
have been proposed to explain the composition and purpose of the
tablet.



plot See experimental design.

Plücker, Julius (1801 – 68) German mathematician noted for his
Analytischgeometrische Entwicklungen (2 vols, 1828 – 31,
Developments in Analytic Geometry). He proposed taking straight
lines rather than points as the fundamental elements of the
coordinate system, formulated the principle of duality, and
introduced much of the modern notation. In 1835 Plücker published
the �rst complete classi�cation of plane cubic curves.

plug-in estimator A statistic calculated from a sample that is the
sample-distribution analogue of the population-distribution
parameter or characteristic it is estimating. For a random sample of
n observations xi, i = 1,2,…, n, the sample mean × is the plug-in
estimator of the population mean μ, and the sample variance (xi –
x)2 is the plug-in estimator of the population variance, σ2. The latter
is a biased estimator of σ2; however, for a normal distribution it is
the *maximum likelihood estimator. Plug-in estimators are widely
used with the *jack-knife and the *bootstrap.

plus/minus sign The sign ±, sometimes called the plus or minus
sign. It is a shorthand way of writing the *plus and *minus signs
together. For example, if x2= 49 then we can write x = ±7,
meaning that the equation has the two solutions x = +7 and x =
−7. We could also write a = b ± 2 to mean that a and b are related
by a = b + 2 or a = b − 2.
2. A way of indicating the precision of an observation. For instance,
the value of an observed quantity might be given as 6 0± 0 3 units,
meaning that the true value lies somewhere between 6.0 − 0.3 =
5.7 units and 6.0 + 0.3 = 6.3 units.

plus sign 1. The sign + used to denote a *positive number such as
+7. It was �rst used in this sense by Johannes Widmann in 1489.
2. The sign + denoting *addition, as in 5 + 3. It was �rst used in
this sense by Henricus Grammateus in 1518. See also minus sign;
plus/minus sign.



Poincaré, Jules Henri (1854 – 1912) French mathematician noted
for his investigations in the 1880s of automorphic functions.
Poincaré also made substantial contributions to the three- and n-
body problems in his Les Méthodes nouvelles de la mécanique céleste (3
vols, 1892 – 9, New Methods in Celestial Mechanics), while other
work of in�uence in astronomy was his later study of rotating �uid
bodies. With over 500 published memoirs, Poincaré contributed to
most branches of mathematics and physics, including
thermodynamics, relativity, divergent series, probability theory, set
theory, and topology, while in his less technical writings Poincaré
sought to develop an intuitive view of mathematics and science.

Poincaré conjecture The conjecture that, if M is an n-manifold (see
manifold) and M is homotopy-equivalent to the n-sphere Sn, then M
is homeomorphic to Sn. The Poincare conjecture has long been
known to be true for n = 1 or 2, and was proved for n≥5 by S.
Smale in 1960 and by M. Freedman for n = 4 in 1982. It was
proved true for n = 3 by Grigori Perelman in 2004. He used the
Ricci �ow, a method that uses properties of solutions of certain
*partial di�erential equations.

Poincaré; duality theorem Let M be an n-manifold, with n th
*homology group Hn(M) in�nite and cyclic (such a *manifold is said
to be orientable). The Poincaré duality theorem states that, for such
M, Hr(M) is isomorphic to the (n −r)th *cohomology group
Hn−r(M),for all r. Its essence is that, in n-dimensional space, two
subspaces of dimensions r and n −r will usually meet at a single
point.

Poincaré group See homotopy group.

Poinsot, Louis (1777 – 1859) French mathematician who in his
Éléments de statique (1803) made a major contribution to mechanics
by showing how anomalies in the application of the parallelogram
of forces could be removed by introducing the notion of a *couple
and that of a *wrench. The axis of a wrench is sometimes called the
Poinsot central axis. He also developed a theory of *regular star



polygons, and in 1809 added two regular star polyhedra to the two
discovered in 1619 by Kepler. In 1812 Cauchy showed there could
be only four, and they are now known as the Kepler – Poinsot solids.

point An element of geometry having position but no magnitude. A
point in three-dimensional space is de�ned by its coordinates (x, y,
z).

point estimate See estimation.

point group See crystallography.

point of contact A point of *tangency.

point of in�ection See in�ection.

point of osculation A point at which two branches of a curve have
a common tangent so as to form a double *cusp of the �rst kind.

point-slope form See line.

Poisson, Siméon-Denis (1781 – 1840) French mathematician, a
student of Laplace and Lagrange. He is well known for his work on
probability theory and for discovering in 1837 the *Poisson
distribution. He worked in this area mainly towards the end of his
life; he had earlier established a reputation in celestial mechanics,
and also in electricity and magnetism, where his work on integrals
and Fourier series found many applications.

Poisson distribution A discrete *random variable X with
*frequency function

Pr(X = r) = 1/r! e−λ λr

where r = 0, 1, 2,…. The mean and variance are both λ. The
*binomial distribution tends to the Poisson distribution when n—
>∞, p—>0, and np =λ.

Poisson process A *stochastic process in which events occur at
random, in the sense that the distribution of the number of events



occurring in any time interval depends only on the length of that
interval and has a *Poisson distribution with mean λt, where t is the
length of the interval and λ a constant. This is one of the simplest
stochastic processes and is often used as a �rst approximation to
describe, for example, tra�c �ow past an observation point on a
motorway or the distribution of initiation time of calls in a
telephone system over time periods when call density is reasonably
constant. The distribution of the time elapsing between events such
as cars passing a given point is the *exponential distribution if the
process is a Poisson process. See also gamma distribution.

Poisson’s ratio Symbol: σ. The ratio of lateral *strain to
longitudinal strain in a body under tensile or compressive *stress,
i.e. when a force of tension or compression is applied to its ends.

polar 1. A straight line associated with a *conic and a point P (the
pole). Let a variable secant or chord through P cut the conic at L and
M (see diagram (a)). The

polar (a) Polar and (b) pole.



tangents to the conic at L and M meet at Q. Then Q always lies on a
particular straight line – the polar of the point P.
2. A straight line joining the points of contact of the *tangents (real
or imaginary) that can be drawn from a point to a conic is the polar
of that point with respect to the conic.

The point of intersection of the tangents to the conic at the (real
or imaginary) points of intersection of the conic and a straight line l
is called the pole of that line with respect to the conic (see diagram
(b)).

polar angle See polar coordinate system.

polar axis See polar coordinate system.

polar coordinate system A *coordinate system in which the
position of a point is determined by the length of a line segment
from a �xed origin together with the angle or angles that the line
segment makes with a �xed line or lines. The origin is called the
pole and the line segment is the radius vector (r). In two dimensions,
one reference axis is required (called the polar axis). The angle θ
between the polar axis and the radius vector is called the vectorial
angle (other terms are polar angle, azimuth, amplitude, and anomaly).
By convention, positive values of θ are measured in an anticlockwise
sense, negative values in a clockwise sense. The coordinates of the
point are then speci�ed as (r, θ). Polar coordinates in a plane are
useful for dealing with systems that have central symmetry.

It is possible to change between polar and Cartesian coordinates.
If the pole of the polar system coincides with the origin of the
Cartesian system, and if the polar axis coincides with the x-axis,
then a point (r, θ) has Cartesian coordinates given by

x = r cos θ, y = r sin θ

For example, the point with polar coordinates (3, 90°) has Cartesian
coordinates (0, 3). Similarly, a point (x, y) in a Cartesian coordinate
system has polar coordinates given by



r = √(x2+ y2), θ = tan—1(y/x)

where θ is such that

x : y : r = cos θ : sin θ: 1

For example, the point with Cartesian coordinates (−1, − 1) has
polar coordinates

polar coordinate system

(√2,225º). Polar coordinate system are also used in three
dimensions.

See spherical coordinate system; cylindrical coordinate system.
polar decomposition A generalization to matrices of the polar form
of a *complex number. Any square complex matrix A has a polar
decomposition A = UH, where U is a *unitary matrix and H is a
Hermitian matrix with non-negative *eigenvalues.

polar equation An equation in *polar coordinates. For example,

r = 2cosθ

is the polar equation of the circle with Cartesian equation

(x – 1)2 + y2 = 1



polar form See complex number.

polar normal See polar tangent.

polar tangent In *polar coordinates, the line segment on the
*tangent to a curve lying between the point of contact and the
intersection with a line through the pole perpendicular to the radius
vector of the point of contact. The polar normal is the line segment
on the normal between the point of contact and the intersection
with the perpendicular through the pole. The projections of the
polar tangent and polar normal on this perpendicular are the polar
subtangent and polar subnormal, respectively.

polar triangle A triangle constructed from the *poles of a given
*spherical triangle. For a given triangle ABC, the arc BC has two
poles. The pole nearest A is taken (say A′). Similarly, B′ is the pole
of AC nearest B, and C′ the pole of AB nearest C. The spherical
triangle A′B′C′ is the polar triangle of ABC. The converse is also
true: ABC is the polar triangle of A′B′C′.

A relationship holds between the angles (or sides) of a spherical
triangle and the sides (or angles) of its polar triangle, as follows. If
A, B, and C are the angles of ABC and a, b, and c are its sides (a
opposite A, etc.) and similarly A′, B′, and C′ are the angles of A′B′C
with a′, b′, and c′ the sides, then:

A = 180° – a′

A′ = 180° – a

B = 180° – b′,…

pole 1. The point from which distances are measured in a *polar
coordinate system.
2. (of a circle on a sphere) One of the two points at which a
diameter of the sphere perpendicular to the plane of the circle cuts
the sphere. A pole of an arc on a sphere is one of the poles of the



circle of which the arc is part. The poles of the earth are the poles of
the geographical equator. Poleson the celestial sphere are poles of
great circles on the sphere. See celestial equator; ecliptic; horizon;
galactic equator.
3. (of a line) See polar.
4. (of an analytic function) See singular point.
5. (of a projection) See stereographic projection.

Polish notation See pre�x notation.

polyalphabetic substitution cipher A*substitution cipher that uses
two or more *alphabets; there is a rule that decides which alphabet
is applied to which characters in the plaintext. Compare mono-
alphabetic substitution cipher.

polygon A �gure formed by three or more points (vertices) joined
by line segments (sides). The term is usually used to denote a closed
plane �gure in which no two sides intersect. In this case the number
of sides is equal to the number of *interior angles. If all the interior
angles are less than or equal to 180°, the �gure is a convex polygon;
if it has one or more interior angles greater than 180°, it is a concave
polygon. A polygon that has all its sides equal is an equilateral
polygon; one with all its interior

polyhedron The �ve regular polyhedra.



angles equal is an equiangular polygon. Note that an equilateral
polygon need not be equiangular, or vice versa, except in the case of
an equilateral triangle. A polygon that is both equilateral and
equiangular is said to be regular. The *exterior angles of a regular
polygon are each equal to 360°/n, where n is the number of sides.

The distance from the centre of a regular polygon to one of its
vertices is called the long radius, which is also the radius of the
*circumcircle of the polygon. The perpendicular distance from the
centre to one of the sides is called the short radius or apothem, which
is also the radius of the *inscribed circle of the polygon.

A regular star polygon is a �gure formed by joining every m th
point, starting with a given point, of the n points that divide a
circle’s circumference into n equal parts, where m and n are
*relatively prime, and n 3. This star polygon is denoted by {n/m}.
When m = 1, the resulting �gure is a regular polygon. The star
polygon {5/2} is the *pentagram.

The term ‘polygon’ is also applied to �gures in spherical and
hyperbolic geometry.

polygon of forces See triangle of forces.

polyhedral angle A con�guration in three dimensions of three or
more *half-lines coming from a common point with the planes
bounded by the lines. The point is the vertex, the half-lines are the
edges, and the planes are the faces. A polyhedral angle is a *solid
angle; the plane angles between adjacent edges are face angles of the
polyhedron. Polyhedral angles are classi�ed according to the
number of faces as trihedral (three), tetrahedral (four), etc.

polyhedron (plural polyhedra) 1. A solid with a surface composed
of plane polygonal surfaces (faces). The sides of the polygons,
joining two faces, are its edges. The corners, where three or more
faces meet, are its vertices. Generally, the term is used for closed
solid �gures (see Euler’s formula). A convex polyhedron is one for
which no plane containing a face cuts any other face; otherwise the
polyhedron is concave.



A regular polyhedron is one that has identical (congruent) regular
polygons forming its faces and has all its polyhedral angles
congruent. There are only �ve possible convex regular polyhedra
(Euclid: Book XIII) (see diagram):
tetrahedron – four triangular faces cube – six square faces
octahedron – eight triangular faces dodecahedron – twelve
pentagonal faces icosahedron – twenty triangular faces.
The �ve regular solids played a signi�cant part in Greek geometry.
They were known to Plato and are often called the Platonic solids.
Kepler used them in his model of the solar system.

A uniform polyhedron is a polyhedron that has identical
*polyhedral angles at all its vertices, and has all its faces formed by
regular polygons (not necessarily of the same type). The �ve regular
polyhedra are also uniform polyhedra. Right prisms and antiprisms
that have regular polygons as bases are also uniform. In addition,
there are thirteen semiregular polyhedra, the so-called Archimedean
solids. For example, the icosidodecahedron has 32 faces – 20
triangles and 12 pentagons. It has 60 edges and 30 vertices, each
vertex being the meeting point of two triangles and two pentagons.
Another example is the truncated cube, obtained by cutting the
corners o� a cube. If the corners are cut so that the new vertices lie
at the centres of the edges of the original cube, a cuboctahedron
results. Truncating the cuboctahedron and ‘distorting’ the
rectangular faces into squares yields another Archimedean solid.
Other uniform polyhedra can be generated by truncating the four
other regular polyhedra or the icosidodecahedron.

A regular star polyhedron is a solid whose faces are all *regular star
polygons. There are four regular star polyhedra, the so-called Kepler
– Poinsot solids.

See also antiprism; polytope; prism; prismatoid; pyramid.
2. See combinatorial topology; equidecomposable.

polynomial A mathematical expression that is a sum of terms, each
term being a product of a constant and a non-negative (or zero)



power of a variable or variables. For one variable, the general form
is

a0 + a1 × + a2 x2 + ··· + anxn

The highest power (n) of the polynomial is its degree or order.
Polynomials are described as linear, quadratic, cubic, quartic,
quintic, etc., according to their degree (1, 2, 3, 4, 5, etc.).The
constants ai are the coe�cients of the polynomial: a0 is the constant
term and an is the leading coe�cient. They may be real or complex. A
polynomial function is a *function whose values are given by a
polynomial. A polynomial equation is an equation obtained by setting
a polynomial equal to zero. A polynomial in several variables is a
sum of terms which are multiples of products of non-negative (or
zero) powers of the variables. For example, 5x2 y2 + 2z – 1 is a
polynomial in x, y, and z of degree four.

polynomial ring A *ring, denoted by R [x], which consists of all
*polynomials in x with coe�cients from the commutative ring R.
Often the ring R will be a *�eld F, in which case the ring F [x] is a
*principal ideal domain.

polynomial time A measure of the *complexity of an algorithm. An
algorithm is said to run in polynomial time if the number of
elementary operations required to complete its computation can be
expressed as a polynomial function of the size of the input.

More formally, an algorithm runs in polynomial time if integers A
and k exist such that, for input data of length n, the computation is
always completed in at most Ank steps. For example, if the basic
computational step is to add or multiply a pair of digits, then
squaring an n-digit decimal integer by the standard method runs in
polynomial time, for it requires fewer than 4n2 steps, and the formal
de�nition is thus satis�ed with A = 4and k = 2.

Algorithms which do not run in polynomial time are said to run in
exponential time. For example, if the basic step is to print a letter, a
program to print a word with n di�erent letters (or symbols) and all



its possible permutations would have to print a letter n(n!) times.
This will exceed Ank for any �xed A and k, once n is large enough,
so the algorithm will run in exponential time.

In general, algorithms which run in exponential time can
sometimes take so long to run, even on very powerful computers,
that they are unusable. In contrast, unless n is very large, algorithms
running in polynomial time are often more practical.

See also NP problem.

polytope A term used to describe �gures analogous to three-
dimensional polyhedra in higher dimensions. While three-
dimensional space allows �ve regular polyhedra, in four dimensions
six regular polytopes can be constructed, including a remarkable
�gure with 600 tetrahedral faces known as the 600-cell. Thereafter,
in all higher spaces from �ve-dimensional space onwards, there can
be only three regular polytopes – analogues of the tetrahedron,
cube, and octahedron of three-dimensional space. See also
polyhedron.

Poncelet, Jean Victor (1788-1867) French mathematician who, in
his Traité des propriétés projectives des �gures (1822, Treatise on the
Projective Properties of Figures), revived the study of projective
geometry and formulated within it the important principle of
duality.

pons asinorum The name given to the �fth proposition in Book I of
Euclid, that the angles opposite the equal sides in an isosceles
triangle are equal. The name is Latin for ‘bridge of asses’; the proof
is considered the �rst di�cult one encountered by the student.

population In *sampling theory and more generally, a collection of
items about which information is sought. A sample is taken and
inferences are made about the characteristics of the population on
the basis of sample evidence. For example, if, in a random sample of
300 adult Londoners, 75 (i.e. 25 percent) are smokers, then 25
percent is the appropriate estimate of the proportion of adult
Londoners who smoke. *Con�dence limits may be attached to this



estimate for a random sample, but not for samples such as *quota
samples.

Statistical inferences are made about *populations, sometimes
hypothetical, for which it is believed the observations available
could reasonably be regarded as a *random sample. For example,
measurements may be made of the thickness often sheets of metal
randomly selected from the daily production of a factory; while the
actual population sampled is only that day’s production, inferences
are often taken to apply to a hypothetically in�nite population of all
such sheets the factory has ever produced or will ever produce
under similar conditions. This concept is based on the assumption
that production standards do not change measurably from day to
day.

Loosely, the term is sometimes used in phrases such as ‘a sample
from a normal population’ to imply that we are assuming that the
values of the characteristic we are observing have, in the population
we are sampling, a *normal distribution.

poset Abbreviation for partially ordered set. See partial order.

positional system A *number system in which the notation
depends on the position of the digits in the number.

position vector Symbol: r. A *vector that gives the position of a
point P relative to a �xed reference point O, generally the origin of
a *coordinate system. If two points have the same position vector
then they coincide. The position vector is an alternative to
specifying a point by means of its coordinates relative to a chosen
set of axes. If in time δt point P moves to Q, changing its position
vector by δr, the velocity of P is then given by Lim δr/δt as δt→0.



position vector

positive angle A rotation angle measured from an initial axis in an
anticlockwise sense.

positive de�nite A symmetric matrix A is positive de�nite if the
*quadratic form xTAx is positive for all nonzero vectors x. This is
equivalent to the condition that all the *eigenvalues of A are
positive. See also scalar product.

positive number A real number that is greater than zero.

positive semide�nite A symmetric matrix A is positive semide�nite
if the *quadratic form xTAx is non-negative for all nonzero vectors
x. This is equivalent to the condition that all the *eigenvalues of A
are nonnegative.

positive series A *series whose terms are all positive numbers.

Post, Emil Leon (1897-1954) American mathematical logician who,
in his Introduction to a General Theory of Elementary Propositions
(1921), proved the consistency and completeness of elementary
logic, provided a decision procedure, and generalized the subject to
include many-valued logics.

posterior distribution See Bayesian inference.

posterior probability See prior probability.



post�x notation (reverse Polish notation) A notation for
*operators in which the operator is written after its arguments. Thus
23+ represents what would be written in *in�x notation as 2+3,
while 34x2+ represents 3x4+2, and 23+4x represents (2+3)x4.
Post�x notation is convenient for implementation on computers and
is the input format on some pocket calculators.

Similarly, there is a post�x logical notation, widely used by
computer engineers, in which the alphabetic pre�xes in J.
Łucasiewicz’s Polish notation are used as post�xes. Thus the simple
formula K pq would become pq K, while the more complex formula
CK pq A p N q in Polish notation becomes pq K pq NAC in reverse
Polish notation. Compare pre�x notation (Polish notation).

postulate An *axiom. The term is usually used in certain contexts,
e.g. Euclid’s postulates or Peano’s postulates.

potency (of a set) See cardinal number.

potential At a point in a *conservative �eld, say a gravitational or
electrostatic �eld, the *work done in bringing unit mass or unit
charge to this point from a point in�nitely distant from the cause of
the �eld; this gives, say, the gravitational potential or electrostatic
potential. Since these �elds are conservative, potential is a function
only of the position of a particular point. It varies in magnitude
from point to point, and hence a potential function is a scalar
function of position and is usually denoted by ((r).

Field strength g(r) is a vector function of position given by either
∇ (or – ∇ ((where ∇ is the di�erential operator *del), depending on
the sign convention adopted. Here ∇ (is the *gradient of (, or grad (,
and is given by

where r = xi + yj + zk.
See also �eld.



potential energy *Energy possessed by virtue of position. It is a
scalar quantity, usually denoted by V, and can be de�ned only in a
*Conservative �eld of force. It is the negative value of the *work
done by a conservative force in displacing a particle from its
standard position to any other position. The zero of potential energy
is usually the potential energy at a point in�nitely distant from the
source of the �eld. In the case of bodies situated above the earth’s
surface, the surface is usually taken as the zero of potential energy:
for a small object of mass m at an altitude h, the potential energy is
mgh, where g is the acceleration of free fall. In an isolated system,
the total energy – potential plus *kinetic energy – is conserved: in
moving from point A to point B potential energy might be acquired
at the expense of kinetic energy; this potential energy is released on
returning to A, with an equivalent gain in kinetic energy.

potential function See potential.

pound Symbol: lb. The *avoirdupois unit of mass, equal to 0.453
592 37 kilogram. Formerly de�ned in terms of a platinum standard
of mass, it was rede�ned by the UK Weights and Measures Act
(1963) in terms of the *kilogram.

poundal Symbol: pdl. An *f.p.s. unit of force, equal to the force
required to impart to a mass of 1 pound an acceleration of 1 foot
per second per second. 1 poundal = 0.138 255 newton.

pound-force Symbol: lbf. An *f.p.s. unit of force, equal to the force
required to impart to a mass of 1 pound an acceleration equal to the
standard acceleration of free fall. 1 pound-force = 32.1740
poundals = 4.448 newtons.

power 1. See exponent.
2. See residue.
3. See hypothesis testing.
4. Symbol: P. The rate at which *work is done. It is now usually
measured in watts (joules per second). See also horsepower.



power series A *series of the form

c0 + c1 × + c2 x2 + ··· + cnxn + ···

where x is a real variable, and c0, c1, c2,… are constants that can be
positive, negative, or zero; these constants are called the coe�cients
of the series. The variable can also be complex and is then usually
denoted by z. The sine, cosine, logarithmic, and exponential
functions can be represented as power series (see expansion).

A power series in x may converge for all values of x or for no
value except x = 0 (see convergent series). Alternatively it may be
absolutely convergent if |x| < L and divergent if |x| > L. The
constant L is known as the limit of convergence. The interval

– L < × < L

is the interval of convergence of the power series. When x = ±L the
series may converge or diverge.

Likewise a power series in a complex variable z can converge for
all values of z or for no value except z = 0. Alternatively it may
converge absolutely for all values of z within a circle of radius R and
diverge for any z outside this circle. The circle is the circle of
convergence of the series and R is the radius of convergence.

Two power series can be added or multiplied together, term by
term, to give a convergent series only for those values of x (or z)
within the smaller of the two intervals (or radii) of convergence. A
power series can be di�erentiated term by term for all x (or z)
within its interval (or circle) of convergence, and integrated term by
term between any limits within this region.

See also binomial series; cosine series; exponential series;
logarithmic series; sine series; Taylor’s theorem.

power set The power set of a given*set A consists of all sets
included in A. It is denoted by PA or P(A):

PA = {B : B⊆A}



Thus, if a set has n elements, then its power set will have 2 n
elements. For example, if A is {1, 2} then PA is {Ø, {1}, {2}, {1,
2}}. The *cardinal number of PA is sometimes denoted by 2 Ā,
where Ā is the cardinal number of A.

Pr See probability.

precession The slow change in the direction of orientation of the
*axis of rotation of a spinning body that arises when the body is
subjected to an *external force (see torque). It can be seen as the
wobbling motion of a spinning top when its axis is not vertical. If
the applied torque and rotational speed are constant, the extremities
of the axis trace out circles in what is one complete period of
precession; the earth’s rotational axis precesses in a similar way,
with a period of 25 800 years. The motion of the axis of rotation at
any instant is perpendicular to the direction of the torque.

precision A quality associated with the spread of data obtained in
repetitions of an experiment as measured by *variance; the lower
the variance, the higher the precision. The precision of an estimator
is measured by its standard error, and in general this may be
decreased and precision increased by taking additional observations.
See e�ciency.

predicate In *logic, an expression that, when combined with one or
more singular terms, forms a sentence. An n-place predicate is one
that can form a sentence only when combined with n singular terms.
For example, the sentence ‘Tom is taller than Dick’ contains the two-
place predicate ‘is taller than’ and two singular terms, ‘Tom’ and
‘Dick’. An n-place predicate of a formal language is often interpreted
by having an n-place relation assigned to it as its semantic value. See
predicate calculus.

predicate calculus A particular system of rules for manipulating
symbols in *logic. Used without quali�cation, the term means �rst-
order predicate calculus, which consists of:
(1) Symbols of the following types:



(a) A (possibly empty) set of individual constants a1, a2,…;
(b) an in�nite set of variables x1, x2,… ;
(c) a (possibly empty) set of function letters f1,f2,… ;

(d) a set of predicate letters p1,p2,… ;
(e) a set of logical constants that will include truth-functional
connectives and quanti�ers;
(f) punctuation devices, such as ‘(’ and ‘)’.
(2) Formation rules that recursively de�ne the set of terms and
*w�s.
(3) Rules of inference, typically *modus ponens and generalization.
Although the predicate calculus may be approached from the
standpoint of *natural deduction or regarded as a *logistic system,
and although there are many alternative axiomatizations of the
predicate calculus (see axiom), it is customary to use ‘the predicate
calculus’ to refer to one of the standard formulations that have been
shown to be *complete, *sound, and *consistent. See also
interpretation; logic; compare propositional calculus.

predicated variable See regression.

prediction error See cross-validation.

predictor variable See regression.

pre�x notation (Polish notation) A notation for *operators in
which the operator is written before its arguments. Thus +23
represents what would be written in *in�x notation as 2+3, while
x34+2 represents 3x4+2, and +23 x4 represents (2+3)x4.

It was originally introduced in the 1920s by the Polish logician J.
Łucasiewicz as a bracket-free notation in which alphabetic pre�xes
replaced logical connectives as follows: N p for ~p, Kpq for p & q,
Cpq for p→ q, Apq for p (q,and E pq for p ↔ q. Thus (p& ~q) → (p v



~r) becomes CK p N q A p Nr. Compare post�x notation (reverse
Polish notation).

pre-image See function; measurable function.

premise See argument; syllogism.

present value See interest.

pressure Symbol: p. At a point in a liquid or gas, the *force exerted
per unit area on an in�nitesimally small plane situated at that point.
Pressure can be regarded as a compressive *stress. If the �uid is at
rest, the pressure at any point is the same in all directions. The SI
unit of pressure is the pascal (newton per square metre); gas
pressure is also measured in millibars or atmospheres. The pressure
in a static liquid increases with depth h: ph = pgh, where ρ is the
liquid density, taken as constant, and g is the acceleration of free
fall. In a gas under isothermal conditions, pressure decreases
exponentially with height h. For an ideal gas,

ph = p0 exp (– p0gh/p0)

where ρ0 and p0 are the density and pressure at h = 0.

primality The state of being *prime. In principle, the simplest test
for primality is by trial division. However, even with a computer
performing a million divisions per second the method is impractical
for large numbers; testing a 50-digit number would take 1011 years.
It is possible to prove that a number is not prime by using Fermat’s
theorem. Thus, if for a number a, an – a is not exactly divisible by n,
then n must be composite. The converse is not true: exact division
does not prove that n is prime (see pseudoprime). However, there
are various tests that will give an unequivocal indication of
primality, and these can be performed quickly on large computers
(e.g. in less than a second for a 100-digit number). In 2002, M.
Agrawal, N. Kayal, and N. Saxena showed that there is a *poly-
nomial time algorithm that can decide whether or not a given
integer is a prime.



prime A whole number larger than 1 that is divisible only by 1 and
itself. So 2, 3, 5, 7,…, 101,…, 1093,… are all primes. Each prime
number has the property that if it divides a product then it must
divide at least one of the factors (Euclid, c.300 BC). No other
numbers bigger than 1 have this property. Thus 6, which is not a
prime, divides the product of 3 and 4 (namely 12), but does not
divide either 3 or 4. Every natural number bigger than 1 is either
prime or can be written as a product of primes. For instance, 18 =
2x 3x 3, 37 is prime, 91 = 7x 13 (see fundamental theorem of
arithmetic).

There is no largest prime, since if p is a prime it is always possible
in theory to �nd another prime which is larger than p (see Euclid’s
proof of the in�nity of primes). However, in practice fast computers
and sophisticated tests are needed to �nd extremely large primes.
For example, only as recently as 2006 was the *Mersenne number
232 582 657 – 1 shown to be prime.

The term can also be used analogously in some other situations
where division is meaningful. For instance, in the context of all the
integers, an integer n other than 0 and ± 1 is a prime integer if its
only integer divisors are ± 1 and ± n. The positive prime integers
are just the ordinary natural numberprimes2, 3, 5,… and the
negative prime integers are – 2, – 3, – 5,….Every prime integer
shares the important property that if it divides a product of two
integers then it must divide at least one of the factors.
See also Gaussian integer.

prime factorization See factorization.

prime ideal An *ideal I in a *ring R is prime if whenever x, y Є R
are such that xy Є I, then at least one of x and y lies in I.

prime number theorem The statement that the number of *primes
not exceeding a given natural number n is approximately n/ln n, in
the sense that the ratio of the number of such primes to n/ln n
eventually approaches 1 as n becomes larger and larger. Here ln n is
the natural logarithm (to the base e) of n. The result was �rst



guessed by Legendre and Gauss, and eventually proved in 1896 by
Hadamard and Vallée-Poussin using di�cult methods of complex
analysis. In 1949 A. Selberg and P. Erdős found a proof that avoids
complex analysis (but it is still very di�cult).

prime pair See twin primes.

prime symbol (accent) The mark ′ placed above and to the right of
a letter, as for example in x′ (read as ‘x prime’). Two or more such
marks can be used, as in x′′ (read as ‘x double prime’), x′′′(‘x triple
prime’), etc. Prime symbols are used in mathematics in a number of
ways:
(1)To indicate feet and inches; for instance 6′3′′ (six feet three
inches).
(2)To indicate minutes and seconds of arc in angular measure; for
instance, an angle of 10° 3′ 27′′ (ten degrees, three minutes, and
twenty-seven seconds). For decimal fractions, in this use, the prime
symbol is often printed before the decimal point, as in 3′.75 (3.75
minutes). The symbol is sometimes called a minute mark.
(3)To represent a constant value of a variable. For example, (x, y)
are the coordinates of a variable point and (x′, y′) the coordinates of
a �xed point on the resulting curve.
(4)To represent related variables or constants. For example, a
transformation of coordinates (x,y) to coordinates (x′, y′).
(5)To denote related points in geometry. For example, the triangle
ABC compared with a similar triangle A′B′C′.
(6)To indicate �rst and higher derivatives. For example, for a
function f(x), the �rst derivative can be denoted by f′ (x),the second
derivative by f′′(x), etc.

primitive An unde�ned expression of a *formal language.

primitive curve A curve from which some other curve is derived.



primitive element A *generator for the *multiplicative *cyclic
group of all the nonzero *congruence classes modulo a *prime
number p. For many primes 2 is a primitive element, but not for all.
For example, 2 has *order 3 modulo 7, but for p = 7 a primitive
element must have order 6; for this group 3 and 5 are primitive
elements. The proof that there is a primitive element for every
prime is not elementary, and determining the smallest primitive
element can be di�cult.

primitive polynomial A *polynomial whose coe�cients are a set of
integers that have a highest common factor of 1.

primitive root A complex number z is a primitive n th root of unity
if zn = 1but zk ≠ 1 for every k < n. The primitive nth roots of
unity are of the form exp (2πri/n), where r is *coprime to n; they are
the zeroes of the *cyclotomic polynomial Фn (x).

Prim’s algorithm See tree.

principal The money on which *interest is paid.

principal axes See moment of inertia.

principal component analysis A statistical technique for analysing
data. The �rst step is to determine a linear function of two or more
variables that accounts for as much as possible of the total variation
(as measured by the sum of the variances of the individual
variables). This linear function is called the �rst principal component.
Suc cessive principal components are orthogo-naltothe �rst and to
one another, each accounting for as much as possible of the
variation remaining at the stage at which it is formed. The analysis
requires computation of *eigenvalues and eigenvectors of the
*characteristic equation for the *covariance or *correlation matrix
of the data set. Principal component analysis is sometimes regarded
as a form of factor analysis, but the model for the latter is di�erent.

principal diagonal See diagonal.

principal directions See curvature.



principal ideal See ideal.

principal ideal domain (PID) An *integral domain in which every
*ideal is principal. For example, (, the set of all integers, is a PID.

principal moments of inertia See moment of inertia.

principal parts (of a triangle) The lengths of the three sides and the
sizes of the interior angles, as distinguished from other properties,
such as lengths of medians or sizes of exterior angles, which are
secondary parts.

principal value See complex number.

principle of moments The principle that if a body is in
*equilibrium under the action of a system of coplanar forces, then
the sum of the *moments of the forces about any point in the plane
is zero.

prior distribution See Bayesian inference.

prior probability The probability of an event or of some hypothesis
assigned before data are collected. After data are collected the
posterior probability is calculated using *Bayes’ theorem or *Bayesian
inference.

prism A solid �gure formed from two congruent *polygons with
their corresponding sides parallel (the bases) and the parallelograms
(lateral faces) formed by joining the corresponding vertices of the
polygons. The lines joining the vertices of the polygons are lateral
edges. Prisms are named according to the base – for example, a
triangular prism has two triangular bases (and three lateral faces); a
quadrangular prism has bases that are quadrilaterals. Pentagonal,
hexagonal, etc. prisms have bases that are pentagons, hexagons, etc.

A r ight prism is one in which the lateral edges are at right angles
to the bases (i.e. the lateral faces are rectangles) – otherwise the
prism is an oblique prism (i.e. one base is displaced with respect to
the other, but remains parallel to it). If the bases are regular



polygons and the prism is also a right prism, then it is a regular
prism.

See also antiprism.

prism (a) Right pentagonal and (b) oblique triangular prisms.

prismatic Denoting or concerning a *prism.

prismatic surface A surface generated by all the lines that are
parallel to a given line and intersect a *broken line that is not in the
same plane as the given line. The broken line is the directrix of the
surface; the parallel lines are its generators (or elements). If the
broken line is closed (i.e. a closed polygon), then the surface is a
closed prismatic surface.

prismatoid A *polyhedron with vertices that all lie in one or other
of two parallel planes. The two faces of the prismatoid lying in these
planes are its bases. These need not necessarily both have the same
number of sides (see below). The lateral faces are formed by lines
drawn between vertices in the two planes (lateral edges). The lateral
faces of a prismatoid are trapeziums, parallelograms, or triangles, or
a mixture of these.

A prismoid is a prismatoid in which: (a) both bases have an equal
number of sides; and (b) the lateral faces are quadrilaterals (either
trapeziums or parallelograms). A prism is a special case of a
prismoid in which the bases are identical. A *frustum of a pyramid
is a prismoid in which the bases are (geometrically) similar.



prismoidal formula A formula for the volume (V) of a *prismatoid.
It is usually given in one of two equivalent forms: either

V = 1 h (B+ 3A)

where h is the altitude, B the area of a base, and A the area of a
section parallel to the base at two-thirds of the distance to the other
base; or

V = 1/6 h (B1 + B2 + 4Am)

where B1 and B2 are the areas of the bases and Am is the area of a
section midway between the bases. The formula can also be applied
to other solids, e.g. elliptical or circular cones.

prisoner’s dilemma A situation in *game theory in which the
players independently arrive at what appear to be optimum
strategies but which give each of them payo�s inferior to those they
could obtain if both opted for the same alternative strategy. It takes
its name from illustrative examples such as the following.

Two criminal suspects (A and B) arrested by the police are
separately each o�ered the following deal: if both confess they will
serve 2 years in prison; if neither confesses, both will serve 1 year;
and if only one confesses he will go free while the other serves 3
years. These options are summarized in the table.

Suspect A reasons as follows. B must either confess or not confess.
If he confesses, then if I also confess I get 2 rather than 3 years; on
the other hand, if B remains silent, then if I confess I go free rather
than serving 1 year. Therefore, whatever B does – confess or remain
silent – it is in my best interest to confess. By a similar line of
reasoning B will conclude that it is in his best interest to confess. It
follows that each prisoner will serve 2



Prisoner’s dilemma The left-hand number in each cell is A’s
sentence, the right-hand number is B’s sentence.

years, whereas if they had both remained silent they would have
been imprisoned for only 1 year. Thus careful and plausible
reasoning by both prisoners has led to a dominant strategy of
confession which fails to yield the best outcome.

The dilemma was �rst posed by Merrill Flood and Melvin Dresher
in 1950 while considering the possibilities of thermonuclear war,
and seemed to suggest at the time that defence analysts could
reason themselves logically into a nuclear war.

A more coherent strategy becomes possible in the iterated
prisoner’s dilemma. In this scenario A and B repeatedly interact by,
for example, trading goods, rice for corn perhaps. Participant A
might be tempted to receive the corn but hang on to his rice. What
is B’s best strategy? It has been shown that B can adopt nothing
better than cooperating on the �rst deal and thereafter copying A’s
behaviour – a strategy known as tit-for-tat.

probability A measure associated with an *event A and denoted by
Pr(A), which takes a value such that 0≤ Pr(A) ≤1. Operations on
probabilities are governed by a set of probability axioms. In general,
the higher the value of Pr(A), the more likely it is that an event will
occur at any one performance of an experiment. If an event cannot
happen, then Pr(A)=0, but the converse is not true. If an event is
certain to happen, then Pr(A) = 1; again, the converse is false.
Numerical values can be assigned in simple cases by one of two
methods:



(1) If the *sample space can be divided into subsets of n (n≥ 2)
equally likely outcomes and the event A is associated with r
(0≤r≤n) of these, then Pr(A) = r/n. Thus if a coin is tossed there
are two equally likely outcomes, heads and tails. One of these is
favourable to heads, so Pr(heads)= ½. If a die is cast there are six
equally likely outcomes: {1, 2, 3, 4, 5, 6}. Two of these, {3, 6}, are
favourable to the event ‘score divisible by 3’, thus Pr(score divisible
by 3) = 2/6 = 1/3.
(2) If an experiment can be repeated a large number of times, n, and
we record the number of experiments, r, say, in which the event A
occurs, then r/n is called the relative frequency of A. If this tends to a
limit as n→ ∞ this limit is Pr(A). Mutually exclusive events are events
that cannot both occur in the one experiment. If two events are
mutually exclusive, A U B denotes the event ‘either A or B occurs’
and one axiom states that in this case

Pr(A U B) = Pr(A) + Pr(B)

If A and B are not mutually exclusive we may deduce that

Pr(A U B) = Pr(A) + Pr(B) – Pr(A ∩ B)

where A ∩ B means that both A and B occur. If we are interested in
the probability that B occurs only in those experiments in which A is
known to have occurred, the probability is called the conditional
probability of B given A, and written as Pr(B | A). The multiplication
rule of probability is

Pr(A ∩ B) = Pr(A). Pr(B | A)

If Pr(B|A)=Pr(B) we say that A and B are independent and then

Pr (A ∩ B) = Pr (A). Pr(B)



See also subjective probability.

probability density function See frequency function.

probability function See frequency function.

probability generating function For a *random variable X, the
*expectation of tx, where t is a constant. It is denoted by P(t) =
E(tx). It is useful for discrete variables taking non-negative integral
values only. If P(t) is convergent, the coe�cient of tr in its Taylor
series expansion (see Taylor’s theorem) is Pr(X = r). The r th
derivative of P(t) at t = 1 is P(r) (1)= E[X(X – 1)… (X – r + 1)]and
is called the rth factorial moment of X. In particular, E(X)=P’(1)
and Var(X) = P”(1) + P’(1)-[P’(1)]2. For the binomial distribution,

from which, clearly,

is the coe�cient of tr in the binomial expansion of P(t). Also, the r
th derivative with respect to t is

P”(t) = n(n – 1)… (n – r + 1) ×pr (pt+ q)n-r

from which P’(1) = np, P”(1) = n(n – 1)p2, and

Var (X) = n(n – 1)p2 + np – n2p2 = npq

probability mass function See frequency function.

probability paper Graph paper so scaled that the *distribution
function for a speci�ed distribution, most commonly the *normal
distribution, becomes a straight line. If the sample distribution
function (see random sample) for a sample believed to be from this
distribution is plotted on the paper, then it should also lie near a



straight line; departures indicate that the sample is probably not
from that distribution.

probable error For a sample from a *normal distribution the
probable error is

0.6745 × standard error

It is so called because 50 percent of the normal distribution lies
within the range µ±0. 6745σ. *Con�dence intervals are now
usually quoted in preference.

probit analysis (C. Bliss, 1934) A method for analysing *quantal
responses. It is used, for example, to compare insecticides in
experiments where the proportion of insects showing a quantal
response, such as death, are recorded. Probit analysis is a special
case of a *generalized linear model.

problem of Apollonius In his lost treatise On Contacts, Apollonius
posed this problem: given any three points, straight lines, or circles,
or any combination, to draw a circle which passes through the point
or points and is tangential to the lines or circles (as the case may
be). This leads to ten distinct possibilities. Two cases – three points
and three straight lines – were solved by Euclid (Book IV), the
remainder apparently by Apollonius. The case of three circles
proved to be of su�cient interest to attract the attention of several
leading 17th-century mathematicians, including Viète and Newton.

problem of Pappus In Book VII of the Collection, Pappus discussed
a problem known as the four-line locus derived from Apollonius:
given four plane lines, to �nd the locus of a point P such that the
product of the distances from P to any two of them is proportional
to the product of the distances to the other two. The locus is in fact
a conic section. Pappus generalized the problem to cover cases for n
lines, where n > 4. It was from consideration of this problem in
1631 that Descartes was led to his discovery of analytical geometry.



Proclus (c.410 – 485) Greek mathematician and author of a
commentary on Book I of Euclid’s Elements which has survived and
contains much material unavailable elsewhere. It includes his
attempt to prove Euclid’s �fth postulate.

produce In geometry, to extend a line.

producer’s risk See acceptance sampling.

product The result of multiplying two or more numbers, *vectors,
*matrices, *sets, etc. See also multiplication; Cartesian product;
continued product; in�nite product; intersection.

product formulae Formulae in plane trigonometry for products of
trigonometric functions:

sin x cos y = ½ [sin(x + y) + sin(x – y)]

cos x sin y = ½ [sin(x + y) — sin(x – y)]

sin x sin y = ½ [cos(x – y) – cos(x + y)]

cos x cos y = ½ [cos(x + y) + cos(x – y)]

See also factor formulae.

product moment See moment.

product moment correlation coe�cient See correlation
coe�cient.

product of inertia See moment of inertia.

product rule (for di�erentiation) A method for di�erentiating a
product using the formula

For example, it is possible to di�erentiate the function y=x sin x
using u=x and v = sin x, so that



The formula then gives

Compare quotient rule.

product topology A topology on the product of *topological spaces.
A set U ⊂ X ×Y is open if every point (x, y) εU is contained in a
subset of U of the form V ×W, where V and W are open in X and Y,
respectively. A product topology can be constructed on an arbitrary
product (possibly with an in�nite number of factors). For *metric
spaces the *Cartesian metric de�nes the product topology.

programming The act of planning and producing a set of
instructions to solve a problem by computer.

progression A simple *sequence of numbers in which there is a
constant relation between two consecutive terms. The most common
progressions are the *arithmetic, *geometric, and *harmonic
sequences.

projectile A body thrown or projected with a particular initial
speed and direction. Its subsequent motion depends only on external
forces such as gravitational force and air resistance. The path of a
projectile is called its trajectory. See ballistics.

projection A *mapping of a geometric �gure onto a plane according
to certain rules. See central projection; Mercator’s projection;
orthogonal projection; projective geometry; stereographic
projection.

projective geometry A branch of geometry originated by Girard
Desargues in the 17th century out of his work on *conics. Desargues
was in�uenced by perspective in art and struck by the fact that a
projection of a conic is also a conic. He assumed that parallel lines
meet at an ideal point (in�nity) and (like Kepler) he considered the



parabola to have a second focus at in�nity. His method was to
consider properties of conics that are unchanged under projection.
Desargues used in particular the complete *quadrangle because of
its harmonic ratios. He showed, for instance, that if a quadrangle is
inscribed in a conic, the line through two of the diagonal points is
the *polar line of the third diagonal point.

Projective geometry can be de�ned as the study of those
properties of plane �gures that are unchanged under *central
projection. It was misunderstood and neglected in Desargues’s time,
but it did inspire Pascal in his early work (see Pascal’s theorem). The
subject was revived by Poncelet in the early 19th century.

In projective geometry, there is a duality between points and
lines; for every theorem whose statement involves points and lines
there is a dual theorem whose statement can be derived from the
original by interchanging the roles of points and lines.

Projective geometry can be studied with coordinates in any given
�eld. When the �eld is �nite, important combinatorial structures
arise. See combinatorics.

projective plane The projective plane over a *�eld F is the set of
points represented by nonzero triples (x, y, z)with x, y, z ε F, and if
λ is a nonzero element of F, the triples (x, y, z)and (λx, λy, λz)
represent the same point. If F is the �eld of real (or complex)
numbers, the plane is called the real(or complex) projective plane. If F
is a �nite �eld with q elements, then the projective plane over F has
q2 + q + 1 points.

Topologically, the real projective plane is *homeomorphic to the
union of a Möbius strip and a disc which are glued together along
their boundaries,

prolate See ellipsoid.

proof A chain of reasoning using rules of *inference, ultimately
based on a set of *axioms, that leads to a conclusion. More
precisely, a proof is a sequence B1,…, Bn of *w�s of a *formal
system S such that for each Bi,, with 1 ≤i≤n, either Bi is an axiom



or Bi is immediately inferred from some previous w�s of the
sequence by a single application of a rule of inference of S. See
consequence; deduction; indirect proof; induction; theorem.

proof by contradiction See indirect proof.

proof by contraposition The proof of a statement p→q by �rst
proving its *contra-positive ~q→~p. Thus we can prove that ‘If 2n –
1 is prime, then n is prime’ by �rst proving its contrapositive ‘If n is
composite, then 2n – 1 is not prime’.

proof theory (metalogic, metamathematics, logical syntax) The
study of *proofs and provability as they occur within *formal
languages. As proofs are simply �nite sequences of formulae, proof
theory does not need to involve any interpretations that a formal
language may have. The study of purely formal properties of formal
languages, such as deducibility, independence, simple completeness,
and, particularly, consistency, all fall within the scope of proof
theory. See also logic.

Proper class See von Neumann set theory.

proper divisor A divisor of an integer which is not equal to the
integer itself. For example, 1, 3, and 7 are the proper divisors of 21.
An older name for proper divisor is aliquot part. See amicable
numbers; perfect number.

proper divisors of zero See integral domain.

proper fraction A fraction in which the numerator is less than the
denominator. For example, ¾ is a proper fraction (4/3 is an
improper fraction).

Proper inclusion A*set A is properly included (see inclusion) in a
set B, denoted by A ⊂ B, if and only if it is a*proper subset of B.

properly divergent See divergent series; divergent sequence.

proper subset (proper subclass) A *set A is a proper *subset of a
set B, denoted by A ⊂ B, if and only if A is included (see inclusion)



in but not equal to B:

(A ⊂B) ↔(A (B) &(A≠B)

For example, if A is {1, 2, 3}, B is {1, 2, 3, 4}, and C is {1, 2, 3},
then A is a proper subset of B but, although A is a subset of C, it is
not a proper subset of C.

proportional See variation.

propositional calculus (sentential calculus)
A *formal system that contains:
(1) Symbols of the following types:
(a) an in�nite set of propositional variables A1, A2,…;
(b) truth-functional connectives, such as ‘&’ and ‘~’; and
(c) punctuation, such as ‘(’ and ‘)’.
(2) Formation rules, such as: if B and C are *w�s then ‘B & C’ is a
w�.
(3) Rules of inference, such as *modusponens.
Although the propositional calculus may be approached from the
standpoint of *natural deduction or regarded as a *logistic system,
and although there are many alternative axiomatizations of the
propositional calculus (see axiom), it is customary to use ‘the
propositional calculus’ to refer to one of the standard formulations
that have been shown to be *complete, *sound, and *consistent. See
also interpretation; logic; compare predicate calculus.

p-series The *series

If p > 1 the series converges; if p≤1the series diverges. When p= 1
it becomes the *harmonic series. See also Riemann zeta function.



pseudo-inverse (E.H. Moore, 1920; R. Penrose, 1955) A
generalization of the notion of *inverse that applies to rectangular
matrices. If A is an m × n matrix then its pseudo-inverse (also called
the Moore-Penrose pseudo-inverse) is the unique n ×m matrix X
satisfying the four Moore-Pen-rose conditions:
(i) AXA = A
(ii) XAX = X
(iii) AX = (AX)*
(iv) XA = (XA)*
where * denotes the Hermitian conjugate. The pseudo-inverse is
denoted by A+. If A = UDV* is a *singular value decomposition then
A+ = VD+ U*,where D+ is obtained by inverting the nonzero
diagonal elements of D. When A has full *rank, A+= (A*A)-1 A* if
m > n, and A+ = A* (AA*)-1 if m < n. For example,

pseudoprime A *composite number that sometimes exhibits
behaviour more typical of *prime numbers. For example, if p is a
prime and a is any integer, then p will divide ap – a However, it
does not necessarily follow that if an – a is divisible by n, then n is
prime. A composite number n that exactly divides an – a is said to
be a Fermat pseudoprime to the base a. An example is 341, which is
divisible by 11 and 31 and which divides exactly into 2341– 2. Thus
341 is a Fermat pseudoprime to the base 2. Numbers exist that are
Fermat pseudoprimes to any base (e.g. 561, 1105, and 1729); these
are known as Carmichael numbers after the American mathematician
R.D. Carmichael, who discovered them in 1909. In 1992 it was
shown that there are in�nitely many of them. See also Fermat’s
theorem.



pseudo-random numbers See random numbers.
pseudosphere See tractrix.

Ptolemy, Claudius (2nd century AD) Greek astronomer and
mathematician, author of the Syntaxis mathematica (Mathematical
Collection), more commonly known as the Almagest. It contains a
corrected and extended version of Hipparchus’ table of chords
together with a clear description of just how the table was
constructed. Much use was made of the principle, since known as
*Ptolemy’s theorem. He is also known to have made an attempt to
prove Euclid’s �fth postulate.

Ptolemy’s formulae See addition formulae.

Ptolemy’s theorem A convex quadrilateral can be*inscribed in a
circle if and only if the product of the lengths of one pair of opposite
sides added to the product of the lengths of the other pair is equal to
the product of the lengths of the diagonals. Thus, in a cyclic
quadrilateral ABCD,

AB.DC + AD.BC = AC.BD

public key cryptography Any method of sending messages in
which the *encryption method can be made public but the
*decoding method is known only to the intended recipients. It
depends on using a *trapdoor function which is easy to calculate but
whose inverse is not easy to �nd without speci�c knowledge. The
best-known example is the *RSA cipher.

pulley A simple *machine that consists of a wheel with a grooved
or �at rim around which a rope, belt, etc. can run. When a force is
applied to the rope, the direction or point of application of the force
can be changed and a weight can be lifted. A number of such wheels
can be pivoted in parallel, using a single rope. In a frictionless
system the *mechanical advantage is the ratio of the weight W to be
moved to the applied pull P in the rope. This is equivalent to the
number n of forces (ropes) supporting the weight. The wheel can



also be mounted on a shaft so that it is driven by or drives a belt
passing around it.

pulley

pulsatance See angular frequency.

pure imaginary See complex number.

pure mathematics See mathematics.

pure strategy See game theory.

pure surd See surd.

p-value In *hypothesis testing, the probability under the null
hypothesis that a *statistic takes a value as extreme as or more
extreme than that observed in the relevant tail (one-tail test) or tails
(two-tail test). In the case of a parametric test, this is called an exact
p-value if all the conditions for the parametric test hold. If
*nonparametric methods are used, an appropriate *permutation test
leads to exact p-values. For su�ciently small p the outcome of a test
may be classed as signi�cant at level p. This concept of signi�cance
di�ers from that of a pre-�xed signi�cance level a (commonly �xed
at α = 0.05, 0.01, or 0.001).



For example, if a *t-test is performed on a sample of ten
observations from a normal distribution with unknown mean m to
test the hypothesis m = 0 against the alternative µ ≠ 0, the statistic
t has nine degrees of freedom, and if t = 2.41 then p = Pr(|t|
≥2.41) = 0.0392, indicating signi�cance at the exact 0.0392 level.
If and only if p≤α is a result signi�cant at a pre-chosen level a.
Modern computer software usually gives exact p-values in output.

pyramid A solid �gure (a *polyhedron) formed by a *polygon (the
base) and a number of triangles (lateral faces) with a common vertex
that is not coplanar with the base. Line segments from the common
vertex to the vertices of the base are lateral edges of the pyramid.
Pyramids are named according to the base: a triangular pyramid
(which is a tetrahedron), a square pyramid, a pentagonal pyramid,
etc.

If the base has a centre, a line from the centre to the vertex is the
axis of the pyramid. A pyramid that has its axis perpendicular to its
base is a right pyramid; otherwise, it is an oblique pyramid. If the base
is a regular polygon and the pyramid is a right pyramid, then it is
also a regular pyramid.

The altitude(h) of a pyramid is the perpendicular distance from
the base to the vertex. The volume of any pyramid is ⅓ Ah, where A
is the area of the base. In a regular pyramid, all the lateral edges
have the same length. The slant height(s) of the pyramid is the
altitude of a face; the total surface area of the lateral faces is ½ sp,
where p is the perimeter of the base polygon.



pyramid (a) right square and (b) oblique triangular pyramids

pyramidal Denoting or concering a *pyramid.

Pyramidal surface A surface generated by all the lines that pass
through a given point and interest a *broken line that is not in the
same plane as the given point. The point is the vertex of the surface,
the broken line is its directrix, and the lines forming the surface are
generators (or elements). The surface has two parts (called nappes) on
each side of the vertex. If the broken line is closed (i.e. if it forms a
closed polygon) the surface is a closed pyramidal surface.

Pythagoras (6th century BC) Greek mathematician and founder of
the Pythagorean school, which claimed to have found the principles
of all things in numbers. What precisely Pythagoras contributed
himself is no longer clear, but amongst the achievements of his
school the most signi�cant is undoubtedly the discovery of the
irrational numbers. Other discoveries include the numerical ratios
determining the intervals of the musical scale, perfect and amicable
numbers, �gurate numbers, and *Pythagoras’ theorem. Although the
theorem had been known to the Babylonians over a thousand years
before, its �rst general demonstration is attributed to the
Pythagoreans.

Pythagoras’ theorem In a right-angled triangle, the sum of the
squares of the lengths of the sides a and b containing the right angle
is equal to the square of the hypotenuse:

a2 + b2 = c2

where c is the length of the side opposite the right angle.
The*converse is also true, i.e. if the sides of a triangle are such

that a2 + b2 = c2, then the angle opposite the side of length c is a
right angle.

Pythagorean triple Three positive integers a, b, and c such that a2
+ b2 = c2. For example, (3, 4, 5), (6, 8, 10), and (9, 12, 15) are



Pythagorean triples. The triple (a, b, c) is a primitive Pythagorean
triple when a, b, and c have no common factor greater than 1. So (6,
8, 10) and (9, 12, 15) are not primitive Pythagorean triples but (3,
4, 5), (5, 12, 13) and (8, 15, 17) are. Pythagorean triples that are
not primitive are of the form (ka, kb, kc) where k is an integer
greater than 1 and (a, b, c)is primitive.

Every primitive Pythagorean triple can be obtained by calculating
the numbers

2uv, u2 – v2, u2 + v2

where u and v are positive integers having no common factor
greater than 1, with one of them odd and the other even, and u > v.
For example, putting u= 4andv = 3 gives the primitive triple (7,
24, 25), and substituting u= 6andv = 1 gives the triple (12, 35,
37).

The numbers in a Pythagorean triple are the lengths of the sides
of a right-angled triangle with integer sides. See Pythagoras’
theorem.

Pythagorean identities See trigonometric functions.



Q

Q Symbol for the set of all *rational numbers.

QED Abbreviation for quod erat demonstrandum [Latin: which was
to be demonstrated], sometimes added at the end of a proof.

QEF Abbreviation for quod erat faciendum [Latin: which was to be
done], sometimes added after the completion of a geometrical
construction.

QEI Abbreviation for quod erat inveniendum [Latin: which was to be
found], sometimes added after the completion of a calculation.

Qin Jiushao (Ch’in Chiu-shao) (c. AD 1200) Chinese mathematician
and calendarmaker who, following work by Liu Yi (c.1200),
described in his Shushu jiuzhang (1247, Mathematical Treatise in
Nine Sections) the solution of polynomial equations of arbitrary
degree by the method of ‘iterated multiplication’, equivalent to the
iterative methods given by Ru�ni and *Horner in the 19th century.
This work also contains methods for solving simultaneous linear
congruences in the computation of calendars which are su�cient to
establish what is now known as the *Chinese remainder theorem.

QR factorization For a matrix A with at least as many rows as
columns, a factorization into the product of a matrix Q with
*orthonormal columns and an *upper triangular matrix R, thus A =
QR. This factorization is computed by the *Gram – Schmidt method.

quadrangle A plane �gure consisting of four points joined by lines.
No three of the points are collinear. In a simple quadrangle the points
are joined by four lines, which may or may not intersect. In a
complete quadrangle (see diagram) the four points are joined by six
lines; these lines intersect in a further three diagonal points.



The harmonic property of the complete quadrangle is that the pair
of lines through any diagonal point and the pair of lines joining that
point to the other diagonal points form a *harmonic pencil. Thus, in
the diagram, the pencil of lines GF, GE, GA, GD is harmonic, and if
GE produced meets AD at X, then {F, X; A, D} = −1.

See cross-ratio; compare quadrilateral.

quadrangle Complete quadrangle ABCD: E, F, and G are diagonal
points.

quadrangular prism A *prism that has bases that are
quadrilaterals.

quadrant One of the four regions into which a plane is divided in a
*Cartesian coordinate system.

quadrantal angle An angle that is a multiple of 90°, i.e. 90°, 180°,
270°, 360°, 450°, 540° etc.

quadrantal spherical triangle See spherical triangle.

quadrants, law of See species.

quadratic Describing an expression, equation, etc. of the second
*degree. A quadratic polynomial is a polynomial of the second
degree. A quadratic equation is an equation formed by putting a
quadratic polynomial equal to zero. For one variable it has the form

ax2 + bx + c = 0



A quadratic *form is a homogeneous polynomial of the second
degree; one in two variables is

ax2 + 2 hxy + by2

which can also be written in matrix notation as

A quadratic curve is a curve with an algebraic equation of the second
degree.

quadratic congruence A *congruence of the type

ax2 + bx + c ≡ 0 (mod n)

where n is a given natural number, a, b, and c are given *integers,
and x is an unknown integer. By using the method of completing the
square, the congruence can be recast as

(2 ax + b)2 ≡ (b2 – 4 ac)(mod n)

Solving the original congruence is then equivalent to solving the
simple congruence

y2 ≡ (b2 – 4 ac)(mod n)

and the *linear congruence

2ax + b ≡y (mod n)

quadratic convergence See order (12).

quadratic formula A formula giving the roots of a *quadratic
equation. For the equation

ax2 + bx + c = 0



the formula is

for a ≠ 0. See also completing the square.

quadratic reciprocity, law of A result that relates the solubility of
the two *congruences

x2 ≡ p (mod q) and y2 ≡ q (mod p)

where p and q are di�erent odd primes. The result is that if one of
the primes is congruent to 1 modulo 4, then the congruences are
either both soluble or both insoluble; and if both p and q are
congruent to – 1 modulo 4, then just one of the congruences is
soluble. In terms of the *Legendre symbol, this can be expressed as

Two associated results are that

and

These three results form an important part of the rules for
evaluating arbitrary Legendre symbols.

quadratic residue A *residue of order 2. See Legendre symbol.



quadratrix A *transcendental curve, invented by *Hippias of Elis,
containing the points of intersection of a uniformly rotating radius
of a curve with a certain line moving uniformly parallel to itself.
The quadratrix is constructed by allowing the radius OP of a circle
(see diagram) to rotate uniformly about its centre O from OA to OC;
simultaneously the line DE, parallel to AB, moves at the same rate
from AB to OC. The locus of the intersection of the radius OP and
the moving line DE forms the quadratrix AP’ Q. The curve allowed
an angle such as ∠ POQ to be trisected (see trisection) by
constructing lines D′E′ and DʺEʺ parallel to DE such that DD′ =
D′Dʺ = DʺO.

`

quadratrix

quadrature Historically, the process of determining a square that
has an area equal to the area enclosed by a closed curve. At one
time a synonym for *integration, it is now usually con�ned
to*numerical integration

quadric A curve or surface that has an algebraice quation of the
second *degree, i.e. a *conic (curve) or *conicoid (surface).

quadrilateral A plane �gure formed by four intersecting lines. A
simple quadrilateral is a polygon with four sides. A complete
quadrilateral (see diagram) is the �gure formed by four lines and



their six points of intersection. These points are joined by a further
three diagonal lines.

The harmonic property of the complete quadrilateral is that any
diagonal line intersects the quadrilateral and the other two diagonal
lines in a harmonic range (see cross-ratio). Thus, in the diagram, if
DB produced meets GF at Y, then {Y, E; B, D} = −1. Compare
quadrangle.

quadrilateral Complete quadrilateral: AC, BD, and FG are diagonal
lines.

quality control The use of statistical methods, including *control
charts, *cusum charts, and *acceptance sampling, to determine
whether processes or goods produced are meeting certain
speci�cations, and to indicate when corrective action should be
taken if standards are not being met.

quantal response A situation in which an individual subjected to a
stimulus shows only one possible response, if any, e.g. death. See
probit analysis; logistic regression.

quanti�er A logical constant used to indicate the quantity of a
proposition. Thus, the general sentence ‘All men are mortal’ has as
its logical form

(∀x)(Man(x)⊃Mortal(x))

and the particular sentence ‘Some men are mortal’ has the logical
form



(  x)Mortal(x)

The quanti�er (∀x) is called the universal quanti�er and is read as’for
all x’. It is common to write this simply as (x). The quanti�er (  x) is
called the existential quanti�er, and is read as ‘for some x’. When
constructing a formal system it is customary to de�ne (  x) A as
∼(∀x)∼A. See also predicate calculus.

quantiles If, for a *random variable X with *distribution function F
(x), we can, given a number p, �nd xp such that F(xp)= p, we say
that xp is the p th quantile of X. If P = ½ then xp is the median. If p
= r/4 (r = 1, 2, 3) we call xp the rth quartile; if p = r/10 (r = 1, 2,
…, 9) we call xp the r th decile; and if p = r/100 (r = 1, 2,…, 99)
we call xp the r th percentile. For many discrete distributions no
unique value of xp can be found by using this de�nition, but the
di�culty may be overcome by making suitable modi�cations.
Quantiles may also be de�ned for data sets. The data must �rst be
arranged in ascending order. If there are 2 n + 1 (an odd number
of) observations, the median is the middle ordered value xn+1. If
there are 2 n (an even number of) observations, the median is the
mean of the two ordered observations xn and xn+1. See order
statistics.

quantum mechanics A branch of mechanics developed in the early
20th century from results of experiments that could be explained
only by assuming that certain physical quantities (e.g. energy,
momentum) are quantized – i.e. they can take only certain discrete
values. An aspect of quantum theory is wave – particle duality, the
observation that particles can act as waves and vice versa. Erwin
Schrödinger developed a form of quantum mechanics known as
wave mechanics, based on solving wave equations of systems of
particles. Werner Heisenberg produced an equivalent operator
formalism known as matrix mechanics. Modern quantum mechanics
considers that all possible physical states of a system correspond to
space vectors in a Hilbert space. Quantum mechanics di�ers from
classical (or relativistic) mechanics in the way in which



measurements on a system a�ect its state, and in the consequent
fact that the information obtained is probabilistic rather than
de�nite. Quantum e�ects become important for microscopic systems
(elementary particles and atoms).

quart 1. An obsolescent *imperial unit of volume or capacity, equal
to ¼ of a *gallon.
2. A unit of liquid measure in common use in the USA; it equals ¼
of a US *gallon.

quartic (biquadratic) Describing a mathematical expression of the
fourth *degree or order. Thus, a quartic polynomial is one of the form

ax4 + bx3 + cx2 + dx + e

A quartic function is a function f(x) whose value for a value of x is
given by a quartic polynomial in x. A quartic equation is an equation
of the form

ax4 + bx3 + cx2 + dx + e = 0

To solve this equation, it can be recast in the form

y4 + py2 + qy + r = 0

by substituting x = y – b/4 a and dividing throughout by the
coe�cient of y4. This, the reduced quartic, is set identically equal to

(y2 + λy + m)(y2 – λy + n) = 0

After equating coe�cients and eliminating m and n from the three
equations, the following *cubic in λ2 is obtained:

λ6 + 2 pλ4 + (p2 – 4 r)λ2 – q2 = 0

Since the cubic is solvable in terms of radicals, we can obtain λ, m,
and n in terms of radicals and p, q, and r. The solution of the



reduced quartic (and hence of the original quartic) is completed by
solving each of the quadratic equations

y2 + λy + m = 0, y2 – λy + n = 0

This method was given by Descartes in 1637. However, the �rst
method of obtaining x in terms of the coe�cients of a quartic
equation was given by Ferrari, and was published in 1545 in the
book by Cardano that also contained the �rst solution of the cubic.

A quartic curve is a curve with an algebraic equation of the fourth
degree.

quartile See quantile.

quartile deviation The semi-interquartile range, ½ (Q 3 – Q 1),
where Q 1 and Q 3 are the �rst and third quartiles (see quantiles).

quasi-crystal See crystallography.

quaternion An entity of the form

x0 + x1 i + x2j +x3k

where x0, x1, x2, and x3 are real numbers. Quaternions were
introduced in 1843 by Hamilton as a way of generalizing complex
numbers in a plane to three dimensions. Quaternions combine by
the normal laws of algebra with the exception of multiplication,
which is not commutative. Multiplication is by the distributive law
using

i2 = j2 = k2 = ijk = – 1

ij = k = – ji, etc.

The set of quaternions (denoted by H) can be regarded as a *vector
space of dimension 4 over , the real �eld, with a basis 1, i, j, k. See
also Frobenius’s theorem.



quaternion group A non-Abelian multiplicative *group of 8
elements which are most commonly represented by the unit
*quaternions ± 1, ±i, ± j, and ± k. A *matrix representation of
the same group is given by eight 4 × 4 matrices (see *generator
(2)), with matrix multiplication as group operation.

Quetelet, Lambert-Adolphe-Jacques (1796 – 1874) Flemish
astronomer and mathematician often referred to as the ‘father of
modern statistics’. He not only collected much basic statistical data
on a wide range of phenomena but also attempted to analyse them
and use them to test traditional views in such disciplines as
medicine and criminology. It was Quetelet who introduced the
notion of the ‘average man’.

queuing theory A study of *stochastic processes involving
customer-wait and service-time patterns where there is a random
element in customer arrivals and/or times taken to serve by one or
more servers. The theory applies not only to systems like banks and
post o�ces, but also to, for example, berthing-and-unloading
schedules for oil tankers at a re�nery.

Quine, Willard Van Orman (1908 – 2000) American mathematical
logician who, in his Mathematical Logic (1940), established an
in�uential approach to set theory. In his later writings he also
developed a consistently radical critique of a number of important
issues, including the legitimacy of modal logic, the nature of logical
truth, abstract entities, and meaning.

quintal system A *number system using the base �ve.

quintic Describing an expression of the �fth *degree.

quota sample A sample in which the units are not selected
randomly but the interviewer is told to choose a certain number of
units in each of a number of categories, e.g. 30 women, 16 men, half
of each to be over 40, etc. The method is widely used in opinion
polls and market research. While sampling error cannot be
estimated, a welldesigned quota sample often has low sampling



error. There is a danger of bias being introduced by interviewer
choice, but the prime di�culty in interpreting results of opinion
polls, whatever method of sampling is used, often arises from ‘don’t
know’ responses and people changing their minds between the
opinion poll and the event to which it relates, e.g. a forthcoming
election. See sample survey; sampling theory.

quotient The result of dividing one number or *polynomial by
another. In

q = a ÷ b

q is said to be ‘the quotient of a by b’. See division.

quotient group See normal subgroup.

quotient ring See ideal.

quotient rule (for di�erentiation) A method for di�erentiating a
quotient using the formula

For example, it is possible to di�eretiate the function y = (sin x)/x
by using u = sin x and v = x, so that

The formula then gives

Compare product rule.



R

 Symbol for the set of all *real numbers.
n Symbol for *Euclidean space of n dimensions.

RA Abbreviation for *right ascension.

radial Directed along a radius.

radial component See velocity; acceleration.

radian Symbol: rad. The SI *supplementary unit of plane angle,
equal to the angle subtended by an arc of unit length at the centre
of a circle of unit radius. See angular measure.

radian measure See angular measure.

radical The *root of a quantity as indicated by the sign √ (the
radical sign). A number (the index) placed to the left of the sign
shows the type of root, e.g. 4√ is a fourth root; if there is no number
the root is a square root.

radicand The number or expression under a *radical sign; for
instance, x in √x.

radius (plural radii) 1. The distance from the centre of a circle to
any point on its circumference, or the distance from the centre of a
sphere to any point on its surface.
2. Any line segment joining the centre of a circle (or sphere) to a
point on its circumference (or surface).
3. (of a conic) See focal radius.
4. See polygon.

radius of convergence See power series.

radius of curvature See curvature.



radius of gyration Symbol: k. A length representing the distance in
a rotating system between the point or line about which rotation
takes place and the point at which (or from which) a transfer of
energy has the maximum e�ect. In a system with total mass m and
*moment of inertia I, the radius of gyration about the rotational axis
is given by √(I/m); k can be considered as the radius of a thin ring,
mass m, coaxial with the rotational axis and with moment of inertia
equal to that of the body.

radius vector See polar coordinate system.

radix 1. A *root.
2. A number that is the base of a number system or *logarithm.

Radon’s theorem (J.K.A. Radon, 1921) Any set S of n + 2 points in
n can be *partitioned into two subsets whose *convex hulls meet; a

point of intersection is called a Radon point of S.

Radon transform A *transform discovered by the Austrian
mathematician Johann Karl August Radon (1887 – 1956) in 1917.
In two dimensions, the transform reconstructs a function from the
values of its *integral over a set of lines in the plane. The basic idea
is similar to that of the Cauchy-Crofton formula, which calculates the
length of a curve by counting the number of times the curve crosses
lines; it was discovered in the 19th century and is named after A.-L.
Cauchy and the Irish mathematician M.W. Crofton.

In three dimensions, integrals over planes are used in the Radon
transform. It is the basis for the reconstruction of images from
medical computed tomography scans. A numerical adaptation is the
commonly used *Hough transform.

Ramanujan, Srinivasa Aaiyangar (1887 – 1920) Indian
mathematician, largely self-taught, who while in Europe between
1914 and 1917 published 21 papers, some in collaboration with
G.H. Hardy, mainly on number theory.

Ramsey’s theorem (F.P. Ramsey, 1928) A theorem of *set theory
describable in terms of *graphs whose edges are coloured. If one



uses k colours to paint the various edges of a complete graph G
(each edge coloured with a single colour) and G has a su�ciently
large number of vertices, then there is a complete *subgraph of
some given size entirely of one colour. For example, if one colours
the edges of the complete graph with 6 vertices either black or
white, then the graph must contain either a black or a white
triangle.

More generally, given any set of positive integers n1, n2,…, nk,
there is an R (the Ramsey number associated with this set of integers)
such that if the edges of the complete graph with R or more vertices
is edge coloured with k colours, then, for at least one of the i, there
is a complete subgraph with ni vertices with all its edges having the
ith colour. The Ramsey number is often denoted R(n1, n2,…, nk), so
the example above says that R(3, 3) = 6. Ramsey’s theorem can be
regarded as a generalization of the *pigeonhole principle.

random In everyday use, ‘random’ is synonymous with ‘haphazard’,
but in statistics it has a special meaning within a probabilistic
framework. A *random sample of r items from n is a selection in
which each item has an equal chance of selection. Thus, if we select
four numbers at random from 1 to 20 without replacement the
selections 1, 2, 3, 4 and 3, 16, 7, 19 are equally likely. Most people
would not regard the �rst selection as haphazard, but they would
the second. See random numbers; random sample; random variable;
random walk.

random error See error.

randomization test See permutation test.

randomized blocks A widely used *experimental design in which
the experimental units are grouped into blocks so that all units
within any one block are as similar as possible with regard to some
chosen characteristic that might a�ect observations. The number of
units in a block must be equal to (or be a multiple of) the number of
treatments. Each treatment is applied to exactly one unit (or to an



equal number of units) in each block, and is allocated to units
within each block at random.

When the experiment is analysed by the *analysis of variance, a
component representing variability between blocks can be removed
from the residual mean square, often leading to an increase in
*precision. For example, if �ve di�erent growth hormones are to be
tested on piglets, then using �ve piglets from the same litter to form
each block would reduce genetic di�erences. In more sophisticated
designs using blocks, it is not necessary to have the number of units
per block equal to or a multiple of the number of treatments, but the
analysis becomes more complicated.

See also Latin square.

random numbers A sequence of digits or numbers with the
property that, in the long run, all digits or numbers in the sequence
will occur equally often, and in which the occurrence of any one
digit or number in a particular position in the sequence is no guide
to the occurrence of earlier or later members of the sequence. The
traditional method of generating random numbers is to draw
numbered tickets or marbles from a container, but computer-
generated pseudo-random numbers are now widely used. A number of
tests are available to verify whether these have the essential
properties of randomness. Random numbers are widely used in
sample selection, and in allocating treatments to units in designed
experiments (see experimental design), and also in *Monte Carlo and
*simulation studies.

random sample 1. A *sample selected from a �nite *population is
called a random sample if it is chosen in such a way that every
possible sample of the same size has an equal probability of
selection. When obtaining a sample of n items from a population of
N items, if each item may occur once and only once in the sample
the procedure is referred to as sampling without replacement. If each
selected item is returned to the population after selection for
possible reselection, the procedure is called sampling with
replacement. In sampling with replacement some items may thus



occur more than once in a sample. When sampling with or without
replacement, if each item eligible for selection at any stage has an
equal probability of selection, the procedure is called simple random
sampling See also cluster sample; sample survey; sampling theory;
strati�ed sample.
2. A sample of values of a *random variable X with a known
*distribution is obtained by selecting values so that:
(1) for a continuous distribution the probability that the chosen
value lies in the interval (x, x + δx) is f (x) δx, where f (x) is the
*frequency function;
(2) for a discrete distribution the probability that the value xi is
obtained is f(xi), given by the *frequency function.
Tables of randomly selected numbers from certain distributions have
been published, but in *simulation or *Monte Carlo studies it is
usual to generate random samples by computer.

The distribution of a random sample x1, x2,…, xn is discrete, and
the frequency function is given by Pr(X = xi) = pi = 1/n, i = 1, 2,
…, n. The sample cumulative distribution is a step function with
step 1/n at each ordered sample value xi. Many functions of the
sample distribution are used as estimates of the population
equivalents; the sample mean x̄ = ∑xi/n, for example, is an
analogue of the population mean μ.

See also plug-in estimator.

random variable A *variable X that may take any one of a �nite or
countably in�nite set of real values, each with an associated
probability, is a discrete random variable. The probabilities associated
with each value are the elements of the *frequency function. If X
may take continuous values in a range (�nite or in�nite) with
probability f (x) δx associated with each in�nitesimal interval (x, x
+ δx), where f (x) is the frequency function, then it is a continuous
random variable. The convention is to use capital italic letters, e.g. X,
Y, to denote a random variable and the corresponding lower-case



letter, with su�x if needed, to denote an observed value of that
variable. The distinction between a random variable and an
ordinary mathematical variable is the association of a probability
distribution with the former. An alternative name for a random
variable is a variate. See distribution.

random walk A simple random walk is exempli�ed by a particle, at
some integral point x = k on the x- axis, which moves at time t1

either to x = k + 1 (a step to the right) with *probability p or to x
= k − 1 (a step to the left) with probability 1 − p. A step to the
left or right with these probabilities is repeated from this new
position at timet2 and then at times t3, t4,…. The walk may cease if
an absorbing barrier is reached. Many of the principles can be
illustrated by a gambling game in which a player with initial capital
k wins one unit with probability p or loses one unit with probability
1 − p. In this case there is an absorbing barrier at x = 0 when the
gambler becomes bankrupt. The concept may be generalized to
allow several possible steps at each time ti, or by the introduction of
re�ecting or elastic barriers (the latter allowing either re�ection or
absorption with speci�ed probabilities) and to walks in two or more
dimensions. A random walk is an example of a *Markov chain.

range 1. The set of values that can be assumed by the dependent
variable for a given *function. For example, if for every number in
the *domain −1 ≤ x ≤1 the function f is de�ned by y = f(x) = 2
x3, then the range of f is [−2, 2]. See also function.
2. The *set of values taken by a variable.
3. The di�erence between the largest and smallest values in a data
set, or for a *random variable the length of the shortest interval
which includes all nonzero values of the *frequency function. The
range may be in�nite.

rank 1. The ordinal associated with an ordered observation.
2. To arrange a set of objects in order, lowest to highest, on the
basis of a characteristic. This may be a physical measurement such



as height of individuals, or a subjective judgement as in the ranking
of participants by judges in a talent contest or of preferences in a
tasting test. In many cases it is possible to order observations
according to some criterion without assigning exact measurements
to individuals. For example, it is often possible to rank objects by
height quite accurately without ever making precise measurements
of height. Many nonparametric statistical tests are based on ranks
and use these even if precise measurements of a characteristic are
available. Ranked data are sometimes referred to as ordinal data. See
nonparametric methods; order statistics.
3. (of a matrix) The maximum number of linearly independent
columns of a *matrix, or (which is the same) the maximum number
of linearly independent rows of the matrix. Equivalently, it is the
order of the greatest nonzero *determinant that can be taken out of
the matrix by selecting rows and columns. An m х n matrix is of full
rank if its rank equals the minimum of m and n. The rank of a linear
transformation (or matrix) is the dimension of its *image. See also
augmented matrix.

rate of change See derivative.

rate of convergence See order (12).

ratio The quotient of two numbers or quantities indicating their
relative sizes. The ratio of a to b is written as a:b or a/b. The �rst
term is the antecedent and the second the consequent.

The value of a ratio is unaltered if both terms are multiplied or
divided by the same quantity. Thus 12:15, 4:5, and 24:30 are
equivalent ratios.

A unitary ratio has one of its terms equal to 1. For example, 1:8
and 2:1 are unitary ratios. The ratio notation can be extended to
indicate the relative size of more than two quantities. For example,
the ratio a:b:c states that the ratios of the �rst to the second



quantity, the second to the third, and the �rst to the third are
equivalent to a:b, b:c, and a:c, respectively. Thus 25, 50, and 75 are
in the ratio 1:2:3.

See also inverse ratio; cross-ratio; division in a given ratio.

rational function (rational expression) The quotient of two
*polynomial functions

de�ned when f2(x) ≠ 0. An example is

When any factors common to f1 and f2 have been removed, the
zeroes of the denominator are the poles of f (see singular point).

rationalize To remove *radicals from an equation, expression, etc.
For example, the equation

√(x + 1) = 2 x

can be rationalized by squaring both sides to give

x + 1 = 4 x2

The denominator of 2/(√5 + 1) can be rationalized by multiplying
both parts of the fraction by √5 − 1 and simplifying to (√5−1)/2.

rational number A number that is either an *integer or can be
written as a quotient of two integers. For example, 1, 7, 540, 2/3,
and 1/9 are rational numbers. Each rational number has a *decimal
expansion that is either �nite or periodic. The set of all rational
numbers is denoted by Q. Compare irrational number; see also
Dedekind cut; real number.



rational operation Any of the operations addition, subtraction,
multiplication, and division.

rational root theorem The theorem that if a *polynomial equation
with integral *coe�cients has a *root that is a rational number p/q
(in its lowest terms), then the leading coe�cient is divisible by q
and the constant term is divisible by p.

ratio test A test for convergence or divergence of a given in�nite
*series, attributed usually to d’Alembert but also to Cauchy. In the
series of positive terms

a1 + a2 +… + an + an+1 +…

suppose that an+1/an tends to a *limit A as n → ∞. Then when A <
1 the series converges (absolutely), when A > 1 the series diverges,
and when A = 1 the test gives no information. See convergent
series.

ray See half-line.

reaction The *force that results from the application of a force to a
body in pushing, pulling, lifting, or supporting the body. The
reaction is exerted by the body itself, and acts in the opposite
direction to the applied force. The force thus opposed is known as
the action. By Newton’s third law of motion, action and reaction are
equal in magnitude but act in opposite directions.

real axis See Argand diagram.

real function (function of a real variable) A *function whose
domain and codomain are sets of real numbers. An example is the
function f: x → x3, which maps the real numbers  to . Compare
complex function.

real number A number that can be written in the form ±n.a1a2a3…,
where n is an *integer and each ai is one of the *digits 0 to 9, for
example, 2, 1/3 = 0.333…, − 1.5, and π = 3.14159…. Real



numbers are either *rational or *irrational. The set of all real
numbers is denoted by . The real numbers can be formally de�ned
in terms of *Dedekind cuts of the rational numbers or Cauchy
sequences (see metric space) of rational numbers.

There is a *one-to-one correspondence between the set of real
numbers and the points of an in�nite directed line containing a
�xed origin. The positive real number +a corresponds to the point
whose distance from the origin is a units measured in the positive
direction, and the negative number −b corresponds to the point
whose distance from the origin is b units measured in the negative
direction. The number zero corresponds to the origin. In this context
the line is called a number line or real line, and may be denoted by 
1.

Compare complex number; see decimal; Euclidean space.

real part See complex number.

reciprocal 1. The number or expression produced by dividing 1 by
a given number or expression. Thus, the reciprocal of 2 is ½ and the
reciprocal of 1 + x is 1/(1 + x).

2. See inverse (of a matrix).

reciprocal curve The curve generated from a given curve by
replacing each *ordinate by its reciprocal. Thus, the reciprocal curve
of y = 2x is y = 1/(2 x) (and vice versa).

reciprocal equation An equation that is unchanged (i.e. has the
same *roots) if the variables are replaced by their reciprocals. Thus
x2 + 1 = 0 is a reciprocal equation since replacing x by 1 /x gives
(1/x2) + 1 = 0, which simpli�es to 1 + x2 = 0.

reciprocal matrix See inverse (of a matrix).

reciprocal ratio See inverse ratio.

reciprocal series (of a given series) The *series whose terms are
each reciprocals of the terms of the given series. A *harmonic series
is the reciprocal series of an arithmetic series.



reciprocal spiral See spiral.

Recorde, Robert (c.1510 – 58) Welsh mathematician noted for The
Whetstone of Witte (1557), the �rst signi�cant algebra textbook
written in English, which introduced into mathematics the familiar
sign = to represent equality. Recorde also produced comparable
works on arithmetic, The Grounde of Artes (1543), and on geometry,
The Pathway to Knowledge (1551).

rectangle A *quadrilateral with all four angles right angles. The
pairs of opposite sides are equal. If all four sides are equal, the
rectangle is a square.

rectangular coordinate system A *coordinate system in which the
axes are perpendicular. See Cartesian coordinate system.

rectangular distribution See uniform distribution

rectangular hyperbola See hyperbola.

recti�able Describing a curve that has a �nite length.

rectify To �nd the length of (a curve).

rectilinear motion Motion along a straight line.

recurrence relation A relation between successive values of a
*function or *sequence that allows the systematic calculation of
values, given an initial value (or values) and the relation. For
example, the *Fibonacci sequence may be generated by the
recurrence relation

an+1 = an + an−1

and the initial values a1 = a2 = 1.
Formulae of this type are sometimes called recursive relations, and

the computation is then described as *recursive. Sophisticated
recurrence relations are used in large-scale computational problems



and may reduce round-o� di�culties inherent in more direct types
of calculation.

See di�erence equation; dynamic programming.

recurring decimal See decimal.

recursive A *function or *sequence is de�ned recursively if
(1) the value of f(0) and
(2) the value of f(n+1), given the value of f(n)
are both stated. For example, the *factorial function may be de�ned
by
(1) f(0) = 1 and
(2) f(n+1) = (n+1)f(n) for n = 0, 1, 2,….

Recursive de�nitions are also called inductive de�nitions or
recursions. See recurrence relation.

reduced row echelon form An m хn matrix A is in reduced row
echelon form if it is in *row echelon form and the �rst nonzero
element in each row is 1 and is the only nonzero in its column. For
example, the matrices

are in reduced row echelon form. Reduced row echelon form is
produced by *Gauss-Jordan elimination. Reduced column echelon
form is de�ned by replacing ‘row’ by ‘column’ in the above
de�nition.

reducible equation See reducible polynomial.



reducible fraction A common fraction such as 4/6 in which the
numerator and denominator have a *common factor greater than
unity. Compare irreducible fraction.

reducible polynomial A *polynomial is reducible over a *�eld F if
it can be factored (see factor) into two polynomials having
coe�cients in F. For instance, x2− 1 is reducible over  since it can
be factored into (x − 1) (x + 1), in which the coe�cients are real
numbers. The polynomial x2 + 1 is an irreducible polynomial over 
because its factors, x + i and x − i, have coe�cients in C, the �eld
of complex numbers.

A reducible equation over a �eld F is an equation of the form P =
0, where P is a reducible polynomial over F. An irreducible equation
is similarly de�ned.

reducible radical A *radical that can be written in a rationalized
form, i.e. a form not containing radicals. For example, √4(=2) and
√16(=4) are reducible radicals. Compare irreducible radical.

reductio ad absurdum See indirect proof.

reduction formulae 1. Formulae in plane trigonometry that give
trigonometric functions of an angle plus or minus a number of right
angles in terms of functions of that angle. For example:

tan(90°±θ) = −(± cot θ)

sin(90°±θ) = cos θ

cos(90°±θ) = −(± sin θ)

tan(180°±θ) = ±tan θ

sin(180°±θ) = −(+ sin θ)

cos(180°±θ) = −cos θ

tan(270°±θ) = −(+ cot θ)



sin(270°±θ) = −cos θ

cos(270°±θ) = ±sin θ

2. Formulae expressing an *integral in terms of a simpler integral, in
particular one of reduced *power. Examples of reduction formulae
are given in the Appendix.

Reed-Solomon code (I.S. Reed and G. Solomon, 1960) Over a *�eld
Fq = {a1, a2,…, aq}, with aq = 0 and q elements, the k th Reed-
Solomon code is the *linear code of length q − 1, de�ned as the set
of all (q − 1)-tuples (f(a1), f(a2),…, f(aq−1)), where f ranges over all
*polynomials of degree at most k − 1 with coe�cients in Fq.

These codes are in very common use, for example in storage
devices (e.g. tape, CD, DVD, barcodes), mobile communications (e.g.
cellular telephones, microwave links), satellite communications,
modems and in digital television.

re-entrant angle An interior angle in a (concave) *polygon that is
greater than 180°. Compare salient angle.

reference angles See related angles.

reference axis See axis.

re�ection 1. (in a point) A *transformation, involving a �xed point
C, such that the line segment joining a point to its image is bisected
at C.

2. (in a line) A transformation, involving a mirror line or axis l,
such that the line segment joining a point to its image is
perpendicular to l and has its mid-point on l. Re�ection of points of
the plane in the line with equation y = x tan θ maps the point with
coordinates (x, y) onto the point

(x cos 2 θ + y sin 2 θ, x sin 2 θ − y cos 2 θ)

In particular, re�ection in the y-axis maps (x, y) onto (– x, y).



Re�ection in a plane is de�ned similarly, i.e. the line segment
joining a point to its image is perpendicular to the plane, and its
mid-point lies in the plane.

See also symmetry.

re�ection matrix See orthogonal matrix.

re�ection property The *focal property of a conic. See ellipse;
hyperbola; parabola.

re�ex angle An angle between 180° and 360°.

re�exive relation A *relation R on a *set A is re�exive if, for all a
∈ A, a R a. The relation ‘is divisible by’, for example, is re�exive on
the set of natural numbers as every number is divisible by itself.
Relations such as ‘greater than’, which are not re�exive, are
described as irre�exive.

Regiomontanus, also known as Johann Müller (1436 – 76)
German astronomer and mathematician whose posthumously
published De triangulis omni modis (1533, On All Classes of
Triangles) is one of the �rst works on trigonometry as a discipline
independent of astronomy. It was also one of the �rst works to
substitute for the chords of antiquity the sine and cosine of the Arab
mathematicians.

region A connected subset of a Euclidean space, sometimes called a
domain. Special types, such as open, closed, and bounded regions,
are often considered. For example, the set of points forming the
interior of a circle is an open region, while a circle together with its
interior represents a closed region. See connected set; open set.

region of convergence See functional series.

regressand See regression.

regression A *model that describes the dependence of the mean
value of one random variable on one or more other variables; for
example, a formula giving the average weight of an infant of a given



height and age. More formally, if the mean value of a random
variable Y for a �xed value x of another variable is written as E(Y|x)
and called the mean of Y conditional upon x, then, when x varies,
E(Y|x) is a function of x called the regression of Y on x.

The simplest case is that of linear, or straight-line, regression:

E(Y|x) = β0 + β1x

The random variable Y is called the response, dependent or e�ect
variable, or the regressand, and x is called the explanatory, �xed,
independent, predicated, predictor, or cause variable, or the regressor.
The parameters β0 and β1 are regression coe�cients, and are usually
unknown. Regression analysis is concerned with estimating these
parameters. If Y is assumed to be normally distributed with constant
but usually unknown variance σ2, which is independent of x, then,
given a sample of n independent pairs of observations (xi, yi), i = 1,
2,…, n, the *maximum likelihood estimators b0 and b1 of β0 and β1

are given by the method of *least squares, i.e. by minimizing ∑i(yi
− β0 − β1 xi)2, and are

b0 = ȳ – b1x̄

where x̄ = ∑i xi/n and y˒ = ∑i yi/n.
An alternative equivalent model is yi = β0 + β1xi + єi, where the

єi are independently normally distributed with zero mean and
variance σ2.

Regression may be extended in many ways, including multiple
linear regression where there are p > 1 explanatory variables x1, x2,
…, xp and

E(Y|x1, x2,…, xp)
=β0 + β1x1 + β2x2 +… +βpxp (1)



The expression (1) considered as a function of the parameters βi is a
linear function of these parameters, and the term linear regression
model is used in this sense for models that are not necessarily linear
in the xi. For example, if xi = xi, the regression function (1) is a
polynomial of degree p.

More complicated methods of estimation are needed if the
assumptions of the normality of Y and the independence or
constancy of its variance are dropped.

Multiplicative models can often be reduced to linear models by
taking logarithms, as in the *loglinear model. More generally, the
right-hand side of (1) may be generalized to any function f(x, θ),
where x is a vector of p explanatory variables and θ is a vector of q
unknown parameters, giving

E(Y|x) = f(x, θ)

If, in the linear regression model, the conditional mean μ = E(Y|x)
is replaced by some function of the mean g(μ), the model is a
*generalized linear model.

See also Gauss-Markov theorem; least squares; line of best �t.

regressor See regression.

regula falsi See false position, rule of.

regular function See analytic function.

regular graph See graph.

regular group A *permutation group that has an order equal to the
number of members of the set of objects permuted.

regular polygon A *polygon that has all its sides equal and all its
interior angles equal.

regular polyhedron A *polyhedron that has regular congruent
faces and congruent *polyhedral angles.



regular prime A *prime p that does not divide the *class number of
the *�eld obtained by adjoining to the rational numbers a primitive
p th *root of unity. The distinction between regular and irregular
primes was made by E. Kummer in 1850 in his important work on
*Fermat’s last theorem.

regular prism A right *prism that has regular polygons as bases.

regular pyramid A *right pyramid whose base is a regular polygon.

regular sequence See metric space.

regular star polygon See polygon.

regular star polyhedron See polyhedron.

Reinhold, Erasmus (1511-53) German mathematician and
astronomer noted for his important Tabulae prutenicae (1551,
Prussian Tables), the �rst tables of planetary motion to be based on
the heliocentric theory of Copernicus.

related angles (reference angles) Angles that have the same
absolute values for their *trigonometric functions. For example, 20°,
160°, 200°, and 340° are related angles.

relation 1. An association between, or property of, two or more
objects. Thus ‘x = y’ and ‘a lies between b and c’ are relations, but
‘N is prime’ is not. A binary relation or correspondence (e.g. ‘is equal
to’) involves two objects, a ternary relation (e.g. ‘lies between’)
involves three, and an n-ary relation involves n objects.

A relation may be speci�ed by listing all the instances for which it
holds. More formally, a binary relation or correspondence R on sets
X and Y is de�ned as the set of all ordered pairs (x, y) with x ∈ X
and y ∈ Y for which the statement ‘x has relation R to y’ is true
(written as x R y).

If Y = X then R is a relation on X. For example, the relation ‘is a
factor of’ on the set of positive integers is the set of ordered pairs of
positive integers (a, b) for which a divides b, i.e. (1, 1), (2, 6), (3,
12), etc.



The inverse of a binary relation R (on sets X and Y) is the relation
S (on sets Y and X) such that y S x if and only if x R y. For example,
the inverse of the relation ‘is a factor of’ on the positive integers is
the relation ‘is a multiple of’ on the positive integers and consists of
pairs (1, 1), (6, 2), (12, 3), etc.

A mapping or *function f with domain X and codomain Y may be
regarded as a binary relation R, with x R y equivalent in meaning to
‘x is mapped by f to y’ or ‘y = f(x)’.

A binary relation R on a set X is
(1) re�exive if x R x for all x ∈ X;
(2) symmetric if x R y always implies y R x;
(3) transitive if x R y and y R z together always imply x R z.

A relation satisfying properties (1), (2), and (3) is an equivalence
relation. The relation of equality on a set is an example of an
equivalence relation. The relation ‘is a factor of’ on the positive
integers is re�exive and transitive, but not symmetric.

See also equivalence class; partial order.

relative velocity (a) Velocities of P and Q: (b) velocities relative to
Q.

2. (in a group) See generator (of a group).

relative See index.

relative acceleration See relative velocity.

relative complement See di�erence.

relative density (speci�c gravity) The ratio of the *mass of a solid
or liquid to the mass of an equal volume of water at 4°C (or some
other speci�ed temperature). For gases, relative density is the ratio
of the density of the gas to the density of air or hydrogen at the
same temperature and pressure.



relative error If y is an approximation to a number x, then its
relative error is |x − y|/|x|, which is de�ned only for x ≠ 0.

relative frequency See frequency.

relatively prime (coprime) Describing two *integers that have no
divisors in common other than + 1 and −1. Thus 5 and 12, −18
and 35, and 72 and 91 are relatively prime pairs, but 6 and 9 are
not relatively prime.

relative maximum or minimum See turning point.

relative velocity If two bodies P and Q have velocities v P and v Q,
then the velocity of P relative to Q is vP − vq . The velocity of P is
then the *vector sum of the velocity of P relative to Q and the
velocity of Q itself. A similar relation holds for the relative
acceleration of P and Q: the acceleration of P is the vector sum of
the acceleration of P

relative to Q and the acceleration of Q itself.
These relations hold only for speeds very much smaller than the

speed of light, c. For two bodies P and Q moving in the same
direction with speeds vP and vQ, the relativistic expression for the
magnitude of the velocity of P relative to Q is

See also relativity.

relativistic mass The mass of a body when it moves at speeds
approaching the speed of light, c (= 3 Х 108 metres per second).
According to the special theory of *relativity (and as experimentally



veri�ed), the mass m of a moving body exceeds the *rest mass, m0,
of the body and is a function of the body’s speed υ:

The increase in mass is negligible except at very high speeds. The
total energy of the system is given by

and the relativistic momentum by

It can be shown that

E2 = p2c2 + m2
0c4

These equations are the basis of *relativistic mechanics.

relativistic mechanics The study of the motion of particles or
bodies that move at speeds comparable to the speed of light, c, i.e.
at relativistic speeds. The equations must conform to the principles
of the special and general theories of *relativity, and reduce to the
equations used in *classical mechanics (or nonrelativistic quantum
mechanics) for speeds considerably less than c. There is
conservation of mass-energy and of momentum in relativistic
systems. See also relativistic mass.

relativity A theory of physics conceived by Albert Einstein and
developed in two stages. The special theory of relativity, published in
1905, is concerned with the phenomena of physics as experienced
by observers moving relative to one another at constant velocity. It
is thus restricted to observers in inertial *frames of reference. The
general theory of relativity was published in 1916 and extends the
theory to observers in noninertial, i.e. accelerated, frames of



reference. The two theories led to a re-analysis of the concepts of
space and time and of the interrelationship between measurement
and observer.
(1) The special theory has two fundamental postulates. The �rst is a
generalization of work by Poincaré and Lorentz. It states that the
laws of physics can be expressed in the same mathematical form in
all inertial frames of reference: it is impossible to distinguish
between two iner-tial frames by any physical experiment, be it
mechanical, optical, or electrical. The second postulate, which
follows from the �rst, states that in free space every inertial
observer measures the same value of the speed of light relative to
himself: the speed of light in free space must thus be a universal
constant.

The equations for transforming the position and motion in one
inertial frame to a di�erent inertial frame must satisfy these two
postulates. The equations used are those of the Lorentz
transformation. For example:

x′ = β(x − vt)

y′ = y

z′ = z

t′ = β(t − υx/c2)

where β = 1/√(1 – υ2/c2) and v is the magnitude of the relative
velocity of the two frames. The Lorentz transformation replaces the
Galilean transformation of classical mechanics and forms the basis of
the mathematical treatment of special relativity. It does show,
however, that the idea of the universality of time is invalid. It was
Minkowski who realized that the two postulates of special relativity
require space and time to be treated not as separate entities but as a



uni�ed four-dimensional concept, referred to as *spacetime. Space-
time subsequently became the frame of all later extensions of the
theory of relativity.
Rigorous development of the two postulates enabled Einstein to
invalidate many of the tacit assumptions of classical physics and to
show that *Newton’s laws of motion hold only for low speeds, i.e.
speeds small in comparison with the speed of light, c(= 3 × 108

metres per second). The equations of special relativity must (and do)
reduce to those of classical mechanics for low speeds. The special
theory was able to explain certain predictions, such as the *Lorentz-
Fitzgerald contraction, and certain experimental observations that
had already been made. There were also some startling predictions
that followed from the theory. These include the relationship
between mass and energy expressed in the *mass-energy equation
and the concepts of *relativistic mass, *rest mass, and *time
dilation. These have since been veri�ed experimentally to
considerable accuracy.
(2) The general theory of relativity is not restricted to inertial
frames of reference and is consequently much more complex
mathematically than the special theory. It is based on the
*equivalence principle – that the physical e�ects of a gravitational
�eld are indistinguishable from the physical e�ects experienced by
an observer in an accelerated frame of reference. In addition the
laws of physics in an accelerated frame cannot be distinguished
from the laws in inertial frames: the laws are therefore invariant
with respect to all possible frames of reference. The mathematical
consequence is, essentially, a geometrical theory of gravitation. The
geometry of spacetime is a�ected by the presence of matter: matter
curves space in its vicinity. It is the curvature of space that controls
the motions of bodies. The curvature is described in terms of four-



dimensional *di�erential geometry, and for a particular collection of
matter can be calculated from the �eld equations of general
relativity. These are tensor equations for what is known as the metric
tensor; the metric tensor completely describes the space.
General relativity reduces to the Newtonian theory of gravitation for
small masses and low speeds. The theory has not, however, been
conclusively proved, although there is substantial evidence.
Experimental tests must verify the predictions of the general theory
where they deviate from those of Newtonian theory and also where
they deviate from those of variants of general relativity.
reliability A term used in several senses in specialized statistical
applications, but chie�y as the *probability R(t) that a device will
not fail in the interval (0, t). If the lifetime distribution function is F
(t), then R (t)=1 − F (t).

remainder 1. A number remaining after one number is divided into
another an exact number of times.
2. (of a series) The in�nite *series that starts after a speci�ed term
of a given series. For the series

a1 + a2 +… + an +…

the remainder after N terms is given by

R N = a N+1 + a N+2 +…

If the original series is convergent, then so is a remainder of the
series. If S is the sum of the given series and sN is the *partial sum
of the �rst N terms, then

S = RN + sN

RN can usually only be estimated, but can still be used to give a
good approximation of S.



remainder theorem The theorem that a *polynomial P (x) divided
by x − a has a *remainder equal to P(a), i.e. the remainder is the
value obtained by substituting a for x in the polynomial. If the
remainder is zero the theorem reduces to the *factor theorem.

removable discontinuity See discontinuity.

removable singularity See singular point.

repeated decimal See decimal.

repeated root See multiple root.

repellor See chaos.

replication In a designed experiment, the number of experimental
units to which each treatment is applied. Equal replication of all
treatments is a common feature of many *experimental designs.

representation (of a group) A *homomorphism of a group of
abstract symbols into a group of more familiar objects, such as a
group of permutations or a group of matrices. In the former case it
is a permutational representation, and in the latter case a matrix
representation. A representation can be either one-to-one (injective),
in which case it is called faithful, or not. For example, the group
generated by two symbols J and K, which satisfy the relations J2 =
K2 = (JK)2 and J4 = I, has eight elements that can be expressed as I
(the identity element), J, K, JK, J2, J3, K3, and KJ. It has a matrix
representation since it is *isomorphic to a certain group of 4 × 4
matrices, and it also has a permutational representation as a certain
group of permutations of eight symbols. See generators.

representative sample A *sample that in certain respects is typical
of the *population from which it is chosen. See quota sample;
sample survey; strati�ed sample.

repunit A natural number, such as 111, that has all its digits equal
to 1. In base 10, the repunit with n digits each equal to 1 is known
to be prime for n = 2, 19, 23, 317, and 1031.



residuals In statistics, the di�erences ei between observed values yi
and values ŷi predicted by a model, i.e. ei = yi − ŷi. Residuals are
sometimes called errors, but care should be taken to distinguish
between a residual and the realized value ei of a random variable
which speci�es the stochastic or random component in a model. For
example, in simple linear *regression, a model

yi = α + βxi + єi

is speci�ed, where, α β, and єi are unknown, and єi is the realized
value of a random variable є, often assumed to be normally
distributed with mean zero and (usually unknown) variance σ2. If
the *least-squares estimators of a and β are a and b, then ei = yi −
a − bxi, and the ei are correlated, even though the єi are
independent. See also residual variation.

residual sum of squares See analysis of variance.

residual variation The variation that is not accounted for by a
*model �tted to data and which is determined by the *residuals. For
example, from a set of data (xi, yi), i = 1, 2,…, n, a linear
regression y = a + bx may be determined. If the estimate of yi from
this model is denoted by ŷi, the residual is given as ei = yi − ŷi =
ŷi − a − bxi.

The residual variation is measured by the *error mean square in
an *analysis of variance. Although it is determined by a di�erent
method in practice, the error mean square in the above example has
the value

The divisor n − 2 represents the *degrees of freedom.

residue 1. The residue of a complex function f(z) at a pole a is the
coe�cient of (z − a)−1 in its *Laurent expansion about a. It is
important because of Cauchy’s residue theorem: that a *contour



integral of a function f(z) along a closed path Γ can often be
evaluated in terms of the residues of f at the poles enclosed by Γ.

For example,

if Γ is a simple closed curve enclosing the point a.
2. If m and n are natural numbers, and a is an integer not divisible
by m, then a is a residue of m of order n if there is a number x such
that

xn ≡ a (mod m)

If the congruence does not have a solution for x, then a is a
nonresidue of m of order n. For example, the congruence

x3≡1 (mod 9)

has a solution x = 4, so 1 is a residue of 9 of order 3.
When n = 1, the congruence xn ≡ a (mod m) always has the

solution x = a, so every a not divisible by m is a residue of order 1.
When n = 2, a residue of order 2 is called a quadratic residue. For
example, if m = 7 the numbers 1, 2, and 4 are quadratic residues
since 12 ≡ 1 (mod7), 32 ≡ 2 (mod 7), and 22≡4 (mod 7); where-as
the numbers 3, 5, and 6 are quadratic nonresidues.

A necessary condition for a to be a residue of m of order n, with a
and m coprime, is that

aɸ(m)/d ≡ 1 (mod m)

where ϕ (m) is *Euler’s phi function of m, and d is the greatest
common divisor of ϕ(m) and n. The condition is known as Euler’s
criterion.

See congruence modulo n.



residue class See congruence class.

resolution (of vectors) The process of determining two or more
*vectors that have an equivalent e�ect to a given vector; the given
vector is said to be resolved into *components.

resonance A phenomenon occurring in an oscillating system
undergoing *forced oscillation whereby the system responds with
maximum amplitude to the periodic driving force. This happens
when the frequency of the driving force equals the frequency of the
natural undamped oscillation of the system (see free oscillation), and
can be a source of potential danger in mechanical structures.

response variable See regression.

restitution Restoration to some original state, especially of shape
following an elastic deformation. See also Newton’s law of
restitution.

rest mass Symbol: m0. A constant property of any material particle
or body, equal to the mass of the particle or body when it is at rest.
The rest-mass energy, E 0, of the particle or body is given by m0c2,
where c is the speed of light. The concept of rest mass is important
in the theory of *relativity. Classical, Newtonian physics makes no
distinction between rest mass and mass in general. When a particle
or body is in motion, its mass m increases (see relativistic mass). For
all velocities the total energy, E = mc2, is equal to the sum of the
rest-mass energy and the kinetic energy. This gives the relativistic
expression for kinetic energy.

resultant 1. The *vector produced by adding two or more vectors.
2. The *vector quantity that has an equivalent e�ect to two or more
given vectors. For a system of forces, say, acting at the same point,
the resultant is a single force given by the vector sum of the forces
(see parallelogram law). For a system of parallel or coplanar forces,
the resultant can be a single force or a single *couple.
3. See eliminant.



retraction Given a *topological space X and a subspace Y, a
continuous map f: X → Y is called a retraction if f keeps all points of
Y �xed.

reverse Polish notation See post�x notation.

revolution See axis; solid of revolution; surface of revolution.

Rheticus, Georg Joachim (1514 – 76) Austrian mathematician and
astronomer best known for his services as amanuensis to
Copernicus. He was also responsible for the posthumously published
Opus palatinum de triangulis (1596, The Palatine Work on Triangles),
a table of trigonometric functions, which he was one of the �rst to
de�ne as ratios of the sides of a right triangle rather than by chords.

Rhind papyrus One of the prime sources for the history of Egyptian
mathematics, and one of the earliest surviving mathematical texts. It
is a scroll about 6 metres long, kept in the British Museum, and
dating from 1650 BC. Despite the widespread belief that the ancient
Egyptians were highly sophisticated mathematicians, the papyrus
deals with very simple arithmetical problems, many of which are
concerned with the division of 2 by the odd numbers 3 – 101. As
they recognized only unit fractions, this led them to establish, for
example, that 2/9 = 1/6 + 1/18. Typical problems considered are:
(1) A quantity and its half together become 16. What is the
quantity?
(2) Find the volume of a cylindrical granary of diameter 9 and
height 10.
In terms of symbolism, the Egyptians lacked a place-value notation,
zero, decimal points, and signs for plus, minus, multiplication, and
division. The papyrus is named after the Scottish antiquarian
Alexander Henry Rhind (1833 – 63).

rhombohedron (plural rhombohedra)A

hexagonal *prism.



rhomboid A *parallelogram that has adjacent sides unequal.

rhombus (rhomb) A *parallelogram that has all its sides equal.

rhumb line See loxodrome.

Ricci-Curbastro, Gregorio (1853 – 1925) Italian mathematician
who in 1884 began to develop his absolute di�erential calculus,
later called *tensor analysis.

Ricci �ow See Poincaré conjecture.

Richardson extrapolation (deferred correction) Let f (h) be an
approximation to an unknown quantity a, of the form f (h) = a +
c1h2 + c2h4 +…, where h is small and the ci are unknown constants.
Given the values f (h) and f(h/2), Richardson extrapolation forms
the new approximation  to a. From

f (h) = a + c1h2 + c2h4 +…

f (h/2) = a + c1h2/4 + c2(h/2)4 +…

it can be seen that the new approximation is obtained by subtracting
4 times the second equation from the �rst to eliminate the h2 terms,
and so  can be expected to be a more accurate approximation to a
than either f (h) or f(h/2). The process is named after the English
mathematician Lewis Fry Richardson (1881-1953). Given a
sequence f(h), f(h/2), f(h/4),… of approximate values, this process
can be repeated to eliminate higher and higher powers of h, in a
procedure known as extrapolation to the limit. See Romberg
integration.

Richard’s paradox A *paradox discovered by J.A. Richard in 1905.
All the English words (or phrases) that denote real numbers can be
enumerated as follows. Group together all English words of one
letter and order them lexicographically, and then repeat the process
for words of two letters, and then three letters, and so on. If we
remove from this enumeration all those words that do not denote



real numbers, then we are left with an enumeration E of English
words denoting real numbers. Call the n th real number in E the n th
Richard number. Consider the expression ‘the real number whose nth
decimal place (for each n) is 1 if the n th decimal place of the n th
Richard number is not 1, and whose nth decimal place is 2 if the nth
decimal place of the nth Richard number is 1’. This expression
seems to denote a Richard number, say the k th, but by de�nition it
di�ers from the kth Richard number in the kth decimal place.

Riemann, Georg Friedrich Bernhard (1826 – 66) German
mathematician noted for his 1854 lecture Über die Hypothesen welche
der Geometrie zu Grunde liegen (On the Hypotheses that Lie at the
Foundations of Geometry) in which he developed his system of
*non-Euclidean geometry. He further expressed for the �rst time the
intimate connections between our understanding of space and our
geometrical assumptions. In 1859, while searching for a better
approximation to the number of primes than the prime number
theorem, he introduced the *Riemann zeta function, and also
formulated the Riemann hypothesis.

Riemann-Christo�el curvature tensor See Riemannian geometry.

Riemann hypothesis See Riemann zeta function.

Riemannian geometry A type of *non-Euclidean geometry
developed by Riemann in 1854. In Euclidean geometry, the distance
between two neighbouring points on a plane is given by a
relationship of the form

d s2 = d x2 + d y2

where rectangular Cartesian coordinates are used. More generally,
the relationship can be written as

d s2 = Adx2 + Bdx dy + Cdy2

where A, B, and C depend on x and y. Gauss considered this case
and showed that it is possible to determine the *curvature at a point



intrinsically in terms of A, B, and C. Riemann generalized this
approach into the study of any type of *metric space in any number
of dimensions. What is now called a Riemannian space is a space
with n coordinates (x1, x2,…, xn) in which the distance between
neighbouring points is given by a quadratic form,

d s2 = ∑gij(x) d xi dxj

where the gij(x) are functions of x1, x2,…, xn. In the original form of
Riemannian geometry, d s2 was required to be always positive,
although this is not the case in applications to general relativity
theory. Usually, the coe�cients gij(x) are taken to have a
nonvanishing determinant. The gij(x) are the components of a
symmetric covariant *tensor �eld (the metric tensor). In Riemannian
geometry, the distance between two points can be determined by an
integral of d s. Riemannian curvature is de�ned by an expression
involving the metric tensor of the Riemannian space and a tensor
known as the Riemann-Christo�el curvature tensor after Gauss and
Elwin Bruno Christo�el (1829 – 1900).

Riemannian geometry had a profound e�ect on the way people
thought about geometry and on the development of tensor analysis.
It was also essential in the formulation of general *relativity and in
later attempts to develop a uni�ed �eld theory. The term is
sometimes used in a more restricted sense to describe a particular
type of non-Euclidean geometry in which the plane is interpreted as
a sphere and a line as a great circle on the sphere. In this form of
non-Euclidean geometry, Euclid’s *parallel postulate is replaced by
the postulate that no line can be drawn parallel to a given line
through a point lying outside the line. Moreover, Euclid’s second
postulate (that a line can be extended inde�nitely in both
directions) is not applicable. This non-Euclidean geometry is also
called elliptic geometry.

Riemannian metric A measurement of distance on a di�erential
manifold M. It is usually described in terms of a scalar product gij(x)



on each tangent space Tx(M) to M. Using the Riemannian metric, M
can be de�ned as a *metric space. See Riemannian geometry.

Riemannian space (Riemann space) See Riemannian geometry.

Riemann integral or sum See integration.

Riemann-Roch theorem A theorem, stated and proved in the
middle of the 19th century by Riemann and his student Gustav Roch
(1839 – 66). It calculates the exact number of independent
*holomorphic (i.e. analytic) functions that can be de�ned on any
particular *Riemann surface. The formula for this number involves
the numbers of independent di�erential forms of special kinds and
some of these are equal to (easily calculated) topological invariants
of the surface. The Atiyah-Singer index theorem is a far-reaching
generalization which also applies to functions of several variables; it
was proved in 1963 by M.F. Atiyah and I.M. Singer. The Riemann-
Roch theorem has also been used in the study of codes.

Riemann sphere See extended complex plane.

Riemann surface A surface on which a *holomorphic function is
de�ned as a single-valued function without branches. The Riemann
surface of the logarithmic function has a spiral form; that of the
function (√z3 + z + 1) is homeomorphic to a torus. See genus.

Riemann zeta function The function

It is known as the Riemann zeta function (or zeta function), though it
goes back to Euler, who in 1744 showed that

where the product runs over all prime numbers p. The sum de�ning
ζ(s) converges when the real part of the complex variable s is



greater than 1 (for example, ζ(2) = π2/6 and ζ(4) = π4/90) and
gives an *analytic function of s in the part of the complex plane
Re(s) > 1.

The de�nition of this function of s can be extended across the rest
of the plane, and results in a function (ζ(s) that is analytic
throughout the complex plane, apart from a singularity at s = 1.
This extended function is zero when s = −2k for each natural
number k, but it is also zero for other values of s that all have their
real part between 0 and 1. The Riemann hypothesis, put forward in
1859, is that these other values all have Re(s) = ½. To date, this
has not been proved, although Hardy showed in 1914 that ζ(s) has
in�nitely many zeroes with Re(s) = ½. The hypothesis is important
in work on the distribution of primes.

right angle An angle equal to one-quarter of a complete turn (90°
or ½π radians).

right-angled triangle A triangle that has one interior angle equal to
90°. See Pythagoras’ theorem.

right ascension (RA) Symbol: a. The angular distance of a point on
the *celestial sphere from the vernal *equinox. It is measured
eastward along the celestial equator from the vernal equinox to the
place at which an hour circle through the point intersects the
celestial equator. Generally, right ascension is measured in units of
time rather than degrees (24 hours, corresponding to 360°).
Sometimes *hour angle is used instead. See equatorial coordinate
system.

right coset See coset.

right-handed triad See Cartesian coordinate system.

right prism A *prism that has lateral edges that are perpendicular
to its bases.

right pyramid A *pyramid that has its vertex directly above the
centre of its base.



rigid body A collection of *particles – a body – in which the
distance between any two particles does not change with time. A
rigid body therefore su�ers no perceptible distortion in shape or size
when subject to forces. This concept of an ideal body is used in
mechanics.

rigidity modulus A *modulus of elasticity that is used in relation to
*shear in an elastic body. It is the ratio of the shear stress
(tangential force per unit area) to the resulting angular deformation
of the body.

ring A *set R, together with two *binary operations, that satis�es
certain *axioms. The operations are referred to as ‘addition’ (+) and
‘multiplication’ (.), although these operations need not necessarily
have the meanings they have in arithmetic. Given any three
members of R, a, b, and c, the axioms are:
(1) The commutative law holds for addition, i.e.

a + b = b + a

(2) The associative law holds for both addition and multiplication,
i.e.

(a + b) + c = a + (b + c)

a. (b . c) = (a . b). c

(3) There is an element (the additive identity element) in R such
that

a + 0 = 0 + a = a

(4) For every element a in R there is an inverse element − a in R
such that

a + (−a) = 0



(5) The distributive laws apply, i.e.

a. (b + c) = a . b + a . c

(a + b). c = a.c + b.c

These axioms de�ne a ring.
If multiplication is also commutative, i.e.

a.b = b.a

the ring is a commutative ring. If there is a multiplicative identity
element 1, for which

a. 1 = 1 . a = a

the ring is called a ring with unity or a ring with identity’. The set of
all 2 × 2 *matrices with the operations of matrix addition and
multiplication form a noncommutative ring with unity. A
commutative ring with unity for which there are no proper divisors of
zero is an *integral domain (i.e. there are no nonzero elements a and
b with a.b = 0).

The set of all integers with the operations of addition and
multiplication form an integral domain. If every nonzero member a
of R also has an associated multiplicative inverse (a-1) such that

a . a-1= 1

then the integral domain is a *�eld.
A ring with unity in which every element has a multiplicative

inverse is a division ring or skew �eld. If multiplication is
commutative, then it is a �eld.

rise (y-step) The di�erence between the *ordinates of two points in
a *Cartesian coordinate system. Compare run.

rising factorial See hypergeometric series.



Robert of Chester (c.1100) English scholar who translated
numerous scienti�c texts from Arabic into Latin, including the
Algebra of al-Khwarizmi.

Roberval, Gilles Personne de (1602 – 75) French mathematician
who made important contributions to the early history of the
calculus. He determined the area of the cycloid and of the parabola,
as well as claiming for himself the discovery of the method of
indivisibles. His most important work, however, was on the problem
of tangents. Curves were taken by Roberval to be paths of moving
points, and a tangent was therefore de�ned by determining the
instantaneous direction of the moving point at any position on the
curve.

Robinson, Abraham (1918 – 74) German-American mathematician
who contributed to *model theory, a branch of mathematical logic,
and to applied mathematics; but he is best known for founding the
theory of *nonstandard analysis.

robustness A statistical test or *estimation procedure that is little
a�ected by departures from assumptions on which it is based is said
to be robust. For example, the *t- test for independent samples is
little a�ected by departures from normality if the observations are
from nearly symmetric distributions having approximately the same
variance, but it may be unreliable if the distributions are skew or if
the variances are very di�erent. Robustness to *outliers is important
in practice. Non-parametric tests tend to be more robust than their
parametric counterparts in these circumstances (see nonparametric
methods).

rod An idealized material object having length and density, but no
thickness. If its density is constant, the rod is said to be a uniform
rod.

roll Angular movement of an aircraft, spacecraft, projectile, etc.
about an axis coincident with the direction of motion. Compare
pitch; yaw.



Rolle’s theorem The theorem that if a *function f (x) is continuous
over a certain interval a≤ x ≤b, its �rst di�erential f ’(x) exists in a
< × < b, and f (a)= f(b), then there exists a point between a and
b, say c, at which f′(c)=0. It is named after the French
mathematician Michel Rolle (1652 – 1719). See also mean-value
theorem.

rolling friction The *friction encountered when a body rolls over a
surface, as happens with ball bearings. In rolling motion there is a
point or a line of contact between the rolling body and the surface
that changes continuously, without the body sliding. Rolling motion
between two materials generally produces much less friction than
when they slide.

Romberg integration (W. Romberg, 1955) In *numerical
integration over an interval [a, b], the application of *Richardson
extrapolation with repeated *trapezoidal rule approximations
having subinterval widths hk = (b − a)/ 2k−1, k = 1, 2,….

root 1. (of an equation) A number that, when substituted for the
*variable in a given equation, satis�es the equation (i.e. makes both
sides equal). Thus, the quadratic equation

x2 − x − 6 = 0

has two real roots, x = 3 and x = −2. A zero of the function f(x) is
a root of the equation f(x) = 0. See solution of equations.
2. A number that produces a given number when raised to a given
*power. Thus, 2 is the fourth root of 16 (24 = 16). Note that −2, 2i,
and −2i are also fourth roots of 16. See also radix.
3. (of a congruence) An *integer a such that the congruence

f(x) ≡ 0 (mod n)

is satis�ed when x = a, i.e.

f(a) ≡ 0 (mod n)



See congruence modulo n.
4. See tree.

root mean square deviation See standard deviation.

root of unity An element a of a *�eld that satis�es ak = 1 for some
natural number k is called a k-th root of unity, and it is a primitive k-
th root of unity if ak = 1 and ar ≠ 1 for any natural number r
smaller than k. When k is 2 or 3, the relevant roots are called square
roots or cube roots, respectively. In the �eld of complex numbers, the
cube roots of unity are 1, ½(− 1 + i√3), and ½ (− 1 − i√3), the
last two numbers being primitive cube roots.

rose A type of plane *curve given in *polar coordinates by an
equation of the form

r = a sin nθ

where a is a constant and n is a positive integer. The curve consists
of a number of loops arranged around the pole. If n is odd, the rose
has n loops; if n is even it has 2 n loops.

rotation 1. Motion of a body about a single �xed point or about
two �xed points, i.e. about a �xed line. There is therefore motion
about an axis – the *axis of rotation – that passes through either one
�xed point or through two �xed points; this results in an angular
displacement.
2. (in the plane) A *transformation involving a �xed point C of the
plane – the centre of rotation. A rotation through angle θ about C
maps a point P onto a point P’ such that CP = CP, ∠PCP′ = θ, and
the turn from CP to CP is anticlockwise if θ is positive, clockwise if
θ is negative. A rotation of θ about the origin maps the point with
Cartesian coordinates (x, y) onto the point (x cos θ − y sin θ, x sin θ
+ y cos θ).



3. (in space) A transformation involving a �xed directional line l –
the axis of rotation. A rotation through angle θ about l maps a point
P onto a point P′ such that NP = NP′, and ∠PNP′ = θ where N is
the foot of the perpendiculars from P and P′ to l. In turning from NP
to NP′, a right-handed screw will move in the positive or negative
direction of l according to whether θ is positive or negative.

See also symmetry.

rotation matrix See orthogonal matrix.

rotation of axes A *transformation from one *coordinate system to
another in which the axes are rotated through a �xed angle. In a
planar *Cartesian coordinate system if (x, y) are the coordinates of a
point in one system of axes and (x′, y′)

rotation of axes

are the coordinates of the same point in the other system of axes,
then

x = x′ cos θ + y′ sin θ

y = −x′ sin θ + y′ cos θ



where the angle θ is such that a positive (anticlockwise) rotation of
θ will map the second set of axes onto the �rst.

Roth’s theorem (K.F. Roth, 1955) If is α real *algebraic *irrational
number and ν is a real number greater than 2, then there are only
�nitely many pairs of integers p and q such that

rough Generating *friction. A rough surface can be contrasted with
a smooth, i.e. frictionless, surface.

roulette A curve that is the *locus of a point on (or associated with)
a curve that rolls without slipping on another curve or on a straight
line. See astroid; cardioid; cycloid; deltoid; nephroid; hypocycloid;
epicycloid; trochoid; hypotrochoid; epitrochoid.

round angle (perigon) An angle equal to one complete turn (360°
or 2π radians).

rounding The process of replacing a number by the nearest number
with a certain number of decimal places or *signi�cant �gures. With
decimal numbers and rounding to two places of decimals, 1.576 and
1.5751 would both be rounded to 1.58, while 1.572 and 1.5749
would both be rounded to 1.57. A rule is needed for breaking ties in
the ambiguous case where there are two nearest numbers to choose
between. A commonly used rounding rule rounds up in the case of
ties: if the �rst digit dropped is 5 or more the preceding digit is
increased by 1, while if the �rst digit dropped is less than 5 the
preceding digit is unchanged. Another way of resolving ties is to
choose the number with an even last �gure; thus 1.575 would be
rounded to 1.58, while 1.565 would be rounded to 1.56. The act of
rounding produces a rounding error (see error). Compare truncation.

row A horizontal line of elements in an *array, as in a *determinant
or *matrix.

row echelon form An m ×n matrix A is in row echelon form if



(1) every row comprising only zero entries is below all rows
containing nonzero entries; and
(2) the �rst nonzero entry in each nonzero row appears in a column
to the right of the �rst nonzero entry in the row above it.
For example, the matrices

are in row echelon form. Row echelon form is produced by
*Gaussian elimination. Column echelon form is de�ned by replacing
‘row’ by ‘column’ in the above de�nition. See also reduced row
echelon form.

row rank The dimension of the *row space of a matrix. It is equal
to the *column rank and the *rank of the matrix.

row space The vector space of all *linear combinations of the rows
of a matrix.

row vector (row matrix) A *matrix having a single row of
elements.

RSA cipher (R.L. Rivest, A. Shamir, and L.M. Adelman, 1977) A
commonly used cipher for *public key cryptography. It is based on
the fact that it is relatively easy to check whether a number is
*prime but di�cult to factor a product of two large primes (each of
approximate size 10100 or greater).

Let N = pq be the product of two large primes; N is publicly
known, but is di�cult to factorize in a reasonable time if one
doesn’t know the factorization. The plaintext is �rst split into pieces
and each converted to an integer x; the message is sent as xe
modulo N for a publicly known e. If f is such that ef equals 1 modulo



(p − 1) (q − 1), then (x e)f = xef is congruent to x modulo N, and
if the recipient either knows f (the private key) or the factorization
N = pq, then the message can be decoded.

Ru�ni-Horner method See Horner’s method.

ruled surface A surface that can be generated by a moving straight
line. A conical surface is an example of a ruled surface.

rule of false position See false position, rule of.

rule of signs See Descartes’s rule of signs.

run 1. A sequence that follows a speci�ed pattern in a series of
observations. For example, in the sequence (2, 3, 4, 2, 7, 6, 3, 0, 3,
2, 1) composed of the digits [0, 9], the numbers ‘2, 3, 4’ constitute
an up run (monotonically increasing), ‘7, 6, 3, 0’ constitute a down
run (monotonically decreasing), and ‘2, 3, 4, 2’ constitute a run
below the median of 4.5. If, in ten tosses of a coin, the sequence of
heads (H) and tails (T) is HHHTTHHTHT, there are three runs of
heads where a run is a sequence of one or more heads followed by a
tail or no further observation. Many tests for randomness of
computer generated pseudo-random numbers use properties of runs.
See random numbers.
2. (x-step) The di�erence between the *abscissae of two points in a
*Cartesian coordinate system. Compare rise.

Runge-Kutta method (C.D.T. Runge, 1895; W.M. Kutta, 1901) A
numerical method for solving di�erential equations of the form d
y/d x = f (x, y) given an *initial condition y(a) = ya. A Runge-
Kutta method generates a sequence of approximations yn ≈ y(xn) in
which y n+1 is a linear combination of values of the function f (x, y)
evaluated with x in the *interval [xn, xn+1] and various arguments y.
There are many di�erent Runge-Kutta methods, the best known
being the four-stage method

yn+1 = yn + 1/6 (k1 + 2 k2 + 2 k3 + k4)



where, with h = xn+1 − xn,

k1 = h f(xn, yn)

k2 = h f(xn + ½ h, yn + ½ k1)

k3 = h f(xn + ½ h, yn + ½ k2)

k4 = h f(xn + h, yn + k3)

Russell, Bertrand Arthur William (1872 – 1970) English
mathematical logician and philosopher who in 1902, while working
on the foundations of mathematics, discovered *Russell’s paradox.
To avoid this and other such antinomies, Russell developed his
theory of types, which he included in Principia mathematica (3 vols,
1910 – 13). This work, written in collaboration with A.N.
Whitehead, was an attempt to derive the whole of mathematics from
purely logical assumptions.

Russell’s paradox A *paradox of *set theory put forward by
Bertrand Russell in 1902. Some sets are not members of them-selves.
An example is the set of all men. Other sets, such as the set of all
things that are not men, are members of themselves (the set itself is
not a man). Now consider the set S whose members are those sets
that are not members of themselves. Is S a member of S? If it is,
then it is not, and if it is not, then it is. This paradox can be derived
from the *axiom of abstraction. It in�uenced the development of set
theory in fostering the idea that sets are de�ned by their members
rather than by general conditions.



S

Sn Symbol for the *symmetric group for aset of n elements.

Saccheri, Girolamo (1667–1733) Italian mathematician who in his
Euclides ab omni naevo vindicatus (1733, Euclid Cleared from Every
Stain) attempted to prove Euclid’s parallel (�fth) postulate by the
method of reductio ad absurdum. He failed however to �nd any
obvious contradiction and narrowly missed becoming the �rst to
discover a non-Euclidean geometry.

saddle point 1. For a surface z = f(x, y) a saddle point occurs at a
point where the *partial derivatives ∂z/∂x and ∂z/∂y are both zero
but there is no local maximum or minimum. A *stationary point of a
function f of two variables is a saddle point if the *Hessian of f at
the point is negative.

2. See game theory.

saddle point

St Petersburg paradox A paradox in probability, based on a coin-
tossing game.

A player A proposes to a player B that they play a game in which
A will toss a coin until the �rst appearance of a head, and if this is
at the kth toss (k = 1, 2, 3, …) he will pay £2k to B. For the game
to be fair, B must pay A in advance a stake equal to the *mean
payment A can expect to make to B. This mean payment in £ is



which has no limit (i.e. the series is divergent). Thus it is not
possible for B to pay his stake, and a *fair game is impossible. Note
also that though his expectation is in�nite, B can receive only a
�nite amount of money in a �nite time. Indeed, in the long run this
sum will be £8 or less in 87.5 percent of all games and will exceed
£64 in less than 1.6 percent.

The paradox was �rst noted by Nicholas Bernoulli in a letter to de
Montmort in 1713, and later investigated by his cousin Daniel
Bernoulli. It is one of the earliest examples of a distribution with an
in�nite *expectation.

salient angle An interior angle in a *polygon that is less than 180°.
Compare reentrant angle.

salient point A point at which two branches of a curve meet and
have di�erent *tangents. For example, y = |x| has a salient point at
the origin.

Sample A �nite *subset of a *population. A sample containing n
items is called a sample of size n. See quota sample; random sample;
representative sample; strati�ed sample.

sample correlation coe�cient See correlation coe�cient.

sample distribution function (empirical distribution function) If
x(i)is the ith *order statistic in a sample x1, x2, …, xn of size n, then
the sample (or empirical) distribution function, Sn (x), takes values

It is important because of its close relationship to the population
*cumulative distribution function, F(x). In particular, its mean value



E[Sn(x)] = F(x), its variance Var[Sn(x)] = F(x)(1 – F(x))/n, and Sn
(x) is a consistent estimator of F(x)for any �xed x. This last property
implies that Sn (x) → F(x) as n → ∞

sample space The *set, S, of all possible outcomes of an
experiment. The possible scores when a single die is cast form the
sample space S = {1, 2, 3, 4, 5, 6}. The sums of all possible scores
when a pair of dice are cast form the sample space

S = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

See also event.

sample statistic See statistic.

sample survey A study to estimate *population characteristics in
which those characteristics are observed for only a portion of that
population, known as a sample. See also area sampling; census;
cluster sample; quota sample; random sample; representative
sample; sampling theory; strati�ed sample.

sampling distribution The *distribution of a *statistic. For
example, for a random sample of size n from a distribution Ν(μ, σ2)
the sample mean × is an observed value of a random variable, X,
say, which has a distribution Ν(μ, σ2/n). Any statistic is a *random
variable; its value varies from sample to sample.

sampling error The di�erence between an estimate of a parameter
based on a sample and the true parameter value. Because an
*estimator is a *random variable it has a distribution (often called a
*sampling distribution), so the estimate, in general, will not equal
the true parameter value. For example, the mean m of a sample of n
observations x1, x2, …, xn from a normal distribution with mean λ
and standard deviation ρ has itself a normal distribution with mean
λ and standard deviation ρ/√n. If ρ is unknown, ρ/√n is estimated
by s/√n, where s is given by



and s/√n is called the *standard error.

sampling frame See frame.

sampling theory The theory of methods of obtaining *samples and
making inferences about *population characteristics on the basis of
sample measurements. Simple random samples allow
straightforward estimates with valid measurements of *sampling
error; precision may be improved by using a *strati�ed sample or
other modi�cations. A number of special methods including *area
sampling, *cluster sampling, and multistage and multiphase
sampling are in use. In practice, circumstances may preclude the use
of strictly random samples, but some samples can reasonably be
assumed to be almost equivalent to random samples. Techniques
such as *quota sampling do not admit estimation of the sampling
error.

satisfaction In *logic, an ordered *n-tuple is said to satisfy an open
sentence (see variable) if and only if the *predicate of the open
sentence is true of the ordered n-tuple. For example, ‘x was the
father of y’ is satis�ed by the ordered pair (Laertes, Odysseus)
because Laertes stands in the relation ‘was the father of’ to
Odysseus.

See also interpretation.

scalar 1. A number as distinguished from a *vector.

2. A *tensor of order zero.

scalar �eld See �eld.

scalar matrix A *diagonal matrix in which all the elements on the
leading diagonal are equal.

scalar product For simple geometric *vectors in Euclidean space,
the product of two vectors to give a *scalar. The scalar product is



written as A . B and is equal to the products of the lengths of the
vectors and the cosine of the angle between them, i.e. |A| |B| cos η.
It can be applied to various situations of physical interest. For
example, the work done when a force F produces a displacement s is
the scalar product F . s =|F| |s| cos η, where η is the angle that the
force makes with the direction of motion.

More generally, if A is a vector de�ned by the n-tuple (a1, a2, …,
an) and B is a vector de�ned by the n-tuple (b1, b2, …, bn), the scalar
product A . B is

a1b1 + a2b2 + … + anbn

In a *vector space, the scalar product (or inner product) associates a
number u . v with all pairs of vectors u and v, and has the following
properties:
(1) u . v = v . u, i.e. scalar multiplication is commutative for all
elements of the vector space;
(2) u .(v + w) = u. v + u . w, i.e. scalar multiplication is distributive
over addition;
(3) for a number n, nu. v = n(u. v) = u . nv.

If the scalar product u.u is greater than zero for all nonzero members u of the vector space,
it is said to be positive de�nite. In this case the vector space is called an inner product space.

The scalar product is sometimes called the dot product.

scalar quantity A quantity, such as mass, length, time, density, or
energy, that has size or magnitude but does not involve the concept
of direction. It is thus treated mathematically as a *scalar.

scalar triple product See triple product.

scale factor See enlargement.

scalene triangle A triangle that has all three sides unequal.

scales of measurement The basic scales of measurement are (i)
nominal, (ii) ordinal, (iii) linear interval, and (iv) linear ratio.



Nominal scales merely allocate items to nonordered categories, e.g.
people to the nationalities English, French, German, Italian, etc. The
only meaningful relationship between items so assigned is that of
equality (=) (belonging to the same category) or inequality (≠)
(belonging to di�erent categories).

Ordinal scales allocate items to ordered categories, e.g. di�erent
brands of television set may be graded as excellent, good, average,
poor, or very poor. In addition to equality and inequality, the
ordering relationships (< and >)are meaningful.

Linear interval scales have an arbitrary zero, but measurements of
an item as x and y on two such scales satisfy a relationship of the
form

y = mx + c

where m and c are nonzero constants. An example is provided by
the Fahrenheit (F) and Celsius (C) scales for measuring temperature.
Corresponding measures of a temperature satisfy

F = 9/5C + 32

In addition to complying with the equality and ordering
relationships, measurements on these scales are such that for any
two items the ratios of their di�erences for each scale is constant.
For example, on the Celsius and Fahrenheit scales corresponding
temperatures in degrees are

C 0 10 20 40

F 32 50 68 104

Here the di�erence ratios(104 – 68)/(40 – 20) and (50 – 32)/(10 –
0) are both 9/5. However, it is meaningless to describe an object
with a temperature of 20° on the Celsius scale as being twice as hot



as one with a temperature of 10° because on the Fahrenheit scale
the corresponding temperatures are 50° and 68°.

Linear ratio scales have a common �xed zero, and corresponding
measurements of an item on two such scales satisfy a relationship y
= mx. As well as satisfying meaningful relationships of the types
described for the previous categories of measurement, a meaning is
now attachable to the ratio of the measurements of two items on
two such scales. For example, weight scales in grams or in ounces
are linear ratio scales. If we record the weight of two items in grams
and one weighs 10 grams and the other 20 grams, the ratio of their
weights is 2. This ratio remains at 2 if we weigh each item in
ounces, pounds, kilograms or on any other scale that has the �xed
origin corresponding to zero weight.

There are also several nonlinear scales of measurement, a well-
known one being the logarithmic scale, on which a value is measured
by a number that is proportional to the logarithm of the value. A
commonly used logarithmic scale has points marked at equal
intervals corresponding to values of … 1, 10, 100, 1000, … (whose
logarithms to base 10 are …, 0, 1, 2, 3, …). Using logarithmic scales
for x and y, the graph of y = axn is a straight line. Using a linear
scale for x and another scale, the normal probability scale, the graph
of the cumulative *distribution function of the standard normal
distribution is a straight line.

scatter diagram A two-dimensional plot of the n points for a set of
n paired observations (xi, yi). The diagram may indicate some
relationship between the variables such as a linear or quadratic
trend.

schema (plural schemata) In*logic, a method of representing a
possibly in�nite number of *w�s of some object language by using
metalinguistic expressions that take object language as substitution
instances (see metalanguage). Thus, we might adopt A ⊃ (B ⊃ A) as
an axiom schema of some formal system S, and if p, q, and r are w�s
of S then



p ⊃ (q ⊃ p)

is an axiom of S, as is

(p  r) ⊃ ((q & r) ⊃ (p  r))

Similarly, it is possible to construct valid schemata, proof schemata,
and theorem schemata.

Schooten, Frans van, the Younger (c.1615–c.1660) Dutch
mathematician and author of an important Latin translation of the
Géometrie of Descartes. The second edition, containing various
related texts and commentaries, was published in two volumes in
1659–61 as Geometria a Renato Des Cartes and introduced the new
Cartesian analytical methods to the mathematicians of Europe.

Schröder–Bernstein theorem (Cantor–Bernstein theorem) The
theorem that if the *cardinal number of *set A is less than or equal
to that of B, and the cardinal number of B is less than or equal to
that of A, then the two sets have equal cardinal numbers. This was
conjectured by Cantor in 1895, and proved independently by
F.W.K.E. Schröder (1896) and F. Bernstein (1898).

Schur decomposition (I. Schur, 1909) Any square matrix A has a
Schur decomposition A = QTQ*, where Q is a *unitary matrix and T
is an upper *triangular matrix, and where Q* denotes the Hermitian
conjugate of Q. The *eigenvalues of A appear on the diagonal of T.

Schwarz’s inequality See Cauchy–Schwarz inequality.

scienti�c notation See exponential notation.

screw 1. A cylindrical or conical body with a helical groove cut in
its surface, forming the thread. It can be considered as a wedge
wound in the form of a *helix. When the end of the screw is placed
in contact with a material, a rotation about its axis will cause a
translation of the screw along this axis and into the material. A
screw is a simple machine.



2. In three-dimensional geometry, the combination of a *rotation about a line and a
*translation along this line. See also wrench.

s.d. Abbreviation for *standard deviation.

s.e. Abbreviation for *standard error.

sec Secant. See trigonometric functions.

secant 1. A line that cuts a given curve. If a secant line cuts a curve
at two points, the segment of the line between the two points of
intersection is a chord of the curve.

2. See trigonometric functions.

secant method An interative method for solving a nonlinear
equation f(x)= 0 in one variable (see diagram). Given distinct initial
guesses x0 and x1 for a root, the

secant method to solve f(x) = 0.

secant method consists of the *iteration

xn+1 = xn – f(xn)(xn – xn-1)/f(xn – f(xn-1

for n = 1, 2, 3, …

The secant method can be derived by using the approximation



in *Newton’s method.

sech Hyperbolic secant. See hyperbolic functions.

second 1. Symbol:″. A unit of angle equal to 1/60 of a minute. See
angular measure.

2. Symbol: s. The *SI unit of time, equal to the duration of 9 192 631 770 periods of the
radiation corresponding to the transition between the two hyper�ne levels of the ground
state of the caesium-133 atom. This de�nition came into force in 1964; before then the
standard was the mean solar second, de�ned as 1/86400 of the mean solar *day.

secondary diagonal An alternative name for the main antidiagonal
of a square array. See diagonal.

secondary parts (of a triangle) Properties such as the lengths of
medians or sizes of exterior angles, as distinguished from the lengths
of the sides and sizes of interior angles, which are the principal parts.

second kind See �rst kind.

second of arc See degree of arc.

second-order convergence See order.

second-order di�erential equation A *di�erential equation that
contains a second-order derivative (d2y/dx2, say) and no higher-
order derivatives.

section (plane section) A plane geometric con�guration formed by
cutting a given �gure with a plane. For instance, a section of a
conical surface is a *conic. A cross-section is a section in which the
plane is at right angles to an axis of the �gure. For example, a cross-
section of a right circular cylinder is a circle.

sectionally continuous See continuous function.

sector A part of a circle lying between two radii and either of the
arcs that they cut o�. The area of a sector is ½r2θ, where r is the



radius and θ the angle in radians subtended by the arc at the centre
of the circle.

segment 1. A part of a line or curve between two points on the line
or curve.

2. A region lying between a *chord of a circle and the corresponding arc cut o� by the
chord. A chord divides a circle into two segments: the major segment is the region between
the chord and the longer (major) arc; the minor segment is the region between the chord
and the shorter (minor) arc. The area of a segment is given by

A =½r2(θ – sin θ)

where r is the radius and θ the angle in radians that the arc
subtends at the centre of the circle.

3. See spherical segment.

segment

selection function See choice.

self-similar See fractal.

semantics In *logic, the study of the relationships that hold
between the expressions of a *formal language and a logical
*domain. The study of interpretations falls within the scope of
semantics. An interpretation assigns semantic values (entities in the
domain) to the expressions of a formal language via semantic rules.



semiaxis A line segment that is one half of an axis of a conic. See
ellipse; hyperbola.

semicircle Half a circle; either of the two parts of a circle cut o� by
a diameter.

semiconjugate axis See hyperbola.

semicubical parabola Aplane *curve with the Cartesian equation

y2 = kx3

It has a *cusp at the origin. See also cubical parabola.

semigroup A*set S together with a *binary operation ° on it that
satis�es one condition: that the operation is associative, i.e. for any
three elements a, b, and c of S

a ° (b ° c) = (a ° b) ° c

A simple example of a semigroup is the set of all even integers with
the operation of multiplication. See group.

semi-interquartile range See quartile deviation.

semilogarithmic graph See graph.

semimajor axis See ellipse; ellipsoid.

semimean axis See ellipsoid.

semiminor axis See ellipse; ellipsoid.

semitransverse axis See hyperbola.

sense The ‘direction’ of an *inequality, i.e. whether it signi�es
‘greater than’ or ‘less than’.

sentential calculus See propositional calculus.



separation (of a set) A *set X is separated into a pair of nonempty
*subsets A and B if A  B = X and A  B = Ø. If the set is ordered the
separation can be one of two possible types. In a separation of the
�rst kind, each member of one set is less than every member of the
second set with the separating number belonging arbitrarily to one
set. In a separation of the second kind, each member of one set is
smaller than every member of the second, as before, but in addition
one set lacks a greatest member and the other set has no smallest
member. See Dedekind cut.

sequence A succession of terms

a1, a2, a3, a4, …

formed according to some rule or law. Examples are

It is not necessary for the terms to be unequal. The terms are
ordered by matching them one by one with the positive integers, 1,
2, 3, …. The nth term is thus an, where n is a positive integer.
Sometimes the terms are matched with the non-negative integers, 0,
1, 2, … A �nite sequence has a �nite (i.e. limited) number of terms,
as in the �rst example above. An in�nite sequence has an unlimited
number of terms, i.e. there is no last term, as in the second and third
examples. An in�nite sequence can however approach a limiting
value as the number of terms, n, becomes very great. Such a
sequence is described as a convergent sequence and is said to tend to
a*limit as n tends to in�nity.

With some sequences the nth term (or general term) expresses
directly the rule by which the terms are formed. This is the case in
the three examples above, where the nth terms are n2, (–1)n + 1, and



xn/n!, respectively, n ≥ 1. A sequence is then a function of n, the
general term being given by

an = f(n)

and having as its domain the set of positive integers (or sometimes
the set of non-negative integers). A sequence with general term an is
written as {an} or (an).

Other sequences are de�ned by a *recurrence relation: a rule is
given by which the nth term can be determined when one or more
preceding terms are known. This is the case with the *Fibonacci
sequence. See series.

sequential analysis (A. Wald, 1947) A method of *inference where
observations are taken one at a time, and after each observation a
decision is made whether to accept or reject one of two hypotheses
or to take further observations before reaching a decision. The
technique is attractive, for example, in comparing two treatments
for a disease, where observations are made as cases are presented
for treatment and there are ethical reasons for stopping the
experiment as soon as one treatment can con�dently be regarded as
superior. The procedural rules are based on the *likelihood ratio.

series The indicated sum of the terms of a *sequence. In the case of
a �nite sequence

a1, a2, a3, …, aN

the corresponding series is

This series has a �nite or limited number of terms and is called a
�nite series. The Greek letter Σ is the summation sign, whose upper
and lower limits indicate the values of the variable n over which the
sum is calculated; in this case the set of positive integers 1, 2, …, N.



In the case of an in�nite sequence

a1, a2, …, an, …

the corresponding series is

This type of series has an unlimited number of terms and is called
an in�nite series.

The nth term, an, of a �nite or in�nite series is known as the
general term. An in�nite series can be either a *convergent series or
a *divergent series depending on whether or not it converges to a
�nite sum. Convergence is an important characteristic of a series.

See also alternating series; arithmetic series; asymptotic series;
binomial series; cosine series; exponential series; Fourier series;
geometric series; Gregory’s series; harmonic series; inverse sine
series; logarithmic series; oscillating series; p-series; sine series;
tangent series; Taylor’s theorem.

serpentine A plane curve with the equation in Cartesian
coordinates

x2y + b2y – a2x = 0

where a and b are constants. It passes through the origin, about
which it is symmetrical. The x-axis is an asymptote.

set (class) A collection of any kind of objects. The objects that make
up a set are called its elements or members. The statement ‘a is an
element of the set A’ can be written as a ∈ A, and a set containing
elements a, b, and c is denoted by {a, b, c}. Also allowed as a set is
the empty or null set, denoted by Ø, which is the set that contains no
elements.

Sets are often speci�ed by a condition for membership in the set;
{x: x is a man} designates the set of men. The assumption that any



condition can be used to specify a set leads to *Russell’s paradox.
The *axiom of extensionality states that two sets are identical if and
only if they have exactly the same elements.

set theory The study of *sets was originally developed by Cantor as
a means of investigating the theory of in�nite series. In 1874 he
published his famous proof that the *cardinal number of the set of
real numbers is greater than that of the set of natural numbers. Set
theory has been especially important in the foundations of
mathematics, where it has been used to axiomatize the theory of
numbers. Current axiomatizations of set theory have been
in�uenced by the need to avoid *Russell’s paradox.

sexagesimal Involving the number 60.

sexagesimal measure See angular measure.

sextic Having a *degree or order of six. For example, a sextic
equation is an equation of the sixth degree.

sgn See signum function.

Shanks, William (1812–82) English mathematician noted for his
calculation in 1873 of the �rst 707 places of π. It was shown in
1946 that he made a mistake and that the values from the 528th
position were incorrect.

Shannon, Claude Elwood (1916–2001) American mathematician
and author, with Warren Weaver, of the seminal The Mathematical
Theory of Communication (1949), which founded the modern
discipline of *information theory. Shannon showed how it was
possible to measure the information content of a message. Earlier, in
1938, he had shown in his A Symbolic Analysis of Relay and Switching
Circuits how Boolean algebra could be applied to computer design.
Shannon also produced the �rst e�ective programs for chess-playing
computers.

Shannon’s theorem (C. E. Shannon, 1945) A theorem in
*information theory that shows that for any transmission *channel



subject to random errors, there is some e�ective *error-correcting
code.

sheaf (bundle) A set of planes that all pass through a given point.

shear 1. Angular deformation of a body or part of a body without
change in volume. It is a type of *strain in which some parallel
planes in the body remain parallel but are relatively displaced in a
direction parallel to themselves. The *stress associated with shear is
the tangential shearing force per unit area. The shear is the angle, in
radians, turned through by a line originally perpendicular to the
direction of the stress. For example, if a pair of opposite faces of a
rectangular block are deformed into parallelograms, and other faces
remain rectangular (see diagram), the shear is equal to the angle θ.
See also rigidity modulus.

shear

2. A *transformation of the points of the plane in which one line remains �xed, and all
other points move parallel to the line by amounts proportional to their distance from the
line. A shear preserves the areas of plane �gures.

The shear of the plane with invariant line x = 0 and angle θ maps
the point with Cartesian coordinates (x, y) to (x + y tan θ, y).

3. A transformation of the points of space in which one plane remains �xed, and all other
points move parallel to each other and to the plane by amounts proportional to their
distance from the plane. A shear preserves the volumes of solid bodies.



sheet Any of the two or more separate parts that may form a given
surface. See hyperboloid.

Sheppard’s corrections (W.F. Sheppard, 1898) Adjustments to
improve estimates of sample *moments when only *grouped data
are available.

SHM Abbreviation for simple *harmonic motion.

short arc See arc.

short radius See polygon.

SI Abbreviation for Système International.

See SI units.

side 1. (arm) One of the two lines forming an angle.

2. One of the lines joining the vertices of a *polygon.

Siegel-Tukey test See homogeneity of variance.

siemens Symbol: S. The *SI unit of electric conductance, equal to
the conductance of a circuit or element that has a resistance of 1
ohm. [After E.W. von Siemens (1816–92)]

sieve of Eratosthenes (Eratosthenes, c.250 BC) A method of �nding
*prime numbers by writing down the numbers from 1 in increasing
order, then striking out every second number after 2, every third
number after 3 (in the original list), every �fth number after 5, and
so on. The numbers remaining are primes. For a set of numbers from
1 to n it is necessary to sieve by prime numbers only up to the
largest integer less than or equal to √n.

sievert Symbol: Sv. The *SI unit of dose of ionizing radiation, equal
to the dose delivered by a point source of 1 milligram of radium,
enclosed in a platinum container with walls 0.5 millimetre thick, to
a sample 10 millimetres away over a period of 1 hour. It is



equivalent to 1 joule per kilogram of irradiated material. [After R.
Sievert (1896–1966)]

sigma function (sum function) The function σ(n) that gives the
sum of the positive *divisors of a *natural number n. Thus σ(3) = 1
+ 3 = 4 and σ(6) = 1 + 2 + 3 + 6 = 12. If n has the prime
factorization p1 a1 p2 a2 … pr ar, then

A *perfect number n is such that σ(n) = 2n.

sigma notation See summation sign.

sigmoid curve A *monotonically increasing curve between two
horizontal *asymptotes and having a point of in�ection. The normal
distribution function and many other distributions have this form. It
is sometimes called S-shaped because of its similarity to the integral
sign, an old-fashioned form of S. Sigmoid curves also occur in
growth studies when size variables are plotted against age. In this
context the logistic curve

where b > 0, is widely used.



sigmoid curve

sign See signum function.

signature 1. (of a permutation) A number de�ned to be + 1 if the
*permutation is even and – 1 if the permutation is odd.

2. (of a quadratic form) The number of positive terms minus the number of negative terms.

3. (of a Hermitian matrix) The number of positive *eigenvalues minus the number of
negative eigenvalues.

signed minor See cofactor.

signed number See directed number.

signed rank test See Wilcoxon signed rank test.

signi�cance level See hypothesis testing.

signi�cance test See hypothesis testing.

signi�cant �gures The run of �gures (or digits) in a number that is
relevant to its precision, as distinct from any additional zero digits
that serve to indicate the number’s magnitude.

For example, if populations are being quoted to the nearest
thousand, the populations of three cities given as 1 702 000, 814
000, and 70 000 are correct to 4, 3, and 2 signi�cant �gures.
Although they are not signi�cant �gures, the zeroes in the
hundreds, tens, and units positions are essential in recording the
magnitude of the populations.

In general, reading from left to right, the �rst nonzero digit of a
number after *rounding is the �rst of the run of signi�cant �gures.
For instance, rounded to three signi�cant �gures the numbers
1234.5 and 0.012 345 become 1230 and 0.0123.

sign test A nonparametric test of the hypothesis that a *population
has a given *median, M. If the hypothesis is true, roughly half the n
sample observations should have a value less than M, and half a
value greater than M. Excessive numbers above or below M indicate



rejection. The critical region for the test is the pair of tails of the
*binomial distribution with parameters n, 0.5. An extension to a
matched-pairs test of whether two populations have the same
median is available.

See nonparametric methods.

signum function The *function f de�ned by

It is denoted by sgn x or sign(x).

similar Describing geometric �gures or sets of points that are
related by a *similarity. Two geometric �gures are similar if one is
directly or oppositely *congruent to an *enlargement of the other.
Similar polygons have corresponding angles equal and corresponding
sides proportional in length. Two triangles are similar if there is a
correspondence between them satisfying one of the following
conditions:
(1) The lengths of all three pairs of corresponding sides are in the
same ratio.
(2) The lengths of two pairs of corresponding sides are in the same
ratio, and the angles between them are equal.
(3) Two pairs of corresponding angles are equal.

similarity A *transformation that multiplies the distance between
any two points by a constant. Thus, two points P and Q will have
images P′, Q′ such hat P′ Q′ = cPQ, where c is a positive constant.
Two �gures related by a similarity are similar. Any combination of
translation, rotation, re�ection, and enlargement is a similarity. A
spiral similarity is composed of a rotation and an enlargement. A
similarity with c = 1 is an *isometry. See also matrix.

similar matrices See matrix.



similitude See enlargement.

simple curve A curve that does not intersect itself.

simple discontinuity See discontinuity.

simple fraction See common fraction.

simple graph See graph.

simple group See normal subgroup.

simple harmonic motion See harmonic motion.

simple hypothesis See hypothesis testing.

simple interest See interest.

simple pole See singular point.

simple quadrangle A plane �gure formed by four points, no three
of which are *collinear, and four lines joining them. See quadrangle.

simple quadrilateral A *polygon with four sides. See quadrilateral.

simple root A number a that is a root of the *polynomial equation
f(x) = 0, but is not a root of the equation f(x)/(x – a) = 0. If a, b,
… are the di�erent roots of f(x) = 0 then the polynomial can be
factorized as f(x) = (x – a)k (x – b)l …, and a is a simple root if and
only if k = 1. Compare multiple root.

simplex See combinational topology.

simplex method A method or algorithm for solving *linear
programming problems. Additional variables, called slack variables,
are introduced to convert inequalities to equalities. The solution,
obtained by an iterative process, may be set out in arrays called
tableaux. E�ectively, the conversion of inequalities to equalities
enables us to de�ne the boundaries of a simplex or region of feasible
solutions satisfying the constraints, and the optimum solution then
lies at a vertex of this simplex. The algorithm provides a systematic



way of eliminating vertices until the optimizing vertex is located. In
the diagram in the entry on *linear programming, the simplex is the
stippled region and the optimizing vertex is at E. The method may
be adapted to give information on the e�ects of altering constraints,
to determine which constraints are critical, etc. See also Karmarkar’s
algorithm.

simplicial complex See combinatorial topology.

Simpson, Thomas (1710–61) English mathematician noted for
*Simpson’s rule, which was published in 1743 in Mathematical
Dissertations on Physical and Analytical Subjects.

Simpson’s paradox (E.H. Simpson, 1951) A paradox in
*contingency tables whereby an association that is signi�cant in
each of two tables may disappear or be reversed if the two tables
are combined. Suppose, for example, that a new treatment N is
being compared with a standard treatment S with 3000 patients,
and a record is kept of the numbers of cures C and failures F; and
the numbers in each category are as given in the �rst table.

  S N

C 450 530

F 850 1170

A *chi-squared test indicates a di�erential e�ect of treatments with
the standard giving the greater proportion of cures. However, when
the results are broken down into patients living in urban and rural
areas, the data are as given in the second table.

  Urban   Rural  

  S N S N



C 100 350 350 180

F 500 1050 350 120

The chi-squared test indicates that in both urban and rural areas the
new drug gives a better cure rate. The paradox arises because the
overall data set combines two sets in which the numbers and
proportions receiving each treatment are di�erent, as also are the
cure rates for each drug. The paradox re�ects the danger of
combining heterogeneous data.

Simpson’s rule A rule for *numerical integration which
approximates

The area under the curve is thereby approximated by the area under
a quadratic polynomial that passes through (x, f(x)) for the three
values x = a, ½(a + b) and b.

The repeated Simpson’s rule divides the interval [a, b] into an even
number n of subintervals of length h = (b – a)/n, based on equally
spaced points a = x0, x1, …, xn = b, with corresponding ordinates
y0, y1, …, yn, and applies Simpson’s rule to groups of three
successive points, giving

Named after T. Simpson. See also Newton’s rule; trapezoidal rule.



Simpson’s rule with four subintervals.

Simson line (Wallace-Simson line) For any point on the
*circumcircle of a triangle, the feet of the perpendiculars from the
point to the sides of the triangle lie on a straight line. This line is
often called the Simson line (or simson) of the point with respect to
the triangle. Though it is named after the Scottish geometer Robert
Simson (1687–1768), it does not appear in his work and was �rst
discovered in 1797 by the Scottish mathematician William Wallace
(1768–1843).

simulation A term applied to the study of a physical system in
which there is a dynamic or probabilistic element (or perhaps both)
by making use of a mathematical *model. For example, computer
simulations may enable a manager to make a rapid assessment of
the likely e�ects of di�erent levels of investment, or of changing
manufacturing procedures or the size of the workforce, on output
and pro�t over a period of years. Government departments use
simulation models to study the likely e�ects of tax changes, changes
in interest rate, borrowing levels, etc. on public and private
spending and demands for various resources and services. The
usefulness of the method depends on how accurately the
mathematical model re�ects relevant aspects of physical reality. See
also queuing theory.



simultaneous equations Two or more equations that apply
simultaneously to given variables. The solution of simultaneous
equations involves �nding values of the variables that satisfy both
equations. For instance, the equations

x + y = 6 and 2x + y = 4

can each be satis�ed by an in�nite set of pairs of values x and y.
However, there is only one pair of values that satis�es both
simultaneously, namely x = –2 and y = 8. The point (–2, 8) is the
point at which the two straight lines represented by the equations
intersect on a graph. This is used in the *graphical solution of pairs
of simultaneous equations – a technique that can be applied to pairs
of simultaneous equations in two variables. Another simple method
of solution is that of *elimination of the variables between the
equations. See Cramer’s rule; Gaussian elimination; Gauss-Seidel
method.

simultaneous inequalities Two or more conditional *inequalities
that hold simultaneously. The solution of a set of simultaneous
inequalities is the set of values that satisfy all of them. For instance,
the solution of the inequalities

x + y < 6, x > 1, y > 2

is the set of pairs (x, y) represented by the points enclosed by the
three lines x + y – 6 = 0, x = 1, and y = 2.

See linear programming; simplex method.

sine (sin) See trigonometric functions.

sine curve A graph of a sine function (see trigonometric functions).
In rectangular Cartesian coordinates a graph of y = sin x is a
regular undulating curve passing through the origin (see diagram).
See cosine curve.

sine rule (law of sines) 1. A formula used for solving triangles in
plane trigonometry:



where a is the length of the side opposite angle A, b is opposite
angle B, and c is opposite angle C.

2. A formula used in spherical trigonometry for solving *spherical triangles:

sine curve: y = sin x.

sine series 1. The *series expansion for a sine function:

This is valid for all x. See trigonometric functions.

2. A *series in which the terms are *sine functions. See Fourier series.

single cusp See cusp.

singleton (unit set) A *set that contains only one element.

singularity See singular point.

singularity theory A theory that describes properties of
di�erentiable functions in terms of their *singular points, for
example in terms of the set of points where the derivative vanishes
or the *Jacobian matrix is singular. *Catastrophe theory is part of
singularity theory. See also Morse theory.

singular matrix A square *matrix whose *determinant is equal to
zero; a square matrix that does not have an *inverse.



singular point (singularity) 1. A point at which a function is not
analytic (see analytic function). For instance, f(z) = 1/(z – 2)2 has a
singular point at z = 2. If there is a neighbourhood of a singular
point z0 in which there is no other singular point, then there is said
to be an isolated singularity at z0. f has a removable singularity at z0 if
f(z0) can be rede�ned to make f analytic at z0. For example, f(z)=
sin z/z has a removable singularity at z = 0.

A point a is a branch point of the function f(z) if f has more than
one value at points in a neighbourhood of a, but not at a itself. For
example, the function f(z) = (z – a)1/3 has three branches at z = a;
that is, in every neighbourhood it has three possible values,
corresponding to the three cube roots of z – a. To remove a branch
point, it is usually necessary to rede�ne the function to be single
valued on an associated *Riemann surface.

A function f has a pole of order k at z0 if it can be written in the
form

where φ is analytic at z0 and f(z0) = 0. When k = 1 the pole is
called a simple pole. For instance,

has a simple pole at z = –1 and a pole of order 2 at z = 3. A pole is
an isolated singularity. The *Laurent expansion of f about z0 is

for z near z0 since the coe�cients an are zero for n < –k.
If the function has a singular point at z0 that is neither a

removable singularity nor a pole then it is said to have an essential
singularity at z0. If the essential singularity is isolated then a Laurent



expansion can be found that has a principal part with in�nitely
many terms. For example:

has an essential singularity at z = 0.
A meromorphic function is a function whose only singularities are

poles.
See analytic continuation.

2. A point on a curve at which there is not a single smoothly turning tangent. Examples are
*cusps, *isolated points, and *nodes.

singular value decomposition Any m × n matrix A has a singular
value decomposition A = UDV*, where U is an m × m *unitary
matrix, V is an n × n unitary matrix, and D is an m × n matrix
whose o�-diagonal entries are zero and whose min(m, n) diagonal
entries are nonnegative and arranged in non-increasing order down
the A. diagonal. The diagonal entries of D are the singular values of
A. The columns of V are the right singular vectors of A and the
columns of U are the left singular vectors of A. The number of
nonzero singular values equals the *rank of the matrix.

For example:

sinh Hyperbolic sine. See hyperbolic functions.

sinusoidal Relating to a *sine curve.



SI units Système International d’Unités, a coherent system of units
derived from *m.k.s. units that is internationally used for scienti�c
purposes. It consists of seven *base units and two *supplementary
units (see table (a)), and a large number of *derived units, 18 of
which have special names. Decimal multiples of SI units are
expressed using a set of pre�xes (see table (b)). Where possible a
pre�x representing 10 raised to a power that is a multiple of three
should be used.

size 1. (of a graph) The number of edges of a *graph.

2. (of a sample) The number of items in a *sample.

skew curve See curve.

Skewes’ number The function *Li(x)is an approximation to *π(x),
the number of *primes less than or equal to x, and Li(x) > π(x) for
all x within existing tables. In 1914, J.E. Littlewood proved that
Li(x) must be less than π(x) for in�nitely many x. Then, in 1933, the
South African mathematician Stanley Skewes (1899–1988) showed
that the �rst x with Li(x) < π(x) is less than 1010 10 34, known
henceforth as Skewes’ number.

skew �eld See division ring.

skew-Hermitian matrix See Hermitian conjugate.

skew lines Lines in space that are not parallel but do not intersect.
Skew lines cannot lie in the same plane.

skewness The degree of a symmetry of a distribution. If li is the ith
*moment about the mean, the coe�cient of skewness is c1 = l3/l23/2.
It has the value 0 for a symmetric distribution. If c1 is positive the
skewness is called positive skewness and the distribution has a long
tail to the right (see diagram); if c1 is negative the skewness is called
negative skewness and the distribution has a long tail to the left.
Other measures of skewness include

(a) Base and supplementary SI units



Quantity   Name   Symbol

length   metre   m

mass   kilogram   kg

time   second   s

electric current   ampere   A

thermodynamic
temperature

  kelvin   K

luminous intensity   candela   cd

amount of substance   mole   mol

plane angle†   radian   rad

solid angle†   steradian   sr

† Supplementary units

(b) Pre�xes for units

Pre�x Symbol Factor Pre�x Symbol Factor

Yotta Y 1024 deci d 10–1

Zetta Z 1021 centi c 10–2

Exa E 1018 milli m 10–3



Peta P 1015 micro μ 10–6

Tera T 1012 nano n 10–9

Giga G 109 pico p 10–12

Mega M 106 femto f 10–15

Kilo k 103 atto a 10–18

hecto h 102 zepto z 10–21

Deca da 101 yocto y 10–24

mean – mode/standars deviation and Q3 – 2M + Q2/Q3 – Q1

where M is the median, and Q1 and Q3 are the �rst and third
*quartiles. See also g-statistics.

skewness Frequency function with positive skewness.

skew-symmetric matrix See symmetric matrix.

slack variables See simplex method.

slant height 1. The length of a *generator of a right circular *cone.

2. The altitude of the lateral faces of a regular *pyramid.

slope 1. The angle that a line makes with the x-axis.



2. The *gradient of a curve at a given point.

slope-intercept form See line.

small circle A circle on a sphere that does not have its centre at the
centre of the sphere; thus the radius of a small circle is less than the
radius of the sphere. Each circle on a sphere is the intersection of a
plane with the sphere. If the plane passes through the centre of the
sphere, then the intersection is a *great circle; otherwise it is a small
circle.

Smith, Henry John (1826–83) Irish mathematician noted for his
work in number theory and his theorems on the possibility of
expressing positive integers as the sums of �ve and seven squares.
He also worked on the theory of elliptic functions.

smooth Generating no *friction. A smooth surface can be contrasted
with a rough surface, which does generate friction.

smooth curve A curve for which the �rst *di�erential is continuous
over all points.

smoothing Removal of erratic �uctuations in a time series by using
a *moving average or �tting a trend curve (see time series).

smooth manifold See manifold.

Snedecor’s F-distribution See F-distribution.

Snell, Willebrord van Roijen (1591–1626) Dutch mathematician
and physicist best known for his formulation in 1621 of Snell’s laws
of refraction. He also worked on problems of geodesy. In 1621 he
published an improvement on the classical method for calculating π.

snow�ake curve A *fractal curve in the plane constructed by an
iterated procedure. Starting from an equilateral triangle, each side is
trisected and the middle third of each replaced by two sides of an
equilateral triangle pointing outwards, to produce a six-pointed star
(see diagram). The



snow�ake curve The �rst three stages of its generation.

same process is applied to each side of the star, and repeated
applications generate snow�ake-like shapes. Continuing the process
inde�nitely gives the snow�ake curve: a curve of in�nite length
containing a �nite area 60 percent greater than that of the original
triangle. It is a fractal with similarity dimension ln4/ln3, and is
closely related to the *Koch curve.

solid A three-dimensional geometric �gure, e.g. a polyhedron or
cone.

solid angle A con�guration in three dimensions formed by all the
*half-lines originating at a common point and passing through a
closed plane *curve. There are two types of solid angle. In one the
closed curve is a smooth curve, so that the solid angle is a *nappe of
a conical surface. In the other type the closed curve is a polygon, so
that the solid angle is a *polyhedral angle.

The idea of solid angle is an extension of plane angle to three
dimensions, and it is possible to give a measure to a solid angle by
an extension of radian measure. If a sphere, radius r, is considered
with its centre at the vertex of the solid angle, then the solid angle
in steradians is equal to A/r2, where A is the area of the sphere
intercepted by the solid angle. (Alternatively, the solid angle is the
area intercepted on a unit sphere.) The total solid angle around a
point is 4π steradians (i.e. 4πr2/r2). The trihedral angle formed by
three mutually perpendicular half-lines is one-eighth of this, i.e. ½π
steradians.

solid geometry See geometry.



solid of revolution A solid generated by revolving a plane �gure
about an axis. For example, rotating a circle about a diameter
generates a sphere. The volume of such a solid can be found by
*integration. In a Cartesian coordinate system, if the axis lies along
the x-axis the element of volume is a disc A dx, where A, the cross-
sectional area of the disc, is πy2. Thus, for a curve y = f(x), the
volume between x = a and x = b is given by the de�nite integral

solid of revolution

solidus See division sign.

soliton See integrable system.

solstices (solstitial points) See equinoxes.

soluble group (US: solvable group) A group G that can be
constructed successively (using *normal subgroups and factor
groups) from *cyclic groups. G is soluble if it has a *composition
series H0, H1, …, Hn such that all the *factor groups H1/H0, H2/H1,
…, Hn/Hn–1 are *cyclic. The non-Abelian *symmetric group S3 of all



the symmetries of an equilateral triangle is soluble. Its elements can
be written as I, σ1, σ2, σ3, ρ, and ρ2, where I is the *identity map that
leaves the triangle unchanged, σ1, σ2, and σ3 are re�ections in the
*medians, and ρ and ρ2 are rotations about the centre of the triangle
through 120° and 240°, respectively. The sequence H0 = {I}, H1 =
{I, ρ, ρ2} and H2 = S3 is a composition series, and the quotient
groups H1/H0 and H2/H1 are 3- and 2-element cyclic groups,
respectively. The symmetric groups Sn are not soluble if n ≥ 5. See
Galois theory.

solution of equations The process of �nding the *roots of
equations. In the case of polynomial equations, i.e. equations of the
form

anxn + … + a2 x2 + a1 x + a0 = 0

the process is essentially one of �nding the factors of the
polynomial. In the simple case

x2 – x – 6 = 0

the factors are (x – 3) and (x + 2)= 0, so that

(x – 3)(x + 2) = 0

and the roots are 3 and –2. (This follows because one factor or the
other must be equal to zero (see factor theorem).) Here the factors
are over the rational numbers. The equation

x3 + x2 – 3x – 3 = 0

can be factorized over the real numbers:

(x + √3)(x – √3)(x + 1)=0

i.e. it has three real roots, but only one rational root (–1). The
equation



x2 + 49 = 0

has factors over the �eld of complex numbers:

(x + 7i)(x – 7i)= 0

i.e. it has two complex roots (±7i).
Polynomial equations of degree 2 (i.e. quadratic equations) can be

solved by inspection (in simple cases), by *completing the square, or
by the *quadratic formula. Procedures can also be found for �nding
the roots of the *cubic and *quartic equations in terms of the
coe�cients. These involve rational operations and the extraction of
roots. It can be shown that for polynomial equations of degree
greater than four no such general method exists (see Galois theory).

Various methods exist for �nding the number and nature of the
roots of polynomial equations. Methods of approximate solution
include *Newton’s method. See also Descartes’s rule of signs;
simultaneous equations.

solution of triangles The process of calculating all the sides and
angles of a triangle when su�cient data are available to specify the
triangle. The method of solution depends on the type of triangle and
the known parameters, as follows:

PLANE RIGHT-ANGLED TRIANGLES are determined by:
(1) Two sides. The third side is found by Pythagoras’ theorem. One
of the two acute angles is found by using a trigonometric ratio of
two of the sides. The third angle is found by using the fact that the
angles add to 180°.
(2) One side and one additional angle. In this case the third angle is
found by subtraction from 180°. A second side can be found by a
trigonometric function involving the known side. The third side is
found by Pythagoras’ theorem.

OBLIQUE PLANE TRIANGLES are determined by:



(1) Two sides and the included angle. The *cosine rule is used to �nd
the third side and the other angles can then be determined by the
*sine rule.
(2) Two angles and the side between them. The third angle is found by
subtraction from 180° and the two other sides are found by using
the *sine rule.
(3) Three sides. The unknown angles are found by using the *cosine
rule or the *half-angle formulae of plane trigonometry.
In addition there is the *ambiguous case:
(4) Two sides and the angle opposite one side. The *sine rule is used to
�nd a second angle (the third angle being obtained by subtraction
from 180°). Ambiguity arises because if the sine of an angle is
known, there are two possible angles that may have this (positive)
sine – one acute and the other obtuse (the angles are
supplementary).

RIGHT SPHERICAL TRIANGLES *Spherical triangles containing right angles are
determined if two sides are known, or one side and an angle, or two
angle so the right than the right angle. (This last condition does not
apply to right plane triangles, which are not determined by two
acute angles.) The solution of right spherical triangles is
accomplished by using *Napier’s rules of circular parts, together
with the law of *species to select the appropriate quadrant.

OBLIQUE SPHERICAL TRIANGLES These are determined by:
(1) Two sides and the included angle. This can be solved using the
*cosine rule of spherical trigonometry with the *half-angle
formulae.
(2) Two angles and the side between them. Here the solution is
obtained by using the *cosine rule with the *half-side formulae.
(3) Three sides. The solution is obtained by using the *half-angle
formulae.
(4) Three angles. The solution is obtained by using the *half-side
formulae.



The last case above (three angles) is peculiar to spherical triangles –
plane triangles are not determined by three angles. In addition to
the four cases above, there are two ambiguous cases in spherical
trigonometry: two sides and the angle opposite one of them, and
two angles and the side opposite one of them. These can be treated
by the *sine rule of spherical trigonometry followed by *Napier’s
analogies. The solution of spherical triangles is sometimes helped by
�nding and solving the *polar triangle.

solution set The set of all possible solutions of an equation,
inequality, or set of equations or inequalities.

solvable group See soluble group.

sorites In traditional logic, a series of *syllogisms in which all but
the last conclusion is omitted: for example, ‘All A is B, All B is C, All
C is D, All D is E, therefore All A is E’. The term ‘sorites’ derives
from the Greek word soros, meaning ‘heap’, and refers to the class of
paradoxes �rst proposed by Eubulides of Miletus (4th century BC).

One of these takes the form:

X is a heap of sand
X will remain a heap if one grain of sand is removed
X will remain a heap if a further grain of sand is removed

And so on, until eventually we have the absurd position that a single grain of sand is a
heap. See Wang’s paradox.

sound Describing a *logistic system in which every *theorem is a
*valid *w�. Soundness is thus the converse of *completeness. If a
system is sound and the axioms of the system are valid w�s, then all
the theorems will also be valid; that is, the rules of inference
preserve truth. In general, if A is a formal *consequence of B1, …,
Bn, then, in a sound system, A will be a logical consequence of B1,
…, Bn. Examples of sound systems include the propositional calculus
and the predicate calculus. See also logic.

space See abstract space.



space coordinates Coordinates that determine the location of a
point in three-dimensional space. See Cartesian coordinate system;
cylindrical coordinate system; spherical coordinate system.

space curve A *curve in three-dimensional space.

space-�lling curve See Peano’s curve.

space group See crystallography; symmetry.

spacetime (spacetime continuum) The single concept into which
space and time can be uni�ed in order to describe the geometry of
the universe. It replaces the idea of space and time as separate
entities: spacetime has four dimensions compared with the three
dimensions of ordinary (Euclidean) space. It is used in both the
special and the general theory of *relativity, and was de�ned
precisely by Hermann Minkowski.

The appropriate geometrical model of spacetime for special
relativity is known as the Minkowski universe, which is described by
means of Minkowski geometry. In the Minkowski universe
spacetime is ‘�at’, much as space is ‘�at’ in Euclidean geometry.
This is acceptable in the case of special relativity. General relativity,
however, is concerned with the gravitational e�ects of matter,
which cause spacetime to curve: massive objects produce distortions
and ripples in local spacetime, and the motions of bodies are then
dictated by the curvature. The geometry of curved spacetime is
described by means of*di�erential geometry.

span See vector space.

sparse matrix A matrix that has a relatively large proportion of
zero entries. The non-zeroes of a sparse matrix may, for example, be
clustered around the leading diagonal, as in a *tridiagonal matrix:



or they may be scattered throughout the matrix with no obvious
pattern.

Spearman’s rank correlation coe�cient See correlation
coe�cient.

special linear group See general linear group.

species In spherical trigonometry, two angles, two sides, or an angle
and a side are of the same species if both are between 0° and 90° or
if both are between 90° and 180°. If one is between 0° and 90° and
the other between 90° and 180°, then they are of opposite species.
The law of species (or law of quadrants) is applied to a right
*spherical triangle. If A, B, and C are the angles and a, b, and c the
respective sides opposite these angles, and C is the right angle, then:
(1) A and a are the same species and B and b are the same species;
(2) if c < 90°, a and b are the same species (i.e. a, b, A, and B are all
the same species);
(3) if c > 90 °, a and b are di�erent species (as are A and B).

The rule is used in solving right spherical triangles. For example, for
a right-angled triangle with side c = 30 ° and angle B = 30°, the
other sides can be found by using *Napier’s rules of circular parts,
which give relationships of the type

sin b = sin c sin B

In the example, sin b = ½·½ = ¼, so side b is sin–1¼; .e. 14° 29′ or
165° 31′. The law of species can distinguish between these two: both



b and B are of the same species so since B is an acute angle, b must
also be less than 90° – i.e. it must be 14° 29′.

speci�c gravity See relative density.

speed The rate of change (i.e. the *derivative) of distance with
respect to time. The direction of motion is not speci�ed. Speed is
thus the magnitude of the vector quantity *velocity. See also angular
speed.

speed of light Symbol: c. The speed at which light and other
electromagnetic waves travel in a vacuum. It is a universal constant
and equals 299 792 458 m s−1.

See wave; relativity.

sphere A closed surface that is the *locus of all points that are a
�xed distance (the radius) from a given point (the centre). The
surface area is 4πr2 and the enclosed volume is4/3πr3. In rectangular
Cartesian coordinates, the equation of a sphere is

(x – a)2 + (y – b)2 + (z – c)2 = r2

where (a, b, c) are the coordinates of the centre. The sphere is the
closed surface that encloses the maximum volume for a given
surface area.

More generally, the n-sphere Sn (n ≥ 0) is the *subspace of the (n
+ 1)-dimensional Euclidean space n + 1 of points (x1, …, xn + 1)
such that √(x1

2 + … + xn + 1
2) = 1.

spherical angle An angle formed by two arcs of *great circles
meeting on the surface of a sphere. The vertex of the angle forms
the *pole of a (third) great circle and the two arcs forming the angle
cut o� another arc on this great circle. The length of this third arc
(in degrees) gives the degree measure of the spherical angle.

spherical cone See spherical sector.



spherical coordinate system A *polar coordinate system in three
dimensions. The location of a point P is made with reference to two
axes at right angles taken from an origin (or pole) O. One coordinate
is the radius vector, which is the distance OP from the pole to the
point. The radius vector is given the symbol r (sometimes ρ). The
other two coordinates are angles

spherical coordinate system Spherical polar coordinate system.

measured with respect to two axes: the horizontal axis
(corresponding to the x-axis of Cartesian coordinates) and the
vertical axis (corresponding to the z-axis and called the polar axis).
The plane of the two axes is called the initial meridian plane. The
angle between the polar axis and the radius vector is the colatitude
θ: the angle between the horizontal axis and the projection of the
radius vector on the horizontal plane is the longitude ɸ. The point P
is speci�ed by three coordinates, written as (r, θ, ɸ)

The colatitude θ may vary between 0 and p radians; the longitude
may have any value but is usually taken between 0 and 2π radians.
Spherical coordinates are used in studying systems that possess
spherical symmetry; examples occur in �eld theory, spherical
harmonics, celestial mechanics (see astronomical coordinate
system), and atomic structure. The method of locating a point is



similar (but not identical) to the system of *geographical
coordinates. Spherical coordinates are also called spherical polar
coordinates.

It is possible to transform from a spherical coordinate system to a
rectangular Cartesian coordinate system. If the pole of the spherical
system coincides with the origin of the Cartesian system, the polar
axis coincides with the z-axis, and the initial meridian plane
coincides with the x–z plane, then a point (r, θ, ɸ) in spherical
coordinates has Cartesian coordinates given by

x = r sin θ cos ɸ

y = r sin θ sin ɸ

z = r cos θ

Similarly, a point (x, y, z) in Cartesian coordinates has spherical
coordinates given by

where θ is such that 0 ≤ θ < π and the value of ɸ is such that value
of ɸ is such that

x:y:r sin θ = cos ɸ:sin ɸ: 1

spherical degree A unit of area on the surface of a sphere equal to
the area of a birectangular triangle (see spherical triangle) that has a
third angle of one degree. A hemisphere has an area of 360
spherical degrees and a sphere has 720 spherical degrees. See also
steradian.

spherical distance The distance between two points on a sphere,
equal to the length of the minor *arc of a *great circle cut o� by the



points.

spherical excess See spherical polygon; spherical triangle.

spherical harmonic See harmonic.

spherical polar coordinate system See spherical coordinate
system.

spherical polygon A �gure formed on the surface of a sphere by
three or more arcs of *great circles. The sum of the angles of a
spherical polygon lies between 180(n – 2)° and 180n°, where n is the
number of sides. The di�erence between the sum and 180 (n – 2)° is
the spherical excess of the polygon. The area of a spherical polygon is
given by πr2E/180, where r is the radius of the sphere and E is the
spherical excess.

spherical pyramid A closed surface formed by a *spherical polygon
and lines from the vertices of the polygon to the centre of the
sphere. The spherical pyramid includes the curved polygon surface
together with the plane lateral faces. Its volume is πr3E/540, where r
is the radius of the sphere and E the spherical excess of the polygon.

spherical sector A closed surface that is the *surface of revolution
of a sector of a circle revolved (through 360°) about a diameter of
the circle. The spherical sector is bounded by a *zone on the surface
of the sphere (formed by the arc of the sector) and by one or two
conical surfaces formed by the radius or radii of the sector. If the
axis of revolution lies outside the sector, the �gure has a zone of
two bases and has two conical surfaces. If the axis passes through
the sector, the spherical sector has a zone of one base and has one
conical surface. In this case it is a spherical cone. The volume of a
spherical sector (or cone) is 2/3πr2 where r is the radius of the
sphere and h, is the altitude of the zone.

spherical segment A closed surface formed by two parallel planes
cutting a sphere. The spherical segment, in general, has two circular
bases with a *zone of the sphere between them. If one of the planes



is a tangent plane, a segment of one base is formed. The volume of a
spherical segment is

where h is the altitude of the zone and r1 and r2 are the radii of the
bases. For a segment of one base, the formula becomes

spherical triangle A �gure on a sphere formed by three arcs of
*great circles of the sphere. The angles of a spherical triangle are
the *spherical angles formed between the arcs; the lengths of the
sides are often speci�ed by the angles they subtend at the centre of
the sphere. Unlike plane triangles, the angles of a spherical triangle
do not add to 180°: the sum can be any value in the range 180° –
540°,and may contain one, two, or three right angles. A right
spherical triangle has at least one right angle; a birectangular
spherical triangle contains two right angles; a trirectangular spherical
triangle has three right angles. A quadrantal spherical triangle is one
for which one side is equal to 90° (i.e. subtends an angle of 90° at
the centre of the sphere). The di�erence between the sum of the
angles and 180° is the spherical excess of the triangle. Spherical
triangles di�er in other ways from plane triangles (see solution of
triangles). The area of a spherical triangle is given by πr2E/180,
where r is the radius of the sphere and E the spherical excess. See
also polar triangle.



spherical triangle A right spherical triangle.

spherical trigonometry See trigonometry; solution of triangles.

spherical wedge A closed surface formed by two planes meeting
along the axis of a sphere. The wedge includes the parts of the
planes within the sphere together with the region of the surface that
they cut o� (the *lune). The volume enclosed by a spherical wedge
is πr3θ/270, where θ is the angle between the planes and r is the
radius of the sphere.

spheroid See ellipsoid.

spinode See cusp.

spiral A plane *curve, or part of a plane curve, whose equation in
polar coordinates is

r = f(θ)

for which r always increases (or always decreases) as θ increases.
The Archimedean spiral is de�ned by the equation

r = aθ

The hyperbolic (or reciprocal) spiral has the equation

rθ = a



The parabolic (or Fermat’s) spiral has the equation

r2 = a2 θ

The logarithmic (or logistic) spiral has the equation

ln(r/a) = θ cot b or r =a exp(θ cot b)

This curve has the property that the tangent at any point makes an
angle b with the radius vector, hence the alternative name
equiangular spiral.

The klothoid or Cornu spiral is a curve having the *intrinsic
equation

a2k = s

the *curvature k at any point being proportional to the *arc length s
from the pole to the point. The curve may be de�ned parametrically
by

x = bC(s/b), y = bS(s/b)

where b = a√2, and C and S are *Fresnel integrals. This curve is
named after the French physicist Marie Alfred Cornu (1841–1902).
It is used in analysing intensities of di�raction patterns.

The lituus (plural litui; the name means ‘trumpet’) is a curve given
by

r2θ = a2

It is asymptotic to the polar axis.



spiral (a) Equiangular and (b) klothoid or Cornu spirals.

spline See approximation theory.

spur See trace.

square 1. A simple *quadrilateral with four equal sides and all four
angles right angles.

2. A number or expression obtained by multiplying a given number or expression by itself.
Thus, the square of 6 is 6 × 6 (written as 62).

square-free Describing an *integer that is not divisible by any
square integer (apart from 12). For instance, 15 is square-free but 28
is not.

square matrix A *matrix having the same number of rows as
columns.

square number A number that is the square of an integer: 1, 4, 9,
16, etc.



square root A number that when multiplied by itself gives a given
number. For instance, 3 is a square root of 9, written as √9, since 32

= 9. See also Hero’s method.

squaring the circle The problem of constructing, using only
unmarked straightedge and compasses, a square equal in area to a
given circle. It dates from the time of Anaxagoras (5th century
BC)and is one of the three classical problems of antiquity (the others
being the *duplication of the cube and *trisection of an angle). In
1882 Lindemann demonstrated the impossibility of the construction
by his proof that π is a transcendental number (see algebraic
number).

standard deviation (s.d.) The positive square root of the *variance.

standard error (s.e.) The *standard deviation of the sampling
distribution of a *statistic. For example, if the mean x ̄of a sample of
n is the statistic used to estimate the unknown mean μ of a normal
distribution with variance σ2, the s.e. is σ/√n. The term ‘standard
error’ is also sometimes used for the estimate of that quantity, i.e. s/
√n, where

Confusion is avoided if s/√n is called the estimated standard error.

standard form 1. (of a number) See exponential notation.

2. (of an equation) A simple form of an equation; a form in which the equation is usually
written. For example, the standard form of the equation for a circle in a Cartesian
coordinate system is that for a circle with its centre at the origin:

x2 + y2 = r2

standardized random variable If X is a *random variable (not
necessarily normal) with mean μ and *standard deviation σ,

Z = (X – μ)/σ



is called a standardized variable. Values of this variable are often
called Z-scores, but this name is sometimes reserved for when μ and
σ are replaced by sample estimates x˒ and s. Only if X has a *normal
distribution and μ and σ are known does Z have a standard normal
distribution.

Standardization to a Z- or a* T-score is widely used in an
educational context to introduce comparability in marks scored for
di�erent subjects; in a subject such as mathematics, if papers are
marked out of 100 it is not unusual to �nd candidates obtaining
unstandardized marks throughout the interval [0, 95] while in
French marks may all lie in the interval [25, 75].

standard normal variable See normal distribution.

star polygon See polygon.

statics A branch of mechanics concerned with the forces and
torques under which a body is in *equilibrium, i.e. at rest relative to
its surroundings.

stationary point (critical point) 1. A point on a graph of a curve
at which the *tangent is horizontal, i.e. a point at which there is a
maximum, a minimum, or a horizontal point of *in�ection. A
stationary point occurs when the �rst derivative f′(x) of the curve y
= f(x) is zero. See turning point.

2. A point on a surface at which there is a horizontal *tangent plane. A stationary point on
a surface is either a maximum, a minimum, or a *saddle point. It occurs when the two
partial derivatives ∂z/∂x and ∂z/∂y of the surface z = f(x, y) are both zero.

3. For a function f(x1, x2, …, xn) of two or more variables, a stationary (or critical) point is
one at which each of the �rst-order partial derivatives ∂f/∂xi vanishes, i.e. the *gradient of
f, grad f, vanishes.

statistic A term originally used to describe any single �gure derived
from or contained in a set of data (statistics). For example, the
*mean, median, smallest value, and percentage of the data with
values exceeding 7 would each be a statistic in this sense. In formal
statistical theory a statistic is described as any function of the



sample values. An example of a statistic in this sense is the quantity
t used in the *t-test, or any function of sample values used to
estimate a population parameter, such as a sample mean, as an
estimator of a population mean.

statistical control A term used in *quality control to indicate that a
process is operating within statistically determined limits, indicating
acceptable performance.

statistical inference See Bayesian inference; con�dence interval;
decision theory; estimation; �ducial inference; hypothesis testing;
inference; sequential analysis.

statistical mechanics See mechanics.

statistical signi�cance See hypothesis testing.

statistics 1. A collection of numerical data; for example, o�cial
statistics on employment, or on imports and exports, or monthly
meteorological records for the Isle of Tiree.

2. The science of collecting, studying, and analysing numerical data. The subject divides
broadly into two branches. Descriptive statistics is concerned mainly with collecting,
summarizing, and interpreting data. Inferential statistics is concerned with methods for
obtaining and analysing data to make inferences applicable in a wider context (e.g. from
sample to population). It is concerned also with the precision and reliability of such
inferences insofar as this involves probabilistic considerations. In this context statistics may
be described as that branch of applied mathematics based on probability theory.

3. Plural of *statistic.

statute mile See mile.

Steiner, Jakob (1796–1863) Swiss mathematician best known for
his Systematische Entwickelung (1832, Systematic Development) and
his attempt to establish a comprehensive theory of geometry using
stereographic projection.

Steiner’s problem See Fermat point.



stem-and-leaf display (J.W. Tukey, 1977) A semi-graphical
presentation of data. For example, for the data set 10, 27, 19, 11,
14, 41, 38, 59, 7, 21 we may consider the tens digits as stems and
the units digits as leaves and arrange the data in order in a table:

It is then easy to write a *�ve-number summary, and the leaf
distribution has the pattern of a *histogram turned on its side. A
complete ordering of the data is thus achieved with little more work
than that required for grouping in classes with an interval of width
10.

step function A *function whose graph consists solely of
disconnected horizontal line segments. An example is the graph of y
= [x], the *integer part of x.

steradian Symbol: sr. The SI *supplementary unit of solid angle,
equal to the solid angle subtended by unit area at the centre of a
sphere with unit radius.

stereographic projection A conformal projection (see conformal
transformation) of a sphere onto a plane. A point P (the pole) is take
non the sphere and the plane is perpendicular to the diameter
through P. Points on the sphere, A, are mapped by straight lines
from P onto the plane to give points A′.



stereographic projection

Stevin, Simon (1548–1620) Flemish mathematician and engineer
noted for his work in statics and hydrostatics. He is best known,
however, for a work on arithmetic published in 1585 in both
Flemish and French which contained the �rst comprehensive
discussion of decimal fractions.

Stirling, James (1692–1770) Scottish mathematician and protégé
of Newton. In 1717 he added four new cubic curves to the 72
already described by Newton in 1704. His book Methodus
di�erentialis (The Di�erential Method, 1730) contained work on
in�nite series and their summation, and interpolation using �nite
di�erences. He is best known today, however, for *Stirling’s
formula.

Stirling’s formula (J. Stirling, 1730) The formula

n! ≈ √(2πn)(n/e)n

It gives an approximation, for large values of the positive integer n,
to *factorial n.

stochastic Implying random variation, generally used to describe
systems which are not deterministic rather than systems which are
deterministic apart from a random error. The stochastic nature of a
system is often associated with time: for example, in a queuing
system in a bank or post o�ce, distributions may be speci�ed for
the intervals between customer arrivals and for the service times at



one or more service points. The number of people in the queue at
any given time is an example of a stochastic variable. See also
stochastic matrix; stochastic process.

stochastic analysis The study of the basic mathematics describing
stochastic processes, such as the di�erential equations associated
with *Brownian motion.

stochastic matrix A term widely used for the matrix of transition
probabilities for a *Markov chain. In this context it has the property
that all elements are non-negative and all its row sums are unity.
Such a matrix is said to be doubly stochastic if all column sums are
also unity. The term is sometimes used more generally for any
matrix comprised of * stochastic elements.

stochastic model See model.

stochastic process A random process. Common usage excludes
essentially deterministic processes, which are subject only to
random errors. See birth-death process; branching process; Markov
chain; Poisson process; queuing theory; random walk; reliability;
time series.

Stokes, Sir George Gabriel (1819–1903) Anglo-Irish
mathematician and physicist known for his formulation in 1845 of
Stokes’s law of �uid resistance; in his honour the unit of kinematic
viscosity was named the stokes. Other important work by Stokes was
concerned with the propagation of sound, �uorescence,
spectroscopy, the wave theory of light, and the nature of the aether.

Stokes’s theorem (G.G. Stokes, 1854) The theorem that for a
*vector function F

where n is a *unit vector normal to S, i.e. the integral of curl F over
a surface S is equal to the integral of F around the boundary C of the



surface. There is a very general variant of the theorem, applicable in
all dimensions, that uses integration of *di�erential forms. It
includes the original Stokes’s theorem and *Green’s theorem as
special cases. It can be regarded as the appropriate generalization to
higher dimensions of the *fundamental theorem of calculus.

straight angle (�at angle) An angle equal to one-half of a complete
turn (180° or π radians).

straight line See line.

strain A measure of the *deformation of a body subjected to an
*external force. The deformation can be a change in shape or size,
and the strain can be expressed as the change in length per unit
length, change in area per unit area, or change in volume per unit
volume; these quantities are dimenionless. *Shear, another form of
strain, is an angular deformation without change in volume, and is
measured in radians. *Stresses are set up within a body under strain.
See also Hooke’s law; elasticity.

strange attractor See chaos.

Strassen’s method (V. Strassen, 1969) A method for multiplying
two n × n matrices with a number of operations proportional to
nlog

2
7, as opposed to the standard way of multiplying matrices that

requires a number of operations proportional to n3 (log27 ≈ 2.81).
The method is based on recursive application of the following
formula for multiplying two 2 × 2 matrices A and B in only 7
(instead of the usual 8) multiplications. If C = AB, then where

where



strati�ed sample A *population may be divided into strata so that
there is greater uniformity with respect to characteristics being
measured within each stratum than there is between strata. Separate
*random samples are taken within each stratum. The appropriate
analysis enables more precise estimation of population
characteristics. For example, a survey carried out in a school to
determine attitudes to banning nuclear weapons might show that
di�erent proportions of boys and girls favour a ban. A two-strata
sample might be used, each sex forming a stratum. A common
practice, often giving optimum precision, is to take samples for each
stratum of size proportional to population stratum size. For
example, if there are 400 boys and 200 girls in the school and a
sample of 60 were to be taken, this would contain 40 randomly
selected boys and 20 randomly selected girls.

stress A measure of the internal reactions of a body subjected to an
*external force. A system of internal forces is set up, in equilibrium,
and the stress is expressed as the force per unit area. Stress is always
associated with an accompanying deformation of the body,
measured in terms of *strain. Stress can be tensile, compressive, or
shear (see diagram).

Any real body under stress undergoes deformation to a greater or
lesser degree. For small stresses most materials are elastic , i.e. they
return to their original shape once the stress disappears. Again, for
small stresses, strain is proportional to stress (see Hooke’s law). At
greater stresses some materials will crack while others become



plastic and eventually fracture. See also elasticity; elongation;
modulus of elasticity.

stress Types of stress.

strict equivalence See equivalence.

strict implication See implication.

strict inequality See inequality.

string See alphabet.

strophoid A plane *curve that has the equation in Cartesian
coordinates

It can be generated by taking a �xed point Q on the x-axis at (–a, 0)
and drawing a line to cut the y-axis at R. There are points P and P′
on QR such that

PR = RP′ = OR



where O is the origin. As the position of R varies, P and P′ trace a
strophoid. The line x = a is an asymptote.

strophoid

Student’s t-distribution See t-distribution.

Student’s t-test See t-test.

subclass See subset.

subcomplex See combinatorial topology.

subdiagonal See matrix.

subfactorial For an *integer n, the expression

sub�eld For a *�eld F, a *subset of the members of the �eld is a
sub�eld of F if the subset is a �eld with respect to the operations on
F. This means that the subset has to form a *subgroup of the �eld’s
*additive group, and the nonzero elements of the subset have to
form a subgroup of the �eld’s *multiplicative group. Every sub-�eld
of F contains the zero and identity elements of F. See extension �eld.



subgraph A *graph whose vertices and edges form *subsets of those
of another graph.

subgroup For a *group G, a subset S of the members of the group is
a subgroup of G if the subset forms a group with respect to the
*binary operation ° of G when it is applied just to members of S. If a
and b are any elements in S, this means that a ° b has to be in S, or,
in other words, when restricted in this way ° is a binary operation
on S. Also, the *inverse of each member of S has again to be in S.
For example, the set of all even integers is a subgroup of the group
of integers under addition. Every subgroup of G contains the
identity element of G. See also coset; Lagrange’s theorem.

subharmonic function A continuous realvalued *function f with
*domain D that is an open *subset of the complex *�eld, such that
for every closed disc with centre a and radius r contained in D

The integral is the average of f over the circumference of the disc
and is called the circumferential mean of f. The function f is said to
be subharmonic in D; if the inequality is reversed it is said to be
superharmonic in D.

subjective probability *Probability based on a degree of belief. An
axiomatic theory of subjective probability exists, but one di�culty
is that not all rational people may assign the same subjective
probability value to a given event. See Bayesian inference.

submatrix See partition (of a matrix).

subnormal In *Cartesian coordinates, the line segment on the x-axis
lying between the intercept of a *normal with the x-axis and the
foot of a perpendicular from the point at which the normal meets
the curve to the x-axis. See also polar tangent.



subring For a *ring R, a*subset of the members of R is a subring of
R if the subset is a ring with respect to the two operations of R.

subscript A number written to the lower right of a symbol, usually
to identify an element of a *sequence. See also superscript.

sub-sequence A*sequence within a sequence. Hence

a2, a4, a6, …, a2n, …

is a sub-sequence of

a1, a2, a3, …, an, …

A sub-sequence is a function whose domain is a subset of the
positive integers.

subset (subclass) A*set A is a subset of a set B, denoted by A⊆B, if
and only if whatever is a member of A is also a member of B:

A⊆B ↔ (∀x)(x ∈ A→x ∈ B)

For example, if A = {1, 2, 3},

B = {1, 2, 3, 4},and C = {1, 2, 3} then

A⊆B, A⊆A, A⊆C

but B is not a subset of A or C. See also proper subset; inclusion;
proper inclusion.

subspace 1. (of a vector space) A *subset of the elements of a
*vector space that is itself a vector space. The subspace has to
contain the zero element of the space.

2. (of a topological space) See topological space.

substitution The replacement of all occurrences of a variable or
expression by another variable, expression, or quantity. For
example, to evaluate x2 + 2x + 6 when x = 2, all occurrences of x
are replaced by 2, and the value of the expression is thus calculated



to be 14. This is called ‘making the substitution x = 2’. If, instead,
the substitution x = y – 1 is made, the expression becomes (y – 1)2

+ 2(y – 1) + 6, which simpli�es to y2 + 5. It is now easily seen
that the expression can never be less than 5 in value, and takes the
minimum value when y = 0, i.e. when x = –1. See change of
variable; elimination.

substitution cipher A *cipher in which each letter is replaced by a
letter or a word. See also mono-alphabetic substitution cipher;
polyalphabetic substitution cipher.

substitution group A *group whose members are *permutations.

subtangent In *Cartesian coordinates, the line segment on the x-
axis lying between the intercept of a *tangent with the x-axis and
the foot of a perpendicular from the point of tangency to the x-axis.
See also polar tangent.

subtend An arc or line segment joining two points A and B is said to
subtend the angle ACB at a third point C.

subtraction The inverse operation to addition; the process, for two
given numbers, of �nding a third which, added to one of the
numbers, gives the other, written as

d = a – b

where d is the di�erence, a is the minuend, and b is the subtrahend.
The subtrahend plus the di�erence gives the minuend. Analogous
operations are de�ned for other entities, e.g. *matrices and *vectors.

subtraction formulae Formulae in plane trigonometry. See addition
formulae.

subtrahend The quantity subtracted from another in �nding a
di�erence. See subtraction.

successive over-relaxation See GaussSeidel method.

su�cient condition See necessary condition.



su�cient statistic (R.A. Fisher, 1921) A *statistic that contains all
the information in a sample that is relevant to the point *estimation
of a speci�c parameter. For example, in estimating the mean μ of a
normal distribution, the sample mean x˒ is a su�cient statistic.
Knowledge of the individual sample values provides no further
information about μ, since the distribution of the sample,
conditional upon x˒, is independent of the population mean µ. If a
su�cient statistic exists, the *maximum likelihood estimator is a
function of that su�cient statistic.

sum 1. The result of an *addition.

2. (of sets) See union.

3. (of an in�nite series) The *limit of the *sequence of *partial sums of an in�nite *series,
i.e. the limit of the sum of the �rst n terms of the series, as n→∞. See convergent series.

sum function See sigma function.

summand See summation sign.

summation (of an in�nite series) The process of �nding the sum of
a *convergent series or of attributing a sum to a *divergent series.

summation sign The sign Σ (Greek capital sigma) used to indicate
summation of a set or sequence of numbers or variables (the
summands). When the 1st to the Nth terms of a sequence

a1, a2, …, an, …

are to be summed, this is written as

The summation of an in�nite number of terms is written as



sup Supremum. See least upper bound.

superdiagonal See matrix.

superharmonic function See subharmonic function.

superscript A number written to the upper right of a symbol,
usually indicating an *exponent. When in brackets, it also indicates
the order of a derivative. See also subscript.

supplement See supplementary angles.

supplemental chords A pair of *chords joining a point on a circle
to the two ends of a diameter. Supplemental chords are
perpendicular (the angle between them is an angle in a semicircle).

supplementary angles Two angles that have a sum of 180°. Each
angle is said to be the supplement of the other.

supplementary units The *SI units for plane angle (radian) and
solid angle (steradian). They may be regarded as dimensionally
independent physical quantities, and therefore included with the
*base units, or as dimensionless *derived units. The decision to treat
them as supplementary units which may be used to form derived
units (e.g. angular velocity is measured in radians per second) has
been universally accepted.

supremum (sup) See least upper bound.

surd An expression containing *irrational *roots; for example, √7,
or 6 + √5, or √3 + 2√11. A pure surd contains only irrational terms; a
mixed surd also contains rational terms.

surface In general, a surface is a set of points (x, y, z) in space
whose coordinates satisfy an equation such as z = F(x, y) or G(x, y,
z) = 0, or are given in terms of two parameters. For example, z =
× + y is the equation of a *plane surface; x2 + y2 + z2 – 4 = 0 is the
equation of a spherical surface; and x = r cos θ, y = r sin θ, z = λ
are parametric equations of a circular cylindrical surface of radius r.



Alternatively, a surface may be de�ned as the *image of a
continuous mapping of a region of the *Euclidean plane 2 (see
manifold).

surface of revolution A surface generated by rotating a curve about
an axis. For example, rotating a parabola about its axis of symmetry
gives a paraboloid of revolution. The area of such a surface can be
obtained by integration. In Cartesian coordinates, if the axis lies
along the x-axis the element of area is 2πy ds, where ds is an
element of length of the curve. Since ds2 = dy2 + dx2, the area of the
surface between x = a and x = b is given by the de�nite integral

surgery (J.W. Milnor, 1961) A technique for making geometrical
modi�cations to a *manifold, so as to produce a cobordant manifold
(see cobordism) with simpler homotopy groups. Surgery has proved
to be a very powerful tool in the study of the topology of manifolds.

surjection (onto, surjective function) A surjection from a *set A
to a set B is a *function whose *domain is A and whose *range is the
whole of B. For example, if A = {2, –2, 3} and B = {4, 9} then the
function f: x→x2 is a surjection. See also bijection; injection.

survival analysis The analysis of data on times to occurrence of a
de�ned *quantal response such as death or recovery from a disease,
or of times to failure of a machine or some item of equipment.
Typically the time distribution tends to be positively skewed (see
skewness), or skewed to the right. The response of interest tends to
occur over a short, or moderate timescale for some items, but being
scattered over a longer timescale for the remaining items.

Data are often incomplete in that some items are lost to the study
or *censored before the response of interest occurs. Although
censored items provide less information than items that show the
required response, they do contain some useful information. For



instance, a person who withdraws from a medical study 100 days
after treatment but before showing the response of interest certainly
has a longer survival time than one who survives only 90 days, but
one cannot say whether a person who withdraws without
responding after 100 days might or might not have a longer survival
time than one who survives, say, 120 days.

syllogism Traditional logicians distinguished between the following
four forms of *categorical proposition: All S is P, No S is P, Some S
is P, and Some S is not P, referred to respectively as A, E, I, and O
propositions. A syllogism was then de�ned as an *argument
consisting of three propositions such that the �rst two, the premises,
entail the third, the conclusion, as in the famous example: All men
are mortal, Socrates is a man, therefore Socrates is mortal. The
forms of the propositions give the mood of the syllogism – in this
case AII.

A syllogism must employ exactly three terms, each of which
appears twice. The terms S and P appear respectively as the subject
and predicate of the conclusion, and in each premise along with M,
the middle term. The position of the terms in the premises allows
the following four �gures to be distinguished according to the
location of the middle term:

As any of the four categorical forms can appear as premise and
conclusion, 256 distinct syllogistic forms can be identi�ed, of which
19 yield valid arguments. The example given earlier is a valid �rst-
�gure syllogistic form of mood AII. Under certain other



assumptions, however, the number of valid forms can either
increase to 24 or reduce to 15:
(1) Five weakened forms can be recognized but are not normally
counted. For example, the �rst-�gure syllogism

All men are mortal
All Greeks are men

∴Some Greeks are mortal
though technically valid, is more naturally recognized as a weaker
form of

All men are mortal
All Greeks are men

∴All Greeks are mortal
(2) If only I and O propositions are allowed to have *existential
import, then a form such as

All ghosts are men
All men are mortals

∴Some mortals are ghosts
will no longer be valid. Four such forms can be distinguished, and
therefore reduce the number of valid forms under this assumption to
15.

Sylvester, James Joseph (1814–97) English mathematician best
known for the work on invariants on which he collaborated with
Cayley. In 1878 he became the founding editor of the �rst American
mathematics research periodical, the American Journal of
Mathematics.

Sylvester’s law of inertia (J.J. Sylvester, 1852) The theorem that
the inertia of a *symmetric (Hermitian) matrix is unchanged under
congruence (conjunctive) transformations.

symbolic manipulation See computer algebra.

symmetric di�erence The symmetric di�erence of two sets A and B
is the set of elements belonging to one but not both of A and B. It



can be de�ned as the union of their *di�erences:

{x: x ∈ (A\B)  × ∈ (B\A)}

Thus, if A = {1, 2, 3, 4}and B = {3, 4, 5, 6}, their symmetric
di�erence will be the set C = {1, 2, 5, 6}. The symmetric di�erence
of A and B is symbolized variously as A Θ B, A ∇ B, or A + B.

symmetric form See line.

symmetric function A *function of several variables such that

f(x1, …, xi, …, xj, …, xn)

= f(x1, …, xi, …, xj, …, xn)

for every pair (xi, xj). f is sometimes called totally symmetric. For
example,

f(x, y, z) = x2 + y2 + z2 + 2xyz

is totally symmetric since the function is unchanged if any two of
the three variables are interchanged. f is totally skew symmetric if

f(x1, …, xi, …, xj, …, xn)

= –f(x1, …, xi, …, xj, …, xn)

for every pair (xi, x j). For example,

f(x, y, z) = (x – y) (y – z) (z – x)

is totally skew symmetric.

symmetric group A*permutation group formed by all the
permutations of a set. The symmetric group for a set of n elements is
denoted by Sn.



symmetric matrix A square *matrix that is symmetrical about its
leading diagonal. A symmetric matrix is equal to its *transpose. A
skew-symmetric (antisymmetric) matrix is one that is equal to the
negative of its transpose. See also Hermitian conjugate.

symmetric positive de�nite See positive de�nite.

symmetric relation A binary *relation R on a*set A is symmetric if,
for all x, y ∈ A, x R y → y R x. The relation ‘cousin’, for example, is
symmetric on the set of people. If, however, as with the relation
‘inclusion,

x R y & y R x → × = y

then the relation is said to be antisymmetric. If, as with relations like
‘greater than,

x R y → ˜ (y R x)

the relation is described as asymmetric.

symmetry In general, a �gure or expression is said to be symmetric
if parts of it may be interchanged without changing the whole. For
example, x2 + 2xy + y2 is symmetric in x and y. A symmetry
operation (symmetry) is any operation on a �gure or expression that
produces an identical �gure or expression. A �gure or expression
which is not symmetric is called asymmetric.

A geometric �gure has re�ectional symmetry if points in the �gure
have corresponding points re�ected in some point (centre of
symmetry), line (axis of symmetry), or plane (plane of symmetry) (see
re�ection). Thus a circle has a centre of symmetry, and any
diameter is an axis of symmetry. A right circular cone has an axis of
symmetry. A right square pyramid has four planes of symmetry.



symmetry Three of the axes of rotational symmetry of the cube.

A geometric �gure has n-fold rotational symmetry about an axis if a
rotation of 360°/n is a symmetry of the �gure. Such a symmetry is
called a symmetry of order n. Thus an axis of symmetry can be a
rotational axis. For example, an axis through the centre of a square
perpendicular to the plane is a 4-fold axis since a rotation of 360°/4
produces an identical �gure; a diagonal is a 2-fold axis. The
symmetry operations on a �gure form a group (its symmetry group) if
the product of two operations is de�ned to be one operation
followed by the other. This is why group theory is useful in
interpreting the molecular spectra of chemical compounds, and is
also important in the study of crystal structure (see crystallography).

See also frieze group; wallpaper group.

symplectic geometry A geometry on *manifolds based on the
structure of *Hamiltonian mechanics. It can be used to study general
systems since it allows the study of motion on con�guration spaces
with minimum use of explicit coordinates.

syntax 1. (of a formal language) A list of expressions of a *formal
language together with a set of *formation rules.

2. (logical syntax) See proof theory.



synthetic division See Horner’s method.



T

tableaux See simplex method.

tacnode See cusp.

tac-point A point where two members of a family of curves
intersect and have a common *tangent (i.e. a tacnode). For instance,
the equation

(x – m)2 + (y – m)2 = 4

represents a *family of circles, given by di�erent values of m. The
circle with m = 0 (centre at the origin) and the circle with m = 2
√2 have a tac-point at (√2, √2). A locus of tac-points is a tac-locus. In
the case above the tac-locus is the line y = x.

tan Tangent. See trigonometric functions.

tangency See tangent.

tangent 1. Aline (tangent line) that touches a curve at only one
point (the point of contact or point of tangency). For a given curve at
a given point, the slope of the tangent can be found by taking the
derivative at that point, and this enables the equation of the tangent
line to be found. For example, to �nd the equation of the tangent
line of the curve y = 2x2 at the point (3, 18), it is assumed that the
tangent line has an equation of the form y = mx + c, where m is
the slope of the tangent and c is its intercept on the y-axis. The slope
m can be found by taking the derivative of the curve at the given
point, i.e. dy/dx = 4x, so that at the point where x = 3 the slope is
12. Thus the tangent line is

y = 12x + c



The value of c is found by substituting the values x = 3 and y = 18
in this equation (since the point (3, 18) must lie on the tangent
line). This gives c = –18, so the equation of the tangent line is

y = 12x – 18

A tangent line to any space curve at a given point P can be
de�ned by considering the secant line through P and another point
on the curve Q. The tangent through P is the limiting position of this
secant as Q approaches P.

A line can also be tangent to a surface at a certain point if the line
is a tangent of another line or curve on the surface passing through
the point.

In Cartesian coordinates the length of a tangent is taken to be the
length of the line segment from the point of contact to the x-axis.
The length of the *normal is similarly the length of the line segment
of the normal

tangent Tangent and normal.

from the point to the x-axis. The subtangent is the projection of the
length of the tangent on the x-axis and the subnormal is the
projection of the length of the normal on the x-axis. See also polar
tangent.
2. See trigonometric functions.



tangent-chord theorem See circle.

tangent curve 1. A graph of a tangent function (see trigonometric
functions). In Cartesian coordinates the graph of y = tan x is a
periodic curve with separate branches, each with a point of
in�ection at the x-axis and asymptotic to lines x = ± π/2, ± 3π/2,
± 5π/2, etc.
2. Any of a set of curves that have a common point at which they
have a common tangent. Two closed curves are externally tangent if
each lies outside the other and internally tangent if one is inside the
other. A curve can be tangent to a plane or other surface at a point
if it is tangent to a line or curve on the surface passing through the
point.

tangent curve

tangent formulae The *half-angle and *half-side formulae used in
trigonometry.

tangential Being a *tangent or directed along a tangent.

tangential component See acceleration.

tangent plane A plane that touches a given surface at a particular
point. Speci�cally, it is a plane in which all the lines that pass
through the point are tangents to the surface at the point. If the



surface is a conical or cylindrical surface then the tangent plane will
touch it along a line.

It is possible to �nd the equation of a tangent plane at a given
point by �nding the direction cosines (see direction angles) of the
normal to the surface at that point. The normal to the surface is also
the normal to the tangent plane, so if it has direction cosines l, m,
and n, then the equation of the tangent plane at that point (x1, y1,
z1) is

l(x – x1) + m(y – y1) + n(z – z1) = 0

The direction cosines of the normal are found by evaluating partial
derivatives of the function representing the surface. See normal.

tangent-secant theorem See circle.

tangent series The *series expansion for the tangent function:

This is valid for –½π < x < ½π. See also Gregory’s series.

tangent space The set Tx(M) of all vectors that are tangent to a
di�erential *manifold at a point × ∈ M. For a surface, it is the
tangent plane at a point.

tanh Hyperbolic tangent. See hyperbolic functions.

Tarski, Alfred (1902–85) Polish-American mathematical logician
who in his The Concept of Truth in Formalized Languages (1935)
introduced the distinction between language and metalanguage,
which he considered to be necessary to avoid the paradoxes
detected within the foundations of set theory. Tarski also made
numerous contributions to decision theory and model theory, and
pioneered the application of algebra to the study of formal systems.

Tartaglia, Niccolò (c.1500–1557) Italian mathematician noted for
his discovery in 1535 of the long-sought solution to the general



cubic equation. He revealed his method in con�dence to Cardano
who promptly published it, without consent but with
acknowledgement, in his Ars magna (1545). Tartaglia also wrote the
in�uential three-volume General trattato di numeri et misure (1556–
60, Treatise on Numbers and Measures) as well as being the �rst, in
1543, to translate Euclid into a modern Western language, namely
his native Italian.

tautochrone See isochrone; cycloid.

tautology A statement that is true under all assignments (see
interpretation) of *truth values to its *atomic sentences. *Truth
tables provide an e�ective procedure for determining whether or
not a given *w� is a tautology. Tautologies are considered to be
unhelpful propositions since they are true regardless of the truth
values of their components, and thus give no extra information
about real circumstances.

Taylor, Brook (1685–1731) English mathematician who made
important contributions to Newton’s newly developed calculus. In
his book Methodus incrementorum directa et inversa (1715, Direct and
Indirect Methods of Incrementation) he �rst formulated the
expansion since known as *Taylor’s theorem. In the same year he
published a work on perspective, Linear Perspective.

Taylor’s theorem A theorem which expresses a *function f(x) as the
sum of a *polynomial and a remainder:

where Rn is the remainder after n terms:



where h = x – a and θ lies between 0 and 1.
If n → ∞, the expansion is a Taylor series, which represents the

function if Rn →0 as n→∞. If a = 0, the series is called a Maclaurin
series.

Tchebyshev, Pafnuty Livovich (1821–94) Russian mathematician
noted for his foundation in the mid 19th century of the St
Petersburg mathematical school. Tcheby-shev himself worked on
number theory, proving in 1850 Bertrand’s postulate that if n > 3
then there is at least one prime between n and 2n – 2. He is best
remembered, however, for his work in probability theory.

Tchebyshev polynomials A particular family of polynomials of
degree 0, 1, 2, …. The �rst four Tchebyshev polynomials are

T0(x) = 1
T1(x) = x
T2(x) = 2x2 – 1
T2(x) = 4x3 – 3x

The general formula is

Tk(x)= cos(k cos–1 x)

The polynomials satisfy the recurrence relation

Tk + 1(x)= 2x Tk(x) – Tk–1(x), k≥1

The Tchebyshev polynomials form a set of *orthogonal polynomials
with respect to the interval [–1, 1] and the weight function 1/√(1 –
x2). The Tchebyshev polynomials have important applications in
*interpolation.

Tchebyshev’s inequality (P.L. Tchebyshev, 1874) If X is a *random
variable and g(x) a non-negative function of x, then the *probability
that g(X) ≥ k (k > 0) is less than or equal to the *expectation of
g(X) divided by k:



Pr(g(X)≥k)≤E(g(X))/k

The particular case where

g(x) = (x – μ)2

where μ is the mean of X and k = t2 σ2, σ2 being the variance of X,
implies that

Pr(|X – μ| ≥ tσ) ≤ 1/t2

This is sometimes called the Bienaymé– Tchebyshev inequality (I.-J.
Bienaymé, 1853; P.L. Tchebyshev, 1867).

t-distribution (W.S. Gosset, 1908) Also known as Student’s t-
distribution,’ Student being Gosset’s pseudonym. Essentially it is a
*distribution of a variable which is proportional to the ratio of a
standard normal variable (see normal distribution) to the square
root of a chisquared variable (see chi-squared distribution) with k
degrees of freedom; also identical to the square root of an *F-
distribution variable with 1, k degrees of freedom, k ≥ 1. Given a
sample of n observations, xi, from a normal distribution with mean
μ, the statistic

where

has a t-distribution with n – 1 degrees of freedom. See also t-test.

temporal logic A general term covering attempts to incorporate
statements which contain temporal information within a logical
framework. More speci�cally it is used to refer to the *modal logic
of tensed propositions known as *tense logic.



tend to See limit.

tense logic (A.N. Prior, 1957) A form of *temporal logic in which it
is accepted that propositions such as ‘Socrates is sleeping’ can be
true at one time and false at another.

The simplest approach is to add to the *propositional calculus a
set of operators, G, F, and P, de�ned by: Gp = (It will always be the
case that p), Fp = (It will at some time be the case that p)and Pp=
(It has always been the case that p), together with a number of
axioms, including Gp→Fp (what will always be, will be) and p→GPp
(what is the case, will always have been the case). The operator F
can be de�ned in terms of G through the de�nition ‘Fp is equivalent
and replaceable by ˜ G ˜p’, i.e. ‘what will at some time be the case,
will not always not bet he case’.

With further additions more sophisticated tense logics have been
developed in which, among other things, time can have no
beginning or end, or can be circular or linear, dense or branching.

tension A *force that stretches or tends to stretch a body or
structure. For example, a taut wire under tension might be
elongated. Tensile stress is set up within the body or structure in
reaction to such a force. See also stress.

tensor An abstract entity having a set of components that are
functions of position in n-dimensional space.

Suppose that points have n coordinates xi (= x1, x2, …, xn) in
some coordinate system, and corresponding coordinates x̄i(=x̄1, x̄,
…, x̄n in a second coordinate system. (Note that su�xes are not
exponents in tensor notation.) A set of n components, denoted by Ai,
that are functions of the n coordinates xi will become a set of n
components Āi that are functions of the n coordinates Āi on a change
of coordinates from the �rst to the second system. Similarly, Aij,
Aijk, … denote sets of n2, n3, … components.

A tensor is a set of components that obeys some transformation
law. The number of su�xes indicates the order of the tensor; their



position indicates the type of tensor. A contravariant tensor of order
1 is a set Ai satisfying, for each i,

A contravariant tensor of order 2 is a set Aij satisfying, for all i and j,

A covariant tensor of order 1 is a set Ai satisfying, for each i,

A covariant tensor of order 2 is a set Aij satisfying, for all i and j,

Whereas contravariant tensors have superscripts and covariant
tensors have subscripts, a mixed tensor has both. For instance, a
mixed tensor of order 2 is a set Ai

j satisfying, for all i, j,

Tensors of higher order are similarly de�ned.
A tensor of order zero is a scalar; a tensor of order 1 is a vector.

The *Kronecker delta is an example of a mixed tensor. Strictly, a
tensor applies to a point in each coordinate system; one applied to a
region is a tensor �eld.

A Cartesian tensor is a tensor on 3 that transforms appropriately
under rotations. The concept is commonly used in the study of
continuum mechanics.

Tensor analysis was developed by Ricci-Curbastro as a
generalization of vector analysis. It was used by Einstein in his



formulation of the general theory of relativity, and is important in
di�erential geometry and in physics.

tera- See SI units.

term 1. In general, a part of an equation or mathematical
expression. In a polynomial, the terms are the expressions that are
added together. For instance, x2, –xy, and y2 are the three terms of
the trinomial

x2 – xy + y2

In a fraction, the terms are the numerator and the denominator.
2. In *logic, an expression that stands in the subject position of a
sentence, and is thus in contrast to a *predicate. Terms are always
interpreted as standing for an object, although sometimes only with
respect to a sequence, as in the case of logical variables (see
interpretation). See also predicate calculus.

terminal speed The limiting speed approached by a body as it
moves through air or some other �uid that resists its motion; this
resistive force varies as some power of the body’s speed. The body
reaches terminal speed when the resultant force on it is zero so that
it has no acceleration. For a body falling freely through air, air
resistance increases with speed until it balances the force of gravity.
The body will then fall at constant terminal speed.

terminating decimal See decimal.

terminating fraction A �nite *continued fraction.

ternary relation See relation.

tesla Symbol: T. The *SI unit of magnetic �ux density, equal to a
density of 1 weber of magnetic �ux per square metre. [After N.
Tesla (1870–1943)]

tessellation A covering or tiling of the entire plane with
nonoverlapping shapes (see diagram (a)). A regular tessellation uses



congruent regular polygons, all of one kind. There are three regular
tessellations:

tessellation (a)

those using squares, equilateral triangles, and hexagons. A
semiregular tessellation uses congruent regular polygons of more than
one kind, arranged so that every vertex of the tessellation is
congruent to every other vertex, e.g. one composed of triangles and
squares (see diagram (b)). There are eight semiregular plane
tessellations, of which two are mirror images of each other.

tessellation (b)

When a tessellation of the plane is possible using congruent copies
of a shape (or set of shapes), the shape (or set) is said to tessellate
the plane. For example, any scalene triangle or plane quadrilateral
and its mirror image will tessellate the plane.



tesseract A regular *polytope in four-dimensional space which is
the analogue of the cube in three-dimensional space.

tests of homogeneity The class of tests for equality of means,
variances, proportions, etc, applied to samples from di�erent
populations. See homogeneity of variance; F-test; t-test.

tetrahedral angle 1. A *polyhedral angle with four faces.
2. If lines are drawn from the centre of symmetry of a regular
*tetrahedron to the vertices, the plane angle between any two of
these lines (109° 28’) is called the tetrahedral angle.

tetrahedron (plural tetrahedra)A solid �gure that has four
triangular faces (i.e. a triangular pyramid). A regular tetrahedron, in
which the faces are equilateral triangles, is one of the �ve regular
polyhedra. See polyhedron.

Thales of Miletus (C.625–C.547 BC) Greek mathematician and
philosopher who is generally considered to be the �rst Western
scientist and philosopher. His fame as a mathematician rests upon
his supposed discovery of seven geometrical propositions, including
the familiar Euclidean theorems; the angles at the base of an
isosceles triangle are equal, and an angle inscribed in a semicircle is
a right angle. According to one tradition, Thales acquired his
mathematical learning from Egyptian scholars. He is reported to
have predicted the solar eclipse of 585 BC.

Theaetetus (c.414–c.369 BC)In Plato’s dialogue the Theaetetus, the
character Theaetetus engages in a discussion on the nature of
incommensurable magnitudes. It is thought that the material in
Euclid’s Book X dealing with the irrational numbers comes in fact
from lost work by the historical Theaetetus. He is also credited with
the discovery of two of the regular solids, the octahedron and the
icosahedron.

Theodorus of Cyrene (C.425 BC) Greek mathematician who,
according to Plato, demonstrated that not only was √2 irrational,



but that so too were √3 and √5, and the roots of all other non-square
numbers up to 17.

theorem A statement derived from *premises rather than assumed.
In logic, a theorem is a *w� A of a *formal system S such that A =
Bn for some *proof B1, B2, …, Bn in S. ‘A is a theorem of S’ is
denoted by ‘ + S A’ (the subscript is omitted if it is clear which
formal system is intended). A lemma is a theorem which is proved
and then used in the proof of another theorem. A theorem easily
deduced from another theorem is a corollary of that theorem. See
also converse; deduction; duality; metatheorem.

theory of equations The study of polynomials and their roots. See
Galois theory; solution of equations.

theta functions Certain special functions of a complex variable that
are more general than trigonometric and elliptic functions. The
roots of every polynomial can be written in terms of theta functions.

third kind See �rst kind.

Thom, René Frédéric (1923–2002) French mathematician who, in
his Stabilité structurelle et morphogenése (1972, Structural Stability
and Morphogenesis), created the discipline of catastrophe theory. In
earlier work, he made fundamental contributions to the study of
topology, and introduced the idea of cobordism.

Thomson, William See Kelvin.

thou See mil.

three-body problem Given *Newton’s laws of motion and his law
of *gravitation, is it possible to calculate accurately the future
positions and velocities of n mutually attractive material bodies?
Newton solved the problem for n = 2 (as if, for example, the sun
were the sole gravitational in�uence on an orbiting planet). For n =
3, however, for something like the sun–earth–moon system, the
problem still awaits a general solution. The problem was tackled
repeatedly by Euler, Lagrange, and Laplace in the 18th century, and



by Poincaré in more recent times. While a number of limited
solutions have been worked out, mathematicians must still rely
largely on methods of approximation when called upon to work out
from �rst principles the future positions and velocities of the moon.

three-valued logic Traditional logic was based upon the
assumption that every proposition is either true or false, and was
consequently committed to the law of the *excluded middle, p ∨ ˜p.
It was thus described as two-valued logic. In 1920 the Polish
logician Jan *Lukasiewicz proposed for consideration a three-valued
logic designed to accommodate future contingents. The proposition
‘It will rain tomorrow’ is neither true (T) nor false (F), he argued,
but undetermined (U). Under this interpretation the excluded middle
principle, p ∨ ˜p, can sometimes take the value U and therefore can
no longer be accepted as a logical law. Several other three-valued
systems have been developed in which the T and F (or 1 and 0) of
traditional two-valued logic are replaced by the three truth values 1,
½, and 0.

Tikhonov’s theorem (A.N. Tikhonov, 1930; E. Čech, 1937) The
*product topology on any product of *compact spaces is compact. It
is also spelt Tychono�’s theorem.

tiling See tessellation.

time Symbol: t. The continuous, irreversible passage of existence, or
a part of this *continuum. The SI unit of time is the *second. See
also day; year; spacetime.

time dilation One of the e�ects predicted by the special theory of
*relativity and since veri�ed experimentally. When two observers
move at constant relative velocity, each will observe that the other’s
clock is operating more slowly, i.e. time is di�erent for two
observers moving relative to each other. If a clock at rest ticks n
times per second, then according to someone moving at speed υ this
clock will appear to tick n√(1-υ2/c2) times per second, where c is the
speed of light. The e�ect is signi�cant only at very high speeds.



time series A set of observations, usually measurements or counts,
ordered in time.

Time series are widely used in economics to predict future trends in
output, sales, in�ation, etc. To get meaningful predictions over the
long term, allowance should be made for seasonal �uctuations or
other periodic features by suitable adjustments; smoothing(e.g. by
usinga*moving average) may also be needed to reduce the in�uence
of short-term irregularities. An example of a time series is monthly
sales of cars in a country over a ten-year period. These could be
expected to show a seasonal trend and perhaps an annual peak (e.g.
in the UK in August, when, until 1999, sales were boosted by a new
letter in car registrations each year). There are also likely to be
departures from any long-term trend due to factors such as
economic recession. Time series of maximum or mean summer
temperatures at a given meteorological station over periods of �fty
years or more may provide evidence about a phenomenon such as
global warming, but careful analysis is needed because
meteorological phenomena are well known to exhibit trends which
may persist for periods from two or three to �fty years but which
are not part of longer-term trends. See also Box-Jenkins model;
Durbin–Watson statistic.

tit-for-tat See prisoner’s dilemma.

Toeplitz matrix A square *matrix with constant diagonals,
illustrated for n = 4 by

Named after the German mathematician Otto Toeplitz (1881–1940).

ton 1. (long ton) A UK unit of mass equivalent to 2240 lb. See also
avoirdupois; troy system.



2. (short ton) A US unit of mass equivalent to 2000 lb.

tonne A unit of mass in the *metric system equal to 1000 kilograms.
It is sometimes known as the metric ton. 1 tonne = 2204.62 lb =
0.9842 ton.

topological group A *group G which is also a *topological space,
and where the functions m: G × G→G and u: G→G are continuous
maps. Here m is the multiplication in G and u(g) = g-1 for all g ∈ G.
For example, the circle S1, regarded as the multiplicative group of
complex numbers of unit modulus, is a topological group.

topological space A *set, together with su�cient extra structure to
make sense of the notion of continuity, when applied to functions
between sets. More precisely, a set X is called a topological space if
a collection T of subsets of X is speci�ed, satisfying the following
three axioms:
(1) the empty set and X itself belong to T;
(2) the intersection of two sets in T is again n T;
(3) the union of any collection of sets in T is again in T.
The sets in T are called open sets, and T is sometimes referred to as a
topology on X. For example, the real line 1 becomes a topological
space if we take as open sets those subsets U for which, given any x
∈ U, there exists ε > 0 such that {y ∈ R1:|x – y| < ε} is contained
in U. (It is easily seen that the collection of such subsets satis�es
axioms 1–3.) A similar de�nition is valid in any *metric space, but it
is not in general required of every topological space that it should
be metric. However, some of the most common examples do arise as
metric spaces.

A subset A of a topological space X is called a subspace if it is
given the structure of a topological space by specifying that the
open sets of A consist of the intersection with A of all the open sets
of X (this is the subspace topology on A).

Given topological spaces X and Y, a function f: X → Y is a
continuous map (otherwise known as a continuous mapping or
continuous function) if, for each open set U in Y, f-1 (U), de�ned to be



{x ∈ X: f(x) ∈ U}, is an open set in X. (If X = Y = 1, this
de�nition reduces to the usual de�nition of a continuous real-valued
function of a real variable.)

See also homeomorphism.

topology The study of those properties of geometrical �gures that
are invariant under continuous deformation (sometimes known as
‘rubber-sheet geometry’). Unlike the geometer, who is typically
concerned with questions of congruence or similarity of triangles,
the topologist is not at all interested in distances and angles, and
will for example regard a circle and a square (of whatever size) as
equivalent, since either can be continuously deformed into the
other. Thus such topics as *knot theory belong to topology rather
than to geometry; for the distinction between, say, a granny knot
and a reef knot cannot be measured in terms of angles and lengths,
yet no amount of stretching or bending will transform one knot into
the other.

More formally, topology is the study of those properties of
*topological spaces that are invariant under *homeomorphism.

The subject has two main branches: point-set topology (sometimes
known as analytic topology or general topology), which is
concerned with the intrinsic properties of the various types of
topological spaces; and algebraic topology, which seeks to classify
topological spaces by using algebraic methods. It was originally
called analysis situs. See also combinatorial topology.

torque See moment of a force.

torr Symbol: Torr. A unit of pressure, equal to 1/760 atmosphere or
1 millimetre of mercury, 1 torr = 133.322 pascals. [After E.
Torricelli (1608–47)]

torus (anchor ring) A surface formed by revolving a circle about a
line which is in the plane of the circle but does not intersect the
circle. If r is the radius of the circle and R the distance of its centre
from the line, then the area of the torus is 42r R, and the enclosed
volume is 22r2 R.



In topology, a torus can be described as the 2-manifold obtained
from the square

{(x1, x2) ∈ 2:|x1|, |x2|≤1}

by identifying opposite edges ‘without twists’, i.e. by identifying (–1, x2) with (1, x2) for all
x2 and (x1, –1) with (x1, 1) for all x1.

The torus is homeomorphic to the topological product of two
circles (see Cartesian product).

total di�erential The *di�erential of a function of more than one
variable. If z = f(x, y), the total di�erential of z is given by

totient function The *function that counts the number of*totitives
of a natural number. See Euler’s phi function.

totitive A natural number not exceeding another natural number n
and *relatively prime to n. For example, the totitives of 10 are 1, 3,
7, and 9. The number of totitives of n is denoted by ϕ(n), *Euler’s
phi function. Thus ϕ (10) = 4.

tower See nested sets.

trace 1. (spur) The algebraic sum of the elements in the leading
diagonal of a *matrix.
2. (piercing point) A point at which a space *curve intersects a
coordinate plane.

tractrix A plane *curve that is the *involute of a *catenary. A
tractrix is the locus of a point P that moves so that the length PP′ of
a tangent at P cutting the x-axis at P′ is constant. If a is the length
PP′, the parametric equations of the tractrix are

x = a(u – tanh u), y = a sech u



where u is a variable parameter. The curve is symmetrical about the
y-axis with a cusp on the y-axis. The x-axis is an asymptote. The
surface of revolution formed by rotating a tractrix about the x-axis
has constant negative curvature, and is known as a pseudosphere. It
provides a model for the non-Euclidean hyperbolic geometry of
Lobachevsky.

tractrix

trail See walk.

trajectory 1. The path of a moving particle or body.
2. The ordered subset of a space X consisting of the points x, T(x),
T2(x), … associated with a point x and an *iterated map T: X → X.
See dynamical system.

transcendental curve A curve that has an equation involving
*transcendental functions.

transcendental function See function.

transcendental number See algebraic number.

trans�nite number or set See Cantor’s theory of sets.

transform 1. A relationship between members of a *group A, B, and
Y such that A = Y–1 BY. A is said to be the transform of B by Y, and
A and B are said to be conjugates. The conjugate set of an element is
the set of all its conjugates. If A, B, and Y are matrices, A is the
transform of B by Y, provided Y is nonsingular; A is said to be
similar to B.



2. See integral transform.

transformation 1. A change in the form of a mathematical
expression, as by rearranging the terms.
2. A mapping (or *function). The term is essentially synonymous
with ‘function’ but is commonly used for changes in coordinate
systems. *Matrix notation is often used for transformations.

A point in two-dimensional space can be represented by a column

vector . Transformation to a point  can occur as the result of
matrix multiplication,

where T is the transformation matrix. Examples of transformation
matrices are:
(a) re�ection in the x-axis:

(b) extension in the x-direction, by a factor k:

See also linear transformation.
3. In *statistics, data are often transformed by taking logarithms or
square roots (or arc sines for proportions) to obtain data closer to a
normal distribution or to allow �tting of *linear models, etc. See also
logarithmic transformation; normalizing transformation.

transformation of axes A change in the axes of a *coordinate
system: either (1) a change from one system to another, as in
transformation from a *Cartesian coordinate system to a *polar
coordinate system; or



(2) a change in position of axes, as in *rotation or *translation of
axes.

transition matrix See Markov chain.

transitive law See order properties.

transitive relation A *binary relation R on a *set A is transitive if
for all x, y, z ∈ A

x R y & y R z → × R z

Thus the relation ‘greater than’ is transitive. Relations like ‘greater
by 1 than’, however, for which

x R y & y Rz → ˜ (x R z)

are said to be intransitive.

translation 1. Motion in a straight line.
2. A *transformation such that the directed line segments joining
points to their images all have the same magnitude and direction. A
translation maps a point with position vector r onto a point with
position vector r + a, where a is a constant vector. In the plane, a
translation maps the point with Cartesian coordinates (x, y) onto the
point (x + a, y + b), where a and b are constants. The image of a
�gure under a translation is called a translate of the �gure.

translation of axes A *transformation from one set of axes to
another set parallel to the original axes. In a plane *Cartesian
coordinate system, if (x, y) are the coordinates of a point P in one
set of axes and (x′, y′) the coordinates in the second set of axes,
then

x = x′ + h, y = y′ + k

where (h, k) are the coordinates of the origin of the second system
with respect to the �rst system. Translation of axes is used to



simplify equations of curves. For example, the circle

(x – 3)2 + (y – 5)2 = 7

has its centre at the point (3, 5). Translation of the x- and y-axes to
new axes with their origin at (3, 5) gives

x′2 + y′2 = 7

translation of axes

transportation problem The generic name in operational research
for a group of *linear programming problems with a special
structure that permits more straightforwardsolutions. The basic
problem pertains to a distributor who has storage depots at S
locations and needs to deliver goods to customers at D destinations.
Delivery costs depend on distances and times taken, and mode of
transport used. These costs are assumed to be known, as are the
available stocks in each depot and the amount each customer
requires. The problem is to determine how much should be sent
from each depot to each customer so as to minimize total transport
costs. Relevant information is set out in a tableau; a commonly used
algorithm for solution is called the north-west-corner rule.

transpose A *matrix formed from a given matrix by interchanging
the rows and columns. The transpose of a row vector is a column
vector (and vice versa). The transpose of a matrix A is commonly
denoted by AT.



transposition A *permutation of a set that merely interchanges two
elements.

transposition cryptography A method of constructing *ciphertext
in which a *permutation, known to the intended recipient, is
applied to the characters of the plaintext. For example, rugby →
bgryu and wales → elwsa.

transversal A line cutting two or more other lines. If the transversal
cuts two separate lines, then eight angles are formed. The four
angles lying between the two lines are interior angles; the four lying
outside the two lines are exterior angles. An interior (or exterior)
angle formed by the transversal’s cutting of one line and an interior
(or exterior) angle formed at the other line together constitute a pair
of alternate angles if they lie on opposite sides of the transversal. An
interior angle at one line with an exterior angle at the other
constitute a pair of corresponding angles if they lie on the same side
of the transversal. If the two lines cut by the transversal are parallel,
then alternate and corresponding angles are equal. See also parallel
transversal theorem.

transverse axis See hyperbola.

transverse component See velocity; acceleration.

transverse wave A form of *wave motion in which the vibration or
displacement of the transmitting medium occurs in a plane
perpendicular to the direction of propagation of the wave. Surface
ripples on water and electromagnetic waves (such as light or radio
waves) are transverse. Compare longitudinal wave.

trapdoor function A *one-to-one function whose values are easy to
calculate but whose *inverse is di�cult to evaluate. It often takes
the form of a straightforward *algorithm producing y = f(x) where,
however, it is known to be di�cult to calculate x from the value y.
Such functions are widely used to produce *ciphertext since they are
easy to calculate, but the plaintext is di�cult to �nd.



interior angles d, c, Α, B
exterior angles a, b, D, C
alternate pairs dB, cA, aC, bD
corresponding pairs aA, bB cC, dD
transversal

trapezium (US: trapezoid) A *quadrilateral that has one pair of
opposite sides parallel, the other pair being nonparallel. The area of
a trapezium is ½ h(a + b), where a and b are the lengths of the
parallel sides and h is the distance between them.

trapezoidal rule (trapezium rule, trapezoid rule) A rule for
*numerical integration which approximates

The area under the curve is thus approximated by the area under a
trapezium. The repeated trapezoidal rule breaks the interval [a, b]
into n subintervals of length h = (b – a)/n, based on equally spaced
points a = x0, x1, …, xn = b with corresponding



trapezoidal rule

ordinates y0, y1, yn, and applies the rule on each subinterval, giving

See also Newton’s rule; Simpson’s rule.

travelling salesman problem Any problem equivalent to that of a
travelling salesman who wishes to visit several cities B, C, D, … and
return to his starting point A in such a way that he covers the least
possible total distance (see diagram). In terms of *weighted graphs,
the problem is to �nd a closed *walk which includes all vertices and
has the least total weight. In the diagram, a solution is the walk A to
C to B to D to A. See Chinese postman problem; NP complete.



travelling salesman problem

treatment See experimental design.

tree A connected *graph with no *circuits. A disconnected graph
with no circuits is called a forest. A theorem of Cayley (1889) states
that the number of distinct labelled trees which can be drawn using n
labelled points is nn–2. Thus 4 points A, B, C, and D give rise to 16
di�erent labelled trees (see diagram (a)).

A rooted tree (see diagram (b)) has one vertex designated as an
origin and called the root. A rooted tree in which the root has
*degree 2 and every other vertex has degree 1 or 3 is a binary tree
(see diagram (c)).

tree (a) A labelled tree; (b) a rooted tree with root at the vertex
labelled R; (c) a binary tree with root at the vertex labelled B.

Some *networks are trees, and the solution of some *network
analyses gives rise to a tree. The vertices are often labelled and
referred to as nodes. Information may be recorded in them (e.g. costs
in the nodes of a *decision tree) and a cost, penalty, or probability
may be associated with each edge. For example, the problem of
joining all nodes in a graph by the minimum length of cable leads to
a tree known as a minimum spanning tree. Several algorithms are
available for determining a minimum spanning tree; two are
Kruskal’s algorithm and Prim’s algorithm (J.B. Kruskal Jr, 1956; R.C.
Prim, 1957).



tree diagram A diagram in the form of a *tree which is often useful
for determining probabilities associated with sequences of
experiments. If two balls are drawn (without replacement) from a
jar containing �ve green and three red balls, we may want to know
the probability that there are then four green balls and two red balls
left in the jar. All possible outcomes may be represented on a tree
diagram. The root node A in the diagram shown here corresponds to
the original jar, and the contents are indicated at that node. The
�rst draw leads to the vertex B or C, and on the edge joining those
vertices the colour of the ball drawn and the probability of drawing
that ball are given, and the contents of the jar after the �rst draw is
indicated at B and C. The second draw is made from

tree diagram

either B or C; the possible outcomes are indicated at nodes D, E, F,
and H, and the relevant colour and probability information is shown
on each edge originating from B or C. The probability of terminating
at each of the nodes D, E, F, and H is the product of the probabilities
on the edges leading to that node, and these are marked alongside
each node. The condition that there are four green and two red balls
is satis�ed at nodes E and F, and the total probability associated
with these nodes is the sum of the probabilities associated with
each, i.e. 15/56 + 15/56 = 15/28.



trend See time series.

trend line (trend curve) A term used, often rather loosely, in
statistics for a line or curve, often a *polynomial of low degree or
some simple piece-wise curve, to distinguish the general pattern of a
relationship between variables that may appear to hold, or may be
thought to hold, were it not for random or nuisance variation. Such
curves range from curves �tted by eye to curves �tted by using
*moving averages, least-squares *regression, or more sophisticated
�tting procedures.

trend test 1. A hypothesis test involving k (≥ 3) samples of the null
hypothesis H0: μ1 = μ2 = … = μk against the alternative H1: μ1 <
μ2 < … < μk or H1:μ1 > μ2 > … > μk, where μi is the ith population
*mean (or sometimes the ith population *median). See Jonckheere-
Terpstra test; Page test.
2. Any test for a monotonic (increasing or decreasing) overall trend
in a successive sequence of observations. See time series.

trial A single performance of an experiment (e.g. tossing a coin)
when the outcome is uncertain. Some writers distinguish between a
trial and a series of trials by reserving the term experiment for the
latter. See also Bernoulli trial.

triangle A plane closed �gure formed by three line segments (the
sides) joining three points (the vertices). Triangles are classi�ed
according to the relative lengths of their sides:
A scalene triangle has all three sides unequal.
An isosceles triangle has two sides equal, and unequal to the third.
An equilateral triangle has all three sides equal. Equilateral triangles

are also equiangular – the angles are all equal to 60°.
Triangles are alternatively classi�ed according to their angles:
An acute triangle is one in which all three interior angles are acute

angles.
An obtuse triangle is one in which one interior angle is an obtuse

angle.



A right-angled triangle is one in which one interior angle is a right
angle.

An oblique triangle is one that does not contain a right angle.
Some theorems on triangles are:
(1) The angles of a triangle sum to 180°.
(2) In an isosceles triangle, the angles opposite the equal sides are
also equal.
(3) The external angle of a triangle is equal to the sum of the two
opposite interior angles.
(4) A line drawn between the mid-points of two sides of a triangle is
parallel to the third side and equal to half of it.

See also Pythagoras’ theorem; solution of triangles; spherical
triangle; trigonometry.

triangle inequality The inequality a + b > c, where a, b, and c are
the sides of a triangle. See also metric; space; norm (of a vector
space).

triangle of forces If three forces acting at a point can be
represented in magnitude and direction by the sides of a triangle
taken in order, then their *resultant is zero. Such a triangle is called
a triangle of forces. The *converse is also true.

More generally, if n ≥ 3 forces acting at a point can be represented
in magnitude and direction by the sides of a closed polygon taken in
order, then their resultant is zero. The converse is also true. Such a
polygon is called a polygon of forces. See also force polygon.

triangular distribution 1. The distribution of the sum of two
discrete independent random variables each having the same
*uniform distribution. The graph of the frequency function is
triangular in shape. A simple example is provided by the sum of the
scores on two fair dice thrown independently.
2. The distribution of the sum of two independently distributed
random variables each having a continuous uniform (or rectangular)



distribution over an interval [a, b].

triangle of forces for three forces F1, F2, and F3, whose resultant is
zero.

In this case the *frequency function is

triangular matrix A *matrix in which all elements on one side of
the leading *diagonal are zero. The matrix is upper triangular if all
elements below the leading diagonal are zero, i.e. aij = 0 whenever
i > j; it is lower triangular if all elements above the leading diagonal
are zero, i.e. aij = 0 whenever i < j. The matrix is an upper
triangular matrix.

triangular number An integer that can be represented by a
triangular *array of dots: 1, 3, 6, 10, etc.

triangular prism A *prism that has triangular bases.

triangulation 1. A method of surveying or mapping an area using
triangles with known base length and base angles.



2. A decomposition of a *topological space into subsets
*homeomorphic to *simplexes of various dimensions which abut
each other along their faces. In the case of a triangulation of a
*surface, the simplexes are of dimension at most 2, so are triangles,
edges, and vertices.

trichotomy law See order properties.

trident of Newton A plane curve with the equation

xy = ax3 + bx2 + cx + d

tridiagonal matrix A square *matrix whose elements are zero
except on the principal diagonal and the �rst superdiagonal and �rst
subdiagonal. The matrix

is tridiagonal. See also sparse matrix.

trigonometric functions Functions of angles de�ned, for an acute
angle, as ratios of sides in a right-angled triangle containing the
angle. They are sometimes called trigonometric ratios. If ABC is a
right-angled triangle with C as the right angle, and the sides of
lengths a, b, and c are opposite the angles A, B, and C respectively
(see diagram (a)), then the trigonometric functions (with their
abbreviations) are as follows:



trigonometric functions (a)

Tangent

tan A = a/b

Sine

sin A = a/c

Cosine

cos A = b/c

Cotangent

cot A = b/a (also written as ctn A)

Cosecant

csc A = c/a (also written as cosec A)

Secant

sec A = c/b

As de�ned, three of these functions are reciprocals of the other
three:

cot A = 1/tan A

csc A = 1/sin A

sec A = 1/cos A

From these de�nitions it also follows that

tan A = sin A/cos A, cot A = csc A/sec A,



Other fundamental relationships (the Pythagorean identities) are
based on Pythagoras’ theorem:

sin2 A+cos2 A = 1

1 + tan2 A = sec2 A

1 + cos2 A = csc2 A

Trigonometric functions of certain angles can be obtained from
simple right-angled and equilateral triangles (see diagram (b)):

trigonometric functions (b)

Various other relationships between trigonometric functions can be
used. See addition formulae; double-angle formulae; half-angle
formulae; product formulae; reduction formulae.

By using rectangular coordinates the de�nitions of trigonometric
functions can be extended to angles of any size in the following way



(see diagram (c)). A point P is taken with coordinates (x, y). The
radius vector OP has length r and the angle θ is taken as the
directed angle measured anticlockwise from the x-axis. The three
main trigonometric functions are then de�ned in terms of r and the
coordinates x and y:

trigonometric functions (c)

tanø = y/x

sin ø = y/r

cosø = x/r

(The other functions are reciprocals of these.)
This can give negative values of the trigonometric functions. For

example, an obtuse angle (between 90° and 180°) has a positive
value of y and a negative value of x. Consequently, the sine of an
obtuse angle is positive and the cosine and tangent are negative.
The general de�nition also allows meaning to be given to
trigonometric functions of negative angles by taking a negative
angle as one measured clockwise from the x-axis, giving

tan(-ø) = -tanø

sin(-ø) = -sinø



cos(-ø) = -cosø

In addition, meaning can be given to trigonometric functions of
angles that are multiples of right angles. Thus, sin 90 ° = 1, cos 90 °
= 0, tan 180 ° = 0, etc. In de�ning trigonometric functions in this
way the point P is taken to move around a circle, so the functions
are known as circular functions.

The trigonometric functions are de�ned above for angles, but are
extensively used for numbers. In this case sin x, where x is a
number, is de�ned as the sine of the angle equal to x radians; cos x
and the other functions are de�ned similarly. These functions can
also be expressed as in�nite series:
Sine series

Cosine series

In addition, the series can be used to de�ne the trigonometric
functions of a complex number z.

See also cofunctions; Euler’s identities; inverse trigonometric
functions; hyperbolic functions.

trigonometric ratios A name sometimes used for trigonometric
functions.

trigonometry The branch of mathematics concerned with solving
triangles by using *trigonometric functions. It is of immense
practical value in such �elds as engineering, architecture, surveying,
navigation, and astronomy. The subject is divided into plane
trigonometry (concerned with plane triangles) and spherical
trigonometry (concerned with *spherical triangles). Trigonometric
functions also play an important role in analysis and are used to
represent waves and other periodic phenomena.



The earliest rudiments of trigonometry are found in records from
Egypt and Mesopotamia. There is a Babylonian stone tablet (c.1900–
1600 BC) on which are listed ratios equivalent to the modern sec2.
The Egyptian *Rhind papyrus (c.1650 BC) contains problems in
which the ratios of the sides of a triangle are applied to pyramids.
Neither the Egyptians nor the Babylonians had our present concept
of angular measure, and ratios of the type described above were
regarded as properties of triangles rather than of angles.

The important advances were made by the Greeks from the time
of Hippocrates of Chios (Elements, c.430), who studied the
relationships between the arc of a circle (a measure of the central
angle) and the chord of the arc. In 140 BC Hipparchus produced a
table of chords (the �rst forerunner of our modern tables of sines).
Menelaus of Alexandria (Spherics, c. AD 100) �rst used spherical
triangles and introduced spherical trigonometry. Ptolemy (Almagest,
c. AD 140) tabulated chords of angles between ½° and 180° at ½°
intervals. He also investigated trigonometric identities.

Greek trigonometry was further developed by Hindu
mathematicians who made the advance of replacing the chords used
by the Greeks by half-chords of circles with given radii – i.e. the
equivalent of our sine functions. The earliest such tables are in the
Siddhantas (Systems of Astronomy) of the 4th and 5th centuries AD.
Like numbers, modern trigonometry came to us from Hindu
mathematicians via Arab mathematicians. Translations from Arabic
into Latin in the 12th century introduced trigonometry into Europe.

The person responsible for ‘modern’ trigonometry was the
Renaissance mathematician Regiomontanus. From the time of
Hipparchus, trigonometry had been regarded simply as a tool for
astronomical calculation. Regiomontanus (De triangulis omni modis,
1464, published 1533) was the �rst to treat trigonometry as a
subject in its own right. Further advances were made by Nicolaus
Copernicus in De revolutionibus orbium coelestium (1543) and by his
student Rheticus. In Opus palatinum de triangulis (completed by his
student in 1596), Rheticus established the use of the six main
trigonometric functions, tabulated values for them, and



concentrated on the idea that the functions represented ratios in a
right-angled triangle (rather than the traditional half chords of
circles).

Modern analytical geometry dates from the time of François Viète,
who prepared tables of the six functions to the nearest minute
(1579). Viète also derived the product formulae, tangent formulae,
and multiple-angle formulae. It was towards the end of the 15th
century that the name ‘trigonometry’ �rst came into use.

See also solution of triangles.

trihedral angle A *polyhedral angle with three faces.

trillion One thousand thousand million (1012). The term has long
been established in this sense in the USA. In the UK the term
originally meant one million million million (1018), being a
contraction formed from tri = three and million, but since the 1970s
it has commonly been used to mean 1012.

trimmed mean An arithmetic *mean formed by discarding a
proportion of the most exteme observations in a sample. The object
is to reduce the in�uence of extreme observations, or *outliers, on
the value of the mean. With severe trimming, the trimmed mean
approaches the median.

trinomial A *polynomial that has three terms; for example,

ax2 + bx + c

triple See ordered pair.

triple integral A *multiple integral involving three successive
integrations. See volume.

triple product A product of three *vectors A, B, and C.
The triple vector product (or vector triple product) is the product

A × (B × C)



which is a vector. It is equal to

(A . C)B – (A . B) C

The triple scalar product (or scalar triple product) is de�ned as

A.(B×C)

which is a scalar equal to

|A| |B| |C| sin θ cos α

triple product The volume of the parallelepiped is given by the
triple scalar product A.(B×C).

where θ is the angle between B and C, and α is the angle between B
× C and A. Geometrically, a triple scalar product gives the volume
of a parallelepiped of which A, B, and C are *coterminal edges (see
diagram).

trirectangular Having three *right angles. See spherical triangle.

trisection The process of dividing anything into three equal parts.
The points, lines, planes, etc. that trisect something are its trisectors.
The problem of trisecting an angle using only unmarked
straightedge and compasses is one of the three classical problems of
Greek geometry (along with *squaring the circle and *duplication of



the cube). It is now known that the construction is impossible. See
also trisectrix; quadratrix.

trisector See trisection.

trisectrix Any of various curves that can be used to trisect an angle.
The trisectrix of Maclaurin has the equation

x3 + xy2 + ay2 – 3ax2 = 0

It is symmetrical about the x-axis, with a loop and an asymptote x
= –a. If a line is drawn from a point P with coordinates (2a, 0) to
cut the curve at P′, the angle that PP′ makes with the x-axis is three
times the angle that OP′ makes with this axis.

trisectrix of Maclaurin.

trivial group A *group consisting of one element.

trivial solution A solution of an equation or set of equations in
which the values of all the variables are zero.

trochoid A plane *curve that is a generalization of a *cycloid in
that the generating point lies anywhere on the radius (or radius
produced) of the generating circle (see generator). If r is the radius



of this circle and a the distance of the point from the centre, then
the curve has parametric equations

x = rθ – a sin θ, y = r – a cos θ

troy system A British system of units of mass used for precious
metals and gem-stones. It is named after the city of Troyes in
France, where it was �rst used, and is based on the grain (originally
the mass of a grain of wheat). The grain in this system has the same
mass as the grain in the *avoirdupois and *apothecaries’ systems.
The other troy units are:

4 grains = 1 carat
6 carats = 1 pennyweight
20 pennyweights = 1 troy ounce (of 480 grains)
12 troy ounces = 1 troy pound (of 5760 grains)
25 troy pounds = 1 troy quarter
4 troy quarters = 1 troy hundredweight (of 100 pounds)
20 troy hundredweights = 1 troy ton (of 2000 troy pounds)

truncated Describing the part of a solid �gure cut o� by one or
more planes that do not intersect within the �gure. See also frustum;
polyhedron.

truncated distribution A distribution formed from another
speci�ed distribution by ignoring the part lying to the left or to the
right of a �xed value of the random variable. For example, the
length X of items produced by a manufacturing process may be
normally distributed, but items below some �xed length x0 may be
scrapped. If the remainder are sold, the distribution of lengths of
those sold will follow a truncated normal distribution. The mean
and variance of the truncated distribution are related to the mean
and variance of the original normal distribution in a way that
depends on the chosen truncation value x0.



truncation The process of dropping trailing digits from a number.
For example, 1.576 is truncated to 1.57 to three digits. The act of
truncation causes a truncation error (see error). Compare rounding.

truth See interpretation.

truth function In *logic, a *function whose arguments and values
are *truth values. A compound sentence is said to be truth-functional
if its truth value is wholly determined by the truth values of its
parts. All the compound sentences of the propositional calculus are
truth-functional. A truth-functional connective is a connective that
stands for a truth function (compare implication (strict)). A set of
truth functions is said to be (functionally) complete when every truth
function of any number of arguments can be expressed by use of the
members of the set. The set is independent if the truth functions it
can express cannot be expressed by one of its proper subsets. A
complete independent set of connectives is used when setting up the
most economical versions of the propositional calculus. An example
(there are many) of a complete independent set of connectives is
that containing & (see and) and ˜ (see not); the set containing & and
∨ (see or) is one which is not functionally complete. See also truth
table; logic.

truth table A table for evaluating the truth value of a truth-
functional (see truth function) *compound sentence on the basis of
the *truth values of its parts. Truth tables are used both to de�ne
the truth-functional connectives and to test for validity. Each row of
a truth table indicates the truth value of a compound sentence,
given a particular assignment of truth values to its components, and
if there are su�ciently many rows then the truth value of a
compound sentence under any assignment of truth values to its parts
will be apparent.

For example, to de�ne the connective ˜ (not), we construct the
following truth table in which the truth values true and false are
represented by T and F, respectively:



Alternatively, we could represent the truth values true and false by
1 and 0, and construct an equivalent truth table for the connective ˜:

A valid *w� is true under all interpretations. In the *propositional
calculus this amounts to a w� being true under all assignments of
truth values to its atomic w�s; that is, when a w� is evaluated by a
truth table it will take the value T (or 1) for every assignment of
truth values to its atomic components.

For example, the following truth table shows that(A & B) ⊃ B is
valid:

The �rst, third, and �fth columns give all possible assignments of
truth values to A and B. The second column gives the corresponding
values of A & B. The fourth column shows the value of the w� for
each assignment; as only T occurs there the w� is valid. Truth tables
provide an e�ective means for determining whether or not a w� is
valid (see decidable).

truth value An object assigned as the semantic value (denotation)
of a sentence when interpreting a *formal language. Usually, two



truth values are used, represented variously by T or 1 for true and
by F or 0 for false. See semantics; truth table.

Tschirnhaus Ehrenfried Walther von (1651–1708) German
mathematician who in 1682 began the study of caustic curves. He
also worked on problems of maxima and minima and on the theory
of equations, and became a minor participant in the priority dispute
between Leibniz and Newton over the discovery of the calculus.

T-score A *statistic occasionally used in preference to a
*standardized random variable. If X is a random variable with mean
μ and standard deviation σ, the T-score is given by the
transformation

T = 50 + 10(X – μ)/σ

If Z is a standardized variable, T = 50 + 10Z. T is mainly used to
standardize educational data about a mean score of 50.

Tsu Chung Chi See Zu Chongzhi.

t-test (W.S. Gosset, 1908) Also known as Student’s t-test, ‘Student’
being Gosset’s pseudonym. A test of whether a sample of n
observations with mean x comes from a *normal distribution with
mean μ0. Under the null hypothesis, the statistic

where

has the *t-distribution with n – 1 degrees of freedom. The test
extends to hypotheses about di�erences between means for matched
pairs, and for two independent samples from normal distributions
with equal but unknown variances. Tables giving selected *quantiles
of the distribution for di�erent degrees of freedom are useful for



hypothesis testing and to form *con�dence intervals. Most standard
statistical software packages include the t-test, and give *p-values
for the observed value of t, and will also provide con�dence
intervals at any pre-speci�ed level, making tables more or less
obsolete.

Tukey, John Wilder (1915–2000) Often regarded as the most
innovative and versatile American statistician of the 20th century,
he is perhaps most widely known for developing the approach
known as *exploratory data analysis, featuring especially *box-and-
whisker diagrams and *stem-and-leaf displays. He also made major
contributions in nonparametric methods, robustness studies, and the
interpretation of sophisticated computer graphics.

Turing, Alan Mathison (1912–54) English mathematician and
logician who in 1936 introduced the important idea of the *Turing
machine to make precise the notion of computability. He also wrote
a pioneering paper on mathematical biology.

Turing machine An abstract computer described by Alan Turing in
1936. It consists of an in�nite tape divided into cells, each of which
can contain the number 1 or 0 or be blank. The machine can read
the tape one cell at a time and, depending on its internal state and
the content of the cell, it can print or erase the numbers 1 or 0,
move to the right or left, or halt.

The machine can be in any one of a �nite number of active states
1, 2, 3, 4, …, or in an inactive halt state H in which operations stop.
While operating, the machine is controlled by the input from the
tape according to a �nite instruction set: a typical instruction being
{5, b, 1, R, 3} which stands for ‘if in state 5, reading a blank cell,
print 1, move to the cell one place to the right, and enter state 3’.

As an example, we can construct a Turing machine to add 2 and
3. For ease, numbers are written in unary, in which 2 is represented
by 11, 3 by 111, and in general a number n by n l’s. We begin with
the following tape:

A 00011011100



and the instruction set presented in tabular form as

{1, 0, 0, R, 1}

{1, 1, 0, R, 2}

{2, 0, 1, R, H}

{2, 1, 1, R, 2}

If the machine starts in state 1, reading the �rst symbol on the left,
and the instruction set above is applied to A, it will produce the
following sequences on the tape:

B 00001011100

C 00001111100

The Turing machine will thus have succeeded in adding 2 and 3.
Also, because the machine is now in state H, it will halt.

Turing demonstrated that any serial calculation done on any
computer, however complex, could also be carried out on a Turing
machine. He went on to establish the important result that not all
functions are computable, a result clearly related to *Gödel’s theorem
and *Church’s thesis. See also halting problem.

turning point A maximum or minimum point on a smooth curve;
i.e. a point where the y-coordinate changes from increasing to
decreasing, or vice versa, and the tangent is horizontal. A change
from increasing to decreasing is a maximum point. If the value at this
point is the largest value of the function, the point is an absolute
maximum; otherwise it is a relative maximum (i.e. the maximum
relative to other points in the neighbourhood). Minimum points are
similarly de�ned.

The positions of maxima and minima are usually found by taking
the �rst derivative of the function and equating it to zero. This gives
stationary points at which the tangent to the curve is horizontal, i.e.



maxima, minima, and horizontal points of *in�ection. To
distinguish between the three, the second derivative of the function
is evaluated at the point. If the second derivative is negative at the
point, then the point is a maximum (the slope of the tangent changes
from positive to negative). Conversely, if the second derivative is
positive, the point is a minimum. If the second derivative is zero the
position is more complicated: the point may be a maximum,
minimum, or horizontal point of in�ection. To distinguish between
these, it is necessary to �nd the signs of the derivatives at two
points, one each side of the point in question. At a maximum the
�rst derivative changes sign from positive to negative; at a
minimum it changes sign from negative to positive (for increasing
values of the variable x). Alternatively, it may be simpler to �nd the
actual values of the function itself on each side of the point and
compare these with the value at the point. At a point of in�ection,
the second derivative changes sign at the point (detected by taking
the second derivative at points on each side of the given point).

twin primes (prime pair) A pair of *prime numbers that di�er by
2. Examples are 3 and 5, 5 and 7, 11 and 13, and 17 and 19. The
problem of whether there are an in�nite number of such pairs is still
unsolved.

twisted curve See curve.

twisted product See bundle.

two-person game See game theory.

two-point form See line.

two-tail test See hypothesis testing.

two-way classi�cation Classi�cation of a set of observations in
rows and columns, each representing one of two criteria. See
contingency table; randomized blocks.

Tychono�’s theorem See Tikhonov’s theorem.



Type I or II error See hypothesis testing.



U

unary operation An operation applying to one element of a *set.
For example, taking the positive square root of a number is a unary
operation. If the set is S, a unary operation u on S can be regarded
as a *function whose *domain is S and whose *codomain is also S,
and we can write u: S → S. Compare binary operation.

unbiased estimator An *estimator T is said to be an unbiased
estimator of a parameter θ if E(T) = θ. If

E(T) − θ = b ≠ 0

then b is called the bias in T.

unbiased hypothesis test A test for which the *probability of
observing a value of the *statistic in the critical region of size α is
greater than α whenever the alternative hypothesis is true. Broadly,
this implies that a result in the critical region (causing H0 to be
rejected) is more likely when H1 is true than when H0 is true. See
also hypothesis testing.

unbounded function A *function that does not have both a lower
and an upper *bound. A function f is unbounded if for any positive
real number M there is a value of x, xM, that depends on M such
that |f(xM)|> M. For example, the function f(x) = 1/x de�ned on
domain 0 < x < ∞ is unbounded because by choosing x
su�ciently small 1/x can be made as large as required. This
function is bounded below but unbounded above. f(x) = x sin x
de�ned on domain 0 < x < ∞ takes positive and negative values
and is unbounded below and above, because by choosing
su�ciently large values of x, f(x) can be made su�ciently large and
positive or large and negative. Compare bound.

unbounded set See bounded set.



Undecagon A *polygon with eleven interior angles (and eleven
sides).

undetermined multipliers See Lagrange multipliers.

uniform convergence A possible property of a *series whose terms
are *continuous functions of a variable x in an interval. The sum of
the series is a continuous function of the variable in the given
interval. The series

u0(x) + u1(x) + u2(x) + … un(x) + …

is said to be uniformly convergent in the interval (a, b) if it
converges for every value of x between a and b, and if a positive
integer N (independent of x) can be found such that the absolute
value of the *remainder Rn of the given series, where

Rn = un + 1(x) + un + 2(x) + …

is less than some arbitrary positive number ε (on which N is
dependent) for every value of n ≥ N and for every value of x lying
in the interval(a, b). There are several tests to determine whether a
series is uniformly convergent in a given interval.
uniform distribution 1. A discrete distribution over a range [0, n]
having *frequency function

p(r = Pr(X = r) = 1/n + 1

for all integral values r between 0 and n inclusive. Random digits
have a uniform distribution over the interval [0, 9]
2. (rectangular distribution) A continuous distribution over the
interval [a, b]with *frequency function

f(x) = 1/b − a

The graph of f(x) has the shape of a rectangle of height 1/(b − a).



uniform gravitational �eld A gravitational �eld (see gravitation)
in which identical particles experience identical forces independent
of their position. The earth’s gravitational �eld can be taken to be
uniform for small bodies on or near its surface.

uniformly continuous function A *function with *domain X and
*codomain Y that are both *metric spaces, for which, given any ε >
0, there exists a δ > 0 depending only on ε, such that if the distance
between any two points x1 and x2 in X is less than δ, the distance
between f(x1) and f(x2) in Y is less than ε. If f is continuouson X and
X is *compact, then f is uniformly continuous on X.

In particular, if X is the real interval (a, b) and Y a set of real
numbers, then f is uniformly continuous on (a, b) if whenever

|x1 − x2| < δ

then

|f(x1) − f(x2)| < ε

for any x1 and x2 in (a, b). For example, if X is (0, 1) and f(x) = x2,
and given ε > 0, the value of δ is taken to be½ε, then whenever

Therefore f is uniformly continuous.
If a function is continuous on a closed interval then it is uniformly

continuous on that interval. See also continuous function.

uniform motion Motion with constant velocity, speed, or
acceleration.



uniform polyhedron A *polyhedron that has *regular polygons for
all its faces and identical vertices.

unilateral surface A surface that has only one side, as in a *Möbius
strip or *Klein bottle.

unimodal distribution A *distribution having only one *mode. For
discrete distributions, if two adjacent values of X both have the
same probability or frequency, and this is the modal value, it is
usual to regard this also as a unimodal distribution. For example,
the binomial distribution with n = 3 and p = ½ gives

Pr(X = 0) = Pr(X = 3) = 1/8

Pr(X = 1) = Pr(X = 2) = 3/8

The modal values X = 1 and X = 2 are taken to constitute one
mode. Compare bimodal distribution.

unimodular matrix A square*matrix that has a *determinant equal
to unity.

union (join, sum) The union of two *sets A and B, denoted by A U
B, consists of those elements that belong either to A or to B:

A U B = {x: (x є A) ν (x є B)}

For example, if A is {1, 2, 3, 4} and B is {1, 4, 5, 6} then A U B is
{1, 2, 3, 4, 5, 6}. Compare intersection.

unique factorization theorem See fundamental theorem of
arithmetic.

uniqueness theorem A theorem asserting that only one particular
type of entity can exist. An example is the theorem that, given a
plane and a point P outside the plane, only one plane can pass
through P parallel to the given plane.



unit 1. A standard used in the measurement of a *physical quantity.
See SI units; apothecaries’ system; avoirdupois; British units of
length; c.g.s. units; coherent units; derived units; f.p.s. units;
imperial units; metric system; m.k.s. units; troy system; US
customary system.
2. The number 1.
3. An *invertible element in a *ring with identity.
4. See experimental design.

unitary group The group U(n) of all unitary n × n complex
matrices.

unitary matrix A *matrix whose inverse is its *Hermitian
conjugate. For example, the matrix

is unitary.

unitary method A procedure for solving problems in *variation in
which one of the variables is reduced to unity. For example, suppose
that y is proportional to x, and it is required to �nd the value of y
when x = 7, given that y = 9 when x = 5. The solution proceeds as
follows:

unitary ratio See ratio.

unitary transformation See matrix.

unit circle or sphere A circle (or sphere) that has a radius 1 unit in
length.



United States customary system The non-metric system of weights
and measures used in the USA. It is based on various units of
measure in use in Britain in the 1700s, and di�ers from *imperial
units principally in its units of volume (see gallon).

unit matrix See identity matrix.

unit set See singleton.

unit square or cube A square (or cube) with a side 1 unit in length.

unit vector A *vector of unit magnitude.

unity The number 1.

universal instantiation See logic.

universal quanti�er See quanti�er.

universal set Relative to a particular *domain, the universal set,
denoted by  or I, is the *set of all objects of that domain:

= {x: x = x}

Compare null set.

universe of discourse See domain.

unknown A value or function that is to be found: a member of the
*solution set of a given problem.

upper bound See bound.

upper limit (of integration) See integration.

upper triangular matrix See triangular matrix.

U-shaped distribution A *distribution over a �nite *range for
which the *frequency function has approximately equal maxima at
or near the ends of the range. In many parts of the world the daily
distribution of the proportion of the sky covered by cloud has a U-



shaped distribution, completely clear or completely cloudy days
being more common than partly cloudy days.

utility theory A form of *decision theory in which decisions are
based on the concept of utility or bene�t. The concept of utility as a
bene�t or degree of happiness, particularly in economic studies,
predates an axiomatic theory of utility formulated by J. von
Neumann and O. Morgenstern (1944). Interest often focuses on
determining policies that maximize expected utility. A subjective
element often enters into assessment of utilities.

A simple example illustrating the calculation of an expected
utility is where organizers of a function must decide whether to hold
it outdoors or indoors. On past experience they may be able to
estimate likely attendances. Numbers attending would be a relevant
utility measure as an income generator if each person paid the same
admission charge.

Suppose the probability of rain is 0.1 and the probability of no
rain 0.9, and the likely attendances are those in the following
*contingency table:

  Rain
(p = 0.1)

No rain
(p = 0.9)

Hold outdoors 100 650

Hold indoors 250 400

If held outdoors the expected utility is E(U) = 100 × 0.1 + 650 ×
0.9 = 595, while if held indoors the expected utility is E(U) = 250
× 0.1 + 400 × 0.9 = 385. To maximize expected utility the
function should be held outdoors.

In practice, utilities may re�ect factors such as attitudes to risk.
This is often the case when associated with undesirable events of
small probability. Most people insure their homes against �re
damage, attaching a higher utility to protection against the small



risk of their home being destroyed by �re than they do to the risk of
forfeiting a relatively modest sum each year paid as a premium,
although they may �nd it hard to quantify these utilities.



V

valid Describing a logical *argument in which if the premises are
true then the conclusion must also be true. Otherwise, an argument
is said to be invalid. More precisely, an argument is valid if and only
if, in all *interpretations where the premises are true, the conclusion
is also true. A *w� A is said to be valid (symbolically:  A) if and
only if it is true under all interpretations. See also consequence;
logic.

Vallée-Poussin, Charles-Jean de la (1866–1962) Belgian
mathematician who, in 1896, and independently of Hadamard,
proved the *prime number theorem.

value 1. See absolute value.
2. See game theory.

Vandermonde, Alexandre-Théophile (1735–96) French musician
and chemist regarded as the founder in 1772 of a notation and
calculus of determinants.

Vandermonde determinant See Vandermonde matrix.

Vandermonde matrix An n × n *matrix de�ned in terms of given
numbers x1, x2, …, xn, of the form illustrated for n = 4 by

The determinant of the Vandermonde matrix, the Vandermonde
determinant, is equal to



Thus for n = 4 the determinant is

(x2 – x1)(x3 – x1)(x3 – x2)(x4 – x1)(x4 – x2)(x4 – x3)

The Vandermonde matrix is a *nonsingular matrix if and only if the
xi are distinct.

Vandermonde’s theorem The theorem that if n is a positive integer
and x and y have any values whatever, then

where  is a *binomial coe�cient.

van der Pol’s equation (B. van der Pol, 1927) A *di�erential
equation �rst used to describe the behaviour of electronic circuits in
early radios, but now used to model a number of other phenomena
in physics and biology. The equation is a wave equation with a
damping factor µ:

vanish To become zero.

Var See variance.

variable 1. A mathematical entity that can stand for any of the
members of a given *set. The members of the set constitute values of
the variable, and the set itself de�nes the variable’s range (i.e. the
possible values that it may take). In considering a function f(x) of a
variable x the function’s value itself is also a variable. It is common
to refer to the value of the function as the dependent variable and to
x as the independent variable. Thus, in y = 3x + 5, y is regarded as
the dependent variable and x as the independent variable. See also
function; random variable.



2. An expression in *logic that can stand for any element of a set
(called the *domain) over which it is said to range. Logical variables
are in contrast to *constants, which can stand only for single �xed
elements. A variable is said to be free in a *w� A if it is not
preceded in A by a *quanti�er. W�s with free variables are called
open sentences, and are neither true nor false. Variables that are not
free are called bound, and if all the variables in a w� are bound,
then the w� is said to be closed, and is either true or false (see
interpretation). For example, as the variable y in

(∃ x)(x is the son of y)

is free, the w� is neither true nor false; but as the variables x and y
are bound in

(∃x)(y)(x is the son of y)

then the w� is either true or false.

variables separable Describing a type of ordinary *di�erential
equation in which the terms in y can be separated from the terms in
x. The equation can then be solved by integration.

variance For a *random variable X the variance is the second
*moment about the mean, denoted by E(X – µ)2 or Var (X). This is
equivalent to E(X2) – (E(X))2, i.e. the second moment about the
origin minus the square of the mean. For a sample, the variance is
the second sample moment about the sample mean, i.e.

or equivalently



The unbiased sample estimator of a population variance is s2 =
ns2x/(n − 1). positive square root of the variance is the *standard
deviation.

variance, analysis of See analysis of variance.

variance ratio The ratio of two estimates of *variance with
*degrees of freedom f1 and f2. If they both estimate the same
variance the ratio will have an *F-distribution with f1 and f2 degrees
of freedom. See analysis of variance.

variate See random variable.

Variation 1. (mutual variation) If two variables x and y are such
that their ratio is always constant, then y is said to vary directly as x,
or to be directly proportional to x. This is written as

y ∝ x or y = kx

where k is the constant of proportionality. The shorter forms ‘y varies
as x’ and ‘y is proportional to x’ are also used.

If y is proportional to the reciprocal of x, then y is said to vary
inversely as x, or to be inversely proportional to x. This is written as

y ∝ 1/x or y = k/x

where k is a constant.
If y varies as the product of two variables x and z, then y is said to

vary or to vary jointly as × and z. This is written as

y ∝ xz or y = kxz

where k is a constant. For example, the volume of a right circular
cylinder varies jointly as the square of the radius and the vertical
height. See unitary method.
2. (of a function) The least upper *bound of



where f is a real-valued *function with a *domain that is a real
interval [a, b] and the bound is taken over all possible *partitions a
= x0 < x1 < … < xn = b of the interval. If the bound is �nite, f is
said to have bounded or �nite variation.
3. See calculus of variations.

variation, coe�cient of A relative measure of *dispersion for sets
of data de�ned as

100 × standard deviation/mean

It was proposed by Pearson as a means of comparing variability in
di�erent distributions, but it is sensitive to errors in the mean. It is
usually looked upon as a somewhat crude but nevertheless useful
yardstick.

variations in sign (of a polynomial) See Descartes’s rule of signs.

variety See algebraic variety.

Vassiliev invariant See knot polynomial.

Veblen, Oswald (1880–1960) American mathematician who
worked on di�erential geometry and mathematical physics. He was
also in�uential in the early development of topology through his
book Analysis situs (1922).
vector An entity in Euclidean space that has both magnitude and
direction. A vector can be represented geometrically by a directed
segment of a line. A located vector is one that can be described by an
ordered pair of points in space (AB or ), interpreted as a line
segment from point A to point B (see diagram (a)). Two vectors are
equivalent if they have the same magnitude and the same direction,
so any located vector is equivalent to a vector from some standard
point O (the origin) to a point P, where AB is parallel to OP and the
lengths AB and OP are equal. In two dimensions, a vector located at



the origin is speci�ed by two numbers (x, y) giving the coordinates
of the end point. Such a vector is called the position vector f the point
(x, y).

vector (a)  is the vector located at A, and  is the position vector of P. The absolute
value of  is √(x2 + y2.

The length of a vector, without regard to direction, is called its
absolute value (or numerical value). For the position vector of the
point (x, y), the absolute value is √(x2 + y2) A unit vector is a vector
that has an absolute value of unity.

Two or more vectors can be added by placing the line segments
end to end. The sum of the vectors (called the resultant) is the line
segment from the initial point of the �rst vector to the �nal point of
the last. In the case of two vectors, this is equivalent to the
*parallelogram law for adding vector quantities. For a given vector
v, the negative vector −v is one having the same absolute value as
v and parallel to it, but having the opposite direction, so subtraction
of vectors can be de�ned in terms of addition: u − v = u + (−v)
(see diagram (b)). Vector addition is both commutative and
associative. A vector u can also be multiplied by a scalar (i.e. by a
number) n. If n is positive, the product



vector (b) Vector addition and subtraction.

n u is a vector with the same direction as u and with n times the
absolute value.

Any two or more vectors that have a given vector as their
resultant are components of the given vector. The component of a
vector in a given direction is the projection of the vector along that
direction. In particular it is often convenient to represent a vector as
a sum of components that are multiples of unit vectors. For instance,
in three dimensions the vector u from the origin to the point (x, y,
z) can be written as xi + yj + zk, where i, j, and k are unit vectors
along the x-, y-, and z-axes, respectively (see diagram (c)). In
multiplying a vector by a scalar, the individual components are
multiplied: for example,

nu = n(xi + yj + zk)

= nxi + nyj + nzk



vector (c) The position vector u expressed as the sum of its components: u = xi + yj +
zk.

In adding vectors, the corresponding components are added: for
example, if

u = ai + bj + ck and v = di + ej + fk

then u + v is given by

(a + d)i + (b + e)j + (c + f)k

It is also possible to de�ne multiplication of two vectors (see scalar
product; vector product) and three vectors (see triple product), as
well as derivatives of vector functions (see curl; divergence;
gradient). The idea of vectors in three-dimensional space can be
extended to higher dimensions. In this case, a vector can be
represented by an n-tuple (x1, x2, …, xn). More generally, vectors can
be regarded as mathematical objects that can be added and can be
multiplied by numbers (say), but cannot necessarily be multiplied
together to give other vectors. In this sense, a vector is an element
of a *vector space.

See division in a given ratio.

vector bundle A collection of vector spaces Vx parametrized by the
points x of a topological space X. Examples are the *tangent spaces



Tx (M) of a manifold M, in which case X = M, and, more generally,
the spaces of various *tensors.

vector �eld See �eld.

vectorial angle See polar coordinate system.

vector product (cross product) A product of two *vectors to give a
third vector

C = A × B

The notation A ^ B is also commonly used. The length of C is the
product of the lengths of A and B multiplied by the sine of the angle
between them:

|C| = |A| |B| sin θ

The direction of C is perpendicular to the plane of A and B. When
the vectors are written in the order A × B, then C points in the
direction in which a right-handed screw would move in turning
from A to B. Note that vector multiplication is noncommutative
since

A × B = −B × A

If

A = ai + bj + ck and B = di + ej + fk

then

C = (bf − ce)i + (cd − af)j + (ae – bd)k



The vector product is de�ned only in three-dimensional space. It
can be applied in certain physical situations: for example, the force
F on a charge q moving with velocity v in a magnetic �eld B is
given by F = qv × B. See also scalar product; triple product;
angular velocity; moment of a force.

vector product

vector quantity Any quantity, such as velocity, momentum, or
force, that has both magnitude and direction and for which *vector
addition is de�ned and meaningful; for a complete speci�cation
both the direction and magnitude must be stated. It is thus treated
mathematically as a *vector.

vector space (linear space) A set V of mathematical objects (called
*vectors) that is associated with a *�eld F of objects (called
*scalars), with the following properties:
(1) There is an operation of addition, and the addition of any two
vectors in the set produces another vector in the set.
(2) Multiplication of a vector by a scalar gives another vector in the
set.
(3) Addition of vectors is associative, i.e.

u + (v + w) = (u + v) + w

(4) Addition is commutative, i.e.



u + v = v + u

(5) There is a zero vector 0, such that

u + 0 = 0 + u = u

(6) Every vector u has a negative − u, such that

u + (−u) = 0

(7) If n is a scalar and u and v are vectors, then

n(u + v) = nu + nv

(8) If n and m are scalars and u is a vector, then

(n + m)u = nu + mu

(9) If n and m are scalars and u is a vector, then

(nm) u = n(mu)

(10) 1u = u, where 1 is the unit element in F.
The set V is said to be a vector space over the �eld F. Note that the
elements of a vector space form an *Abelian group. This axiomatic
de�nition of a vector space includes the geometrical vectors
represented by directed line segments in three-dimensional
Euclidean space. It also covers other mathematical objects such as
matrices, polynomials, and functions. The study of vector spaces
gives insight into the nature of �elds. For instance, the �eld of
complex numbers is a vector space over the �eld of real numbers.

A linear combination is an expression of the form

n1v1 + n2v2 + …

where v1, v2, … are vectors and n1, n2, … are scalars. If m vectors v1,
v2, …, vm can be taken, and all the elements in the vector space can



be produced by linear combinations of these m vectors, then the m
vectors are said to span or generate the vector space.

In addition, if for the set v1, v2, …, vm it is possible to choose
scalars c1, c2, …cm, which are not all zero and are such that

c1v1 + c2v2 + … cmvm = 0

then the set of elements is said to be linearly dependent. In this case,
one of the m vectors in the set is a linear combination of some or all
of the others. Otherwise the set of m vectors is linearly independent.
A basis of a vector space is a linearly independent set of vectors that
span the space. The dimension of a vector space V is the number of
elements in a basis, denoted by dim V.

See also module; norm (of a vector space); scalar product.

vector subspace A subset of a *vector space which is itself a vector
space. Examples are the set of real numbers in the space of
*complex numbers, and the set of complex numbers in the
*quaternions.

vector triple product See triple product.

velocity Symbol: v. The rate of change of position with time when
the direction of motion is speci�ed. Velocity v is thus a *vector
quantity; its magnitude v is referred to as speed. It is expressed in
metres per second (ms−1) or similar units. The average velocity
during some interval is the di�erence in position vector at the
beginning and end of the interval divided by the elapsed time. As
this time interval approaches zero, the average velocity approaches
the instantaneous velocity. Thus when a point or particle moves in
space its velocity is the �rst derivative of the position vector r:

v = dr/dt = dx/dt i + dy/dt j + dz/dt k

where i, j, and k are unit vectors. In one dimension

v = ds/dt i



where s is the distance from an origin.
The velocity of a point with *polar coordinates (r, θ) which moves

in a plane curved path is conveniently described by two
perpendicular components: a radial component of dr/dt (directed
away from the origin) and a transverse component of r dθ /dt
(anticlockwise). The resultant is given by the vector sum of the
components, and is directed along the tangent to the curve. Its
magnitude is |ds/dt|, where s is the arc distance of the point from a
�xed point on the curve.

See also angular velocity.

velocity ratio See machine.

Venn, John (1834–1923) English mathematician who introduced in
his Symbolic Logic (1881) diagrams of overlapping circles to
represent relations between sets. They have since been known as
*Venn diagrams. He had earlier, in his Logic of Chance (1866),
formulated one of the �rst versions of the frequency theory of
probability.

Venn diagram A diagram used to illustrate relationships between
*sets. Commonly, a rectangle represents the *universal set and a
circle within it represents a given set (all members of the given set
are represented by points within the circle). A subset is represented
by a circle within a circle, and *union and *intersection are
indicated

Venn diagram

by overlapping circles. See also complement; inclusion; member.



vernal equinox See equinoxes.

versiera See witch of Agnesi.

vertex (plural vertices) 1. A point at which two or more lines or
line segments meet on the boundary of a geometric �gure (the edges
of a polygon or polyhedron, the generators of a cone or pyramid,
etc.).
2. See graph.

vertex matrix See adjacency matrix.

vertically opposite See opposite.

vibration See oscillation.

Viète, François (Franciscus Vieta) (1540–1603) French
mathematician noted for his In artem analyticam isagoge (1591,
Introduction to the Analytical Arts), one of the earliest Western
works on algebra. In it he denoted unknowns by vowels and known
quantities by consonants, and also introduced an improved notation
for squares, cubes, and other powers. With his new algebraic
techniques Viète succeeded in solving a number of problems
classical authors had found unyielding to geometrical attacks. He
developed new methods of solving equations in his De aequationum
recognitione et emendatione (1615, On the Recognition and
Emendation of Equations). He was the �rst, in his Canon
mathematicus seu ad triangula (1579, The Mathematical Canon
Applied to Triangles), to tackle the problem of solving plane and
spherical triangles with the help of the six main trigonometric
functions.

Viète’s product The *in�nite product of nested square roots in the
formula



due to Viète in 1593. See also Wallis’s product.

Vigenère cipher A *polyalphabetic substitution cipher which uses
several *Caesar ciphers in conjunction. The use of a cipher of this
kind can be traced back to Italian cryptographers of the 15th
century who developed them because *monoalphabetic substitution
ciphers were susceptible to attack by *frequency analysis. The
French diplomat Blaise de Vigenère (1523–96) improved these
ciphers by using 26 Caesar ciphers and including a word in the
message which told the recipient in which order to use the ciphers.

vigesimal system A *number system using the base twenty.

Vinogradov, Ivan Matveyevich (1891–1983) Soviet
mathematician noted for his work on analytical number theory.

Vinogradov’s theorem The theorem that all su�ciently large odd
integers can be written as the sum of three *primes. From the
theorem it can also be shown that all su�ciently large even
numbers can be written as the sum of three primes plus 3. The
conjecture was published (along with *Goldbach’s conjecture) in
1770 in Waring’s book Meditationes algebraicae, and was proved by
Vinogradov in 1937.

virtual-work principle A principle used in *statics: if a system in
static *equilibrium undergoes an in�nitesimal displacement
consistent with the constraints on the system, then the total *work
done on the system is zero.

Viviani, Vincenzo (1622–1703) Italian mathematician and
physicist who in his De maximis et minimis (1659) attempted to
reconstruct the �fth book of the Conics of Apollonius. He also



published in 1674 an edition of Euclid. Viviani was one of the
mathematicians who succeeded in determining the tangent to the
cycloid.

volt Symbol: V. The *SI unit of electric potential, potential
di�erence, and electromotive force, equal to the di�erence in
potential between two points on a conductor carrying a constant
current of 1 ampere when the power dissipated between these
points is 1 watt. [After A. Volta (1745–1827)]

Volterra’s integral equations Types of *integral equation named
after the Italian mathematician Vito Volterra (1860–1940). An
equation of the �rst kind has the form

An equation of the second kind has the form

In each case g is the unknown function.

volume A measure of extent in three-dimensional space. The
volume of a rectangular parallelepiped is the product of its length,
width, and breadth. Volumes of polyhedra can also be calculated.
For solid �gures bounded by curved surfaces, the volume is found
by *integration. For a *solid of revolution the element of volume
can be taken as the volume of an elementary disc A dx, where A is
the area. Volume can also be obtained by a triple integral of the
form

von Koch curve See Koch curve.



von Neumann, John (1903–57) Hungarian-American
mathematician best known for his work with Oskar Morgenstern
which led to their The Theory of Games and Economic Behavior
(1944). He also made a major contribution to the development of
the modern computer both as a practical design problem and as a
means of investigating general theoretical questions on the nature
of, and constraints upon, logical automata. In more traditional �elds
von Neumann worked on problems in set theory (*von Neumann set
theory), the theory of operators, Lie groups, and shock waves. He
also worked on quantum mechanics and succeeded in axiomatizing
the subject, a result published in his de�nitive work Mathematische
Grundlagen der Quantenmechanik (1932, Mathematical Foundations
of Quantum Mechanics). See game theory.

von Neumann set theory In 1925 von Neumann proposed an
alternative to the orthodox axiomatization of set theory introduced
by Zermelo (see Zermelo–Fraenkel set theory). To avoid the
paradoxes identi�ed by Russell and others he introduced a radical
distinction between sets and classes.

Every set in his system is a class, but not all classes are sets. Those
that are not are termed proper classes.

vulgar fraction See common fraction.



W

waiting time See exponential distribution; gamma distribution.

walk In a *graph, an alternating sequence of vertices and edges
from vertex v0 to vertex vk: v0, e1, v1, e2, …, vk, in which edge ei joins
vertices vi−1 and vi. The number of edges in the walk is its length.
Thus, in the diagram, P, f, Q, b, R, b, Q is a walk from P to Q of
length 3. A closed walk has v0 = vk, e.g. P, f, Q, b, R, b, Q, f, P.

A walk in which all vertices are distinct (except possibly v0 and
vk) is a path. A closed path or cycle has v0 = vk, e.g. P, f, Q, b, R, d,
S, e, P.

A walk in which all edges are distinct is a trail. A closed trail or
circuit has v0 = vk, e.g. Q, b, R, c, S, d, R, a, Q. (Note that there is no
standard terminology. For example, the concepts described above as
‘walk’, ‘path’, ‘cycle’, and ‘circuit’ may

walk

elsewhere be termed ‘path’, ‘simple path’, ‘circuit’, ‘cycle’.)



A graph is connected if, for every pair of vertices u, v there is a
path from u to v; otherwise, it is disconnected.

Wallace–Simson line See Simson line.

Wallis, John (1616–1703) English mathematician noted for his
pioneering work on the in�nitesimal calculus. In his Arithmetica
in�nitorum (1655, The Arithmetic of In�nitesimals) he sought to
determine π by expressing π/2 as an in�nite product. He was also
the �rst to explain the meaning of such exponential forms as x0, x-n,
and xn/m, and to introduce ∞ as the symbol for in�nity.

Wallis’s product The *in�nite product in the formula

It is equivalent to a result in Wallis’s 1656 book Arithmetica
In�nitorum. See also Viète’s product.

wallpaper group A symmetry group of a two-dimensional pattern. It
is the two-dimensional analogue of the symmetry group of a crystal.
It can be shown that there are exactly 17 di�erent wallpaper groups.
See crystallography; compare frieze group.

Wang’s paradox A *paradox proposed by the Chinese-American
logician Hao Wang (1921–95), with features similar to the various
*sorites paradoxes:
0 is a small number
If n is a small number then n + 1 is a small number
Therefore all numbers are small Some have argued that there is no
paradox, as all numbers relative to larger numbers are indeed small;
others, that, as ‘small’ is a vague predicate, no coherent logical
conclusions can be drawn.



Waring, Edward (1734–98) English mathematician noted for his
Meditationes algebraicae (1770) which contained the �rst statement
of *Wilson’s theorem and his own conjecture, *Waring’s problem.

Waring’s problem The problem of proving the conjecture that any
positive integer can be written as a sum of not more than 9 cubes or
not more than 19 fourth powers of integers. The �rst part, on cubes,
was mainly proved by A. Wieferich in 1909 (with a gap in the
argument being �lled by A.J. Kempner in 1912), and the second
part, on fourth powers, was proved by R. Balasubramanian, J.-M.
Deshoulliers and F. Dress in 1986.

The term ‘Waring’s problem’ is sometimes used for the more
general problem of showing that there is a maximum number of
terms to a given power necessary for expressing any positive
integer. In other words, given a positive integer k, there is an
integer g(k) such that any positive integer can be expressed as the
sum of not more than g(k) positive integers each raised to the power
k. Thus, if k = 2 then g(2) = 4; i.e. any positive integer can be
expressed as a sum of up to four squares − a result proved by
Lagrange (see Lagrange’s theorem). Waring’s original conjecture is
that g(3) = 9 and g(4) = 19. Hilbert solved the general problem in
1909. It is now known that for every value of k up to 471 600 000,
the value of g(k) is given by the formula

g(k) = [(3/2)k] + 2k − 2

where [x] denotes the *integer part of x. For example, when k = 5,
the integer part of (3/2)5 is 7, so the formula gives g(5) = 7 + 32
− 2 = 37 (a result proved earlier by J-j. Chen in 1964). It is
suspected that the formula holds for all values of k.

watt Symbol: W. The *SI unit of power, equal to 1 joule of energy
per second. [After J. Watt (1736–1819)]

wave Any disturbance that can be propagated from one point to
another through a gaseous, solid, or liquid medium without any
permanent displacement of the medium. Sound and light waves are



two forms of wave motion. A sound wave is a type of elastic wave: a
particle of the medium is displaced in such a way that it can transfer
its momentum to an adjacent particle and then return to its original
position; the adjacent particle then disturbs another particle, and so
on. Light waves are a type of electromagnetic wave: the wave consists
of oscillating electric and magnetic �elds that do not disturb the
particles of the medium, and so can travel through a vacuum; the
�elds oscillate at right angles to the direction of propagation.

The velocity at which a wave travels depends on what type it is
and on the medium. Electromagnetic waves in a vacuum travel at a
constant speed, known as the speed of light, c (about 3 × 108 metres
per second); the speed is reduced when travelling through a
medium. Elastic waves travel at very much lower speeds. Other
properties of a wave include its *frequency v, *wavelength λ,
*amplitude a, and *period T. The frequency is the reciprocal of the
period, i.e. v = 1/T. The speed of propagation for both elastic and
electromagnetic waves is given by the product vλ. See also beats;
longitudinal wave; transverse wave.

wave equation The partial *di�erential equation

where  is the di�erential operator *del, φ is a scalar function of
position and time, and c is a constant. See Bessel functions; Laplace’s
equation.

wavelength Symbol: λ. A property of a *wave, expressed as the
distance travelled in the direction of propagation between two
points at the same phase of disturbance in consecutive cycles of the
wave.

wavelets Special functions through which one can express other
functions, but which allow greater �exibility than the traditional
*Fourier series. First introduced in the 1980s for purely



mathematical reasons, wavelets have since been used extensively in
many disciplines. See also harmonic analysis.

wave mechanics See quantum mechanics.

wavenumber The reciprocal of the *wavelength of a wave.

weber Symbol: Wb. The *SI unit of magnetic �ux, equal to the �ux
that, when linking a circuit of one turn, produces in it an
electromotive force of 1 volt as it is reduced to zero at a uniform
rate in 1 second. [After W.E. Weber (1804–91)]

Wedderburn’s theorem (J.H. Wedderburn, 1905) The theorem that
a *division ring which is �nite must be a *�eld. Wedderburn’s
theorem says in e�ect that the commutativity of multiplication
follows from the other �eld axioms if the underlying set D is �nite.
There are examples of division rings that are not �elds but,
according to Wedderburn, they must be in�nite. The best-known
example is the division ring of *quaternions.

wedge See spherical wedge.

Weibull distribution (W. Weibull, 1939) A distribution of a
positive continuous *random variable X with frequency function of
the form

where k and λ are positive *parameters. The distribution is used in
reliability studies and in meteorology. It is one of the most
commonly used *extreme value distributions.

Weierstrass, Karl Theodor Wilhelm (1815–97) German
mathematician noted for his work on real and complex functions. In
1871 Weierstrass discovered a continuous curve with no tangent at
any point. Throughout his career he emphasized the need to
introduce into analysis much greater rigour and, in the tradition of
Cauchy, he sought to de�ne with greater precision such terms as



continuity, limit, di�erential, and irrationals, which he saw as
in�nite sequences of rationals.

Weierstrass’s theorem See dense set.

weight Symbol: W. The *force exerted on matter by the *gravity of
the earth (or of whatever celestial body on which the matter is
located). The weight of an object of *mass m is equal to mg, where g
is the *acceleration of free fall. Since g varies with position (and
with celestial body), weight is not a constant property of matter. See
also mass.

weighted graph A *graph (or *network) in which numbers are
attached to edges (or arcs). The numbers may represent distances
associated with the edges, or times taken or costs incurred in
travelling along them. The weight of a *walk, path, or trail is the
sum of the weights of all its edges.

weighted least squares See lowess.

weighted mean See mean.

well-formed formula (w�) In *logic, a sequence of symbols from a
*formal language constructed according to the *formation rules of
the language.

well-ordered set If a *set A is an *ordered set and if every *subset
of A has a �rst element, then A is a well-ordered set. Using the
*axiom of choice, Zermelo was the �rst to prove the important
theorem that every ordered set can be well ordered.

Weyl, Hermann Klaus Hugo (1885–1955) German mathematician
noted for his work in mathematical physics, the foundations of
mathematics, and pure mathematics, in which he contributed to
group theory and the theory of Hilbert space. His work in
mathematical physics provided some of the formalism necessary for
the development of both relativity and quantum theory.

w� Abbreviation for *well-formed formula.



Whitehead, Alfred North (1861–1947) English mathematician and
philosopher. After the publication of his A Treatise on Universal
Algebra (1898), Whitehead began the collaboration with Bertrand
Russell that led to Principia mathematica (3 vols, 1910–13), their
attempt to derive the whole of mathematics from purely logical
principles.

Whittaker, Sir Edmund Taylor (1873–1956) English
mathematician who, in 1904, published a very in�uential text on
mathematical analysis; later editions were co-written with G.N.
Watson. He also made contributions to astronomy, mechanics,
numerical analysis, and the historical and philosophical aspects of
physical theories.

Wiener, Norbert (1894–1964) American mathematician well
known for his work in mathematical logic, stochastic processes, and
Fourier transforms. In 1948, however, he became an internationally
known �gure with the publication of his Cybernetics, or Control and
Communication in the Animal and the Machine, the work which
founded the modern discipline of *cybernetics.

Wilcoxon rank sum test (F. Wilcoxon, 1945) A *distribution-free
test of the hypothesis that two independent samples come from the
same *population, against alternatives that specify either a
di�erence in median only or, more generally, that one population
distribution is stochastically larger − i.e. that the *cumulative
distribution functions F(x) and G(y) satisfy a relationship F(u) ≥
G(u) with strict inequality for at least some u. The observations in
the combined samples are arranged in ascending order and replaced
by their *ranks. The test statistic is the sum of the ranks of the
observations in one of the samples. Tables of critical values are
published for various sample sizes; alternatively, exact *p-values
may be computed with some statistical software. For large samples a
normal approximation is often used. An alternative formulation of
the problem gives rise to the equivalent Mann–Whitney test (H.B.
Mann and D.R. Whitney, 1947). The method may be extended to
obtain *con�dence intervals for median di�erences.



Wilcoxon signed rank test (F. Wilcoxon, 1945) A *distribution-free
test for hypotheses about the mean or median of a symmetric
distribution. Deviations of sample values from the hypothesized
mean or median M are ranked in order of magnitude, and these
deviations are replaced by their ranks together with a sign to
indicate whether the deviation is positive or negative. The test
statistic is usually taken to be the sum of the positive ranks, and
critical values are tabulated for various sample sizes. The exact *p-
value of the statistic may be computed with the aid of statistical
software packages. For large samples, an approximation based on
the *normal distribution is often used. The method may be extended
to *matched pair samples to provide a test of whether the sample
values in the pairs are identically distributed, because if they are
then the within-pairs di�erences will have median zero. It is also
possible to obtain a distribution-free *con�dence interval for a
population median or, in the case of paired samples, for a median
di�erence.

Wilkins, John (1614–72) English mathematician and scientist who
in his Mathematical Magick (1648) demonstrated, among other
things, the use of mathematics in the design of machines.

Wilson’s theorem The theorem that if p is a *prime then it divides
(p − 1)! + 1. Thus 5 divides 4! + 1 = 25. The statement was �rst
published by Waring in 1770 in his book Meditationes algebraicae
and ascribed to the English mathematician John Wilson (1741–93).
It was �rst proved by Lagrange in 1771. The converse of the
theorem is also true and implies that, if n is a *composite number it
cannot divide the corresponding expression (n − 1)! + 1. So
Wilson’s theorem and its converse theoretically provide a test to
determine whether any natural number greater than 1 is prime or
composite. Unfortunately, the technique is impractical for even
moderately large numbers.

winding number Given a point in a plane, the winding number of a
*closed curve is the number of times the curve goes round the point



in an anticlockwise sense. The number depends on the curve and the
chosen point.

winsorization A method of estimation analogous to forming a
*trimmed mean, except that instead of discarding the trimmed
values, each is replaced by the closest value that is not trimmed.
Many generalizations are possible. W.J. Dixon (1960) proposed the
term winsorization to indicate that the procedure was �rst suggested
by the American statistician Charles P. Winsor (1895–1951).

witch of Agnesi (versiera) A plane *curve obtained by �rst taking
a point P on a given circle and the *tangent line through Q, where
PQ is a diameter. A line from P is drawn to cut the circle at any
point R and to cut the tangent line at S. From R, a line is drawn
parallel to QS and from S a line is drawn parallel to QP, the two
lines intersecting at P′. The witch is the locus of all such points P′
(i.e. for all points R on the generating circle). If the circle is drawn
with P at the origin and Q at (2a, 0), its equation is

xy2 = 4a2 (2a − x)

a being the radius of the circle.
The curve was studied by Maria Agnesi in the 18th century. The

Italian mathematician Guido Grandi (1671–1742) had previously
named it the versorio, from the Latin vertere (to turn). Agnesi
confused this with versiera, which has ‘witch’ as one of its colloquial
meanings.



witch of Agnesi

with or without replacement See random sample.

word See alphabet.

work Symbol: W. A transfer of *energy that occurs when a *force is
applied to a body so that the point of application is moved. Strictly
the body should be moving, and then the force has a component in
the direction of motion. Energy is transferred from the agent
exerting the force to the body so that the body’s kinetic energy is
increased. If work is done on the agent by the moving body then
negative work is done: an agent doing negative work is gaining
energy from the body (see potential energy). Work, like energy, is
measured in joules.

Work is a *scalar quantity. If the force is constant and acts in the
direction of motion, the amount of work done on the body is given
by the product of the magnitude F of the force and the distance s



moved by the point of application. In general the work done during
motion from a position s1 to a position s2 is given by

where θ is the angle between the direction of the force and the
in�nitesimal displacement ds. By using the *scalar product, this can
be written as

See power.

wrapped Cauchy distribution See directional data.

Wren, Sir Christopher (1632–1723) English astronomer, architect,
and mathematician, noted in mathematics for his work on the
hyperboloid and for his recti�cation of the cycloid in 1658.

wrench A force acting together with a couple whose plane is
perpendicular to the line of action of the force. The line of action of
the force is the axis of the wrench. Any system of forces is
equivalent to a wrench. See Poinsot.

Wronskian The *determinant W(x) ≡

de�ned on an *interval (a, b), where {f1(x), f2(x), … fn(x)} is a *set
of n *functions each having continuous *derivatives up to the (n −
1)th order in (a, b).



If the functions are linearly dependent on that interval, i.e. if
there exist constants c1, c2, …, cn that are not all zero and such that

c1f1(x) + c2f2(x) + … + cnfn(x) = 0

for all x in (a, b), then W(x) = 0.
If W(x) = 0 for all x in (a, b), then there exists a subinterval of (a

b) on which the functions are linearly dependent. It is named after
the Polish mathematician Józef Maria Hoene-Wroński (1776–1853).
See also Hessian; Jacobian.



XYZ

x-axis See Cartesian coordinate system.

x-coordinate See abscissa.

x-step See run.

yard A *British unit of length, originally de�ned in terms of a
bronze standard but rede�ned in the UK Weights and Measures Act
(1963) as 0.9144 metre exactly.

Yates, Frank (1902–94) English statistician who made important
contributions to the analysis of experiments, especially those
involving factorial treatment structures, to sampling theory and
practice, and pioneered the use of computers in statistics.

Yates’s correction (F. Yates, 1934) A special case of a *continuity
correction used in the *chi-squared test when applied to 2 × 2
*contingency tables.

yaw Angular movement of an aircraft, spacecraft, projectile, etc.
about its vertical axis. Compare pitch; roll.

y-axis See Cartesian coordinate system.

y-coordinate See ordinate.

year A unit of time based on the period of revolution of the earth
round the sun. It can be de�ned in various ways. The civil year
(calendar year or Julian year) has an average value of 365.25 mean
solar days; three successive years of 365 days are followed by a leap
year of 366 days. The tropical year (or solar year) is the interval
between two consecutive passages, in the same direction, of the sun
through the earth’s equatorial plane; its value is 365.242 199 mean
solar days. The anomalistic year, the average interval between two
consecutive passages of the earth through perihelion, is 365.259 641



mean solar days. The sidereal year, the interval in which the sun
appears to perform a complete revolution with reference to the �xed
stars, is 365.256 366 mean solar days. See day.

yield The *interest paid on an investment.

yocto- See SI units.

yotta- See SI units.

Youden square (W.J. Youden, 1940) An *experimental design that
might more appropriately be called an incomplete *Latin square,
since it is composed of some, but not all, rows of a Latin square.
An example is

in which the rows may be looked upon as *randomized blocks and
the columns as *balanced incomplete blocks. The analysis is fairly
straightforward, and the e�ciency reasonably high. The Youden
square incorporates the desirable feature of a Latin square design of
allowing the elimination of unwanted variability in more than one
direction without the irksome restriction of having both the number
of rows and the number of columns equal to the number of
treatments.

Young’s inequality If a > 1 and b > 1 are such that 1/a + 1/b =
1, then

The case where a = b = 2 yields the *arithmetic–geometric mean
inequality. Named after the English mathematician William Henry
Young (1863–1942).



Young’s modulus Symbol: E. A *modulus of elasticity that is used
when an elastic body is under tension (or compression). It is the
ratio of the applied force per unit area of cross-section to the
resulting increase (or decrease) in length per unit length of the
body. This is equivalent to the ratio of tensile (or compressive)
*stress to the associated longitudinal *strain. It is named after the
English physicist, physician, and Egyptologist Thomas Young (1773–
1829).

y-step See rise.

 Symbol for the set of all *integers.

 + Symbol for the set of all positive *integers, i.e. the natural
numbers.

z-axis See Cartesian coordinate system.

z-coordinate See Cartesian coordinate system.

z-distribution See Fisher’s z-distribution.

zenith A point on the *celestial sphere directly above an observer.
The zenith is one of the poles of the horizon. Compare nadir.

zenith distance (coaltitude) Symbol: ζ. The angular distance of a
point on the *celestial sphere from the zenith taken along a *great
circle passing through the zenith, the point, and the *nadir. It is the
complement of the altitude (i.e. ζ = 90° – h) and is sometimes used
instead of altitude. See horizontal coordinate system.

Zeno’s paradoxes Four *paradoxes proposed by the Greek
philosopher Zeno of Elea (5th century BC), demonstrating the
di�culties in supposing that anything can be in�nitely subdivided.
The best known – that of Achilles and the tortoise – proposes a race
in which the tortoise is given a start. To overtake the tortoise
Achilles must �rst reach the tortoise’s starting position. By then the
tortoise will have moved ahead to a new position. By the time
Achilles reaches this, the tortoise will have moved again. The



paradox is that Achilles will never catch the tortoise, no matter how
swiftly he runs.

zepto- See SI units.

Zermelo, Ernst (1871–1953) German mathematician who in his
Untersuchungen über die Grundlagen der Mengenlehre (1908,
Investigations on the Foundations of Set Theory) founded the
modern discipline of axiomatic set theory. See Zermelo–Fraenkel set
theory.

Zermelo–Fraenkel set theory In order to avoid the *paradoxes
Bertrand *Russell and others had found in the foundations of set
theory, Zermelo proposed a supposedly rigorous axiomatic basis for
the new discipline in 1900. As modi�ed by A.A.H. Fraenkel in 1922,
Zermelo’s system has formed the basis of most later axiomatizations.
In addition to such familiar assumptions as the axiom of
extensionality and the union axiom, Zer-melo also found it
necessary to assume the more controversial and less intuitively
acceptable axiom of *choice and *axiom of in�nity.

zero 1. See number system.
2. (of a function) If, for a *function f(x), the value x = a is such that
f(a) = 0, then a is a zero of the function. See root.

zero angle (null angle) An angle of 0°.

zero divisor A nonzero element in a *ring that can be combined
with another nonzero element in the ring (using the ring’s
multiplication operation) to give the ring’s zero element. For
example, in the ring of all 2 × 2 *matrices with the operations of
matrix addition and multiplication, the

elements.  and  are zero divisors since 

, which is the ring’s zero element.



zero matrix (null matrix) A *matrix in which all the elements are
zero.

zero-sum game A term used in *game theory to describe a game
where the sum of the gains and losses made by all players is zero. If
the sum is not zero, the game is a nonzero-sum game. A simple
example of a zero-sum game is a game of chess where the two
players mutually agree that the loser shall pay the winner a �xed
sum. Most games played at casinos are nonzero-sum games as there
is a leakage of funds to (and more rarely from) the banker. Any
nonzero-sum game involving n players can be modi�ed to a zero-
sum game involving n + 1 players. For example, most casino games
involving n players become zero-sum games if the banker is
introduced as the (n + 1) th player. See game theory; prisoner’s
dilemma.

zero vector (null vector) 1. A *vector whose *absolute value is
zero.
2. See vector space.

zeta function See Riemann zeta function.

zetta- See SI units.

Zhu Shijie (Chu Shih-chieh) (c. 1300) Chinese mathematician
noted for his Siyuan yujian (1303, The Precious Mirror of the Four
Elements). It contains what in the West became known as Pascal’s
triangle, and its use in extracting roots – both traceable in China
back to Jia Xian (Chia Hsien) (c. 1100). It also describes the ‘method
of four unknowns’ – a system of notation for polynomials in four
variables (the ‘celestial, earthly, human, and material elements’) and
techniques for manipulating them and solving problems. The section
dealing with the summation of �nite series includes a method using
�nite di�erences equivalent to the use of the forward di�erence
formula in *Gregory–Newton interpolation.

zonal harmonic See harmonic.



zone A surface formed by two parallel planes cutting a sphere. If
neither plane is a tangent plane the surface is a zone of two bases. If
one of the planes is a tangent it is a zone of one base. The area of the
zone is 2πRh, where h is the perpendicular distance between the
planes, and R is the radius of the sphere.

zone

Z-score See standardized random variable.

z-transformation See Fisher’s z-transformation.

Zu Chongzhi (Tsu Chung Chi) (AD 429–500) Chinese
mathematician, astronomer, and calendar-maker. All his 51
recorded works are lost, including the Zhui shu (Method of
Interpolation). With his son Zu Geng, he found π to lie between
3.141 592 6 and 3.141 592 7, and gave 355/113 as a ‘close ratio’.
They are also credited with a proof of the formula for the volume of
a sphere by transforming known volumes using a principle identical
to that of *Cavalieri.



APPENDIX

Table 1 Derivatives



Table 2 Integrals

Note: the constant of integration has been omitted.



Note: the constant of integration has been omitted.



Table 3 Reduction formulae



Table 4 Centres of mass The position of the centre of mass of
certain uniform bodies.



Table 5 Moments of inertia Values for certain uniform bodies of
mass M about certain axes.



Table 6 The Greek alphabet



Table 7 Common signs and symbols

Note: symbols such as  and  are to be found in the alphabetic section of the Dictionary.
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